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Abstract In this article, we investigate the global stability of the wave patterns with the
superposition of viscous contact wave and rarefaction wave for the one-dimensional compress-
ible Navier-Stokes equations with a free boundary. It is shown that for the ideal polytropic
gas, the superposition of the viscous contact wave with rarefaction wave is nonlinearly stable
for the free boundary problem under the large initial perturbations for any v > 1 with ~

being the adiabatic exponent provided that the wave strength is suitably small.
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1 Introduction

The one-dimensional compressible Navier-Stokes equations in the Eulerian coordinate read
Pt + (N’ﬁ)~ =0,
(pi): + (PU° + D)z = pilzz, (1.1)

[ﬁ <é+ %)L + [ﬁ <é+ %2> +I3ﬂL = klzz + p(utz);,
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where @(Z,t) is the velocity, p(Z,t) > 0 is the density, 8(Z,t) > 0 is the absolute temperature,
P = p(p, é) is the pressure, and é = é(p, 9) is the internal energy of the gas in gas dynamics,
while p and x denote the viscosity and the heat-conductivity of the gas, respectively. Here, we

study the ideal polytropic gas, that is,

p=Ri0 = Ape’ T3, & =c,0,

where § = 5(p, 0) is the entropy, v > 1 is the adiabatic exponent, ¢, = % is the specific heat,
and both A and R are positive constants.

We consider the system (1.1) in the region & > Z(¢), with the free boundary & = #(t)
defined by

t
de (1.2)

and the free boundary conditions

(b — piiz)| ;s 4y = Do, 0 ez = 0- >0, (1.3)

which means that the gas is attached at the boundary & = Z(t) with the fixed outer pressure
po > 0 and the prescribed temperature _ > 0. The initial data is given by

(5,,0)],_o = (010, 80) (8) = (ps,us,04) as & — +oc, (1.4)

where py > 0, 64 > 0, and uy are prescribed constants and we assume éo‘j:i(t) = 0_ as the

compatibility condition.
As it is convenient to use the Lagrangian coordinate in spatial one-dimensional case, we

transform the Eulerian coordinates (,t) to the Lagrangian coordinates (x,t) by

x = / ply, t)dy, t=t,
and then the free boundary value problem (1.1)—(1.4) is changed into the half space problem
v — Uy =0,
tpe=p (= >0, t>0
U pw—ﬂ(v)za z ’ ) (15)

e+u—2 + (pu),, = fi%—i— e
2/, Py = v THT .

with the initial and boundary conditions

9|x:0 = 9*5

Uy
(p(0,0) = =) (0.5) = po, ¢ >0, (1.6)
(’U,’LL, 9)($, O) = (UOa Uo, 90)($) - (’U+, U+, 9+) as x — +00,

where u(z,t) = @(i,t), 0(z,t) = 0(7,t), and vy = p;'; and v = v(z,t) = p~'(#,t) denotes the
specific volume.
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It is well-known that the asymptotic behaviors of (1.5) are characterized by the Riemann

solution to the corresponding Euler system:

vy — Uy = 0,

Ut +px :Ov

(e + u;>t + (pu), =0.

(1.7)

The Euler system (1.7) is a typical example of the hyperbolic conservation laws. The main
feature of the solutions to the hyperbolic conservation laws is the formation of the shock wave
no matter how smooth and small the initial values are. Generally speaking, the Riemann
solution to Euler system (1.7) contains three basic wave patterns, that is, two nonlinear waves,
shock wave and rarefaction wave, and one contact discontinuity in the linearly degenerate
field. The above three dilation invariant wave solutions and their linear superpositions in the
increasing order of characteristic speed, that is, Riemann solutions, govern both local and large-
time behavior of solutions to the Euler system and so govern the large-time behavior of the
solutions to the compressible Navier-Stokes equations (1.5).

Indeed, there was great interest and intensive studies on the large time behaviors of the
solutions for the Cauchy problem of system (1.5). In the case of the Riemann solution of (1.5)
consisting of a single wave pattern, we refer to [2, 17, 22, 26, 34] for the stability of viscous
shock wave, [1, 18, 23, 27-29] for rarefaction wave, and [3, 6, 10, 12, 13, 24] for the viscous
contact wave. For the superposition wave case, the local stability of the superposition of two
viscous shock waves was studied by Huang-Matsumura in [7] without zero mass condition and
Huang-Li-Matsumura [6] proved the local stability of the superposition of viscous contact wave
and rarefaction waves by introducing a new estimates on the heat kernel.

Recently, the initial boundary value problem of (1.5) attracts increasing interest because it
has more physical meanings and of course produces some new mathematical difficulties due to
the boundary effect. Some new phenomenon may appear in the initial boundary value problem.
Mathematically speaking, how to treat the boundary terms is the main issue. One can refer
[25] for the inflow and outflow problems for (1.5) and the references therein. For the initial-
boundary value problem (1.5)—(1.6) in this article, there are also some recent results for the
large time behavior of the solution. However, most results are concerned with the local stability
or the asymptotic stability with“partially” large perturbation to the wave patterns. In fact,
Huang-Matsumura-Shi [9] proved the local stability of a viscous contact wave to (1.5) by using
the elementary energy methods and a poincare inequality to control the boundary terms. Then,
Huang-Zhao [14] proved the asymptotic stability of viscous contact wave and its superposition
with rarefaction wave for the system (1.5)—(1.6) with the large perturbation provided that the
adiabatic exponent « is close to 1 enough. Precisely speaking, in [14], the quantity v—1 needs to
be suitably small, that is, the system is almost isothermal, then the perturbation around wave
patterns can be large. Huang-Shi-Wang [11] proved the local stability of viscous shock wave to
(1.5) if the viscous shock wave is far away from the boundary. And Hong-Huang [4] proved the
local stability of superposition of viscous shock wave and viscous contact wave case to (1.5).
For the free boundary problem of corresponding isentropic system with the conservation of

energy being neglected, the stability of rarefaction wave and viscous shock wave was proved by
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Pan-Liu-Nishihara in [33]. The main aim of this article is to remove the smallness condition of
~v—1 in [14] and to prove the stability of superposition of viscous contact wave and rarefaction
wave to the initial and boundary value problem (1.5)—(1.6) under large perturbations for any
v > 1.

Before stating the main results, we first recall the viscous contact wave and approximate rar-
efaction wave for the compressible Navier-Stokes system (1.5). By the theory of hyperbolic sys-
tems of conservation laws (see [32]), we know that there exists a unique point (Vp,, U, ) such

that po = pm = }f)i;”, and (U, Um, Om) belongs to the 3-rarefaction wave curve R(vy,uy,04)

in the phase plane, where

R(U+7u+79+): {(U7u79) § =S54, UZU+—/ )\(7775+)d777 ’U>’U+},
vt

0 o
s= iln}% +Rlnv and A(v,s) = \ Ayp—r-le ®m s,

v—1
that is, (v, Um, 0 satisfies

om -~ Um
= Oy =000 e = uy —/ A1, s4)dn.

’Um V4

Do

We consider the superposition of the viscous contact wave connecting (v_, u_,0_) with (vy,, Um, Om)
and the 3-rarefaction wave connecting (Vy, , U, ) with (v4, u4, 64). To state our main results,
we first recall the viscous contact wave (V, U, ©) for the compressible Navier-Stokes system (1.5)
defined in [13]. Consider the Euler system (1.7) with the initial Riemann data

(v_yu_,0_), z <0,

v,u,0)(x,0) = .
( )@0) (V) Ui, Om), > 0. (18)

It is known that the contact discontinuity solution takes the form

U —,u_,0_), x<0,t>0,
V. 0.0)@.t) = 4 Vo) @ (1.9)
(Vs i, Om), © > 0,1 > 0,

provide that
a RO » ROm

U— = Um, Po = Pm
v_ Um,

(1.10)

In the setting of the compressible Navier-Stokes system (1.5), the inviscid contact discontinuity
(f/, U, é) becomes smooth to be called “viscous contact wave”and behaves like a diffusion wave
due to the dissipation effect. The viscous contact wave (V¢ U°? ©°!) can be constructed as
follows. Since the pressure for the profile (V¢ U°? ©°?) is expected to be almost constant as

in [10], we set
N R@cd

p(VCda ®Cd) - Ved = Do,
which indicates that the leading part of the energy equation (1.5), is
J J @cd
¢, 07 + poU; =f<a<vid) . (1.11)

The equation (1.11) and (1.5), lead to a nonlinear diffusion equation,

cd _
0l =q (8;) . 0%0,t)=6_, O (4o00,t) =6, a= %R?l) > 0, (1.12)
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which has a unique self-similar solution ©°¢(z,t) = ©°4(¢), £ = \/fTrt due to [5]. Furthermore,

on the one hand, ©°¢(¢) is a monotone function, increasing if 6,,, > #_ and decreasing if 6,,, <

6_. On the other hand, there exists some positive constant §°?, such that for §°¢ = |6,, — 0_|,
0°? satisfies
c 12
(1+0)|0%] + (1+1)2|0% + |0 — 0, + |04 — 6_| = O(1)6°% T as 2 — 400, (1.13)
where ¢; is positive constant depending only on #_ and 6,,. Once ©°% is determined, the viscous

contact wave (V¢4 U ©°4)(z,t) can be defined as follows:

R k(y—1) 0
Vcd _ _@cd Ucd = Uy, T
po ¥ vR O

Then, the viscous contact wave (V¢ U°?, ©°?)(x,t) solves the compressible Navier-Stokes sys-

(1.14)

tem (1.5) time asymptotically, that is,

V;Cd _ Uzcd =0,
d d d UCd d
cd cd cd cd ;d (UCd);% cd
¢, 0" + p(Ve, 0N = k Ved +u Ved + G,
where ; ey
c c U:g @ Umc
Fd:Utd—u(VCd) G = (1.16)

Now, we turn to rarefaction wave. The 3-rarefaction wave (v",u",6")(z/t) connecting

(U, U, 0) and (v4, uy, 604) is the weak solution of the Riemann problem,

vy — Uy = 0,

Ut + pr =0, reR, t>0,

(e + “;)t + (pu), =0, (1.17)

moy maemu <0
(v, u,0)(z,0) = (Vs s Oim )

(U+,U+,9+), x> 0.
Consider the following Burgers equation:

w +ww, =0, z€R, t>0,

w_, x <0, (1.18)

wo(z) == w(0,t) = Ty
w_ + Cy(wy —w=) [ yle ™ Ydy, z >0,
0

where w_ = A(vp, $4), wy = Av4,s4), and Cy is a constant such that C, f0+oo yle ¥dy =1
for large constant ¢ > 8. Then by the method of characteristic curves, the solution to the above

Burgers equation can be expressed explicitly by
w(z, t) = wo(zo(x,t)),
where z(x,t) is given by the relation

x = xo(x,t) + wo(zo(x,t))t.
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Correspondingly, the smooth approximate rarefaction wave (V",U",©") can be defined by
AV, 0" (z,t) = w(z,1+1),
S(Vrvér)(xvt) = sy = s(vy,04),

(1.19)
B V7 (x,t)
U'(z,t) = uy —/ A(n, s4)dn.
V4
Then, define
(Vr,U",0") (z,t) == (V",U",0") (z,t) o (1.20)
And (V",U",07) (x,t) satisfies
V;T - Ua: =0,
U/ +P(V",0"), =0,
(e(VT, o) + %(UTV) +(P(V",0"U"), =0, (1.21)
t
(VT, Urv @T)|1:0 = (’Um, U, o’m)a
(Vr,U",0"))i=0 = (V",U",0")(x,0),

where P(V",0") = RE...
Denote the wave strength by
8 =10 =01, & = [vm — v + um — wi] + [0 — O],
and 0 = max{5°?, §"}. Define the superposition wave (V,U, O)(x,t), which is combined by

viscous contact wave and rarefaction wave, by

V Ved(z,t) + VT (z,t) — v
U | (zt)=| U4z, t) + U (x,t) — um | - (1.22)
) 0 (z,t) + O"(x,t) — by,

Then, our main result in this article can be stated as follows.

Theorem 1.1 For the initial and boundary value problem (1.5)-(1.6), let (V,U,©) be
defined in (1.22). Then, there exits a function m(4) satisfying m(§) — +oo0 as § — 0 and a
small constant dg, such that |64 — 6_| < d and the initial data satisfies

[uo(z) = U (2, 0)|| g1 (ry) < mo =:m(8), wvo(x),bo(x) >mg",
[(vo(z) =V (x,0),00(x) — Oz, 0))l| 1y (ry) < 10-

Then, the problem (1.5)—(1.6) admits a unique global classical solution (v, u, §) satisfying

(1.23)

0<c <oz, t), 0(x,t) <Cy < 4o0;
(v—V,u—U,0—0)(z,t) € C((0,+00); H' (R}));
(v—V)u(z,t) € L*(0,400; L*(Ry));
(u—"U,0—0),(z,t) € L*(0,400; H'(R,)),
and the time-asymptotic stability
lim sup |[(v—V,u—U,0—0)(z,t)] =0. (1.24)

t—+oo zeERL
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Remark 1.2 Theorem 1.1 holds for large initial perturbations away from vacuum states
and any 7 > 1 provided that the wave strength is suitably small. Thus, we removed the
smallness condition of v — 1 in [14] and the partial smallness condition of initial perturbation
in [3].

Remark 1.3 The result in Theorem 1.1 can be transformed back to the original free
boundary problem of (1.1), (1.2)—(1.3), which means that the wave patterns is still nonlinearly

stable with suitable shifts in Eulerian coordinate.

We now comment on the proof of this article. It is noted that the smallness of v — 1 is
crucially used in [14, 29] to control the lower and upper bound of the absolute temperature
f. To remove the smallness condition on v — 1, the key issue is how to obtain the uniform
lower and upper bound of #, which is strongly coupled with the uniform bound of the specific
volume v. Here, we use some ideas in Huang-Wang [12] for the Cauchy problem. First, it
should be noted that the basic energy estimate (see Lemma 3.2 below) is nontrivially derived
compared with the case of small initial perturbation. In fact, we essentially use the smallness
of wave strength and the underlying structure of wave patterns to control the terms involving
the derivative of perturbation around the wave patterns in order to obtain the uniformly basic
energy estimate. Second, the specific volume v is shown uniformly bounded from below and
above with respect to both time and space through delicate analysis based on a cut-off technique
in [21] and the basic energy estimate in Lemma (3.2). Finally, we manipulate some weighted
estimates on the perturbation around the wave patterns to derive the uniform bound for the
temperature §. Remark that the underlying structures of viscous contact wave and rarefaction
wave are essentially used in the proof. Compared with Cauchy problem case in Huang-Wang
[12], one more point is how to control the boundary terms. For the initial and boundary
value problems (1.5)—(1.6), we can cope with the boundary terms provided that the initial
perturbation ¢o(x) € H}(R™), which is somehow natural since ¢(z,t) € H} (R™) for any ¢t > 0
as in Huang-Zhao [14].

Notations Throughout this article, generic positive constants are denoted by ¢ and C
without confusion. For function spaces, LP(Q2),1 < p < oo, denotes the usual Lebesgue space

on 2 C Ry = (0,00) with its norm given by

1
P
1l o) = (/Q |f(gc)|de) , 1<p<oo, | fllLe():= ess.supg|f(z)l.

H*(Q) denotes the k' order Sobolev space with its norm

1

k 2
1l = (Z Ak m)) . when |- =1 - lzeoy -
7=0

The domain 2 will be often abbreviated without confusion.

2 Preliminaries

We give some preliminary lemmas in this section, whose proof is standard and will be
skipped.
Lemma 2.1 Assume that 6 = |,,, —0_|. Then, the viscous contact wave (1 ¢4, U4 @°?)

has the following properties:
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(1) .
Vel — v | 4+ 0% — 0,,| < O(1)5%%e™ 155,

(2)

k cx?
2

e I+t k>1.

)

|okved| 1ok 1ued| + |oFecd < O(1)5°(1 4 t)~

Therefore, we have

cx? 2

F=01)51+1)"2e T, G=0(1)6UL+1t) 2 T, (2.1)

Lemma 2.2 Let ¢" = |(vm — V4, Um — U+, 04 — 01 )|. The smooth approximation rarefac-

tion wave (V",U",0")(x,t) has the following properties:

(1)
Uz >0, (V7 1e5]) < CUy;

(2) For any p (1 < p < 00), there exists a constant Cpq such that

(Ve Uz, )| 1o < Cpgmin (67, (67) /P (L + 1)~ H1/7)

(Vi U.

T xx)

O72) 1w < Cpqmin (67, ((67)/P + (87)/9) (1 + )~ +1/9) ;

(3) There exists some positive constant C = C(vp, Um, Om, s4) such that for 2z <
A(Vm, $+), it holds that

|8;L{(VT5 Urv @T)(Ia t) - (’Um, Um,y om)}| S Carefc(\z\th)’ n= Oa 15 25 Tty
and for 2z > A(vy,, s1), we have
| {(Ved, Ucd, 0°) (@, t) — (U, Um, O ) }| < C3LeCUHD -y — 0, 1, 2, ;
(4)
lim sup |(V,U,0)(x,t) - (v",u",0") (/)| = 0.

t—+oo rER L

3 Proof of Theorem 1.1

Put the perturbation (¢, 1, ()(z,t) around the superposition wave (V,U, ©)(z,t) by

(6,9, Q)(z,1) = (v = V,u—U,0 - 0)(x,1). (3.1)
Then by (1.5), (1.6), (1.15), and (1.21), the system for the perturbation (¢, v, ¢)(z,t) becomes
¢t - 1/11 = 07
Py —p(=_ Y 4F
Y+ (p — )m—ﬂ<7—7)w+ )

2
cVCt-i-puw—PUI:ﬁ(e_w_%) +u<u——ﬂ>+(},
v " v vV
(Re_ _ UI+¢1)
V+o MV+¢
C(O,t)ZO,
(6:.0)(@.0) = (v = V.u=U,6 —0)(z,0) = (do, 40, 0)(@), =€ Ry,

=0
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where P(z,t) = R"/—@(x,t),

F = (P(V",0") - P), + {u <%)m - de} = Fy + By, (3.3)

2 cd
G = [pOU£d+P(VT,®T>U; —PUI] 4 [(K@x) + ,UUm _ (Ii@m ) ]

14 14 Ved
= G1 + Gs. (3.4)

We shall prove Theorem 1.1 by the local existence and the a priori estimate. We look for
the solution (¢, 1, () in the solution space X ([0, 4+00)),

XM(0,7) = {(6,0:)fv, 0= M7, sup (6,0l < M}
0<t<T

for some 0 < T' < 400, where the constant M will be determined later. As the local existence
of the solution is well known (for example, see [9]), to prove the global existence of Theorem
1.1, we only need to establish the following a priori estimates.

Proposition 3.1 (A priori estimates) Assume that the conditions of Theorem 1.1 hold,
then there exists a positive constant dy such that if § < &y, and (¢, 1, ¢) € XM (]0,7T]) for some
M > 0, then it holds that

T
sup ||(¢,¢,<)(t)||§,1+/ (Izll® + 1%z, €)1 32) < Co, (3.5)
0<t<T 0

where Cy denotes a constant depending only on u, k, R, 7, po, v+, u4+, 64+, and mg and is
independent of M.

Once Proposition 3.1 is proved, we can extend the local solution (u, v, 8) to the global one

by the standard continuum process. Moreover, one has

[ (16wt +

which along with the Sobolev’s inequality gives (1.24).

d
A [N SION

) dt < oo, (3.6)

Proposition 3.1 is proved by the following lemmas. First, it should be emphasized that the
basic energy estimate is obtained in a nontrivial way, compared with the case of small initial

perturbation or uniform constant far-fields case.

Lemma 3.2 There exist some positive constant Cy and dg such that if § < dg, it holds

ST ) o]

Proof The proof of Lemma 3.2 consists of the followmg steps.
Step 1 Similar to [9], multiplying (1.5); by —RO(v~' —= V1), (1.5), by ¢, and (1.5), by

¢67', then adding the resulting equations together, we can get

1/}2
(9— + HT> dzdr < Cy. (3.7)

U)Q (9)> 2 2 T
~ + RO® 40,00 (= + + QUL+ H, +Q
< (V) ¢ )/, 1/) C ! 2

_ PGS
0
with

Py)=y—lny—1, y>0
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and ) o
. Uy U;E KJC x x
H_(p_P)w_M(7_7>w_7<7_7)’ (3.9)
%
Q=0 <E> g (%) >0, (3.10)
2
oo ()
oUY, KO, H@2 2uU uU2
p e PO gt g iy, (3.11)
As
|@L%9w o2 C(M) (@ + (UL + (05 + 054
+C(M)(8* + (|05, | + UL + @), (3.12)

where C'(M) denotes a constant depending on M, then the boundary condition and U, (0,t) =
V4(0,t) = 0 exactly give

(% - V“ft(b) ’ = po, t>0. (3.13)
Direct computation gives
1 (0,) = —pog (0, 1); (3.14)
from which, together with the fact that ¢o(z) € Hg (0, +00), we have
9(0,1) = go(0)e” %" = 0. (3.15)
Using Pioncaré’s type inequality yields
G, )] < 221Gl o, )] < 22 dull. (3.16)

By Lemma 2.1 and (3.16), we have

/ (62 + (U + 022 + |05)2)dudr
Ry

SW/H%&M%+ﬂ*/xf%me
R

5// (W “GCZ)d dr. (3.17)

As
or o9 o
Fl=R(—=+——-—
mi=| (e v 7).
SO(V" = om| +10" = 0,057 + C(IV = vpa| + [0 = 0,]) O
< Ce Clzl+t) (3.18)
and

[Py < C(IUF + UL + Ul + IUSVEY + (US| + UV + ULV (3.19)
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from Lemma 2.2 (see also Lemma 3.2 in [31]), we have
[Fllp < CoY8(1 +t)~13/16, (3.20)

Similarly,
Gl < COY8(1 4 t)~13/16, (3.21)

From Lemma 2.2 and Cauchy’s inequality, we have

t
[ [ @+l + @+ s
o Jr,

t
< 061/8/ L+ )7 (gl da | + ICIlICalDdr

M)§V/E / /R <9¢2 “942>dxd7

. 2
C(M)§Y/8 | (14 7)713/8 3 (2), @(ﬁ) d 3.22
ang” [ +n) (w/(v)w/ )| ar (3.22)
By Cauchy’s inequality, we obtain
t
// <F1/)+G%) dzdr
o Jr,
t
< C(M)/O I G @ O [ (e G 12
t
< CNS [ (14730, 2 o) 2
ney; H@Cﬁ
// < 46v 492v>dxd7-
t 0 2
+C(M)51/6/(1+T)_13/12 1+ (w, @(6>> dr. (3.23)
0

Note that

¢(0,6) =0, U,(0,t)=Vi(0,£) =0, and (p_#%_p)

which yields
H(0,t) = 0.

Then, integrating (3.8) over R4 x (0,t), combining (3.17)—(3.23), and using Gronwall’s inequal-

(oo @ o @)l f [ (2 o

< Co+C(M 51/8// (M’fd dr. (3.24)
Ry

ity, we have

Step 2 Following [28], we introduce a new variable o = (. Then, (3.2), can be rewritten

by the new variable as

(r2-v) ~G-P.--F (3.25)
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Multiplying (3.25) by %z, we have

(5(5) %) -

V2 ol 0 O\ Vi, RO, 0, 0,
v+vV RS v)VE T Tw P (3:26)
The Cauchy’s inequality yields that
R VaUs | | 3
v ’ vV +
< B0 (L 2+C(M) i+— + C(M)$*U? (3.27)
~ 4 \ D 0%2v  Hv ® ’
0 O\ V.0, R¢pO, U, Vg
Mrv)vg +‘ W o ‘%
RO {)w ? 2 2 2 2 2
<5 (=) Hean(@ + 2 +e2) + ), (3.28)
and
Y caneve < (L ﬁw( M)@*V? (3.29)
202 v v ’

Note that (2)(0,t) = (%)(O,t) = 0 and that the right hand sides of (3.27)—(3.29) is already
been investigated in Step 1. Integrating (3.26) over Ry x (0,¢) and combining (3.24), we have

gd —|—/ / 9(;51 dzdr < Cy+ C(M / / (— + —) dzdr. (3.30)
R, U Ry Ry

The proof of Lemma 3.2 is completed by substituting (3.30) into (3.24) and choosing § suitably
small. O

On the basis of Lemma 3.2 and Lemma 5 in [6], one has

Lemma 3.3 There exists a positive constant C' > 0, which may depend on M but is
independent of ¢ > 0, such that if the wave strength § > 0 is suitably small, then it holds that

t 2
/ / (147 Le 7 ((6, p, O)Pdadr < C(M).
o Jr,

Remark 3.4 The proof of Lemma 3.3 can be found in [6], while it should be noted that
there are some boundary terms to be concerned additionally here. In fact, we can change the
functions f and g in [6] to be defined by

f(:v»t)Z/Oww(y,t)d% g(w,t)=/omw2(y,t)dy-

Therefore, all the boundary terms to get the estimates in Lemma 3.3 can be controlled by the
free boundary conditions (1.6) or vanishes due to the fact that f(0,t) = g(0,¢) = 0. We will
skip the details for brevity.

Remark 3.5 For the initial boundary value problem (1.5)—(1.6), Lemma 3.3 is crucially
useful for the ¥-component, because for the ¢ and {-component, one can use Poincaré inequality
as in (3.16)—(3.17) to control the left hand side of the inequality in Lemma 3.3.
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—Iny—1=Cp and

Lemma 3.6 Let a1, as be the two positive roots of the equation y

the constant Cj be the same as in (3.7). Then
k1 k+1
a1 < / o(z, t)dx, / O(z,t)dr < ag, t>0, (3.31)
k k

€ [k, k + 1] such that

and for each t > 0, there are points ax(t), bi(t)
a1 < o(ax(t),t), 0(b(t),t) < as, t>0, (3.32)
~ v 0
where 0 = 7, 9—6 and k=0, 1, 2,-
Proof From (3.7), we see that
(3.33)

k+1 k41 ~
/ (0(z,t) — Ino(x,t) — 1)dz, / (0(x,t) —Inb(z,t) — 1)dz < Cp.

k k
Iny — 1 = Cy, we obtain

Applying Jessen’s inequality to the convex function y
k+1 k+1 k+1 k+1
/ (z,t)dx — ln/ o(z, t)dr — 1, / O(x,t)dx — ln/ O(z,t)de — 1 < Cy,
k k k k

which gives
k+1 k+1
ag < / o(x, t)dz, / O(z,t)dr < as.
k k
Moreover, for each ¢ > 0, by terms of mean value theorem, there are points ay(t), bx(t) € [k, k+1]
such that
0 < ay < 0(ap(t),t),0(be(t),t) < ag, t>0. (3.34)
O

The following lemma can be found in Jiang [15, Lemma 2.3]
it follows from (1.5)2 that

Lemma 3.7 Foreach z € [k, k+1], k=0,1,2

_ B(s R [* B(z,t)Y (1) . 8\ds
v(x,t) = Bz, t)Y (t) + m /0 Blz,9)Y (5) S)Y(S)H( ,8)ds, (3.35)
where
B(z,t) = vo(z ( (y) — U(y,t))ﬁ(y)dy> ; (3.36)
k+2
( / / dyds) , (3.37)
k+
o(x,t) (,u— - R9> (z,t), (3.38)
and
1, r<k+1,
Blx) =S k+2—z, k+1<z<k+2, (3.39)
0, x>k+2.
(3.7) and Cauchy’s inequality, we have
(3.40)

B(Cy) < B(z,t) < B(Cy), Vxelkk+1], t>0,

where B(Cp) and B(Cj) are two constants depending on Cj
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Lemma 3.8 There are two positive constants v(Cp) and o(Cp) such that
v(Cy) <w(z,t) <ov(Ch), VxeRy, t>0, (3.41)

where v(Cp) and 7(Cp) are dependent on Cy, independent of z, .
The proof of Lemma (3.8) can be found in [12] and we skip the details for brevity.
The following lemma is the key to obtain the uniform bound of the absolute temperature.
Lemma 3.9 There exists some positive constants Cy such that for any given T' > 0,

swp [ (0o | ' | (@02 + st < o, (3.42)
0<t<T JR, o JRy
Proof The proof of Lemma 3.9 consists of the following steps.
Step 1 First, for t > 0 and a > 1, denote

Qu(t) 2 {:v e R‘%(m,t) > a} = {z € Ry[((z,t) > (a—1)O(x, 1)}

We derive from (3.7) that €, is bounded, because

alQe| < sup / —dz < C(a) sup / o (g) dz < C(a, Cy). (3.43)
Ry

0<t<T O<t§T
Next, multiplying (3.2); by (¢ — ©)4+ = max{¢ — ©,0}, noting that (( — ©)4|,—0 = (0 —
0_);r =0 and (¢ — O)t|p=to00c = (0 —0+)+ = 0, then integrating the resulted equation over
R, x (0,t), one has
2

t
Cu :
2 - (C 6) dl’ + :“f/‘/o 0, 7d(EdT
=5 | @) - 00 - [/ (G- O)dutr

t t
- / / (p— P)Uy (¢ — ©)ydzdr + n/ Cw—wdxdT
0 JR4 0Ja, V

t (b t w2
—H/ deJdT-i-/J,/ —£(¢ — 0);dadr
0 Ja, vV 0o JRy

v v
+2u /Ot - 1/sz (¢ —©)rdedr — / /R+ ¢U2 )ydzdr
+ /Ot /ﬂh G(C - ©).dadr — CV/O /aT@(g — ). dedr. (3.44)

Multiplying (3.2), by 2¢(¢ — ©)4, and integrating the resulted equation over Ry x [0,t], we

obtain

t 2
vc- otz [ [ (- 0)sdudr
0o Jry VU

Ry

= | WG - 00 da +2 / /Rf’ P (C - ©) ydzdr

+2 /Ot /Q (p — P)pCpdadr — 2/0 /Q (p — PO, dadr

t t
+2u / Gﬂ‘]/ (¢ — ©),dadr — 2 / Y¥2le 4rdr
0o Jry Y o Jo, Y
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LU R
+2p / dxdr 4 2p / dxdr
0o Ja, WV 0 JQs v

t ¢1/} t
—2u/ — U, 0 dxdr + 2/ YF( — ©)dadr
0 0 JRy

Qs UV

t t
+ / 20, Cdadr — / 20, 0dzdr. (3.45)
0 Ja, 0o Joo
Adding (3.45) into (3.44) and using (3.2),, we have

/R ( (C—©)2 + (¢ —0), )dx+u/0t A dj(c @)era:dT—i-n/Ot ) S drdr

v

= | (36 0@ 0N + @G 0w, ) de

//R p— 2P, (¢ — ®+dxd7-—//R p— P)U,(C — ©),dadr

t ¢ ¢
—I—/@/ 694 2T dxdr — K / gbG””da:d +2u/ Yals “Z2(¢ - 0);dxdr
0 JO 0 Ja, o Jr, V

v

vV
t : .
_2/ / (p—PW@xdxdT—mL/ WﬁzCzd dr +2u / oYU, Codudr
0o Ja, o Jo, v o Jo,

vV
R UINCR Yoy '
—I—2,u/ ———dzdr — 2,u/ —U,0,dxdr + 2/ YF(¢ — ©)ydadr
0 v 0 Ja, vV 0 JRy

Q2
+/t /]R+ G(C—@)erxdT—c,,/Ot 5 8T®(C—@)+dxd7'—/t /Qz 120, 0dzdr
//Q <‘/’2+2% z i’)UQ)d dr—i-—/ /021/)2ded7
_E/o /Q <R<+R@¢x (p— P)U )d:z:d7-+—/ /Q < —x)mdxdr

2 [ (60 - 00 + )Gl - 00, ) dr + 3 1, (3.16)

t ¢U2
—,u/o . (& @)+d$d7’+2/ /92 p — P)Y(,dadr

The estimation of the right hand side of (3.46) can be found in [12], so we skip the details for
brevity. Thus, we have

t
/ (¢ -0©)idr + / (092 + (2)dads
Ry Ry

t t
<Co+C / (max(g - —@) + maxw4> dr +Cy / Y2p2dadr. (3.47)
0 0 JR4

zeER L

Step 2 To estimate the last term on the right hand side of (3.47), first, (1.6) and (3.15)
leads to
0_ 0_ 0_ 0

(p = P)la=o = RV(O,t) + ¢(0,¢) - RV(O,t) - RV(O,t) _RV(O_,t) -0

and

1/}I(Ovt) = ¢t(0a t) =0.
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Then, multiplying (3.2), by ¢* and integrating the resulted equation over R x (0,t), we have

1 ¢ 2
- Yidx + 3,u/ i dxdr
4 Ry o Jry VU

t 2
E 1/)0d —|—3R/ (V0 ¥a dzdr 3R/ / —1/) YpdxdT
4 o Jr, U R, U

t
+3u / oU. 22 dadr + / / Fy3dadr
o Jr, OV 0o Jry

4
1
- 1/)4da:+§ J;.
4 Iy ’ i=1

We estimate each term on the right hand side of (3.48) as follows:

t 2 t 2
|Ji1| = 3R / / S dzdr + 3R / / S dadr
f¢>e3 Y o J{¢goy Y
Suf [ i [ [ e
T+ Cy ¢ dadr
{¢c>e} Y {¢>0}
/ / (7 da:dT—I—Co/ / Cyptdadr
{¢c<e} {¢c<e}
<u/ /w wmdxdT—i—Co/ max (g——@) (/zp?dx) dr
o z€R +

+C / / xdxdT—i—Co maxw / C2dzx | dr
{¢c<o} o ek {¢<e}

(1>

2 t 2
/ / ¢ xd;[;dT -+ CO/ (max (C — —6) + maxz/fl) dr + CQ.
0 R + z€R

Recalling (3.7), (3.41) and using Cauchy’s inequality, it holds that

t t
|Jo| < 5/ Y2dedr + C(e7 1, Oo)/ P*prdadr
0 R4 0 R4

t
<e / Y2dadr 4+ C(e™1, Cy) maxw4 / ¢*dex | dr
0 JRy 0 E€R4 Ry

t

t
< 5/ Y2dadr + C(e™1,Cp) [ maxy*dr.
0o JRy

0 zeR

Recalling (3.7), (3.17), (3.22), and (3.30), one has

' )3 ' 2 12772
| 5| < i - dadr + Co ¢“p U dxdr
o Jry

Ry

t 1/} 1/} t
< u/ —2dadr + C(Co, )/ $*U2dadr
o Jr, U 0 JR,
t
Su/ z/JQ/J””dach—i—CQ
o Jry U
It follows from (3.7) and (3.20) that

t
7l < o/ IFll 2 [l dr
0

(3.48)

(3.49)

(3.50)

(3.51)
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t
e N A L T
0
t t
< [ dPar v [ ny T
0 0

t
< 6/ [>T + Co. (3.52)
0

Putting the estimates (3.49)—(3.52) into (3.48) gives
¢
Prdz + / Y2p2dzdr

t t
< Cp+ Cos/ A Y2dadr 4+ C(e 1, Co)/ (max(C - —6) + maxw ) 7. (3.53)
0 JRy 0

z€eR
Note that
t t
2 / P2dzdr < / ””da:d7-+ / / OG> dxdr
0 JR4 0 Ry
< Cy+Cy / / Orp2 dadr. (3.54)
0 JRrRy

Combining (3.47) and (3.53), and choosing ¢ suitable small, we have

/ ((C— ©)% +yh)da + / (W + 002 + )dedr
R, o Jr,

t 1 \2
< - = .
< Co+ CO/O (gé%)i <C 2®>+ +gé%)i¢ (3.55)

Step 3 It remains to estimate the last term on the right hand side of (3.55). For z € Ry,
1.\? > 1 1
) [, (o)
< 2 =+ x 2 + 2
1
<o f (¢- 5@) (1G] + 102 )da
R
1 C2
<e (— =06 9d:v—|—— —|—— dx
Ry 2 % } 0

2
<3g/ (g--@) ¢dz + — / zd +— ¢?e%dx
R, 2 Ry {<>9}

1\? C 2
< 3e max (g — —@) / Cdz + — 22 g + ¢?0%dr
oER+ 2 {¢>3%} € Jr, 0 € JRry
< eCp max (g — —e) / “d + — [ ¢?02%dx. (3.56)
rER L Ry Ry
This yields that
1) ¢ 202
max ((— -0 ] < =dx + Cy ¢*Oidz. (3.57)
zeERL 2 n Ry 9 Ry

By choosing € > 0 suitably small, we have

+oo
= / e < 4 /{C |, a4 /{ o [Pl
T > <
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2

gs/ |w|5\/§dw+g/ 2 W}'dx—i—a/ wGde—i—g/ “Edx
) € Jicsoy V0 (<o} ¢ Jiccey 0

c I
< & max * 1/)2+9dx+05max1/)4/ P2z + — / 1/)2( >d:1:
rcR {<>@}( ) rER {¢c<o} € \/@ 0
< eCp max P* + — ¢ / Y2 W' dz (3.58)
- rER L 3 \/5 9 ’
which implies that
|
< dz. .
;Ié%xﬂ) C/]R+¢I<\/§+9 (3.59)

Substituting (3.57) and (3.59) into (3.55), and recalling (3.7), (3.17), (3.22), and (3.30), it holds
that

T
sup /R (¢-0)2 +1/J4)d:1:+/ s (V% + )2 + 2)dadt

0<t<T

<covco [ [ (Geer(H1)) e
<Co+= / 5 (C2 + *?) dxdt—i—Co//( )dxdt

<Co+ = / (C2 + *?)dadt. (3.60)
2Jo Jry
Recalling (3.7) and (3.43), we have

0
/ Cdz<C | @ (—) dr < Cy, (3.61)

(<20} R, \©

and
/ ?dx < 4/ (¢ —©)%dx < 4/ (¢ —©)idz. (3.62)
{¢>20} {¢>20} Ry

Thus combining (3.60)—(3.62), the proof of Lemma 3.9 is completed. O

Lemma 3.10 There exist some positive constants Cy and dg such that if § < g, for any
T > 0, we have

T
sup / (¢ + 9% + ¢)dz + / (067 + 97, + G2, )dadt < Co. (3.63)
0<t<T JR, 0o Jry
Proof Due to (3.7), (3.41), and (3.42), some terms of (3.26) can be estimated again.
R NI x UCE 2
v vV v
0 (s
< B (5) ) 0,8 4 o2 + o
dv \ U 0
= 2
< f—e (”—) TGy (<2 +la g2y Ve ) + Cod?U2. (3.64)
v \ T

The other terms in (3.26) can be estimated the same as in Step 2 in Lemma 3.2. Integrating
(3.26) over Ry x (0,t), then recalling (3.7) and (3.42), we have

T
sup p2dx + / 0¢2dadt < C. (3.65)
0<t<T JRy 0o Jry
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Multiplying (3.2), by —t.., because 1,(0,t) = ¢¢(0,t) = 0, integrating the resulted equation
over Ry x (0,t), then we have

¢
vz “Ldz + u/ Vis —Ldzdr
2 R,

v

R4
wg t t 1
- hace [ Lot [ 5 (2) st
Ry 0 JRy 0 JRy V/g
t t
o Jry \V U/ 0 JR,

We estimate (3.66) term by term. Recalling (3.42) and (3.65), one has

// (p — P)ytbgpdadr
Ry

R¢:  Rl¢.  RPO, 6 ©

_— = — — — | Vo | ¥ppdad
JoL (e (- ) ) v
u [t

t
= / Ver gudr Co / (2 + 6792 + (¢° + )V, + ©2) + ¢V, )dadr
8 Jo Ry Ry

v

IN

t 2
<K / “Edadr + Co + max 6 / 062 dadr
8 0 ]R+ v

¢
<t / Yoo 2 dadr 4+ Cy + Cy max6‘ (3.67)
8 0 Ry v

By Cauchy’s inequality and Sobolev’s inequality, and recalling (3.7), (3.42), (3.54), and (3.65),

we obtain
- | t / K (1) bodadr
_ / /R (wmmm 6V, w) e

L / “dxdr—l—Co / (W22 + 2V2)dzdr
8 Jo Jr, Ry

IN

v

t
ﬁ/ “dxdr—i—C'O/ ||¢z||Loo|\¢z||2dT+Oo/ / Y2dxdr
8 Jo Ry Ry

t
ﬁ/ ‘/’deerrcof ||1/Jz||||1/1m||d7'+00/ V2dedr
Ry 0

Ry
/ 1/)dedT—i-C'o/ / Y2dadr
R, U Ry

= / %dl'dT + C). (3.68)
Ry

IN

| A

| /\

I /\

(%

Similarly,
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] (qs AL IS A
V2 v2
R

IN
|

v

t
a / Vs dudr 4 Co + 6 / / 062 dudr
8 Jo R, U Ry

IN
|

t
< H/ dj”dxdT—i—C'o,
8 0 R, v
and
t uoft i t
/ / Fipppdadr < —/ ﬂdxdT—l—Co/ | F||2dr
0o JR, 8 Jo Jr, V 0
t
<£ / Ve qudr + ¢y,
8 0 Ry v

Substituting (3.67)—(3.70) into (3.66) shows

T
sup Y2da + / P2 dadt < Co + Comax 6.
0<t<T JR4 0 Ry x,t

a / iz qrdr + Co / (G2(U2, + VEU2) + ¢*U2V2 + 2U2)dadr
0 JR, Ry

(3.69)

(3.70)

(3.71)

Multiplying (3.2); by —(ze, noting that (;(0,¢) = 0, then integrating the resulted equation

over Ry x (0,t), we have

t 2
v dx + Ii/ / Cx—xd:rdT
2 Ry o Jry U

Cy

¢
=X ngdx —i—/ / (puy — PU,)(popdadr

_,i/t/]}h G (1> cmdxdf—m/;/]h (%—%)I@xdxdr

t
—u/ / ( z— —) Cppdaxdr —/ G(ppdadr.

Each term on the right hand side of (3.72) will be estimated one by one:

/t /]R+ (pug — PU.)(ppdadr
L (2 (22

Tz 9 .9 9 S
<= / /]R+ dxdT-i-Co/ R+(6‘ V2 + (¢* + ¢*)U2)dxdr

K
8

v

< = / / “dxdT—i—ComaXH—i—Co,
Ry

It follows from Cauchy’s inequality, (3.42) and (3.65) that

[ L o(2) o

t 2
<= / 222 qadr 4+ C) max9 / Orp2dzdr + Co / (¢ + A U2dzdr
Ry Ry

(3.72)

(3.73)
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C/ /ﬂh |Cz¢m§m| + |Ca w§m|

t
/ / ”dxdT-i—Co / (262 + C2V2)dudr
R, R,

IN

< —/ 222 drdr 4+ Cp Sup |\¢z|\2/ ||Cz||||§m||d7’—|—00/ ¢dadr
8 Jo R, U 0 JRy
R t C:E:E
g_// —da:d7-+Co/ G lCaslldr + Co
Ry 0
<= / / ”d:z:d7'+Co, (3.74)
Ry

Recalling Lemma 2.1 and (3.42), and choosing § suitable small, we have

' 0, @x)
- YV CppdzdT
[ G-3
Qv | 0,V
- vV N2 zedzd
K‘//RJr( 02+V2>C rar
0B 6.0, o(6+2V)
K/ /RJr( vV V2 + vaQ GIVm Cmmd.’L'dT

<= / / B 222 dodr + CO/ / ($2(©2, + O%V2) + ¢202 + ¢*'02V2)dzdr
Ry

t
0 JR;
< —/ / Cz—zdxdT—l—Co; (3.75)
8 0o JRy v
It follows from (3.71) that
—,u/ / (—1 — —) Cpepdaxdr
Ry
2 2 Uy 2
—u/ / (%“L Volz _ 0Us >§mdxd7
R,y v vV

t
<5 / / St ddr + Co / (4 + Y202 + $2UY)dadr

t
<5 // ”dwdT-l-Co/meHgmeHdT—FCo
R

t t
<= / / “dxdT+ / Y2 dadr 4+ Cy sup |||t / Y2dadr 4 Cy
Ry 0 JRy 0 JRy

0<r<t

< —/ / Cz—zdxdT + Cy matxt92 + Co; (3.76)
R+ Z,

t
/ / Glppdadr < = / / o 222 qadr 4+ C) / / G?dzdr
Ry

< / / ”dxdTJrco (3.77)
=3 R,
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Substituting estimates (3.73)—(3.77) into (3.72) shows

T
sup Cdx + / / ¢2, dadt < Cy + Comax 62, (3.78)
0<t<T JR, o Jr, b
By Sobolev’s inequality and (3.42), (3.78), we have
€1~ < CICHIGH < o+ Comax. (379
Noting that
max 6? < 2matx ¢ +2 max 0% < Cy+ O max 0, (3.80)
this yields
ma;x@ < Cy, (3.81)
by which, along with (3.65), (3.71), and (3.78), we complete the proof of Lemma 3.10. O

Proof of Proposition 3.1 The uniform-in-time lower boundedness of the temperature
and the proof of Proposition 3.1 can be completed by combining the local existence and the

continuation argument, which can be done similarly as in [35, 36]; we omit it for brevity. O
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