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ON THE FINITENESS OF QUANTUM K-THEORY OF A HOMOGENEOUS

SPACE

DAVID ANDERSON, LINDA CHEN, AND HSIAN-HUA TSENG

ABSTRACT. We show that the product in the quantum K-ring of a generalized flag

manifold G/P involves only finitely many powers of the Novikov variables. In con-

trast to previous approaches to this finiteness question, we exploit the finite difference

module structure of quantum K-theory. At the core of the proof is a bound on the

asymptotic growth of the J-function, which in turn comes from an analysis of the sin-

gularities of the zastava spaces studied in geometric representation theory.

An appendix by H. Iritani establishes the equivalence between finiteness and a qua-

dratic growth condition on certain shift operators.

Let G be a simply connected complex semisimple group, with Borel subgroup B,

maximal torus T , and standard parabolic group P . The main aim of this article is to

prove a fundamental fact about the quantum K-ring of the homogeneous space G/P .

Theorem. The structure constants for (small) quantum multiplication of Schubert classes

in QKT (G/P ) are polynomials in the Novikov variables, with coefficients in the repre-

sentation ring of the torus.

This is proved as Theorem 8 below. A priori, quantum structure constants are power

series in the Novikov variables, which keep track of degrees of curves; our theorem

says that in fact, only finitely many degrees appear. This property is often referred to as

finiteness of the quantum product.

Finiteness has been the subject of conjectures since the beginnings of the combi-

natorial study of quantum K-theory in Schubert calculus. Indeed, this property is a

foundational prerequisite for the main components of Schubert calculus: a presentation

of the quantum K-ring as a quotient by a polynomial ring; a set of polynomial rep-

resentatives for Schubert classes; and finally, combinatorial formulas for the structure

constants themselves.

In quantum cohomology, finiteness of the quantum product is immediate from the

definition. In this case, the structure constants are Gromov-Witten invariants—certain

integrals on the moduli space of stable maps into G/P—and they automatically vanish

for curves of sufficiently large degree, by dimension reasons. In K-theory, by contrast,

the analogous Gromov-Witten invariants are certain Euler characteristics on the moduli

space, and there is no reason for them to vanish for large degrees—in fact they do not.
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The structure constants for the quantum product in K-theory are rather complicated

alternating sums of Gromov-Witten invariants, so a direct proof of finiteness involves

demonstrating massive cancellation.

In the cases where finiteness was previously known, this direct approach was used,

employing a detailed analysis of the geometry of the moduli space of stable maps, and

especially its “Gromov-Witten subvarieties”, whose Euler characteristics compute K-

theoretic Gromov-Witten invariants of G/P . In their paper on Grassmannians, Buch

and Mihalcea showed that these Gromov-Witten varieties are rational for sufficiently

large degrees; this implies that the corresponding invariants are equal to 1, and the

required cancellation can be deduced combinatorially [12]. Together with Chaput and

Perrin, they extended this idea to prove finiteness for cominuscule varieties, a certain

class of homogeneous varieties of Picard rank one [9, 10]. (Furthermore, according

to [10, Remark 1.1], finiteness holds for any projective rational homogeneous space of

Picard rank one.)

Recently, Kato [23, 24] has proven some remarkable conjectures [30] about the quan-

tum K-ring of a complete flag variety G/B. In particular, Kato’s work implies finiteness

for QKT (G/B).

In this paper we prove the finiteness result for QKT (G/P ) for all partial flag vari-

eties. The starting point of our method is the fundamental fact that quantum K-theory

admits the structure of a Dq-module. This structure was first found for the quantum

K-theory of the complete flag variety F lr+1 = SLr+1/B by Givental and Lee, and later

derived in general by Givental and Tonita from a characterization theorem of quan-

tum K-theory in terms of quantum cohomology, the so-called quantum Hirzebruch-

Riemann-Roch theorem [18, 19]. As explained by Iritani, Milanov, and Tonita, this

Dq-module structure is manifested as a difference equation (Equation (8) below) satis-

fied by certain generating functions J and T of K-theoretic Gromov-Witten invariants;

they also explain how the quantum product by a line bundle is related to these generat-

ing functions and use this to compute the quantum product for F l3 [22]. More details

are reviewed in §1.5.

The general strategy of our proof can be summarized as follows. If one can appropri-

ately bound the coefficients appearing in the generating functions J and T, then results

of [22] allow one to deduce that the quantum product by a line bundle is finite. When

X = G/B, this is sufficient, since KT (G/B) is generated by line bundles. In fact, it is

also true that the K-theory of G/P is generated by line bundle classes, after inverting

certain elements of the representation ring; this seems to be less well known, so we

include a proof in Lemma 1.

The technical heart of our argument lies in obtaining the appropriate bound on the

growth of coefficients of J and T as q → +∞. Here we divide the problem and treat

the G/B and G/P cases separately. For G/B, we analyze the geometry of the zastava

space, a compactification of the space of (based) maps studied extensively in geometric

representaion theory. Specifically, we use a computation of the canonical sheaf of the

zastava space due to Braverman and Finkelberg [5, 6], together with some properties of
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its singularities. This leads to the bound for J stated in Lemma 3, as well as the stronger

bound of Lemma 3+ for simply-laced types. For bounds for T we appeal to Kato’s

work [25] and a result of H. Iritani (the Proposition of Appendix B). We then transfer

our bounds for G/B to bounds for G/P , using the main geometric constructions in

Woodward’s proof of the Peterson comparison formula [37].

With the bounds in hand, we deduce finiteness in §4. Here our arguments take advan-

tage of the explicit form of our bounds for J , together with an inequality in root lattices

proved in Appendix A.

We expect our methods to find further applications in quantum Schubert calculus.

Most immediately, we can establish a presentation of the quantum K-ring of SLr+1/B,

resolving a conjecture by Kirillov and Maeno [34, 21]. (Using a different definition

of quantum K-theory, a similar presentation was obtained in [27].) Together with al-

gebraic work done by Ikeda, Iwao, and Maeno [21], this confirms some conjectural

relations between the quantum K-ring of the flag manifold and the K-homology of the

affine Grassmannian [30], giving an alternative to Kato’s approach. Some results in this

direction are included in our preprint [2].

A secondary goal of this article is to illustrate the power of finite-difference methods

in quantum Schubert calculus. To this end, we have included a fair amount of back-

ground. We hope these sections may serve as a helpful companion to the foundational

papers of Givental and others.

Acknowledgements. We thank A. Givental, T. Ikeda, H. Iritani, S. Kato, S. Kovács, and

C. Li for helpful discussions.

1. BACKGROUND

1.1. Roots and weights. Let Λ be the weight lattice for the torus T , and let ̟1, . . . , ̟r

be the fundamental weights for the Lie algebra of G. The representation ring R(T ) is

naturally identified with the group ring Z[Λ], and can be written as a Laurent polynomial

ring Z[e±̟1 , . . . , e±̟r ]. The simple roots α1, . . . , αr generate a sublattice of Λ. The

coroot lattice Λ̌ has a basis of simple coroots α̌1, . . . , α̌r, dual to ̟1, . . . , ̟r. We often

write

λ = λ1̟1 + · · ·+ λr̟r and d = d1α̌1 + · · ·+ drα̌r

for elements of Λ and Λ̌. Usually, d denotes a positive element of the coroot lattice,

meaning all the integers di are nonnegative. We write d ≥ 0 or d ∈ Λ̌+ to indicate

positive elements, and d > 0 to mean a nonzero such d.

The vector spaces Λ⊗R and Λ̌⊗R are identified using the inner product determined

by the (symmetrized) Cartan matrix of G, which we denote by ( , ). For example, this

means (d, λ) =
∑

diλi, so in particular (d, ρ) =
∑

di =: |d|. For G = SLr+1, we have

(d, d) =

r+1∑

i=1

(di − di−1)
2,
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where by convention d0 = dr+1 = 0.

A standard parabolic subgroup is a closed subgroup P such that G ⊇ P ⊇ B. By

recording which negative simple roots occurs as weights on the Lie algebra of P , such

parabolics correspond to subsets of the simple roots. (To be clear, B corresponds to the

empty set, while G corresponds to the whole set of simple roots.) Let IP ⊆ {1, . . . , r}
be the indices of simple roots corresponding to P .

The sublattice ΛP ⊆ Λ of weights λ such that (α̌i, λ) = 0 for i ∈ IP is spanned by

the weights ̟j for j 6∈ IP . Dually, Λ̌P is the sublattice spanned by α̌i for i ∈ IP . We

write Λ̌P = Λ̌/Λ̌P , and Λ̌P
+ for the image of Λ̌+.

1.2. Flag varieties. Each weight λ ∈ Λ gives rise to an equivariant line bundle P λ on

the complete flag variety G/B. Writing Pi for the line bundle corresponding to ̟i, we

have P λ = P λ1
1 · · ·P λr

r when λ = λ1̟1 + · · ·+ λr̟r. Let ρ = ̟1 + · · ·+̟r be the

highest weight.

Each fundamental weight ̟i corresponds to an irreducible representation V̟i
. There

is an embedding

ι : G/B →֒ Π :=

r∏

i=1

P(V̟i
),

such that Pi = ι∗Oi(−1) is the pullback of the tautological bundle from the ith factor

of Π.

For example, when G = SLr+1, the flag variety G/B = F lr+1 parametrizes all

complete flags in Cr+1. We have V̟i
=
∧i

Cr+1, and the line bundle Pi is the top

exterior power
∧iSi of the ith tautological bundle on X .1

Equivariant line bundles on G/P correspond to weights λ ∈ ΛP . We will continue to

use the notation P λ for such bundles; the meaning of “P ” (as parabolic or line bundle)

should be clear from context. As with G/B, there is an embedding

ι : G/P →֒
∏

j 6∈IP

P(V̟j
),

with Pj being the pullback of O(−1) from the jth factor.

There are natural identifications H2(G/B,Z) = Λ̌ and Eff2(G/B) = Λ̌+, as well as

H2(G/P,Z) = Λ̌P and Eff2(G/P ) = Λ̌P
+. The pushforward H2(G/B) → H2(G/P ) is

identified with the quotient map Λ̌ → Λ̌P . The pullback H2(G/P ) → H2(G/B) dual

to this projection is identified with the inclusion ΛP →֒ Λ.

It is a basic fact that KT (G/B) is generated by P1, . . . , Pr as an R(T )-algebra; that

is, there is a surjective homomorphism

R(T )[P1, . . . , Pr] ։ KT (G/B).

1Our conventions agree with [18], but are opposite to those of [22], where Pi is replaced by P−1

i
.
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(See, for example, [28, §4].) Thus there is an R(T )-basis for KT (G/B) consisting

of monomials in the Pi, and in particular, any other basis—for example, a Schubert

basis—can be written as a finite R(T )-linear combination of such monomials.

In general, it is not the case that KT (G/P ) is generated by line bundles as an R(T )-
algebra. However, after extending scalars to the fraction field F (T ) of R(T ), the algebra

is generated by line bundles. This fact seems to be less well known, although it is

implicit in [11], and the idea of the proof can be found in [13, Lemma 4.1.3]. For

clarity, we state a general version here.

Lemma 1. Let X →֒ Y be a closed T -equivariant inclusion of smooth varieties. As-

sume that the restriction homomorphism KT (Y
T ) → KT (X

T ) is surjective. If {α} is

a set of generators for KT (Y ) as an R(T )-algebra, then the restrictions {β} generate

F (T )⊗R(T ) KT (X) as an F (T )-algebra.

Proof. The proof follows directly from the localization theorem, which gives natural

isomorphisms F (T ) ⊗R(T ) KT (X) ∼= F (T ) ⊗R(T ) KT (X
T ). A little more precisely,

rather than passing to F (T ), it suffices to invert elements 1 − e−α of R(T ), where α
runs over characters appearing in the normal spaces to XT in X . �

A particular case of the lemma is this:

Whenever X is a smooth projective variety with finitely many attractive

fixed points, the F (T )-algebra F (T )⊗R(T ) KT (X) is generated by the

class of an ample line bundle.

An isolated fixed point p of a (possibly singular) variety X is called attractive if all the

weights of the action of T on the Zariski tangent space at p lie in an open half-space.

This condition guarantees that under any equivariant embedding X →֒ Pn, each of the

finitely many fixed points of X maps to a distinct connected component of (Pn)T , which

in turn implies that the restriction map is surjective.

The standard torus action on X = G/P has finitely many attractive fixed points,

so the lemma applies to the case we study. (A different, combinatorial argument for

equivariant cohomology of G/P is given in [11, Remark 5.11].)

1.3. Equivariant multiplicities and the fixed-point formula. One of the main tools

for computing in quantum K-theory is torus-equivariant localization on moduli spaces.

We quickly review the main theorem we will use. This material is standard; see, e.g.,

[1] for an exposition aligned with our needs, and [8] for a parallel discussion in the case

of equivariant Chow groups.

Suppose a torus T acts on a variety X . There is a natural isomorphism

F (T )⊗R(T ) K
T
◦ (X

T )
∼−→ F (T )⊗R(T ) K

T
◦ (X)

induced by pushforward from the fixed locus. Here and henceforth K◦ denotes the

Grothendieck group of coherent sheaves. If Z ⊆ XT is a connected component, the
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equivariant multiplicity of X along Z is the element εZ(X) of F (T )⊗Z K◦(Z) defined

so that ∑

Z⊆XT

εZ(X) = [OX ]

under the above isomorphism. Naturality properties of the isomorphism imply two

useful formulas. First, for any class ξ ∈ K◦
T (X), we have an equation

∑

Z⊆XT

εZ(X) · ξ|Z = ξ

in KT
◦ (X), where ξ|Z denotes the image under the restriction map K◦

T (X) → K◦
T (Z)

and K◦ denotes the Grothendieck group of vector bundles. Second, if π : X → Y is a

proper equivariant birational morphism, and X and Y both have rational singularities,

we have the formula

(1) εW (Y ) =
∑

Z

πZ
∗ εZ(X),

the sum over connected components Z ⊆ XT which map into a given connected com-

ponent W ⊆ Y T , where πZ : Z → W is the restriction of π. This gives a means of

computing the equivariant multiplicities.

Here are some useful special cases. When X is affine, and Z = p is any fixed point,

the equivariant multiplicity is equal to the graded character ch(OX) (see, e.g., [35]).

If, furthermore, the fixed point is attractive, the equivariant multiplicity is equal to the

multigraded Hilbert series of OX . (For example, if T acts on X = A1 by the character

eα, then it acts on OX = C[x] by scaling x by e−α, so we have ε0(X) = ch(OX) =
1/(1− e−α).)

When X is nonsingular (so XT is also nonsingular), the multiplicity along Z ⊆ XT

is

εZ(X) =
1

λ−1(N∗
Z/X)

,

where N∗
Z/X is the conormal bundle, and for any vector bundle E of rank e, the denom-

inator is the K-theory class

λ−1(E) = 1− E +
∧2E − · · ·+ (−1)e

∧eE.

(This is also known as the top Chern class of E∗ in K-theory.)

When π : X → Y is a proper equivariant morphism of nonsingular varieties, the

fixed point formula can be rewritten as

(2)
(π∗ξ)|W

λ−1(N
∗
W/Y )

=
∑

Z

πZ
∗

(
ξ|Z

λ−1(N
∗
Z/X)

)
,

for any element ξ ∈ KT
◦ (X) = K◦

T (X), where (·)|Z means the restriction homomor-

phism K◦
T (X) → K◦

T (Z).
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1.4. Quantum K-theory and moduli spaces. The (genus 0) K-theoretic Gromov-

Witten invariants are defined as certain sheaf Euler characteristics on the space of n-

pointed, degree d stable maps,

M 0,n(G/P, d).

This space comes with evaluation morphisms evi : M 0,n(G/P, d) → G/P for 1 ≤
i ≤ n, which are equivariant for the action of T on G/P and the induced action on

M 0,n(G/P, d). Given classes Φ1, . . . ,Φn ∈ KT (G/P ), there is a Gromov-Witten in-

variant

χ(M 0,n(G/P, d), ev∗1Φ1 · · · ev∗nΦn) ∈ R(T ).

The Novikov variables keep track of curve classes in G/P ; for d ∈ Λ̌P
+, we write

Qd = Qd1
1 · · ·Qdr

r . The (small) quantum K-ring of G/P is defined additively as

QKT (G/P ) := KT (G/P )⊗ Z[[Q]],

and is equipped with a quantum product ⋆ which deforms the usual (tensor) product

on KT (G/P ). Choosing any R(T )-basis2 {Φw} for KT (G/P ), and using the same

notation for the corresponding R(T )[[Q]]-basis for QKT (G/P ), one has

Φu ⋆ Φv =
∑

w,d

Nw,d
u,v Q

dΦw,

where a priori the right-hand side is an infinite sum over all d ∈ Λ̌P
+. (The structure

constants Nw,d
u,v are defined in a rather involved way via alternating sums of Gromov-

Witten invariants; see [16, 32, 12] for details.)

We work mainly with two compactifications of the space Homd(P
1, G/P ) of degree

d maps from P1 to G/P . The first is Drinfeld’s quasimap space Qd, and we use it

only for G/B. This space may be defined as follows; see, e.g., [3] for more details.

For projective space P(V ) and an integer di ≥ 0, let P(V )di = P(SymdiC2 ⊗ V ) be

the projective space of V -valued binary forms of degree di. (This is the quot scheme

compactification of the space of degree d maps P1 → P(V ).) With Π =
∏r

i=1 P(V̟i
)

as above and d ∈ Λ̌+, let Πd =
∏r

i=1 P(V̟i
)di . This contains the space of maps

Homd(P
1,Π) as an open subset. The embedding ι : G/B →֒ Π induces an embed-

ding Homd(P
1, G/B) →֒ Homd(P

1,Π), and the quasimap space Qd is the closure of

Homd(P
1, G/B) inside Πd.

Spaces of maps and quasimaps are equipped with a C∗-action induced from an action

on the source curve. The action on P1 is given by q · [a, b] = [a, qb], where q is a

coordinate on C∗, so the fixed points are 0 = [1, 0] and ∞ = [0, 1]. The C∗-fixed loci in

Πd are easy to describe: for each expression d = d− + d+ (with d−, d+ ∈ Λ̌+), there is

a fixed component Π
(d+)
d consisting of tuples of monomials of bidegree (d−i , d

+
i ) on the

2The classes Φw are not necessarily Schubert classes; in fact, after extending scalars from R(T ) to

F (T ), we will use a monomial basis consisting of certain Pλ’s.
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factor P(V̟i
)di . Using monomials to denote weight bases for SymdiC2, we have

Π
(d+)
d =

r∏

i=1

P(x
d−i
i y

d+i
i ⊗ V̟i

),

so each such component is isomorphic to Π itself. The C∗-fixed components of Qd ⊆
Πd are Q(d+)

d ⊆ Π
(d+)
d , each isomorphic to G/B ⊆ Π. If we also consider the action

of T induced from the target space G/B, the quasimap space Qd has finitely many

C∗ × T -fixed points, indexed by (d+, w) as w ranges over the Weyl group.

Our second compactification of the space of maps is the graph space,

Γ(G/P )d := M 0,0(P
1 ×G/P, (1, d)).

It includes Homd(P
1, G/P ) as the open subset of stable maps with irreducible source,

regarded as the graph of a map P1 → G/P . This space also comes with an action

of C∗ × T , induced from the componentwise action on P1 × G/P . As explained in

[18, §2.2] and [22, §2.6], the C∗-fixed components of Γ(G/P )d correspond to certain

maps where the source curve is reducible. For each decomposition d = d− + d+,

there is a component Γ(G/P )
(d+)
d whose general points parametrize maps with source

curve having three components: a “horizontal” P1 with degree 0 with respect to G/P ; a

“vertical” P1 attached to the first component at the fixed point 0, with G/P -degree d+;

and a “vertical” P1 attached to the first component at ∞, with G/P -degree d−. (If d+

or d− is zero, the corresponding component of the source curve is absent.) There are

also pointed versions of graph spaces, Γ(G/P )n,d, with n ≥ 0 marked points, defined

as M 0,n(P
1 × G/P, (1, d)). The fixed loci of these pointed spaces are similar, with the

marked points being allocated to one of the two vertical curves.

There is a birational morphism µ : Γ(G/B)d → Qd ⊆ Πd, described in [18, §3], and

the fixed component Γ(G/B)
(d+)
d maps onto Q(d+)

d under µ. There are also morphisms

βn : Γ(G/P )n,d → M 0,n(G/P, d), which, composed with evaluation morphisms from

M 0,n(G/P, d) to G/P , give morphisms evi : Γ(G/P )n,d → G/P , for 1 ≤ i ≤ n.

A key property of each of these moduli spaces—M0,n(G/P, d), Γ(G/P )n,d, and

Qd—is that they have rational singularities. (For the first two, this is a general fact

about varieties with finite quotient singularities; for Qd, it is one of the main theorems

of [5, 6].) We will exploit this to freely transport computations of Euler characteristics

from one of these spaces to another.

1.5. The J-function and Dq-module structure. The structure of quantum K-theory

becomes clearer when Gromov-Witten invariants are packaged into a generating func-

tion, the J-function. Note that the definitions of J vary somewhat in the literature. Ours

is that of [18]; the function of [22] is equal to our (1− q)J . The function of [5] is a cer-

tain localization of our J-function. This function satisfies a finite-difference equation,

and it is this Dq-module structure we will exploit to prove finiteness of the quantum

product. Here we review the properties of the J-function which we will need.
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Consider the evaluation morphism ev : M 0,1(X, d) → X , which is equivariant for

C∗ × T (with C∗ acting trivially on both M 0,1(X, d) and X). The J function is a power

series in Q, with coefficients in KT (X)⊗Q(q):

(3) J := 1 +
1

1− q

∑

d>0

Qd ev∗

(
1

1− qL

)
.

Here the character q identifies KC∗(pt) = Z[q±], and L is the cotangent line bundle on

M 0,1(X, d). (Its fiber at a moduli point [f : (C, p) → X ] is T ∗
pC.) We often write

J =
∑

d≥0

JdQ
d,

with Jd ∈ KT (X)⊗Q(q).

In [22], a fundamental solutionT is defined. This is an element of EndR(T )(KT (X))⊗
Q(q)[[Q]], and is characterized by

(4)

χ(X, Φu·T(Φv)) = χ(X,Φu·Φv)+
∑

d>0

Qdχ

(
M 0,2(X, d), ev∗1Φu ·

1

1− qL1
· ev∗2Φv

)
,

for all Φu and Φv in an R(T )-basis of KT (X). Here L1 is the cotangent line bundle at

the first marked point of M 0,2(X, d). As with J , we write T =
∑

dQ
dTd.

Note that T|q=∞ = T|Q=0 = id, and the J-function is recovered as T(1). (The factor

of 1/(1 − q) in the d > 0 terms of J arises from the pushforward by the forgetful

morphism M0,2(X, d) → M 0,1(X, d), via the string equation in quantum K-theory; see

[32, §4.4].)

The coefficients Jd and the operators Td can be computed by localization on the

pointed graph space Γ(X)n,d, and we will mainly use this characterization. Consider

the fixed component Γ(X)
(n,d)
n,d which parametrizes stable maps in M 0,n(P

1×X, (1, d))
whose source curve has a horizontal component of bi-degree (1, 0) and a vertical com-

ponent of bi-degree (0, d) attached to the horizontal component at 0, with all n marked

points lying on the vertical component. The key is an identification

Γ(X)
(n,d)
n,d

∼= M 0,n+1(X, d)

obtained by taking account of the node at 0 where the vertical and horizontal compo-

nents are attached.

The normal bundle to the fixed component Γ(X)
(n,d)
n,d has rank 2, and decomposes into

a trivial line bundle of character q−1 (corresponding to moving the node away from 0
along the horizontal curve), and a copy of the tangent line bundle L∗

n+1 on M 0,n+1(X, d)
with character q−1 (corresponding to smoothing the node).

Now the localization formula (1) for the map µ∗ : K
T
◦ (Γ(X)d) → KT

◦ (Qd) says

(5) ε
Q

(d)
d

(Qd) = µ(d)
∗

(
1

λ−1(N∗)

)
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where µ(d) is the restriction of µ to the fixed component Γ(X)
(d)
d , N is the normal bundle

to this component, and λ−1(N
∗) = 1−N∗+

∧2N∗−· · · = (1− q)(1− qL). Using the

identifications Q(d)
d

∼= X , Γ(X)
(d)
d

∼= M 0,1(X, d), and µ(d) = ev, the right-hand side is

exactly

Jd = ev∗

(
1

(1− q)(1− qL)

)
.

A similar argument identifies Td(ξ) as

(6)
1

1− q
Td(ξ) = (ev1)∗

(
ev∗2ξ

(1− q)(1− qL1)

)
,

where we use the identification Γ(X)
(1,d)
1,d

∼= M 0,2(X, d). Note that the argument here

is similar to that of [18, §2.2 and §4.2].

Next we turn to the difference equations satisfied by J and T. The main theorems of

[18], [5] say that J is an eigenfunction of the finite-difference Toda operator [14], [36],

[15] when X = G/B is of type A, D, or E. (A modification of J satisfies the corre-

sponding system in non-simply-laced types [6].) We only need part of this structure. To

simplify the equations, we often write

J̃ = P logQ/ log qJ and T̃ = P logQ/ log q
T,

where P logQ/ log q means P
logQ1/ log q
1 · · ·P logQr/ log q

r .

Consider the q-shift operator qQi∂Qi , which acts on a power series F (Q) by

qQi∂QiF (Q1, . . . , Qi, . . . , Qr) = F (Q1, . . . , qQi, . . . , Qr).

The Dq-module structure of quantum K-theory has the following form. For any poly-

nomial F in r variables,

F (qQ1∂Q1 , . . . , qQr∂Qr )J̃ = F (qQ1∂Q1 , . . . , qQr∂Qr )T̃(1)

= T̃(F (A1q
Q1∂Q1 , . . . ,Arq

Qr∂Qr )(1)),(7)

where the Ai are certain operators in EndR(T )(KT (X))⊗Q[q][[Q]] defined in [22]; see

especially [22, Proposition 2.10].

Equation (7) is essentially a commutation relation between the operators T̃ and qQi∂Qi ,

and it follows from [22, Remark 2.11]. ExpandingF (A1q
Q1∂Q1 , . . . ,Arq

Qr∂Qr )(1) in the

basis {Φw},

F (A1q
Q1∂Q1 , . . . ,Arq

Qr∂Qr )(1) =
∑

w

fw Φw

for some fw ∈ R(T )[q][[Q]], and we can rewrite Equation (7) as

(8) F (qQ1∂Q1 , . . . , qQr∂Qr )J̃ =
∑

w

T̃(fw Φw).

By definition of T, the expansion of T at q = +∞ is of the form T = id + O(q−1).
Therefore the right-hand side of Equation (8)—namely, the leading terms of the coeffi-

cients fw—can be computed from the q → +∞ limit of the left-hand side, i.e., the q≥0
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coefficients of F (qQ1∂Q1 , . . . , qQr∂Qr )J̃ . In particular, if the latter have bounded degree

in Q, then the RHS of Equation (8) also has bounded degree in Q.

2. THE ZASTAVA SPACE AND THE J -FUNCTION

To bound the degrees Qd appearing in quantum products, our main tool will be a

bound on the q-degree of the J-function and the operator T. To obtain the required

bound, we need some technical properties of a slice of the quasimap space, called the

zastava space. Defintions and detailed descriptions of this space can be found in [5], [7,

§2], and [4]. (The last reference provides explicit coordinates.) We will briefly review

the main properties of the zastava space, and study a particular desingularization of it

by the (Kontsevich) graph space.

2.1. Singularities of the zastava space. The zastava space Zd is an affine variety

which can be thought of as a compactification of based maps (P1,∞) → (G/B,w◦).
It is defined as a locally closed subvariety of Qd, as follows. Let Q◦

d be the open

subset of quasimaps which have no “defect” at ∞ ∈ P1; i.e., the locus parametriz-

ing maps defined in a neighborhood of ∞. This comes with an evaluation morphism

ev∞ : Q◦
d → X , and the zastava space is a fiber of this morphism: Zd = ev−1

∞ (w◦). It

has dimension dimZd = 2|d| = (2ρ, d).

A key property of the zastava space is that it stratifies into smaller such spaces. Let

Z◦
d = Zd ∩ Homd(P

1, G/B) be the open set of based maps. Then

Zd =
∐

0≤d′≤d

Z◦
d′ × Symd−d′A1,

where for e ∈ Λ̌+ the symmetric product SymeA1 is a space of “colored divisors”.

Concretely, writing e = e1α̌1 + · · ·+ erα̌r with each ei ∈ Z≥0,

SymeA1 =
r∏

i=1

SymeiA1.

For any d′ ≤ d, let ∂d′Zd ⊆ Zd be the closure of the stratum Z◦
d−d′ × Symd′A1. (See [5,

§6]. By convention, let us declare ∂d′Zd to be empty if d′ 6≤ d.) In particular, there are

divisors ∂iZd := ∂α̌i
Zd.

We set

∆ =

r∑

i=1

∂iZd

and consider the pair (Zd,∆). The strata of this pair can be described easily: for any

I ⊆ {1, . . . , r}, let

dI = d−
∑

i∈I

α̌i.
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Then

∆I :=
⋂

i∈I

∂iZd = ∂dIZd,

understanding the RHS to be empty if dI 6≥ 0.

Now consider the Kontsevich resolution of quasimaps by the graph space, Γ(X)d →
Qd. This restricts to an equivariant resolution of the zastava space, which we will write

as φ : Z̃d → Zd. Let ∆̃ be the proper transform of ∆ under φ; this is a simple normal

crossings divisor. Let ω̃ and ω be the canonical sheaves of Z̃d and Zd, respectively. Our

goal is to show the following:

Proposition 2. We have

φ∗ω̃(∆̃) = ω(∆), and

Riφ∗ω̃(∆̃) = 0 for i > 0.

In particular, φ∗[ω̃(∆̃)] = [ω(∆)] as classes in KC∗×T
◦ (Zd).

Proof. We use the terminology and results of [26, §2.5]. In our context, this is the same

as saying that φ : (Z̃d, ∆̃) → (Zd,∆) is a rational resolution. By [26, Proposition 2.84

and Theorem 2.87], it suffices to prove that the pair (Zd,∆) is dlt and the resolution

φ : (Z̃d, ∆̃) → (Zd,∆) is thrifty.

The fact that (Zd,∆) is dlt is essentially proved in [5, 6]. In fact, the proof of [6,

Proposition 5.2] shows that (Zd,∆) is a klt pair, since ω(∆) is Cartier (in fact, trivial)

and the relative log canonical divisor of the resolution φ has nonnegative coefficients.

Since klt implies dlt, this suffices (see [26, Definition 2.8]).

The notion of a thrifty resolution f : (Y,DY ) → (W,D) is defined in [26, Defini-

tion 2.79]: this means that W is normal, D is a reduced divisor, DY is the proper trans-

form of D and has simple normal crossings, f is an isomorphism over the generic point

of every stratum of the snc locus snc(W,D), and f is an isomorphism at the generic

point of every stratum of (Y,DY ).

The fact that φ : (Z̃d, ∆̃) → (Zd,∆) satisfies these conditions is straightforward. To

check it, we review the description of φ, considering its values on strata. The component

∂̃i is the proper transform of ∂i = ∂iZd ⊆ Zd; a general point parametrizes stable maps

whose source curve has a vertical component of degree α̌i, attached to a horizontal

component of degree d − α̌i at some point x 6= ∞. By remembering the map f from

the horizontal component and the point x where the vertical component is attached, this

maps to (f, x) ∈ Z◦
d−α̌1

× A1.

Similarly, suppose I = {i1, . . . , ik} indexes a stratum. A general point of ∆̃I =

∩i∈I ∂̃i consists of maps from a source curve with vertical components of degrees α̌i,

one for each i ∈ I , attached to a horizontal component of degree d′ = d −
∑

i∈I α̌i

at distinct points xi1 , . . . , xik . This maps to (f, xi1 , . . . , xik) ∈ Z◦
d′ × (A1)k, as before.

Since the map Z̃d′ → Zd is birational, so is the map of strata ∆̃I → ∆I .
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Finally, no subvariety of Z̃d other than ∆̃I maps onto the stratum ∆I . Indeed, ∆I is

the closure of Zd′ ×(A1)k, with notation as in the previous paragraph, so a general point

will have k distinct coordinates xi1 , . . . , xik for the (A1)k factor. The only preimage

under φ of such a point is a map (f, xi1 , . . . , xik) as described above.3 �

2.2. Asymptotics of the J-function. A key ingredient in our approach to finiteness is

a bound on the growth of the coefficients Jd, and more generally Td, when considered

as rational functions of q. Here we consider X = G/B; the extension to general G/P
will be addressed later.

Given any d ∈ Λ̌+, define

(9) md := r(d) +
(d, d)

2
,

where r(d) is the number of i such that di > 0.

Writing J =
∑

dQ
dJd, each Jd is a rational function in q, with coefficients in

KT (X). As q → ∞, then, Jd tends to cd q
−νd , for some element cd ∈ KT (X) and

some integer νd.

Lemma 3. We have νd ≥ md.

Proof. Because C∗ acts trivially on X , it is enough to compute the asymptotics of the

restriction of Jd to any fixed point in XT ; we choose the point w◦, corresponding to the

longest element of the Weyl group.

By Equation (5), the restriction Jd|w◦
is equal to the contribution from the fixed point

(d, w◦) ∈ QC∗×T
d appearing in the localization formula for χ(Qd, O). The localization

formula (1), applied to the map Qd → pt, says

χ(Qd, O) =
∑

(d+,w)

ε(d+,w)(Qd).

So we only need to compute the equivariant multiplicity, or more specifically, its degree

as a rational function in q.

We may reduce to the zastava space Zd; from its description as the fiber over w◦ ∈ X
of the evaluation map ev∞ : Q◦

d → X , we see that

ε(d,w◦)(Qd) =

(∏ 1

1− e−α

)
· ε0(Zd),

where the product is over postive rootsα. In particular, the contribution of q to ε(d,w◦)(Qd)
comes from ε0(Zd), so it is enough to compute the latter.

3There are other subvarieties of Z̃d mapping into ∆I , but not dominantly. For instance, there is a

divisor Dα̌1+α̌2
⊆ Z̃d where the source curve has a vertical component of degree α̌1 + α̌2 attached at

a point x to a horizontal component of degree d − α̌1 − α̌2. This maps to ∂1 ∩ ∂2, but in the stratum

Z◦

d−α̌1−α̌2
× (A1)2, the image only contains points in the diagonal A1 = {(x, x)} ⊆ (A1)2.
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Let us write

ε0(Zd) =
R(q)

S(q)

as a rational function in q. We wish to show

(10) deg(R)− deg(S) ≤ −md = −r(d)− (d, d)

2
,

or in other words, the order of the rational function is ord∞(ε0(Zd)) ≥ md. This will

give the asserted bound.

Using the notation of Proposition 2, recall ω = ωZd
is the canonical sheaf, and

∆ ⊆ Zd is the boundary divisor. By the proof of [6, Proposition 5.2], ω(∆) is a trivial

line bundle, with q-weight (d, d)/2 = md − r(d), so

(11) ch(ω(∆)) = qmd−r(d) ε0(Zd).

We will show that the rational function ch(ω(∆)) has ord∞(ch(ω(∆))) ≥ r(d), which

proves Equation (10) after dividing by qmd−r(d).

To see this, we will compute ch(ω(∆)) by localization, using the Kontsevich resolu-

tion and the identity [ω(∆)] = φ∗[ω̃(∆̃)] from Proposition 2. Recalling the descriptions

of the C∗-fixed components of Γ(X)d, one sees that Z̃d has a unique fixed component,

namely

F = Z̃C∗

d = Γ(X)
(d)
d ∩ Z̃d.

A general point parametrizes based maps where the source curve consists of a horizontal

component of degree 0 (mapping to w◦ ∈ X) with a vertical component of degree d,

attached to the horizontal component at the fixed point 0.

Now we have

(12) ch(ω(∆)) = ε0(Zd) · [ω(∆)]|0 = φ∗

(
ω̃(∆̃)|F

λ−1(N∗
F/Z̃d

)

)
.

Taking q-graded characters, the fraction in the right-hand side has order r(d) at q =
∞. Indeed, the nontrivial characters appearing in ω̃|F are precisely those appearing as

normal characters in NF/Z̃d
. (The tangential directions along F have trivial character,

since F is fixed.) Each irreducible component of the divisor ∆̃ contributes q−1, by the

proof of [5, Lemma 5.2], and there are r(d) such components. Finally, after pushing

forward by φ, we see that the order at ∞ of the right-hand side is at least r(d). (Some

terms may vanish in the pushforward, so inequality is possible.) �

In the case where G is simply laced—i.e., of type A, D, or E—a similar (but simpler)

argument produces a stronger bound. Let kd := (ρ, d) + (d,d)
2

.

Lemma 3+. When G is simply laced, we have νd ≥ kd.
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Proof. The argument is exactly as before, with the following changes. First, we have

that ω itself is a trivial line bundle with character q(ρ,d)+(d,d)/2, as in the proof of [5,

Lemma 5.2], so that

ch(ω) = qkd ε0(Zd).

Next, we have φ∗[ω̃] = [ω] using the fact that Zd has rational singularities [5, Proposi-

tion 5.1]. Finally, the fraction
ω̃|F

λ−1(N∗
F/Z̃d

)

has order 0 at infinity, so pushing forward by φ shows that ord∞(ch(ω)) ≥ 0. Dividing

by qkd yields the bound. �

Remark. In type A, the exponent is

kd = d1 + · · ·+ dr +
r+1∑

i=1

(di − di−1)
2

2
,

where d0 = dr+1 = 0, which agrees with [18, Eq. (7)].

2.3. Asymptotics of T. Ideally we would like to establish a generalization of Lemma

3 (and Lemma 3+ in simply-laced cases) to Td by further exploring the properties of

the zastava spaces. Alternatively, one may hope to derive such a generalization with the

help of reconstruction theorems [22], [33]. Unfortunately we are unable to do this.

We proceed differently. Note that Lemmas 3 and 3+ imply that Jd satisfies a qua-

dratic growth condition in the sense introduced in Appendix B by H. Iritani. According

to S. Kato [25], for X = G/B the shift operators Ai are polynomials in Novikov vari-

ables Q. As a consequence of Proposition in Appendix B, due to Iritani, we have

Lemma 4. T satisfies the quadratic growth condition.

2.4. The parabolic case. We will obtain the quadratic growth condition for the op-

erator T for G/P from the quadratic growth condition proved for the operator T of

G/B, using a construction due to Woodward, in the course of his proof of the Peterson-

Woodward comparison formula relating quantum cohomology of G/P to that of G/B
[37].

Given any dP ≥ 0 in Λ̌P , the Peterson-Woodward formula produces another para-

bolic P ′, with P ⊇ P ′ ⊇ B, together with canonical lifts dP ′ ∈ Λ̌P ′

and dB ∈ Λ̌ of dP .

Woodward shows that the natural morphisms

hP ′/B : Γ(G/B)n,dB → Γ(G/P ′)n,dP ′
×G/P ′ G/B

and

hP/P ′ : Γ(G/P ′)n,dP ′
→ Γ(G/P )n,dP

are birational. Indeed, these graph spaces compactify the corresponding Hom spaces,

so our claim follows from [37, Theorem 3].
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Explicit formulas for dB and P ′ can be found in [31, Remark 10.17], but for our

purposes it is enough to know that dB and dP ′ map to dP under the canonical projection,

and that the above birational morphisms exist.

Consider dP ≥ 0 in Λ̌P and λ ∈ ΛP , and let us define νdP as for the G/B case: it is

the exponent so that JdP tends to cdP q−νdP as q → ∞, for some cdP ∈ KT (G/P ). In

other words, νdP = ord∞(JdP ).

For λ ∈ ΛP , we have (dP , λ) = (dB, λ), simply because dB is a lift of dP .

Lemma 5. We have νdP ≥ mdB , and T for G/P satisfies the quadratic growth condi-

tion.

Proof. Let π : G/B → G/P be the projection map. We have P λ = π∗P λ on G/B. The

main claim is that TdP (P
λ) = π∗TdB(P

λ). When λ = 0, this implies that νdP ≥ νdB
and therefore νdP ≥ mdB by Lemma 3. The assertion on ord∞(TdP (P

λ)) follows from

Lemma 4.

We now verify that π∗TdP (ξ) = π∗TdB(π
∗ξ) for any ξ ∈ KT (G/P ), using the char-

acterization Td(ξ) = (ev1)∗

(
ev∗2ξ

1−qL1

)
from Equation (6), where evi : M 0,2(X, d) → X

are the evaluation maps. Let

h : Γ(G/B)n,dB → Γ(G/P )n,dP

be the composition of hP ′/B , the projection on the first factor, and hP/P ′ . Recalling

the identifications of fixed loci Γ(G/B)
(1,dB)
1,dB

∼= M 0,2(X, dB) and Γ(G/P )
(1,dP )
1,dP

∼=
M 0,2(X, dP ), we have a commutative diagram

G/B M 0,2(X, dB) Γ(G/B)
(1,dB)
1,dB

Γ(G/B)1,dB G/B

G/P M 0,2(X, dP ) Γ(G/P )
(1,dP )
1,dP

Γ(G/P )1,dP G/P.

π h̄

ev1

h̄

ι ev

h π

ev1

ι ev

In the top row, the composition ev ◦ ι is equal to ev2 : M 0,2(X, dB) → G/B, and

similarly in the bottom row. Since h is the composition of birational morphisms between

varieties with rational singularities and a smooth projection with rational fibers, we have

h∗h
∗(z) = z for any z ∈ KT (Γ(G/P )1,dP ). Furthermore, by the localization formula

(1) applied to h̄, for any α ∈ KT (Γ(G/B)1,dB) we have

ι∗h∗(α)

(1− q)(1− qLP
1 )

= h̄∗

(
ι∗α

(1− q)(1− qLB
1 )

)
,

where LB
1 is the cotangent line bundle at the first marked point of M 0,2(X, dB), and

similarly for LP
1 . (The denominators are the K-theoretic top Chern classes of the normal

bundles to the respective fixed loci.)
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Now we set α = ev∗π∗ξ in the above equation, apply (ev1)∗ to both sides, and

compute:

1

1− q
TdP (ξ) = (ev1)∗

(
ev∗2ξ

(1− q)(1− qLP
1 )

)

= (ev1)∗

(
ι∗h∗h

∗ev∗ξ

(1− q)(1− qLP
1 )

)

= (ev1)∗h̄∗

(
ι∗h∗ev∗ξ

(1− q)(1− qLB
1 )

)

= π∗(ev1)∗

(
ι∗ev∗π∗ξ

(1− q)(1− qLB
1 )

)

= π∗(ev1)∗

(
ev∗

1π
∗ξ

(1− q)(1− qLB
1 )

)

=
1

1− q
π∗TdB(π

∗ξ),

as claimed. �

When G is simply laced, the same argument produces a sharper bound:

Lemma 5+. If G is simply laced, we have νdP ≥ kdB . �

3. THE OPERATOR Ai,com

For X = G/P and a degree d = dP , we write d̂ = dB for the associated degree on

G/B coming from the Peterson-Woodward comparison theorem. (See §2.4.)

As discussed in §1.5, certain operators Ai ∈ EndR(T )(KT (X)) ⊗ Q[q][[Q]], defined

and studied in [22], give the Dq-module structure of quantum K-theory. Setting q = 1
produces operators Ai,com = Ai|q=1 ∈ End(KT (X)) ⊗ Q[[Q]]. We will prove that the

operators give the (small) quantum product by Pi.

Lemma 6. The operator Ai,com is the operator of the (small) quantum product by Pi.

Before proving the lemma, note that if F is a polynomial in r variables and {Φw} is

an R(T )-basis for KT (G/P ) with expansion

F (A1q
Q1∂Q1 , . . . ,Arq

Qr∂Qr )(1) =
∑

w

fw Φw,

then by Equation (8) and [22, Proposition 2.12], we have

(13) F (A1,com, . . . ,Ar,com)(1) =
∑

w

fw|q=1Φw.
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Proof of Lemma 6. It suffices to show that Ai,com(1) = Pi. By [22, Proposition 2.10],

the operators Ai,com act as the (small) quantum product :

(14) Ai,com(Φ) =

(
Pi +

∑

d>0

cd,iQ
d

)
⋆ Φ,

for some cd,i ∈ KT (X). We will prove that cd,i = 0 for all d > 0.

Consider F = Ai,com and the expansion Aiq
Qi∂Qi (1) =

∑
w fw Φw. Applying Equa-

tion (8) gives

qQi∂Qi J̃ =
∑

w

T̃(fw Φw).

As in the discussion after Equation (8), to compute Ai,com(1) =
∑

w fw|q=1Φw, it suf-

fices to identify the q≥0 coefficients of the left-hand side.

When d = 0, the factor P logQ/ log q contributes Pi after applying the shift operator

qQi∂Qi . It suffices to show that there are no terms with d > 0.

If there is a d > 0 term contributing to q≥0, the effect of the shift operator qQi∂Qi

on such a term is to replace Jd by qdiJd. Noting that d̂i = di since d̂ = dB is a lift of

d = dP , Lemma 5 gives

0 ≤ di − νd ≤ di −md̂ = d̂i −md̂.(15)

By the Lemma in Appendix A, when G contains no simple factors of type E8, the right-

most term is strictly negative when d > 0, giving a contradiction. For the E8 case

we have the stronger bound of Lemma 5+ which applies to all simply laced types (see

Lemma 6+ below). Therefore, no such d > 0 terms arise and

qQi∂Qi J̃ = T̃(Pi),

so Ai,com(1) = Pi, as claimed. �

In the simply-laced case, we can say more.

Lemma 6+. If G is simply laced, then for distinct i1, . . . , il ∈ {1, . . . , r}, we have

Pi1 ⋆ · · · ⋆ Pil =
∏l

k=1 Pik . That is, for these elements, the quantum and classical

product are the same. �

Proof. It suffices to show that for distinct i1, . . . , il ∈ {1, . . . , r}, we have

(
l∏

k=1

q
Qik

∂Qik

)
J̃ = T̃

(
l∏

k=1

Pik

)
.



ON THE FINITENESS OF QUANTUM K-THEORY OF A HOMOGENEOUS SPACE 19

This follows from the same argument as in the proof of Lemma 6. Indeed, the inequality

in Equation (15) can be replaced by

0 ≤
l∑

k=1

dik − νd ≤
l∑

k=1

dik − kd̂

= −(ρ−
l∑

k=1

̟ik , d̂)−
(d̂, d̂)

2
,

The quantity (ρ −
∑

̟ik , d̂) is nonnegative, and
(d̂,d̂)
2

is strictly positive for d 6= 0,

since ( , ) is an inner product; this contradicts the inequality, so no terms with d > 0
occur. �

4. FINITENESS

We will deduce our main finiteness theorem from the following statement for prod-

ucts of the line bundle classes Pi.

Proposition 7. For any indices i1, . . . , il, the (small) quantum product Pi1 ⋆ · · · ⋆ Pil is

a finite linear combination of elements of KT (X) whose coefficients are polynomials in

Q1, . . . , Qr.

Proof. The operator Ai,com is the operator of quantum multiplication by Pi by Lemma 6.

In order to study the product Pi1 ⋆ · · · ⋆ Pil , we need to study Equation (13) for F =∏l
k=1 Aik ,com, as in the proof of Lemma 6. In particular, we wish to show that only

finitely many Qd appear in the q≥0 coefficients of

l∏

k=1

q
Qik

∂Qik J̃ .

The d = 0 term of J̃ gives
∏l

k=1 Pik . For a d > 0 term of J̃ that contributes to the

q≥0 coefficients, the operator
∏l

k=1 q
Qik

∂Qik on such a term replaces Jd by
∏l

k=1 q
dikJd.

Applying Lemma 5 gives

0 ≤
l∑

k=1

dik − νd ≤
l∑

k=1

dik −md̂ =
l∑

k=1

d̂ik − r(d̂)− (d̂, d̂)

2
.

since d̂ = dB is a lift of d = dP and hence d̂i = di.

The quadratic form ( , ) is positive definite, so level sets of the function of d̂
(

l∑

k=1

d̂ik − r(d̂)

)
− (d̂, d̂)

2
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are ellipsoids in the vector space Λ̌⊗ R. It follows that the set

{
d = (dj)j 6∈IP

∣∣∣
(

l∑

k=1

d̂ik − r(d̂)

)
− (d̂, d̂)

2
≥ 0

}

is a bounded subset of Λ̌P ⊗ R, so it can contain at most finitely many lattice points

d ∈ Λ̌P
+.

The (finitely many) q≥0 terms of
∏l

k=1 q
Qik

∂Qik J̃ can be ordered according to the

exponents of q. We then use terms

qnQd′
T̃(Φw), for n ∈ Z≥0, d

′ ∈ Λ̌P
+, Φw ∈ KT (X),

to inductively remove these q≥0 terms.

After extending scalars from R(T ) to F (T ), we can choose a basis Φw = P λ(w)

for some λ(w) ∈ Λ. (By Lemma 1, F (T ) ⊗R(T ) KT (X) is generated by line bundles

over F (T ), so such a monomial basis exists.) This extension of scalars is harmless,

for the following reason. A priori, we know the quantum product Pi1 ⋆ · · · ⋆ Pil lies in

KT (X)[[Q]]. The argument below shows that it lies in (F (T )⊗R(T ) KT (X))[Q]. This

proves the claim, because the intersection of the subrings KT (X)[[Q]] and (F (T )⊗R(T )

KT (X))[Q] inside (F (T )⊗R(T ) KT (X))[[Q]] is KT (X)[Q].

For fixed n and w, qnQd′T̃(Φw) has only finitely many q≥0 terms: this is because T

satisfies the quadratic growth condition. So the inductive removal of q≥0 terms ends

after finitely many steps.4 This means we can find polynomials fw ∈ F (T )[q, Q] so that

the (finite) sum
∑

w T̃(fwΦw) makes

l∏

k=1

q
Qik

∂Qik J̃ −
∑

w

T̃(fwΦw)(16)

vanish at q = +∞.

To show that the expression of Equation (16) is equal to zero, we argue as in the proof

of [22, Lemma 3.3]. Writing

(17) M :=
(
P logQ/ log q

)−1

(
l∏

k=1

q
Qik

∂Qik J̃ −
∑

w

T̃(fwΦw)

)
,

we wish to show M = 0.

4We stress that this step is the only part of our approach that uses bounds for T.
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Using J̃ = T̃(1) and [22, Remark 2.11], we can write

M =
(
P logQ/ log q

)−1

(
T̃

((∏
Ai q

Qik
∂Qik

)
(1)
)
−
∑

w

T̃(fwΦw)

)

= T

((∏
Ai q

Qik
∂Qik

)
(1)−

∑

w

fwΦw

)

=: TU.

Expanding M =
∑

dMdQ
d, T =

∑
d TdQ

d, and U =
∑

d UdQ
d as series in Q, we

will show M = 0 by induction with respect to a partial order on effective curve classes

d ∈ Λ̌+. In fact, we will show Ud = 0 for all d.

As rational functions in q, the coefficients Td and Ud have the following properties:

T0 = id; Td has poles only at roots of unity, is regular at q = 0 and q = ∞, and vanishes

at q = ∞ for d > 0; and Ud is a polynomial in q. Since T0 = id, it follows from the

construction of the fw that U0 = 0.

The product formula expands to give

Md = Ud +
∑

d′+d′′=d
d′,d′′>0

Td′Ud′′ ,

using Td(U0) = Td(0) = 0. By induction, the indexed sum is zero (since all lower

terms Ud′′ = 0), i.e., Md = Ud. The choice of fw implies that Md vanishes at q = ∞ for

all d, but Ud is a polynomial in q, so it must be zero. �

In particular, the proof of Proposition 7 gives the following refinement of Equa-

tion (8):
l∏

k=1

q
Qik

∂Qik J̃ =
∑

w

T̃(fwΦw)

for polynomials fw ∈ R(T )[q][Q].

We now turn to our main theorem. Fix an R(T )-basis {Φw} for KT (X), and use the

same notation {Φw} for the corresponding R(T )[[Q]]-basis {Φw ⊗ 1} for QKT (X) :=
KT (G/P )⊗ Z[[Q]].

Theorem 8. The structure constants of QKT (X) with respect to the basis {Φw} are

polynomials: they lie in the polynomial subring R(T )[Q] of R(T )[[Q]].

In particular, takingΦw to be a Schubert basis (of structure sheaves, canonical sheaves,

or dual structure sheaves), we see that the quantum product of Schubert classes in

QKT (X) is finite.

Proof. We begin by extending scalars from R(T ) to the fraction field F (T ) of R(T ),
as in Proposition 7; the structure constants are automatically in R(T )[[Q]], so to prove

they lie in R(T )[Q], it is enough to show they lie in F (T )[Q].
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The assignment Pi1Pi2 · · ·Pik 7→ Pi1 ⋆ Pi2 ⋆ · · · ⋆ Pik defines a ring homomorphism

(18) F (T )[P1, . . . , Pr;Q1, . . . , Qr] → F (T )⊗R(T ) QKT (X);

let the kernel be I . The resulting embedding of rings

F (T )[P1, . . . , Pr;Q1, . . . , Qr]/I →֒ F (T )⊗R(T ) QKT (X)

corresponds to the natural embedding of modules

F (T )⊗R(T ) KT (X)⊗ Z[Q1, . . . , Qr] →֒ F (T )⊗R(T ) KT (X)⊗ Z[[Q1, . . . , Qr]].

It follows from Lemma 1 that each element Φw of the R(T )-basis for KT (X) can be

written as a polynomial in Pi with coefficients in F (T ). Therefore, each element Φw

of the corresponding R(T )[[Q]]-basis for QKT (X) can be represented as a polynomial

ϕw = ϕw(P,Q) in F (T )[P1, . . . , Pr][Q]

The product of basis elements Φu ⋆ Φv in QKT (X) is given by a product ϕu ϕv of

polynomials in P and Q, and by Proposition 7, this product is a finite linear combination

of classes in F (T )⊗R(T ) KT (X) with coefficients in Z[Q]. �

APPENDIX A. AN INEQUALITY IN THE COROOT LATTICE

Consider a root system (of finite type) in a real vector space V , with simple roots

α1, . . . , αr and associated reflection group W . Let d =
∑

j djαj be an element of the

root lattice, so the coefficients dj are integers. Let ( , ) be the W -invariant bilinear form

on V , normalized so that (αj , αj) = 2 for short roots. Finally, let

r(d) = #{j | dj 6= 0}.
The purpose of this appendix is to prove a simple inequality.

Lemma. Assume that the root system contains no factors of type E8. For any i ∈
{1, . . . , r}, we have

(d, d)

2
+ r(d) ≥ di,

with equality if and only if d = 0.

Proof. We may assume r(d) = r, i.e., d has full support, since otherwise the problem

reduces to a root subsystem.

Let us introduce a new variable z, and consider the quadratic form

Q(d1, . . . , dr, z) =
(d, d)

2
− diz + rz2.

We will show that Q is positive definite. The lemma follows, by evaluating at z = 1.

Let us write AQ for the symmetric matrix corresponding to Q, AR for the matrix

corresponding to 1
2
( , ), and AR(i) for the matrix of the subsystem obtained by removing
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αi. By reordering the roots as needed, we can assume AR and AR(i) are principal

submatrices of AQ, so 2AQ has the form

2AQ =




0

2AR
...

−1
0 · · · −1 2r




We see

det(2AQ) = 2r det(2AR)− det(2AR(i)).

To prove that Q is positive definite, it suffices to check this determinant is positive, since

we already know AR is positive definite. This is easily done with a case-by-case check,

using the data in Table 1. (Cf. [20, §2.4], noting that our matrices are multiplied by

factors corresponding to long roots.) �

R An Bn Cn Dn E6 E7 F4 G2

det(2AR) n+ 1 2n 4 4 3 2 4 3
TABLE 1. Determinants for root systems

Remark. In type E8, if i corresponds to the vertex of degree 3 (the “fork”) in the Dynkin

diagram, then the quadratic form Q is not positive definite: in fact, the determinant

det(2AQ) is negative in this case.

APPENDIX B. FINITENESS AND QUADRATIC GROWTH IN QUANTUM K-THEORY

by Hiroshi Iritani5

We show that a quadratic growth condition for the zero orders of the fundamental

solution T at q = ∞ is equivalent to the finiteness of the q-shift connection A associated

with nef classes.

Let X be a smooth projective variety. Let K(X) be the topological K-group with

complex coefficients. We fix a basis {Φα} of K(X). Let g denote the pairing on K(X)
given by g(E, F ) = χ(E ⊗ F ). Let {Φα} denote the dual basis with respect to the

pairing g. Let T denote the fundamental solution of the quantum difference equation,

defined by

T(Φα) = Φα +
∑

d∈Eff(X)
d6=0

∑

β

〈
Φα,

Φβ

1− qL

〉

0,2,d

QdΦβ.

5H.I. is supported in part by JSPS KAKENHI Grant Number 16K05127, 16H06335, 16H06337 and

17H06127.

Department of Mathematics, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502,

Japan

E-mail address: iritani@math.kyoto-u.ac.jp



24 ANDERSON, CHEN, AND TSENG

where Eff(X) ⊂ H2(X,Z) denotes the monoid generated by effective curves. We write

T =
∑

d∈Eff(X) TdQ
d with Td ∈ End(K(X)). We say that T satisfies the quadratic

growth condition when the following holds:

There exist a positive-definite inner product (·, ·) on H2(X), m ∈ H2(X)
and a constant c ∈ R such that we have

ordq=∞ Td ≥
1

2
(d, d) +m · d+ c

for all d ∈ H2(X), where ordq=∞ is the order of zero at q = ∞.

(B.1)

For a class P ∈ K(X) of a line bundle, we write p = −c1(P ) ∈ H2(X) for the negative

of the first Chern class. For p ∈ H2(X), let qpQ∂Q denote the operator acting on power

series in Q as

qpQ∂Q




∑

d∈H2(X)

cdQ
d


 =

∑

d∈H2(X)

cdq
p·dQd.

The q-shift connection A associated with P (or with p = −c1(P )) is the operator

A = T
−1PqpQ∂Q(T)

where P acts on K(X) by the (classical) tensor product. The nontrivial fact is that A

lies in the ring End(K(X))⊗ C[q, q−1][[Q]], i.e. it is a Laurent polynomial in q.

Proposition. The fundamental solution T satisfies the quadratic growth condition (B.1)

if and only if the difference connections A associated with nef classes p = −c1(P ) are

polynomials in Q.

Proof. The ‘only if’ statement was (essentially) proved by Anderson-Chen-Tseng [2,

Proposition 5] although it was not phrased in this way. We give another proof for the

convenience of the reader. We expand T−1 = (1 +
∑

d6=0 TdQ
d)−1 =

∑
d SdQ

d. Then:

Sd =
∑

k≥1

∑

d(1)+···+d(k)=d,
d(j)∈Eff(X)\{0}

(−1)kTd(1) · · ·Td(k)

for d 6= 0. We claim that ordq=∞ Sd → ∞ as |d| :=
√
(d, d) → ∞. By the quadratic

growth condition (B.1) and the fact that ordq=∞ Td ≥ 1 for d 6= 0, when d = d(1) +
· · ·+ d(k) with d(j) ∈ Eff(X) \ {0}, we have

(B.2) ordq=∞(Td(1) · · ·Td(k)) ≥ max(k, f(d(1)) + · · ·+ f(d(k)))
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where f(d) := 1
2
(d, d) +m · d+ c. Since |d| ≤ |d(1)|+ · · ·+ |d(k)|, there exists i such

that |d(i)| ≥ |d|/k. Therefore if k ≤ |d| 13 , then

f(d(1)) + · · ·+ f(d(k)) =
1

2

(
k∑

i=1

(d(i), d(i))

)
+m · d+ ck

≥ 1

2

|d|2
k2

− |m||d| − |c|k

≥ 1

2
|d| 43 − |m||d| − |c||d| 13

Hence by (B.2),

ordq=∞(Td(1) · · ·Td(k)) ≥ min

(
|d| 13 , 1

2
|d| 43 − |m||d| − |c||d| 13

)

and the right-hand side diverges as |d| → ∞. This proves the claim. Let A be the q-shift

operator associated with a nef class p = −c1(P ). Writing A =
∑

d AdQ
d, we have

Ad =
∑

d′+d′′=d

Sd′Pqp·d
′′

Td′′ .

Since p is nef, A is regular at q = 0 (see [22, Proposition 2.10]). On the other hand,

using the quadratic growth condition (B.1) again, we have

ordq=∞ Ad ≥ min
d′+d′′=d

(ordq=∞ Sd′ + f(d′′)− p · d′′).

The right-hand side is positive for a sufficiently large |d|. In fact, both N ′ = {d′ ∈
Eff(X) : ordq=∞ Sd′ < 0} and N ′′ = {d′′ ∈ Eff(X) : f(d′′)−p ·d′′ < 0} are finite sets;

when d′ ∈ N ′ and d′ + d′′ = d, we bave f(d′′) − p · d′′ → ∞ as |d| → ∞; similarly,

when d′′ ∈ N ′′ and d′+d′′ = d, we have ordq=∞ Sd′ → ∞ as |d| → ∞. Therefore Ad is

regular at q = 0 and ordq=∞ Ad > 0 for sufficiently large |d|. This implies that Ad = 0
for sufficiently large |d|, i.e. A is a polynomial in Q.

Next we show the ‘if’ statement. Suppose that all q-shift connections A associated

with nef classes p = −c1(P ) are polynomials in Q. Choose line bundles P1, . . . , Pk

such that pi = −c1(Pi) is nef and that p1, . . . , pk form a basis of H2(X,R). Let A(i)

be the q-shift connection associated with Pi. By assumption, there exists a finite set

F ⊂ Eff(X) \ {0} of degrees such that A(i) is expanded in the form:

A
(i) = Pi +

∑

d∈F

A
(i)
d Qd.

The fundamental solution T satisfies the q-difference equation Piq
piQ

∂
∂QT = TA(i), and

therefore we have

(B.3) Piq
pi·dTd = TdPi +

∑

d′∈F

Td−d′A
(i)
d′ .

Suppose pi · d > 0. Then we have

ordq=∞ Td ≥ pi · d+min
d′∈F

(ordq=∞ Td−d′) + C
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where C := min1≤i≤k,d′∈F (ordq=∞ A
(i)
d′ ). Note that the first term in the right-hand side

of (B.3) does not contribute to the vanishing order of Td at q = ∞ because pi · d > 0.

Since this holds for all i with pi · d > 0, and there exists at least one i with pi · d > 0
when d ∈ Eff(X) \ {0} (note that pi · d ≥ 0 since pi is nef), we have

(B.4) ordq=∞ Td ≥ max
1≤i≤k

(pi · d) + min
d′∈F

(ordq=∞ Td−d′) + C

for all d ∈ Eff(X) \ {0}. Introduce the norm ‖d‖ :=
√∑k

i=1(pi · d)2 and set B :=

maxd∈F ‖d‖. Define the positive-definite inner product (·, ·) on H2(X) by

(d′, d′′) =
1√
kB

k∑

i=1

(pi · d′)(pi · d′′).

Choose a class m ∈ H2(X) such that m · d ≤ C for all d ∈ F . This is possible since F
is a finite set contained in Eff(X) \ {0}. We claim that

(B.5) ordq=∞ Td ≥
1

2
(d, d) +m · d.

This is true for d = 0. We introduce a partial order ≺ in Eff(X) so that d ≺ d′ if

and only if d′ − d ∈ Eff(X). Since every infinite descending chain d(1) ≻ d(2) ≻
d(3) ≻ · · · in Eff(X) stabilizes, the induction argument works for this order. Suppose

that d∗ ∈ Eff(X) \ {0} and that (B.5) holds for all d ∈ Eff(X) with d ≺ d∗. Using

(B.4) and the induction hypothesis, we have

ordq=∞ Td∗ ≥ max
1≤i≤k

(pi · d∗) + min
d′∈F

(
1

2
(d∗ − d′, d∗ − d′) +m · (d∗ − d′)

)
+ C

≥ 1

2
(d∗, d∗) +m · d∗ + max

1≤i≤k
(pi · d∗)−max

d′∈F
(d∗, d

′)−max
d′∈F

(m · d′) + C

≥ 1

2
(d∗, d∗) +m · d∗ +

1√
k
‖d∗‖ −

√
(d∗, d∗)max

d′∈F

√
(d′, d′)

≥ 1

2
(d∗, d∗) +m · d∗ +

1√
k
‖d∗‖ −

1√
kB

‖d∗‖max
d′∈F

‖d′‖

≥ 1

2
(d∗, d∗) +m · d∗.

In the above computation, we used ‖d∗‖ ≤
√
kmax1≤i≤k(pi · d∗). Hence the estimate

(B.5) holds for d∗. The proposition is proved. �

Remark. The Proposition holds also for the equivariant quantum K-theory. The proof

works verbatim.
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