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K-THEORETIC QUASIMAP INVARIANTS AND THEIR
WALL-CROSSING

HSIAN-HUA TSENG AND FENGLONG YOU

ABSTRACT. For each positive rational number ¢, we define K-theoretic
e-stable quasimaps to certain GIT quotients W J G. For e > 1, this
recovers the K-theoretic Gromov-Witten theory of W / G introduced in
more general context by Givental and Y.-P. Lee.

For arbitrary €; and €5 in different stability chambers, these K-theoretic
quasimap invariants are expected to be related by wall-crossing formu-
las. We prove wall-crossing formulas for genus zero K-theoretic quasimap
theory when the target W / G admits a torus action with isolated fixed
points and isolated one-dimensional orbits.
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1. INTRODUCTION

For an affine algebraic variety W = Spec(A) that admits an action by a
reductive algebraic group G, a choice of the polarization O(#) determines a
GIT quotient W J/y G. In [2] and [I], the authors define the moduli space

ok (W G.d)

parametrizing maps of class d from genus ¢ nodal curves with k-marked
points to the quotient stack [WW/G] with e-stability. Assuming W has only
lci singularity, the canonical obstruction theory of Q;k(W / G,d) is perfect
and hence yields a virtual fundamental class, see [2] and [1]. When W /G is
projective the cohomological quasimap invairants are defined in [2] and [I],
using evaluation maps and descendant classes ¢ at the markings.

By [7, Section 2.3], the perfect obstruction theory yields a virtual structure
sheaf

QL (W[ G.d)
in the K-theory of @ (W / G,d). K-theoretic (descendant) e-quasimap
invariants of W // G are defined to be holomorphic Euler characteristics of
vector bundles on the moduli space Q;k(W J G, d):

a ay Ghe
(mLi,. .. kakag[,/k/{d
X Qs (W [ G, OF v jaa) ® (L™ evi ()

where a; are nonnegative integers, v; € K°(W // G) and L; are tautological
line bundles over (5 (W J G,d) corresponding to the i-th marked points.

As explained in [2] and [I], for each fixed class d, the set of positive rational

numbers can be divided into chambers by finitely many walls 1, %, e @,

such that the moduli space Qf (W G, d) stays constant when e is changing
within a chamber, where d(Ly) may be considered as the degree of the map
with respect to the polarization O(#). We write € = 0+ for € being sufficiently
small and being in the first chamber (0, ﬁ], for all d. Changes of quasimap
invariants as e varies, termed wall-crossing formulas, is proved in [I] for genus
0 equivariant cohomological theory.

The goal of this paper is to study wall-crossing behavior for K-theoretic
genus 0 quasimap theory.

We will consider permutation equivariant version of quantum K-theory,
which takes into account the S,-action on the moduli space by permuting
the marked points, developed by Givental [4]. This permutation-equivariant
theory works better in our context.

As in [I], genus zero wall-crossing formulas are naturally stated via gener-
ating functions of K-theoretic quasimap invariants. Let {¢,} be a basis of
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KO(W ] G)®Q, {¢*} be the dual basis and t = Y, t%¢, € K'(W ) G) ® Q.
Let A be the A-algebra described in Section and ve KO(W J/ G,A). For
€ > 0+, we define the S-operator:

(56)(61)(7)=7+Z( >, QY ¢aL,%t,---,t>8’,fii2,d)¢a,

a \ (n,d)=(0,0) l-q
where ¢ is a formal variable.

Suppose that W /G admits a torus T action with isolated fixed points and
isolated one-dimensional orbits. The main result of this paper, Theorem [.4],
is a wall-crossing formula which relates S-operators for ¢; and ey in different
stability chambers and the invertible classes v of the form v =1+ O(Q).

For each € > 0+, we also defined the permutation-equivariant J¢-function
and prove the following identity

J () = 5(a)(PF)

where P¢ is a generating series on the quasimap graph space, see Proposition
Theorem below shows, for each € > 0+, the permutation-equivariant
J¢-function lies in the Lagrangian cone Lg_ w /¢ of the permutation-equivariant
K-theoretic Gromov-Witten theory of W / G.

Theorem 4] and Theorem generalize the main theorems of [1] to K-
theory when the torus action on W // G has only isolated fixed points and
isolated one-dimensional orbits. They can also be considered as generaliza-
tions of the K-theoretic mirror theorem for toric manifolds due to Givental

M.

1.1. Acknowledgments. H.-H. T. is supported in part by Simons Founda-
tion Collaboration Grant and NSF grant DMS-1506551.

2. CONSTRUCTIONS

2.1. K-theoretic Quasimap Invariants. In this section, we review some
basic definitions in quasimap theory following [2, I]. We then define the
K-theoretic version of quasimap invariants.

Consider an affine algebraic variety W = Spec(A) with G-action, where G
is a reductive algebraic group. An element ¢ of the character group x(G),
determines a one-dimensional G-representation Cg, and hence an element

Le=W xC¢

of the group Picg (W) of isomorphism classes of G-linearized line bundles on
W.
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Fixing a character 6 € x(G), we obtain the GIT quotient W /G =W /G,
which is a quasiprojective variety and the morphism

W ) G —» W /.G = Spec(A%)

is a projective morphism.

We write W = W$(0) (respectively Wss = Wss(0)) for the stable (respec-
tively semistable) determined by 6. Following [2] and [I], we require the
following assumptions for the rest of the paper:

o Ws=Wss=zg;
e V3 is nonsingular;
e (G acts freely on Ws.

Let (C,xq,...,7x) be a prestable k-pointed curve, a map
[u] : C' > [W/G]

is represented by a pair (P,u), where P — C'is a principal G-bundle over C
and

u:C—-PxgW
is a section of the bundle p: P xg W - C.

The numerical class d of a map (P,u) is the group homomorphism
d:Pic¢c(W)—>Z, Lwdego(u*(PxglL))

Definition 2.1 ([I], Definition 2.4.1). A quasimap to W /G is a map from
((C,xq,...,x), P,u) to the quotient stack [W/G] such that generic points
of C' land on the stable locus of W, i.e. for a generic point p of C', we have
u(p) € Pxg Ws.

Remark 2.2. Points on C' which map to the unstable locus of W are called
base points, hence a quasimap has at most finitely many base points.

Definition 2.3 ([1], Definition 2.4.2). A group homomorphism d : Picg(W) -
7 is called Lg-effective if it is a finite sum of classes of quasimaps, we write
Eff(W, G, 0) for the semigroup of Ly-effective classes.

Let Qmap, (W /G, d) be the moduli space of genus g, k-pointed quasimaps
of class d to W JJ G.

Definition 2.4 ([I], Definition 2.4.4). We say that a quasimap is prestable if
its base points are away from the nodes and marked points of the underlying
curve.

Definition 2.5 ([I], Definition 2.4.5). Given a prestable quasimap
((C,l’l, . ,zk),P,u)
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to W JJ G, the length [(z) at a point = € C' is the contact order of u(C') with
the unstable subscheme P xg W4 at u(x). More precisely,

[(z) :=length, (coker(u* T — O¢)),
where J is the ideal sheaf of the closed subscheme P x5 W"s of P xq W.

Definition 2.6 ([I], Definition 2.4.6). Given a positive rational number ¢,
a quasimap
((Cyzq,...,x), Pyu)

to W JJ G is called e-stable if it is prestable and satisfies the following condi-
tions

o we(Xh, x;) ® L5 is ample, where £y = P xq Cy = u*(P xg Ly);
e cl(z) <1 for every point x € C.

The moduli space of e-stable quasimaps ()5, (W /G, d) is an open substack
of Qmap, , (W J G,d). The universal family
((C mq, ... xp), P u)

over Q¢ (W / G,d) is obtained as follows. Let 9, . be the moduli space of
prestable curves and Bung be the moduli stack of principal G-bundles on
the fibers of the universal curve 7 : €, — 9, ;. The universal curve

m:C* = Qy (W ) G,d)
is the pull-back of €, via the natural forgetful morphism
Qo (W ) Gd) My

P is the pull-back of the universal curve over Bung via the natural forgetful
morphism
v:Qy (W ] G,d) - Bung,
and u is a section of the bundle
p:PxgW - C*

We write RT, for the relative tangent complex of p. The canonical ob-
struction theory of @ , (W / G,d) relative to the smooth Artin stack Bung
is given by the complex

(1) (7. (u"RT,))"

Theorem 2.7 ([2], Theorem 7.1.6 & [1], Theorem 2.5.1). If W has only lci
singularities, then the obstruction theory () is perfect.

Hence, when W has lci singularities, by [7, Section 2.3], there is a virtual

structure sheaf Ogg,k(w//G,d)’ which is an element of K(Q; (W / G,d)), the

Grothendieck group of coherent sheaves on @ , (W / G,d).
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Since base points are away from the marking, we have the evaluation maps
evi: Q (W ) G.d)-W G, i=1,... k.

We assume that W /G is projective. Let L; be the i-th tautological cotangent
line bundle over Q5 (W / G,d).

Definition 2.8. Given ~; € K°%(W / G) ® Q and nonnegative integers a;,
1 <1 <k, we define the K-theoretic descendant e-stable quasimap invariant
of W )] G:

(2)

a ap\W/Ge € vir i *
(nLy,... v%ka>g,k/{d =X (Qg,k(W /G, d), OQ;,k(W//G,d) ® (®f:1Lz® ev; (%)))
Remark 2.9 (see [1], Remark 2.4.8).

(i) For € > 1, assume (g,k) # (0,0), we have
Qs (W ) G,d) = M, (W ) G,d)

and the corresponding K-theoretic e-stable quasimap invariant is a
K-theoretic Gromov-Witten invariant as defined by A. Givental and
Y.-P. Lee [5] and [7]

(ii) Assume that (g,k) # (0,0),(0,1) and fixed the numerial data (g, k, d),
for each integer 1 < e <d(Ly) -1, the moduli space @ , (W /G, d) of
e-stable quasimaps to W J/ G stays constant when 1/(e+1) <e < 1/e.
Therefore, for each fixed d, the set of positive rational number is

divided into chambers by finitely many walls 1, %, ey d(io)‘

As explained in [I], the quasimap theory applies to a large class of targets,
including toric and flag varieties, zero loci of sections of homogeneous bundles
on toric and flag varieties, local targets with base a GIT quotient, Nakajima
quiver varieties etc.

2.2. Quasimap Graph Spaces. We write QG (W / G.d) for e-stable
quasimap graph spaces. The data

((C,x1,...,x), P u, @)
represents the maps
C — [W]|G] =P

of class (d, 1) and the morphism ¢ maps from C to P! with degree 1. Namely,
there is an irreducible component Cj of C' such that the restriction ¢|c, —
P! is an isomorphism and the remaining components C\Cj are contracted
by ¢. Elements of QG;k(W J G,d) is given by the prestable quasimaps
((C,x1,...,x), P,u,p) with the stability conditions:

. wm(z x;+Y. y;)® LY is ample, where z; are marked points on C\Cy
and y; are the nodes C\Cy n Co;
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e the inequality el(x) < 1 holds for every point z on C.

The K-theoretic e-stable quasimap invariants for graph spaces can be defined
the same way as (2I).

2.3. Permutation Equivariant Quantum K-theory. In this section we
review the permutation equivariant K-theoretic Gromov-Witten theory de-
veloped by Givental in [4].

By a A-algebra A, we mean an algebra over Q equipped with abstract
Adams operations W%, k=1,2,..., that is, ring homomorphisms A - A that
satisfy UrWs = s and W' =id. We assume that the A-algebra A includes the
Novikov variables, the algebra of symmetric polynomials in a given number
of variables and the torus equivariant K-ring of a point. We also assume A
has a maximal ideal A, with the corresponding A,-adic topology. We write
K for the space of rational functions of ¢ with coefficients from K°(X) ® A,
the space K is equipped with a symplectic form

Q(f,9) =—[Resg +Resq=oo](f(q‘1),g(Q))%'

where (-,-) is the K-theoretic intersection pairing on K°(X) ® A:
(a,5) = x(X;a@b).

Then K is a symplectic linear space. It can be decomposed into the direct
sum

K=K,®K_

where IC, is the subspace of Laurent polynomials in ¢ and K_ is the comple-
mentary subspace of rational functions of ¢ regular at ¢ = 0 and vanishing at
q = oo.

Given a compact Kahler manifold X, consider the S,, modules

(L), H(L)] o= D) H" (o,h(X.d): 0% @y 1(L0)).

Where the input t(gq) is a Laurent polynomial in ¢ with coefficients in
K°(X)®A and A is a A-algebra.

The correlators of permutation equivariant quantum K-theory is defined
as

(t(L), s at(L)>S‘:’;L,d = W*(OVMZZY”(XA) ®zn:1 t(LZ))>

where 7, is the K-theoretic push forward along the projection
e MO,H(Xa d)/Sn = [pt].

The permutation equivariant K-theoretic quasimap invariants can be defined
similarly, replacing moduli spaces of stable maps by moduli spaces of stable
quasimaps. When X admits a torus action, the extension of K-theoretic
quasimap theory to torus equivariant setting is also straightforward.
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2.4. The J¢ Functions. Consider the K-theoretic Poincaré metric

Gap = <¢a7¢5> = X(W // Ga¢o¢¢ﬁ)a
where {¢,} is a basis of K%(W / G) ® Q, we define permutation-equivariant
K-theoretic Je-function of X =W J G as
(3)

t Pa
Ix(t,q) =1+—+ QY 1.
I-q Ocz,%(n,d)i(%;)),(l,o) (1-¢)(1-¢qL)

where t = ¥, t%¢, € K°(W JG)®Q and the unstable terms in the summation,
that is, when n = 0,d # 0,d(Ly) < 1/e, are defined the same way as in [I,
Definition 5.1.1], via C*-localization on graph spaces: Choose coordinates
[%0,21] on P! then the standard C*-action on P! is

t[flfo,{l}‘l] = [tx07x1]7 VteCr.

7Sn
oot a9 0s

This action naturally induces an action on the e-stable quasimap graph
spaces QG;R(W J G,d). For k=0 and € < m, we write

Fo2 Qo (W ) G,d)o
for the fixed locus parametrizing quasimaps of class d of the form (C =
P!, P,u) with a principal G-bundle P on P!, a section u : P! - P x5 W such
that u(z) € PxgW* for x # 0 € P! and 0 € P! is a base-point of length d(Ly).
Then the unstable terms in (3)) is defined as

vir €U*(¢a fe
> D, Q% (F07OF0 ® (tli*N)))g g,
B d#0,d(Lg)<1/e Iex AV g
where Ny, is the conormal bundle of the fixed locus Fy.
The permutation-equivariant big J-function of X is

t(q) d Pa
t(q),q) = 1+—= ,
jX( (q) q) +1 _q":% (n7d)¢(§])7(170)Q <(1 _q)(l _qL)

where #(q) is a Laurent polynomial in ¢ with coefficients in K°(X) ® A. We
write Lg_ x for the range of the big J-function in permutation-equivariant
quantum K-theory of X.

3. S& P

3.1. The S-operator. We use double brackets to denote the generating
function

<<71L(1117 cee 7f>/kLZk >>67k = Z Qd<fYIL(1117 s 7f>/kLZk7t7 s 7t>f):izn7d
n>0,d>0

where t € KO(W /G)®A and summing over terms when @ ,,,,(W /G, d)/S,
exists (does not include unstable terms).

t(L)> s >t(L))gZ+1,d9a6¢Ba
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We consider the permutation-equivariant J¢-function of X =W J G,

Jx(t,q) =1+

¢a €,5
+ QY e 0 g™ P .
—q a%(nd);t(;))(m) (1-q)(1-qL) Oonrld

with unstable terms defined as before and ¢ ¢ K%(W / G) ® Q. Givental
[3] introduced a non-constant metric for permutation-equivariant quantum
K-theory. Similarly, we can define a non-constant metric for each e > 0+:

o = Gop + (D D8 )52,

and the inverse tensor
Ge7 =g = (%, 0" No 2+ 2 (D% N62( B 67 )i 2
"
=D (D% N5 2B 87 D524 By 67N 2 + -

24

where {¢®} is the Poincaré dual basis of {¢,}.
The operator Sf : K - K is defined as

(S6 (Q)(’y) Z ( ¢a> Z Qd< ¢(;L>7a ta s ’ﬂf)lfzild) ga6¢6

(n,d)#(0,0) 1-

The operator (S§)* : K — K is defined as

(SH () () = Z(wﬁa > Qd<1

(n,d)#(0,0)

€,5n «
¢Oc> 9 )0 n+2 d) GEBQSB’
Proposition 3.1. The operator S§ is a unitary operator:

(S55)*(q) o (SP)(1/q) =
for all € > 0+, where 0+ represents a sufficiently small positive rational num-

ber such that € = 0+ is in the first chamber (0, m] for all class d.

Proof. Consider elements py, peo € K2, (P) defined by the restriction to the
fixed points:

polo = ¢, Polee =1, and  poolo = 1, Pooleo = 1/4.

For arbitrary elements ~,6 € K(W // G), we consider the generating series

(4) Z Qd<7(1_pO)vtv"'7t75(1_p00)>0Q,7?:’2i7

n>0,d>0
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Applying C*-localization, the generating series (@) can be written as
5 (6 2 ) (16.00) #6122

= S0 g™ (10,090 + (8.60052) +O (77,

= 0m (.0%) + (0.6%)52) + O (1= )
(0.2 + (690507

where the first equation comes from the expansions
1 _ Z qi(L B 1)i

1-qL & (1-q)™

and

L5 O (-1 gvaL -1y
1-Llg & (1-1/q)* S0 (g- 1)+
1 q(L-1) ( 1 )
=1+ + - 1+0
q-1 ;(q—l)’+1 1-¢q
On the other hand, the generating series (]) has no pole at ¢ = 1, hence

% ({602) + (27 7052 5 (<6, 83) + (4. 1?—%»52) = (6,7)+ (6.

a’ﬁ
Therefore

(55)*(a) o (S5)(1/0) ()
o ¢ ¢a € ab
260 3 (00 + (72 ,<z>a>>o2)(<¢a,v>+<<1_L/q,v>>o,2)g

= %Ga%ﬁ((%ﬁ) + <<¢a77>>0,2)
:zﬁ:¢ﬁ<¢677>

=Y

O

3.2. The P-series. We also consider a generating series on the graph space
known as P-series.

P(t,q) := Z%G”‘B (Ga(l-peo) )iy

where po, € K2, (P1) is defined by the restriction to the fixed points:
Poolo =1, Peoloe = 1/g.
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Then we have

Proposition 3.2. For every € > 0+, the equation Jf(q) = Sf(q)(P<(t,q))
holds.

Proof. Apply C*-localization to Pﬁ(t q), we have

P = S 0s62 B (00 Tton) + i i) o

P
-(<¢a,¢b>+<<<1—1/q>¢a, o)

Hence

“(t.q) = ap Vi (b —T e )
P(t>Q) QZ;QSBGE (<¢aaj> <<¢Oz>1_L/q>>0,2

=(S5)*(L/q)(J°)
Then the proposition follows from the unitary property of the S-operators
(Proposition BI). O

Since we have the expansion
1
Jé(t7q) =1+ O(Q) +0 (Tq)

and

(SO (D) =X (7, 6a) + (7, Pa)in) G225 + O (—1 i )
a?/B q
1
=1+ 0 (1 - )

(50" (W) (t.0)) = 1+0(@)+ 0 (1= )
The fact that P<(t,q) has no pole at ¢ = 1 implies
Pe(t q) = (57)"(1/q)(J(t,q)) =1+ O(Q)

In particular, for € > 1, we have J(t,q) =1+ O (1—Eq) and P(t,q) =1. Then
Proposition [3.2] becomes

Hence

J(t,q) = Si(q)(1),

which is a consequence of the K-theoretic string equation in [4].

Let v € K9(W / G) ® A be an invertible element of the form v =1+ O(Q).
For each € > 0+, we have

S0 =m0+ () n(rL),
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where p, (L) stands for a power series in the variable ¢/(1 - ¢) with coeffi-

clents in Kl'aq(W J G) @ A{{t;}}. For v=1+0(Q), we have
Si(v) =57 () mod @
=57°(1) mod @
=J*(t) mod @)
B t 1 )\? q
e () v (75) mod @

where peo (ﬁ) stands for a power series in ¢/(1 - ¢q) with coefficients in

KOY(W ) G) @ A{{t;}}. Therefore
() =t +0(Q).

is an invertible transformation on K%(W J G) ® A. For 0+ < €1 < €3 < o0, let

roen () = () o (1),
then '
€1 _ Q€2 q -
5%y (D) = SE@ ) + =zt (75 )
where pe, c, (ﬁ) stands for a power series in ¢/(1 — ¢) with coefficient in
KO(W ) G) @ A{{t;}}. In general, we have the following lemma.

Lemma 3.3. For every € > 0+, there exist a uniquely determined element
P><(t,q) € K, convergent in the Q-adic topology for each t, and a uniquely
determined map t — 7°(t) on K'(W [ G) ® A satisfying the following
properties:

e 7°¢(t) =t mod Q;
o P*<(t,q)=1 mod Q;
o SHOP(1,0)) = 52y (D (P=(7(1), 0)) + (e peo (25 ) where

Pe.co (l‘%q) stands for a power series in the variable q/(1-q) with co-

efficient in KO(W ) G) @ A{{t:}}.

Proof. Elements 7°¢ and P*(t,q) can be constructed by induction on the
degree d and the construction is unique. The construction is not difficult but
messy, and is therefore omitted. U

Remark 3.4. We write
POO,E(t’ Z) = Z CZ(Qa {tz}a q)¢l>

where the coefficients C;(Q, {t;},q) € A[[{ti},q,1/q]]. Hence by general prop-
erties of K-theoretic Gromov-Witten invariants (see [4]), the element

SE(@(P=(t.q)) = 3, Ci(L =)0, T (. q)
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is on the Lagrangian cone Lg_ w /g associated to the genus 0 K-theoretic
Gromov-Witten theory of W/ G.

4. GENUS 0 WALL-CROSSING

The purpose of this section is to establish a wall-crossing result that relates
genus 0 K-theoretic quasimap invariants for different stability parameters.
The proof, which is parallel to the treatment for cohomological quasimap
theory in [I] and the toric case in [], is based on localization. To this end,
we assume in this section that there is a torus 7" action on W and the action
commutes with the G-action. This induces T-actions on [W/G] and W J/ G.
We assume that the T-action on W /G has isolated fixed points and isolated
1-dimensional orbits.

4.1. Fixed Point Localization. Following the analysis of fixed loci in [,
we can describe the fixed loci of the T-equivariant quasimaps.

Consider the T-equivariant version of the permutation-equivariant K-
theoretic S¢-operator, denoted by Sy ,. Consider the T-fixed point basis

{05}s c K°(W | G)r.
Given a T-fixed point 3 € (W / G)T, we have the restriction of S to 3
B*SE ( _ d (ba ¢ ¢ €,5n,T af
t, T q)(f}/)_z <¢a77>+ Z Q <1_ va% [ >0,n+2,d g
a (n,d)#(0,0) q

Fix € > 0, an effective class d # 0 and a non-negative integer n. For a
T-fixed quasimap
((C,flfl,fﬁg, s 7xn+2)7pwu’)7

and (P’,u'), the restriction of the pair (P, ) to an irreducible component
C" of C, the rational map

[(W]:C">W ]G,

induces a regular map
(W ]peg: C"=>W | G.

Then the regular map [/] satisfies one of the following three conditions:

o [1t/]reg 1s a constant map and maps to a T-fixed point of W J/ G, in
this case, we call C" a contracted component;

e there are no base points (i.e. [p']ey = [1']) and it is a cover of a
1-dimensional orbit of the T-action on W J/ G, totally ramified over
the two fixed points of the orbit;

o [1/]eq is a ramified cover of an 1-dimensional orbit as in the second
case, but [p'] has a base-point at one of the fixed point and a node
at the other fixed point.
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Let M be a connected component of the fixed locus Qf ,, (W / G,d)".
Following [I], M is of initial type if the first marking is on a contracted
irreducible component of the domain curve, of recursion type if the first
marking is on a non-contracted irreducible component.

Lemma 4.1 (Poles of S*SZT) The restriction *S; s a rational function
of q with possibly poles only at 0, oo, roots of unity cmd at most simple poles
at ¢ = (A(B,p)/™), where N(B, 1) is the character of the torus action on
the tangent line at the fized point j corresponding to the 1-dimensional orbit
connecting the fized points 5 and u; for some m=1,2,....

Proof. We apply virtual localization to the sum

S, T
ZQd _a >7a yee t)SangaB
Note that we have the formal expansion
1 x

—— =y ————(L-1)"
1-zL & (1—:1:)“1( )
For each initial component M With the first marking lying over (3, we claim

that it contributes polynomials of = 5 , where ¢ is a root of unity:

The vertex factor of the initial component M that corresponds to the fixed
point § can be written as the fiber product

((Qowar(ays k(W [/ G,0)T xw yayr Qor (W ) GLd1) L) x ) xw yyr Qo (W G di) X,

where the moduli space @0,1 (W /G, d;)e parametrizes the quasimaps (P!, P, u)
of class d; with a principal G-bundle P on P!, a section u : P! - P xg W such
that u(z) € W for = # oo € P! and oo € P! is a base-point of length d;(Ly).
We also have B o
Qo,ml(ﬁ)+k(W /G, O)T = Movai(s)+k

is a finite dimensional complex manifold, hence L restricts to a unipotent
element and~the trace trh(ﬁ) = ﬁ, where h € S, £ is the eigenvalue of
h on L and L is the restriction of L to the fixed point locus of h.

For each recursion component M with the first marking lies over 3, then
the restriction of L to M is A(8,u)Y/™. Hence B*S 1 has simple poles at

q= A8, ). O

Lemma 4.2 (Recursion Relation). The restriction 3*S; . of S5 to the fized
point B satisfies the recursion relation

(5)
o0 md(B,) Ié]
B Sin(q) = I(g)r 30 S @ !

w*
peo(B) m=1 m Cﬁ,u,m 1- )‘(ﬁ> :u)l/mq

(B, m)Mm)

where
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(i) 15(q) is the sum of the contribution of all the components of initial
type. Each Q,{t;} coefficient of 15(q) is of the form

> Yae(€q)/(1-Eg)
&:root of unity 120

(ii) o(B) is the set of all fixed points ju connected to B via a 1-dimensional
orbit, d(, 1) is the homology class of the orbit and (5, ) is the
character of the torus representation on the tangent line at 5 corre-
sponding to the orbit.

(111) The recursion coefficient Cg . is the T-equivariant K -theoretic Eu-
ler class of the virtual cotangent space to the moduli space MOQ(W//
G,m) at the corresponding fized point and this recursion coefficient
does not depend on e.

Proof. We again apply virtual localization to the summand

d ¢a €7Sn7T «
%:Q (1_qL777t7"‘ 7t>07n+17dg ﬁ

Consider fixed components of recursion type, there are two possibilities when
the component has contributions to the pole at g = A(5, u)~'/™:

The first possibility is that M is an one-dimensional orbit with multiplicity
m connecting the the fixed points 3, 1 and has a marked point at the other
end. It is an isolated fixed point p in Moo(W J/ G,m). Note that this
component does not dependent on the choose of €. The contribution is

1 Qme(B.m)

N G, 7)g"
(; )1 - A(B, 1) qmCgym Ey:( g
where the recursion coefficient
(6) Cym = Eulerf (T Moo (W ) G,m))

is the T-equivariant K-theoretic Euler class of the virtual cotangent space
to the moduli space at the point p corresponding to the m-multiple cover of
the 1-dimensional orbit connecting fixed points 8 and p. Hence Cjg ., does
not dependent on the choose of €.

The second possibility is M has an one-dimensional orbit connecting (3, i
and a subgraph M’ attached to u, i.e. the first marking of M’ lies over p.
The contribution is

of md(B,pu)
1 —z):\?ga/i])l/mq WQ’LCB (M*SE’T(t’ )\(ﬁ’u)il/m) - Z(gb,,,’y)g”“).
) NTRD) v

Finally, the polynomiality of the coefficients of Ig(q) follows from unipotency
of L.

This completes the proof. O
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Remark 4.3. Write

P(t,q) = P(t, (A8, 1)) 71" + (1= A8, 1) ™) Af, (0,
where A¢ . (q) is a power series in (1-¢). Applying localization as in the
previous lemma, we have the following recursion relation for S§(q)(P<(¢,q)):

prSi(a)(Pe(t,9))

= QmdBp)  pp 1 . . )
) ]B(q Meg(:ﬁ) mzl m CB wm 1- )\(5’ )1/m St,T(A(BwU’) )(P (t,Q))

md(B,) B
O RID I Y Ee ! 1S5 (A(B, ) ™) (PE(E (B, 1))

peo(B) m=1 m Cﬁ Hym 1- A(ﬁ )l/mq

where fg(q) is the summation of the contribution of all the components of
initial type and

- o Omd(B.p)  HB
o=l ¥ SE L

ueo(B) m=1 m Cﬁ,u,m

S5 (A ) ™) (AL (a))

The recursion relation for S;’io,s(t)(q)(P“vﬁ(T""’e(t),q)) works in the same
way.

4.2. Main Results. This section, we state and prove the main theorems of
this paper.

Theorem 4.4. Assume the torus T' action on W || G has isolated fized points
and isolated 1-dimensional orbits. Let 0+ < ¢ <€y < oo, ve KL(W JG)® A
is of the form 1 +O(Q). Then

S 102y (0) (1) = S(0) ().

Theorem 4.5. Assume the torus T' action on W |/ G has isolated fized points
and isolated 1-dimensional orbits, then for all € > 0+,

T(t,q) = Si(@)(P(t,q)) = 5%y () (P=(T°(1), 9)),
hence, lies on Ls, wyq, the Lagrangian cone of the permutation-equivariant
K -theoretic Gromov-Witten theory of W /| G.

Theorem is a consequence of Theorem [4.4] and the arguments in Re-

mark B.4]

Remark 4.6. Certainly, it is conjectured that the statements in Theorems
A4 and L5 hold for W/ G without torus actions.

Lemma 4.7. For each torus fized point € (W || G)T, the series
D(S§) = S5(Q,t,a)S5(Q(1/a)*"*,t,1/q)

has no pole at roots of unity, where a varies in integers and (Q(1/q)* o) =

QY(1/q)y 0.
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Proof. Given a fixed point 8 € (W JG)T, we write QG ., (W J G)g for the
T-fixed locus parametrizes quasimaps with the parametrized P! contracted
to the point 5. Let x be the inclusion map into the graph space and put

ReS OVir =K OQG8,77L+2,d(W//G)ﬁ
H T Q0 m2a WIS T Blerk (Vi)

the T-equivariant residue at the fixed locus QG§ .o JWJG)s. Furthermore,
we write
Y= Z Qd%z
d
where 4 € K9(W J G) ® Q. Consider the generating series

(7(1=p0),7(1 = peo); U(Lo) )ss =
> QUQ" Q"X (QCh maa(W | @)s/Sms Res, O e

m,d,d1,d2

& (Usnan(L0))" v (s (1~ po)) ev3 (s (1 = pos)) ﬁemm)

where, Uy, 4,(Lg) is the universal C*-equivaraint line bundle obtained from
pulling back O(1) with the canonical linearization, as described in [, Section
3.3]. This is defined without C*-localization, hence has no pole at ¢ = 1.
Applying C*-localization to this generating series, we have

(v(1=p0). (1= poo): U(Lo) )5 = MO(0); )" D(S5),
where A(O(0); ) is the character of the torus representation on the fiber of
O(0) at f.

For any positive integer m, U (D(S5)) is also defined without C*-localization,
hence has no pole at ¢ = 1, where the Adams operation extended from A by
U(q) = g™ Therefore, D(S5) has no pole at the m-th root of unity. Hence
the Lemma follows. l

Remark 4.8. Since P> and P> in Theorem have no pole at roots
of unity, the proof also applies to the restrictions of Sf(q)(P<(t,q)) and
S;’jq,s(t)(q)(P“vf(T“vf(t),q)) to fixed points, after appropriate adjustments
to the generating series.

Lemma 4.9 (Uniqueness Lemma). Let

{S18}peewyayr and  {Sa5} geew jcyr
be two systems of power series in A[[t;]]{{q,1/q}} that satisfy the following
properties:

(1): For all 5 e (W JJG)T, Sip and Sy p are rational functions of q with
possibly poles only at 0, oo, roots of unity and at most simple poles
at ¢ = (MB, u)/™), where N(B, 1) is the character of the torus
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representation on the tangent line at the fixed point B corresponding
to the 1-dimensional orbit connecting the fized points 5 and u, for
m=1,2,....
(2): The systems
{S18}pewyeyr and  {S25}pew jayr
both satisfy the recursion relation ().
(3): Forall e (W ) G)T, the series
D(S55) = S5 5(Q,.0) S5 5(Q(1/q)** £, 1/q)

and
D(855) = S5.5(Q:.0) S5 5(Q(1/q)**. £, 1/q)
have no pole at q = 1.

(4): Forall e (W ) G)T,

1 q
Sl,ﬁ - SQ,ﬁ + (1 _ q)2p1,2 (1 — q) )

where py o (ﬁ) stands for a power series in the variable q/(1 - q)
with coefficient in KO(W JJ G) ® A{{t;}}.
(5): Forall e (W | G)T,

Sl,ﬁ = Sg,ﬁ mod Q
Then Sy =S5 for all fe (W JG)T.

Proof. We write
Sig=). Q* Y ersar(a) ] tfi and Ssg=) Q* Y eopar(a) ] tf
d % i d % i

where k := {k;}; and k; are nonnegative integers. We define the bi-degree of
the monomial Q4[],t" to be (X, ki, d(Lg)). We write Sfjg’l) and Sz(jg’l) for
the part of bi-degree (m,1) of Sy 5 and Ss 3, respectively. It suffices to show
S = 5D for all Be (W G)T and (m,l) e Nx N
We prove it by induction on (m,[) using the lexicographic order
(m',1") < (m,1) if and only if m’ <m, or m'=m and [' <.
The base case when d =0 is true due to property (5).
For [ > 1, we assume
ST = 58 for all Be (W G)T and all (m', ') < (m, 1)

Denote by D™D the part of bi-degree (m,l) of the difference D(S; ) -
D(S5 ). By induction, we have

DD = 570 (q) - 5550 (a) + (1) (875" (1 a) - 875" (1),
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By properties (2), (Sf?g’l)(q) —S;fg’l)(q)) is the sum of monomials of the

form ¢;(£q)'/(1 = £q)™t, for @ > 0 and roots of unity &, with coefficient in
KO(W ) G) @ A{{t;}}, we write

(51370 - 555" @),

for the sum of terms of Sf?g’l) (¢) —Sgg“ (¢q) with & =1, therefore, by property
(4), we have

(58 @ =58 @), = (=) (A" +001-0)
and
(85" 1) - 555" 1/), = (1= ) (DA + 01 -0))
for an integer n > 2 and a nonzero element A € A{{t;}}. Moreover, we have
(1/g)" =1+al(1-q)+O(1-q),
therefore
1

I-g¢

(0m0) -

For n > 1, then D™D has a pole at ¢ = 1. It contradicts property (3).

) (g2 s (-1)rag + 01 -0)

Therefore, Sf%’l) - S;"BL’Z) has no pole at ¢ = 1. Similar argument shows
Sffg’l) - 52(77;’1) has no pole at roots of unity. Therefore, Sffg’l) = SéZ’l). O

Theorem [4.4] now follows from the above uniqueness lemma applied to
{S% e, ® B} and {S;%}. The required properties are checked before. Prop-
T’Y 5 )

erty (1) is in Lemma [A1l Property (2) is in Lemma L2l Property (3) is in
Lemma [A7 Property (4) is in Lemma B3l Property (5) is clear.
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