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K-THEORETIC QUASIMAP INVARIANTS AND THEIR
WALL-CROSSING

HSIAN-HUA TSENG AND FENGLONG YOU

Abstract. For each positive rational number ǫ, we define K-theoretic
ǫ-stable quasimaps to certain GIT quotients W � G. For ǫ > 1, this
recovers the K-theoretic Gromov-Witten theory of W �G introduced in
more general context by Givental and Y.-P. Lee.

For arbitrary ǫ1 and ǫ2 in different stability chambers, theseK-theoretic
quasimap invariants are expected to be related by wall-crossing formu-
las. We prove wall-crossing formulas for genus zero K-theoretic quasimap
theory when the target W �G admits a torus action with isolated fixed
points and isolated one-dimensional orbits.
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1. Introduction

For an affine algebraic variety W = Spec(A) that admits an action by a
reductive algebraic group G, a choice of the polarization O(θ) determines a
GIT quotient W �θ G. In [2] and [1], the authors define the moduli space

Qǫ
g,k(W �G,d)

parametrizing maps of class d from genus g nodal curves with k-marked
points to the quotient stack [W /G] with ǫ-stability. Assuming W has only
lci singularity, the canonical obstruction theory of Qǫ

g,k(W �G,d) is perfect
and hence yields a virtual fundamental class, see [2] and [1]. When W �G is
projective the cohomological quasimap invairants are defined in [2] and [1],
using evaluation maps and descendant classes ψ at the markings.

By [7, Section 2.3], the perfect obstruction theory yields a virtual structure
sheaf

Ovir
Qǫ

g,k
(W�G,d)

in the K-theory of Qǫ
g,k(W � G,d). K-theoretic (descendant) ǫ-quasimap

invariants of W �G are defined to be holomorphic Euler characteristics of
vector bundles on the moduli space Qǫ

g,k(W �G,d):
⟨γ1La1

1 , . . . , γkL
ak
k ⟩W�G,ǫ

g,k,d

∶=χ(Qǫ
g,k(W �G,d),Ovir

Qǫ
g,k
(W�G,d) ⊗ (⊗k

i=1L
⊗ai
i ev∗i (γi)))

where ai are nonnegative integers, γi ∈ K0(W �G) and Li are tautological
line bundles over Qǫ

g,k(W �G,d) corresponding to the i-th marked points.

As explained in [2] and [1], for each fixed class d, the set of positive rational
numbers can be divided into chambers by finitely many walls 1, 1

2
,⋯, 1

d(Lθ)
,

such that the moduli space Qǫ
g,k(W �G,d) stays constant when ǫ is changing

within a chamber, where d(Lθ) may be considered as the degree of the map
with respect to the polarization O(θ). We write ǫ = 0+ for ǫ being sufficiently
small and being in the first chamber (0, 1

d(Lθ)
], for all d. Changes of quasimap

invariants as ǫ varies, termed wall-crossing formulas, is proved in [1] for genus
0 equivariant cohomological theory.

The goal of this paper is to study wall-crossing behavior for K-theoretic
genus 0 quasimap theory.

We will consider permutation equivariant version of quantum K-theory,
which takes into account the Sn-action on the moduli space by permuting
the marked points, developed by Givental [4]. This permutation-equivariant
theory works better in our context.

As in [1], genus zero wall-crossing formulas are naturally stated via gener-
ating functions of K-theoretic quasimap invariants. Let {φα} be a basis of
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K0(W �G)⊗Q, {φα} be the dual basis and t = ∑α t
αφα ∈K0(W �G)⊗Q.

Let Λ be the λ-algebra described in Section 2.3 and γ ∈ K0(W �G,Λ). For
ǫ ≥ 0+, we define the S-operator:

(Sǫ)(q)(γ) = γ +∑
α

⎛
⎝ ∑
(n,d)≠(0,0)

Qd⟨ φα

1 − qL
, γ, t, . . . , t⟩ǫ,Sn

0,n+2,d

⎞
⎠φα,

where q is a formal variable.

Suppose thatW �G admits a torus T action with isolated fixed points and
isolated one-dimensional orbits. The main result of this paper, Theorem 4.4,
is a wall-crossing formula which relates S-operators for ǫ1 and ǫ2 in different
stability chambers and the invertible classes γ of the form γ = 1 +O(Q).

For each ǫ ≥ 0+, we also defined the permutation-equivariant J ǫ-function
and prove the following identity

J ǫ(q) = Sǫ(q)(P ǫ)
where P ǫ is a generating series on the quasimap graph space, see Proposition
3.2. Theorem 4.5 below shows, for each ǫ ≥ 0+, the permutation-equivariant
J ǫ-function lies in the Lagrangian cone LS∞,W�G of the permutation-equivariant
K-theoretic Gromov-Witten theory of W �G.

Theorem 4.4 and Theorem 4.5 generalize the main theorems of [1] to K-
theory when the torus action on W �G has only isolated fixed points and
isolated one-dimensional orbits. They can also be considered as generaliza-
tions of the K-theoretic mirror theorem for toric manifolds due to Givental
[4].

1.1. Acknowledgments. H.-H. T. is supported in part by Simons Founda-
tion Collaboration Grant and NSF grant DMS-1506551.

2. Constructions

2.1. K-theoretic Quasimap Invariants. In this section, we review some
basic definitions in quasimap theory following [2, 1]. We then define the
K-theoretic version of quasimap invariants.

Consider an affine algebraic variety W = Spec(A) with G-action, where G
is a reductive algebraic group. An element ξ of the character group χ(G),
determines a one-dimensional G-representation Cξ, and hence an element

Lξ =W ×Cξ

of the group PicG(W ) of isomorphism classes of G-linearized line bundles on
W .
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Fixing a character θ ∈ χ(G), we obtain the GIT quotient W �G ∶=W �θG,
which is a quasiprojective variety and the morphism

W �G→W /affG ∶= Spec(AG)
is a projective morphism.

We write W s =W s(θ) (respectively W ss =W ss(θ)) for the stable (respec-
tively semistable) determined by θ. Following [2] and [1], we require the
following assumptions for the rest of the paper:

● W s =W ss ≠ ∅;
● W s is nonsingular;
● G acts freely on W s.

Let (C,x1, . . . , xk) be a prestable k-pointed curve, a map

[u] ∶ C → [W /G]
is represented by a pair (P,u), where P → C is a principal G-bundle over C
and

u ∶ C → P ×GW

is a section of the bundle ρ ∶ P ×GW → C.

The numerical class d of a map (P,u) is the group homomorphism

d ∶ PicG(W )→ Z, L↦ degC(u∗(P ×G L))
Definition 2.1 ([1], Definition 2.4.1). A quasimap to W �G is a map from((C,x1, . . . , xk), P, u) to the quotient stack [W /G] such that generic points
of C land on the stable locus of W , i.e. for a generic point p of C, we have
u(p) ∈ P ×GW s.

Remark 2.2. Points on C which map to the unstable locus of W are called
base points, hence a quasimap has at most finitely many base points.

Definition 2.3 ([1], Definition 2.4.2). A group homomorphism d ∶ PicG(W )→
Z is called Lθ-effective if it is a finite sum of classes of quasimaps, we write
Eff(W,G, θ) for the semigroup of Lθ-effective classes.

Let Qmapg,k(W�G,d) be the moduli space of genus g, k-pointed quasimaps
of class d to W �G.

Definition 2.4 ([1], Definition 2.4.4). We say that a quasimap is prestable if
its base points are away from the nodes and marked points of the underlying
curve.

Definition 2.5 ([1], Definition 2.4.5). Given a prestable quasimap

((C,x1, . . . , xk), P, u)
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to W �G, the length l(x) at a point x ∈ C is the contact order of u(C) with
the unstable subscheme P ×GW us at u(x). More precisely,

l(x) ∶= lengthx(coker(u∗J → OC)),
where J is the ideal sheaf of the closed subscheme P ×GW us of P ×GW .

Definition 2.6 ([1], Definition 2.4.6). Given a positive rational number ǫ,
a quasimap

((C,x1, . . . , xk), P, u)
to W �G is called ǫ-stable if it is prestable and satisfies the following condi-
tions

● ωC(∑k
i=1 xi)⊗Lǫθ is ample, where Lθ = P ×G Cθ = u∗(P ×G Lθ);

● ǫl(x) ≤ 1 for every point x ∈ C.

The moduli space of ǫ-stable quasimaps Qǫ
g,k(W�G,d) is an open substack

of Qmapg,k(W �G,d). The universal family

((Cǫ, x1, . . . , xk),P, u)
over Qǫ

g,k(W �G,d) is obtained as follows. Let Mg,k be the moduli space of
prestable curves and BunG be the moduli stack of principal G-bundles on
the fibers of the universal curve π ∶ Cg,k →Mg,k. The universal curve

π ∶ Cǫ → Qǫ
g,k(W �G,d)

is the pull-back of Cg,k via the natural forgetful morphism

µ ∶ Qǫ
g,k(W �G,d)→Mg,k.

P is the pull-back of the universal curve over BunG via the natural forgetful
morphism

ν ∶ Qǫ
g,k(W �G,d)→BunG,

and u is a section of the bundle

ρ ∶ P ×GW → C
ǫ

We write RTρ for the relative tangent complex of ρ. The canonical ob-
struction theory of Qǫ

g,k
(W �G,d) relative to the smooth Artin stack BunG

is given by the complex

(1) (R●π∗(u∗RTρ))∨
Theorem 2.7 ([2], Theorem 7.1.6 & [1], Theorem 2.5.1). If W has only lci
singularities, then the obstruction theory (1) is perfect.

Hence, when W has lci singularities, by [7, Section 2.3], there is a virtual
structure sheaf Ovir

Qǫ
g,k
(W�G,d)

, which is an element of K(Qǫ
g,k(W �G,d)), the

Grothendieck group of coherent sheaves on Qǫ
g,k(W �G,d).
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Since base points are away from the marking, we have the evaluation maps

evi ∶ Q
ǫ
g,k(W �G,d)→W �G, i = 1, . . . , k.

We assume thatW�G is projective. Let Li be the i-th tautological cotangent
line bundle over Qǫ

g,k(W �G,d).
Definition 2.8. Given γi ∈ K0(W � G) ⊗ Q and nonnegative integers ai,
1 ≤ i ≤ k, we define the K-theoretic descendant ǫ-stable quasimap invariant
of W �G:

⟨γ1La1
1 , . . . , γkL

ak
k ⟩W�G,ǫ

g,k,d ∶= χ(Qǫ
g,k(W �G,d),Ovir

Qǫ
g,k
(W�G,d) ⊗ (⊗k

i=1L
⊗ai
i ev∗i (γi)))

(2)

Remark 2.9 (see [1], Remark 2.4.8).

(i) For ǫ > 1, assume (g, k) ≠ (0,0), we have

Qǫ
g,k(W �G,d) =M g,k(W �G,d)

and the corresponding K-theoretic ǫ-stable quasimap invariant is a
K-theoretic Gromov-Witten invariant as defined by A. Givental and
Y.-P. Lee [5] and [7]

(ii) Assume that (g, k) ≠ (0,0), (0,1) and fixed the numerial data (g, k, d),
for each integer 1 ≤ e ≤ d(Lθ)−1, the moduli space Qǫ

g,k(W �G,d) of
ǫ-stable quasimaps to W �G stays constant when 1/(e+1) < ǫ ≤ 1/e.
Therefore, for each fixed d, the set of positive rational number is
divided into chambers by finitely many walls 1, 1

2
,⋯, 1

d(Lθ)
.

As explained in [1], the quasimap theory applies to a large class of targets,
including toric and flag varieties, zero loci of sections of homogeneous bundles
on toric and flag varieties, local targets with base a GIT quotient, Nakajima
quiver varieties etc.

2.2. Quasimap Graph Spaces. We write QGǫ
g,k(W � G,d) for ǫ-stable

quasimap graph spaces. The data

((C,x1, . . . , xk), P, u,ϕ)
represents the maps

C Ð→ [W /G] × P1

of class (d,1) and the morphism ϕmaps from C to P1 with degree 1. Namely,
there is an irreducible component C0 of C such that the restriction ϕ∣C0

→

P1 is an isomorphism and the remaining components C/C0 are contracted
by ϕ. Elements of QGǫ

g,k(W � G,d) is given by the prestable quasimaps((C,x1, . . . , xk), P, u,ϕ) with the stability conditions:

● ω
C/C0
(∑xi+∑ yj)⊗Lǫθ is ample, where xi are marked points on C/C0

and yj are the nodes C/C0 ∩C0;
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● the inequality ǫl(x) ≤ 1 holds for every point x on C.

The K-theoretic ǫ-stable quasimap invariants for graph spaces can be defined
the same way as (2).

2.3. Permutation Equivariant Quantum K-theory. In this section we
review the permutation equivariant K-theoretic Gromov-Witten theory de-
veloped by Givental in [4].

By a λ-algebra Λ, we mean an algebra over Q equipped with abstract
Adams operations Ψk, k = 1,2, . . . , that is, ring homomorphisms Λ→ Λ that
satisfy ΨrΨs = Ψrs and Ψ1 = id. We assume that the λ-algebra Λ includes the
Novikov variables, the algebra of symmetric polynomials in a given number
of variables and the torus equivariant K-ring of a point. We also assume Λ
has a maximal ideal Λ+ with the corresponding Λ+-adic topology. We write
K for the space of rational functions of q with coefficients from K0(X)⊗Λ,
the space K is equipped with a symplectic form

Ω(f, g) ∶= −[Resq=0 +Resq=∞](f(q−1), g(q))dq
q
.

where (⋅, ⋅) is the K-theoretic intersection pairing on K0(X)⊗Λ:

(a, b) ∶= χ(X ;a⊗ b).
Then K is a symplectic linear space. It can be decomposed into the direct
sum

K = K+ ⊕K−

where K+ is the subspace of Laurent polynomials in q and K− is the comple-
mentary subspace of rational functions of q regular at q = 0 and vanishing at
q =∞.

Given a compact Kähler manifold X , consider the Sn modules

[t(L), . . . , t(L)] ∶=∑
m

(−1)mHm(M 0,n(X,d);Ovir

M 0,n(X,d)
⊗

n
i=1 t(Li)),

Where the input t(q) is a Laurent polynomial in q with coefficients in
K0(X)⊗Λ and Λ is a λ-algebra.

The correlators of permutation equivariant quantum K-theory is defined
as ⟨t(L), . . . , t(L)⟩Sn

0,n,d ∶= π∗(Ovir

M0,n(X,d)
⊗

n
i=1 t(Li)),

where π∗ is the K-theoretic push forward along the projection

π ∶M 0,n(X,d)/Sn → [pt].
The permutation equivariant K-theoretic quasimap invariants can be defined
similarly, replacing moduli spaces of stable maps by moduli spaces of stable
quasimaps. When X admits a torus action, the extension of K-theoretic
quasimap theory to torus equivariant setting is also straightforward.
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2.4. The J ǫ Functions. Consider the K-theoretic Poincaré metric

gαβ = ⟨φα, φβ⟩ ∶= χ(W �G,φαφβ),
where {φα} is a basis of K0(W �G)⊗Q, we define permutation-equivariant
K-theoretic J ǫ-function of X =W �G as
(3)

J ǫ
X(t, q) ∶= 1+ t

1 − q
+∑

α,β

∑
(n,d)≠(0,0),(1,0)

Qd⟨ φα(1 − q)(1 − qL) , t, . . . , t⟩ǫ,Sn

0,n+1,dg
αβφβ.

where t = ∑α t
αφα ∈K0(W�G)⊗Q and the unstable terms in the summation,

that is, when n = 0, d ≠ 0, d(Lθ) ≤ 1/ǫ, are defined the same way as in [1,
Definition 5.1.1], via C∗-localization on graph spaces: Choose coordinates[x0, x1] on P1, then the standard C∗-action on P1 is

t[x0, x1] = [tx0, x1], ∀t ∈ C∗.
This action naturally induces an action on the ǫ-stable quasimap graph
spaces QGǫ

g,k
(W �G,d). For k = 0 and ǫ ≤ 1

d(Lθ)
, we write

F0 ≅ Q0,1(W �G,d)0
for the fixed locus parametrizing quasimaps of class d of the form (C =
P1, P, u) with a principal G-bundle P on P1, a section u ∶ P1 → P ×GW such
that u(x) ∈ P ×GW s for x ≠ 0 ∈ P1 and 0 ∈ P1 is a base-point of length d(Lθ).
Then the unstable terms in (3) is defined as

∑
α,β

∑
d≠0,d(Lθ)≤1/ǫ

Qdχ(F0,O
vir
F0
⊗ ( ev∗1(φα)

trC∗ ∧∗N∗F0

)) gαβφβ,

where N∗F0
is the conormal bundle of the fixed locus F0.

The permutation-equivariant big J-function of X is

JX(t(q), q) ∶= 1+ t(q)
1 − q

+∑
α,β

∑
(n,d)≠(0,0),(1,0)

Qd⟨ φα(1 − q)(1 − qL) , t(L), . . . , t(L)⟩Sn

0,n+1,dg
αβφβ,

where t(q) is a Laurent polynomial in q with coefficients in K0(X)⊗Λ. We
write LS∞,X for the range of the big J-function in permutation-equivariant
quantum K-theory of X .

3. S & P

3.1. The S-operator. We use double brackets to denote the generating
function

⟪γ1La1
1 , . . . , γkL

ak
k ⟫ǫ0,k ∶= ∑

n≥0,d≥0

Qd⟨γ1La1
1 , . . . , γkL

ak
k , t, . . . , t⟩ǫ,Sn

0,k+n,d

where t ∈K0(W �G)⊗Λ and summing over terms when Qǫ
0,k+n(W �G,d)/Sn

exists (does not include unstable terms).
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We consider the permutation-equivariant J ǫ-function of X =W �G,

J ǫ
X(t, q) ∶= 1+ t

1 − q
+∑

α,β

∑
(n,d)≠(0,0),(1,0)

Qd⟨ φα(1 − q)(1 − qL) , t, . . . , t⟩ǫ,Sn

0,n+1,dg
αβφβ.

with unstable terms defined as before and t ∈ K0(W � G) ⊗ Q. Givental
[3] introduced a non-constant metric for permutation-equivariant quantum
K-theory. Similarly, we can define a non-constant metric for each ǫ ≥ 0+:

Gǫ
αβ ∶= gαβ + ⟪φα, φβ⟫ǫ0,2,

and the inverse tensor

Gαβ
ǫ =g

αβ
− ⟪φα, φβ⟫ǫ0,2 +∑

µ

⟪φα, φµ⟫ǫ0,2⟪φµ, φ
β⟫ǫ0,2

−∑
µ,ν

⟪φα, φµ⟫ǫ0,2⟪φµ, φ
ν⟫ǫ0,2⟪φν , φ

β⟫ǫ0,2 +⋯
where {φα} is the Poincaré dual basis of {φα}.

The operator Sǫ
t ∶ K → K is defined as

(Sǫ
t)(q)(γ) =∑

α,β

⎛
⎝⟨φα, γ⟩ + ∑

(n,d)≠(0,0)

Qd⟨ φα

1 − qL
, γ, t, . . . , t⟩ǫ,Sn

0,n+2,d

⎞
⎠ gαβφβ

The operator (Sǫ
t)∗ ∶ K → K is defined as

(Sǫ
t)∗(q)(γ) =∑

α,β

⎛
⎝⟨γ,φα⟩ + ∑

(n,d)≠(0,0)

Qd⟨ γ

1 − qL
,φα, t, . . . , t⟩ǫ,Sn

0,n+2,d

⎞
⎠Gαβ

ǫ φβ,

Proposition 3.1. The operator Sǫ
t is a unitary operator:

(Sǫ
t )∗(q) ○ (Sǫ

t)(1/q) = Id,
for all ǫ ≥ 0+, where 0+ represents a sufficiently small positive rational num-
ber such that ǫ = 0+ is in the first chamber (0, 1

d(Lθ)
] for all class d.

Proof. Consider elements p0, p∞ ∈ K0
C∗(P1) defined by the restriction to the

fixed points:

p0∣0 = q, p0∣∞ = 1, and p∞∣0 = 1, p∞∣∞ = 1/q.
For arbitrary elements γ, δ ∈K(W �G), we consider the generating series

(4) ∑
n≥0,d≥0

Qd⟨γ(1 − p0), t, . . . , t, δ(1 − p∞)⟩QGǫ,Sn

0,n+2,d
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Applying C∗-localization, the generating series (4) can be written as

∑
α,β

(⟨φα, γ⟩ + ⟪ φα

1 − qL
, γ⟫ǫ0,2) gαβ (⟨δ, φβ⟩ + ⟪δ, φβ

1 −L/q⟫ǫ0,2)
=∑

α,β

⟨φα, γ⟩gαβ (⟨δ, φβ⟩ + ⟪δ, φβ⟫ǫ0,2) +O ( 1

1 − q
)

=∑
α

⟨φα, γ⟩(⟨δ, φα⟩ + ⟪δ, φα⟫ǫ0,2) +O ( 1

1 − q
)

=⟨δ, γ⟩ + ⟪δ, γ⟫ǫ0,2 +O ( 1

1 − q
)

where the first equation comes from the expansions

1

1 − qL
=∑

i≥0

qi(L − 1)i
(1 − q)i+1

and

1

1 −L/q =∑i≥0
(1/q)i(L − 1)i
(1 − 1/q)i+1 =∑i≥0

q(L − 1)i
(q − 1)i+1

= 1 +
1

q − 1
+∑

i≥1

q(L − 1)i
(q − 1)i+1 = 1 +O (

1

1 − q
) .

On the other hand, the generating series (4) has no pole at q = 1, hence

∑
α,β

(⟨φα, γ⟩ + ⟪ φα

1 − qL
, γ⟫ǫ0,2) gαβ (⟨δ, φβ⟩ + ⟪δ, φβ

1 −L/q⟫ǫ0,2) = ⟨δ, γ⟩ + ⟪δ, γ⟫ǫ0,2.
Therefore

(Sǫ
t )∗(q) ○ (Sǫ

t)(1/q)(γ)
=∑

α,β

Gαβφβ∑
a,b

(⟨φb, φα⟩ + ⟪ φb

1 − qL
,φα⟫ǫ0,2)(⟨φa, γ⟩ + ⟪ φa

1 −L/q , γ⟫ǫ0,2) gab
=∑

α,β

Gαβφβ(⟨φα, γ⟩ + ⟪φα, γ⟫ǫ0,2)
=∑

β

φβ⟨φβ, γ⟩
=γ

�

3.2. The P -series. We also consider a generating series on the graph space
known as P -series.

P ǫ(t, q) ∶=∑
α,β

φβG
αβ
ǫ ⟪φα(1 − p∞)⟫QGǫ

0,1

where p∞ ∈K0
C∗(P1) is defined by the restriction to the fixed points:

p∞∣0 = 1, p∞∣∞ = 1/q.
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Then we have

Proposition 3.2. For every ǫ ≥ 0+, the equation J ǫ
t (q) = Sǫ

t (q)(P ǫ(t, q))
holds.

Proof. Apply C∗-localization to P ǫ(t, q), we have

P ǫ(t, q) =∑
α,β

φβG
αβ
ǫ ∑

a,b

(φa +
1

1 − q
⟨φa, t⟩ + ⟪ φa(1 − q)(1 − qL)⟫ǫ0,1) gab

⋅ (⟨φα, φb⟩ + ⟪(1 − 1/q)φα,
φb((1 − 1/q)(1 −L/q)⟫ǫ0,2)

Hence

P ǫ(t, q) =∑
α,β

φβG
αβ
ǫ (⟨φα,J

ǫ⟩ + ⟪φα,
J ǫ

1 −L/q⟫ǫ0,2)
=(Sǫ

t )∗(1/q)(J ǫ)
Then the proposition follows from the unitary property of the S-operators
(Proposition 3.1). �

Since we have the expansion

J ǫ(t, q) = 1 +O(Q) +O ( 1

1 − q
)

and

(Sǫ
t )∗(1/q)(γ) =∑

α,β

(⟨γ,φα⟩ + ⟪γ,φα⟫ǫ0,2)Gαβ
ǫ φβ +O ( 1

1 − q
)

=γ +O ( 1

1 − q
)

Hence

(Sǫ
t )∗(1/q)(J ǫ(t, q)) = 1 +O(Q) +O ( 1

1 − q
)

The fact that P ǫ(t, q) has no pole at q = 1 implies

P ǫ(t, q) = (Sǫ
t )∗(1/q)(J ǫ(t, q)) = 1 +O(Q)

In particular, for ǫ > 1, we have J(t, q) = 1 +O ( 1
1−q) and P (t, q) = 1. Then

Proposition 3.2 becomes

J(t, q) = St(q)(1),
which is a consequence of the K-theoretic string equation in [4].

Let γ ∈K0(W �G)⊗Λ be an invertible element of the form γ = 1+O(Q).
For each ǫ ≥ 0+, we have

Sǫ
t(q)(γ) = γ + τ ǫγ(t) 1

1 − q
+ ( 1

1 − q
)2 pǫ ( q

1 − q
) ,
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where pǫ ( q

1−q) stands for a power series in the variable q/(1− q) with coeffi-

cients in K0(W �G)⊗Λ{{ti}}. For γ = 1 +O(Q), we have

Sǫ
t(γ) =S∞t (γ) mod Q

=S∞t (1) mod Q

=J∞(t) mod Q

=1 +
t

1 − q
+ ( 1

1 − q
)2 p∞ ( q

1 − q
) mod Q,

where p∞ ( q

1−q) stands for a power series in q/(1 − q) with coefficients in

K0(W �G)⊗Λ{{ti}}. Therefore
τ ǫγ(t) = t +O(Q).

is an invertible transformation on K0(W �G)⊗Λ. For 0+ ≤ ǫ1 ≤ ǫ2 ≤∞, let

τ ǫ1,ǫ2γ (t) ∶= (τ ǫ1γ )−1 ○ τ ǫ2γ (t),
then

Sǫ1

τ
ǫ1,ǫ2
γ (t)

(q)(γ) = Sǫ2
t (q)(γ) + 1

(1 − q)2pǫ1,ǫ2 (
q

1 − q
) ,

where pǫ1.ǫ2 ( q

1−q) stands for a power series in q/(1 − q) with coefficient in

K0(W �G)⊗Λ{{ti}}. In general, we have the following lemma.

Lemma 3.3. For every ǫ ≥ 0+, there exist a uniquely determined element
P∞,ǫ(t, q) ∈ K+, convergent in the Q-adic topology for each t, and a uniquely
determined map t ↦ τ∞,ǫ(t) on K0(W � G) ⊗ Λ satisfying the following
properties:

● τ∞,ǫ(t) = t mod Q;
● P∞,ǫ(t, q) = 1 mod Q;

● Sǫ
t (q)(P ǫ(t, q)) = S∞

τ∞,ǫ(t)
(q)(P∞,ǫ(τ∞,ǫ(t), q))+ 1

(1−q)2 pǫ,∞ ( q

1−q), where
pǫ,∞ ( q

1−q) stands for a power series in the variable q/(1−q) with co-

efficient in K0(W �G)⊗Λ{{ti}}.
Proof. Elements τ∞,ǫ and P∞,ǫ(t, q) can be constructed by induction on the
degree d and the construction is unique. The construction is not difficult but
messy, and is therefore omitted. �

Remark 3.4. We write

P∞,ǫ(t, z) =∑
i

Ci(Q,{ti}, q)φi,

where the coefficients Ci(Q,{ti}, q) ∈ Λ[[{ti}, q,1/q]]. Hence by general prop-
erties of K-theoretic Gromov-Witten invariants (see [4]), the element

S∞t (q)(P∞,ǫ(t, q)) =∑
i

Ci(1 − q)∂tiJ∞(t, q)
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is on the Lagrangian cone LS∞,W�G associated to the genus 0 K-theoretic
Gromov-Witten theory of W �G.

4. Genus 0 Wall-Crossing

The purpose of this section is to establish a wall-crossing result that relates
genus 0 K-theoretic quasimap invariants for different stability parameters.
The proof, which is parallel to the treatment for cohomological quasimap
theory in [1] and the toric case in [4], is based on localization. To this end,
we assume in this section that there is a torus T action on W and the action
commutes with the G-action. This induces T -actions on [W /G] and W �G.
We assume that the T -action onW �G has isolated fixed points and isolated
1-dimensional orbits.

4.1. Fixed Point Localization. Following the analysis of fixed loci in [1],
we can describe the fixed loci of the T -equivariant quasimaps.

Consider the T -equivariant version of the permutation-equivariant K-
theoretic Sǫ-operator, denoted by Sǫ

t,T . Consider the T -fixed point basis

{φβ}β ⊂K0(W �G)T .
Given a T -fixed point β ∈ (W �G)T , we have the restriction of Sǫ

t,T to β:

β∗Sǫ
t,T (q)(γ) =∑

α

⎛
⎝⟨φα, γ⟩ + ∑

(n,d)≠(0,0)

Qd⟨ φα

1 − qL
, γ, t, . . . , t⟩ǫ,Sn,T

0,n+2,d

⎞
⎠ gαβ

Fix ǫ > 0, an effective class d ≠ 0 and a non-negative integer n. For a
T -fixed quasimap ((C,x1, x2, . . . , xn+2), P,µ),
and (P ′, µ′), the restriction of the pair (P,µ) to an irreducible component
C ′ of C, the rational map

[µ′] ∶ C ′ ⇢W �G,

induces a regular map [µ′]reg ∶ C ′ →W �G.

Then the regular map [µ′] satisfies one of the following three conditions:

● [µ′]reg is a constant map and maps to a T -fixed point of W �G, in
this case, we call C ′ a contracted component;
● there are no base points (i.e. [µ′]reg = [µ′]) and it is a cover of a
1-dimensional orbit of the T -action on W �G, totally ramified over
the two fixed points of the orbit;
● [µ′]reg is a ramified cover of an 1-dimensional orbit as in the second
case, but [µ′] has a base-point at one of the fixed point and a node
at the other fixed point.
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Let M be a connected component of the fixed locus Qǫ
0,n+2(W � G,d)T .

Following [1], M is of initial type if the first marking is on a contracted
irreducible component of the domain curve, of recursion type if the first
marking is on a non-contracted irreducible component.

Lemma 4.1 (Poles of β∗Sǫ
t,T ). The restriction β∗Sǫ

t,T is a rational function
of q with possibly poles only at 0, ∞, roots of unity and at most simple poles
at q = (λ(β,µ)−1/m), where λ(β,µ) is the character of the torus action on
the tangent line at the fixed point µ corresponding to the 1-dimensional orbit
connecting the fixed points β and µ; for some m = 1,2, . . ..

Proof. We apply virtual localization to the sum

∑
α

Qd⟨ φα

1 − qL
, γ, t, . . . , t⟩ǫ,Sn,T

0,n+1,dg
αβ

Note that we have the formal expansion

1

1 − xL
=∑

i≥0

xi

(1 − x)i+1 (L − 1)i.
For each initial componentM with the first marking lying over β, we claim

that it contributes polynomials of 1
1−ξq , where ξ is a root of unity:

The vertex factor of the initial componentM that corresponds to the fixed
point β can be written as the fiber product

((Q0,val(β)+k(W �G,0)T ×(W�G)T Q0,1(W �G,d1)T∞) ×⋯)×(W�G)TQ0,1(W�G,dk)T∞,
where the moduli spaceQ0,1(W�G,di)∞ parametrizes the quasimaps (P1, P, u)
of class di with a principal G-bundle P on P1, a section u ∶ P1 → P ×GW such
that u(x) ∈ W s for x ≠∞ ∈ P1 and ∞ ∈ P1 is a base-point of length di(Lθ).
We also have

Q0,val(β)+k(W �G,0)T =M 0,val(β)+k

is a finite dimensional complex manifold, hence L restricts to a unipotent
element and the trace trh( 1

1−qL) = 1

1−qξL̃
, where h ∈ Sn, ξ is the eigenvalue of

h on L and L̃ is the restriction of L to the fixed point locus of h.

For each recursion component M with the first marking lies over β, then
the restriction of L to M is λ(β,µ)1/m. Hence β∗Sǫ

t,T has simple poles at

q = λ(β,µ)−1/m. �

Lemma 4.2 (Recursion Relation). The restriction β∗Sǫ
t,T of Sǫ

t,T to the fixed
point β satisfies the recursion relation
(5)

β∗Sǫ
t,T (q) = Iǫβ(q)+ ∑

µ∈o(β)

∞∑
m=1

Qmd(β,µ)

m

φβ

Cβ,µ,m

1

1 − λ(β,µ)1/mqµ∗Sǫ
t,T (λ(β,µ)1/m)

where
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(i) Iǫβ(q) is the sum of the contribution of all the components of initial

type. Each Q,{ti} coefficient of Iǫ
β
(q) is of the form

∑
ξ∶root of unity

∑
i≥0

ci,ξ(ξq)i/(1 − ξq)i+1.
(ii) o(β) is the set of all fixed points µ connected to β via a 1-dimensional

orbit, d(β,µ) is the homology class of the orbit and λ(β,µ) is the
character of the torus representation on the tangent line at β corre-
sponding to the orbit.

(iii) The recursion coefficient Cβ,µ,m is the T -equivariant K-theoretic Eu-

ler class of the virtual cotangent space to the moduli space M0,2(W �
G,m) at the corresponding fixed point and this recursion coefficient
does not depend on ǫ.

Proof. We again apply virtual localization to the summand

∑
α

Qd⟨ φα

1 − qL
, γ, t, . . . , t⟩ǫ,Sn,T

0,n+1,dg
αβ.

Consider fixed components of recursion type, there are two possibilities when
the component has contributions to the pole at q = λ(β,µ)−1/m:

The first possibility is thatM is an one-dimensional orbit with multiplicity
m connecting the the fixed points β,µ and has a marked point at the other
end. It is an isolated fixed point p in M 0,2(W � G,m). Note that this
component does not dependent on the choose of ǫ. The contribution is

(∑
α

φαg
αβ) 1

1 − λ(β,µ)1/mq
Qmd(β,µ)

mCβ,µ,m
∑
ν

⟨φν, γ⟩gνµ
where the recursion coefficient

(6) Cβ,µ,m = Euler
K
T (T ∗pM 0,2(W �G,m))

is the T -equivariant K-theoretic Euler class of the virtual cotangent space
to the moduli space at the point p corresponding to the m-multiple cover of
the 1-dimensional orbit connecting fixed points β and µ. Hence Cβ,µ,m does
not dependent on the choose of ǫ.

The second possibility is M has an one-dimensional orbit connecting β,µ
and a subgraph M ′ attached to µ, i.e. the first marking of M ′ lies over µ.
The contribution is

∑α φαgαβ

1 − λ(β,µ)1/mq
Qmd(β,µ)

mCβ,µ,m

(µ∗Sǫ
t,T (t, λ(β,µ)−1/m) −∑

ν

⟨φν , γ⟩gνµ).
Finally, the polynomiality of the coefficients of Iǫβ(q) follows from unipotency
of L.

This completes the proof. �
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Remark 4.3. Write

P ǫ(t, q) = P ǫ(t, (λ(β,µ))−1/m) + (1 − λ(β,µ)1/mq)Aǫ
µ,m(q),

where Aǫ
µ,m(q) is a power series in (1 − q). Applying localization as in the

previous lemma, we have the following recursion relation for Sǫ
t (q)(P ǫ(t, q)):

β∗Sǫ
t (q)(P ǫ(t, q))

= Ĩǫβ(q) + ∑
µ∈o(β)

∞∑
m=1

Qmd(β,µ)

m

φβ

Cβ,µ,m

1

1 − λ(β,µ)1/mqµ∗Sǫ
t,T (λ(β,µ)1/m)(P ǫ(t, q))

= Iǫβ(q) + ∑
µ∈o(β)

∞∑
m=1

Qmd(β,µ)

m

φβ

Cβ,µ,m

1

1 − λ(β,µ)1/mqµ∗Sǫ
t,T (λ(β,µ)1/m)(P ǫ(t, λ(β,µ)−1/m))

where Ĩǫβ(q) is the summation of the contribution of all the components of
initial type and

Iǫβ(q) ∶= Ĩǫβ(q) + ∑
µ∈o(β)

∞∑
m=1

Qmd(β,µ)

m

φβ

Cβ,µ,m

µ∗Sǫ
t,T (λ(β,µ)1/m)(Aǫ

µ,m(q))
The recursion relation for S∞

τ∞,ǫ(t)
(q)(P∞,ǫ(τ∞,ǫ(t), q)) works in the same

way.

4.2. Main Results. This section, we state and prove the main theorems of
this paper.

Theorem 4.4. Assume the torus T action on W �G has isolated fixed points
and isolated 1-dimensional orbits. Let 0+ ≤ ǫ1 < ǫ2 ≤∞, γ ∈ K0

T (W �G)⊗Λ
is of the form 1 +O(Q). Then

Sǫ1

τ
ǫ1,ǫ2
γ (t)

(q)(γ) = Sǫ2
t (q)(γ).

Theorem 4.5. Assume the torus T action on W �G has isolated fixed points
and isolated 1-dimensional orbits, then for all ǫ ≥ 0+,

J ǫ(t, q) = Sǫ
t (q)(P ǫ(t, q)) = S∞τ∞,ǫ(t)(q)(P∞,ǫ(τ∞,ǫ(t), q)),

hence, lies on LS∞,W�G, the Lagrangian cone of the permutation-equivariant
K-theoretic Gromov-Witten theory of W �G.

Theorem 4.5 is a consequence of Theorem 4.4 and the arguments in Re-
mark 3.4.

Remark 4.6. Certainly, it is conjectured that the statements in Theorems
4.4 and 4.5 hold for W �G without torus actions.

Lemma 4.7. For each torus fixed point β ∈ (W �G)T , the series

D(Sǫ
β) ∶= Sǫ

β(Q, t, q)Sǫ
β(Q(1/q)aLθ , t,1/q)

has no pole at roots of unity, where a varies in integers and (Q(1/q)aLθ)d =
Qd(1/q)ad(Lθ).
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Proof. Given a fixed point β ∈ (W �G)T , we write QGǫ
0,m+2,d(W �G)β for the

T -fixed locus parametrizes quasimaps with the parametrized P1 contracted
to the point β. Let κ be the inclusion map into the graph space and put

ResµO
vir
QGǫ

0,m+2,d
(W�G) ∶= κ∗

⎛
⎝
Ovir

QGǫ
0,m+2,d

(W�G)β

EulerKT (Nvir)
⎞
⎠

the T -equivariant residue at the fixed locusQGǫ
0,m+2,d(W�G)β . Furthermore,

we write
γ =∑

d

Qdγd

where γd ∈K0
T (W �G)⊗Q. Consider the generating series

⟪γ(1 − p0), γ(1 − p∞);U(Lθ)⟫QG,ǫ

0,2;β ∶=

∑
m,d,d1,d2

QdQd1Qd2χ (QGǫ
0,m+2,d(W �G)β/Sm, ResµO

vir
QGǫ

0,m+2,d
(W�G)

⊗ (Ud1,d2(Lθ))a ev∗1(γd1(1 − p0)) ev∗2(γd2(1 − p∞)) m∏
i=1

ev∗i+2(t))
where, Ud1,d2(Lθ) is the universal C∗-equivaraint line bundle obtained from
pulling back O(1) with the canonical linearization, as described in [1, Section
3.3]. This is defined without C∗-localization, hence has no pole at q = 1.
Applying C∗-localization to this generating series, we have

⟪γ(1 − p0), γ(1 − p∞);U(Lθ)⟫QG,ǫ
0,2;β = λ(O(θ);β)aD(Sǫ

β),
where λ(O(θ);β) is the character of the torus representation on the fiber of
O(θ) at β.

For any positive integerm, Ψm(D(Sǫ
β)) is also defined without C∗-localization,

hence has no pole at q = 1, where the Adams operation extended from Λ by
Ψm(q) = qm. Therefore, D(Sǫ

β) has no pole at the m-th root of unity. Hence
the Lemma follows. �

Remark 4.8. Since P∞ and P∞,ǫ in Theorem 4.5 have no pole at roots
of unity, the proof also applies to the restrictions of Sǫ

t (q)(P ǫ(t, q)) and
S∞
τ∞,ǫ(t)

(q)(P∞,ǫ(τ∞,ǫ(t), q)) to fixed points, after appropriate adjustments

to the generating series.

Lemma 4.9 (Uniqueness Lemma). Let

{S1,β}β∈(W�G)T and {S2,β}β∈(W�G)T

be two systems of power series in Λ[[ti]]{{q,1/q}} that satisfy the following
properties:

(1): For all β ∈ (W � G)T , S1,β and S2,β are rational functions of q with
possibly poles only at 0, ∞, roots of unity and at most simple poles
at q = (λ(β,µ)−1/m), where λ(β,µ) is the character of the torus
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representation on the tangent line at the fixed point β corresponding
to the 1-dimensional orbit connecting the fixed points β and µ, for
m = 1,2, . . ..

(2): The systems

{S1,β}β∈(W�G)T and {S2,β}β∈(W�G)T

both satisfy the recursion relation (5).
(3): For all β ∈ (W �G)T , the series

D(Sǫ
1,β) ∶= Sǫ

1,β(Q, t, q)Sǫ
1,β(Q(1/q)aLθ , t,1/q)

and

D(Sǫ
2,β) ∶= Sǫ

2,β(Q, t, q)Sǫ
2,β(Q(1/q)aLθ , t,1/q)

have no pole at q = 1.
(4): For all β ∈ (W �G)T ,

S1,β = S2,β +
1

(1 − q)2p1,2 (
q

1 − q
) ,

where p1,2 ( q

1−q) stands for a power series in the variable q/(1 − q)
with coefficient in K0(W �G)⊗Λ{{ti}}.

(5): For all β ∈ (W �G)T ,
S1,β = S2,β mod Q

Then S1,β = S2,β for all β ∈ (W �G)T .
Proof. We write

S1,β =∑
d

Qd∑
k

c1,β,d,k(q)∏
i

tkii and S2,β =∑
d

Qd∑
k

c2,β,d,k(q)∏
i

tkii

where k ∶= {ki}i and ki are nonnegative integers. We define the bi-degree of

the monomial Qd∏i t
ki
i to be (∑i ki, d(Lθ)). We write S

(m,l)
1,β and S

(m,l)
2,β for

the part of bi-degree (m, l) of S1,β and S2,β, respectively. It suffices to show

S
(m,l)
1,β = S

(m,l)
2,β , for all β ∈ (W �G)T and (m, l) ∈ N ×N

We prove it by induction on (m, l) using the lexicographic order

(m′, l′) < (m, l) if and only if m′ <m, or m′ =m and l′ < l.

The base case when d = 0 is true due to property (5).

For l ≥ 1, we assume

S
(m′,l′)
1,β = S

(m′,l′)
2,β for all β ∈ (W �G)T and all (m′, l′) < (m, l)

Denote by D(m,l) the part of bi-degree (m,l) of the difference D(S1,β) −
D(S2,β). By induction, we have

D(m,l) = S
(m,l)
1,β (q) − S(m,l)

2,β (q) + (1/q)al(S(m,l)
1,β (1/q) − S(m,l)

2,β (1/q)).
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By properties (2), (S(m,l)
1,β (q) − S(m,l)

2,β (q)) is the sum of monomials of the

form ci(ξq)i/(1 − ξq)i+1, for i ≥ 0 and roots of unity ξ, with coefficient in
K0(W �G)⊗Λ{{ti}}, we write

(S(m,l)
1,β (q) − S(m,l)

2,β (q))
1

for the sum of terms of S
(m,l)
1,β (q)−S(m,l)

2,β (q) with ξ = 1, therefore, by property

(4), we have

(S(m,l)
1,β (q) − S(m,l)

2,β (q))
1
= ( 1

1 − q
)n (Aqn−2 +O(1 − q))

and

(S(m,l)
1,β (1/q) − S(m,l)

2,β (1/q))
1
= ( 1

1 − q
)n ((−1)nAq2 +O(1 − q)),

for an integer n ≥ 2 and a nonzero element A ∈ Λ{{ti}}. Moreover, we have

(1/q)al = 1 + al(1 − q) +O(1 − q),
therefore

(D(m,l))
1
= ( 1

1 − q
)n (Aqn−2 + (−1)nAq2 +O(1 − q))

For n > 1, then D(m,l) has a pole at q = 1. It contradicts property (3).

Therefore, S
(m,l)
1,β − S

(m,l)
2,β has no pole at q = 1. Similar argument shows

S
(m,l)
1,β − S

(m,l)
2,β has no pole at roots of unity. Therefore, S

(m,l)
1,β = S

(m,l)
2,β . �

Theorem 4.4 now follows from the above uniqueness lemma applied to{Sǫ1

τ
ǫ1,ǫ2
γ (t),β

} and {Sǫ2
t,β}. The required properties are checked before. Prop-

erty (1) is in Lemma 4.1. Property (2) is in Lemma 4.2. Property (3) is in
Lemma 4.7. Property (4) is in Lemma 3.3. Property (5) is clear.
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