
Math. Prog. Comp. (2012) 4:333–361
DOI 10.1007/s12532-012-0044-1

FULL LENGTH PAPER

Solving a low-rank factorization model for matrix
completion by a nonlinear successive over-relaxation
algorithm

Zaiwen Wen · Wotao Yin · Yin Zhang

Received: 14 October 2011 / Accepted: 25 June 2012 / Published online: 13 July 2012
© Springer and Mathematical Optimization Society 2012

Abstract The matrix completion problem is to recover a low-rank matrix from a sub-
set of its entries. The main solution strategy for this problem has been based on nuclear-
norm minimization which requires computing singular value decompositions—a task
that is increasingly costly as matrix sizes and ranks increase. To improve the capac-
ity of solving large-scale problems, we propose a low-rank factorization model and
construct a nonlinear successive over-relaxation (SOR) algorithm that only requires
solving a linear least squares problem per iteration. Extensive numerical experiments
show that the algorithm can reliably solve a wide range of problems at a speed at least
several times faster than many nuclear-norm minimization algorithms. In addition,
convergence of this nonlinear SOR algorithm to a stationary point is analyzed.

Z. Wen’s research was supported in part by NSF DMS-0439872 through UCLA IPAM and the NSFC
grant 11101274.
W. Yin’s research was supported in part by NSF CAREER Award DMS-07-48839, ONR Grant
N00014-08-1-1101, and an Alfred P. Sloan Research Fellowship.
Y. Zhang’s research was supported in part by NSF grants DMS-0405831 and DMS-0811188 and ONR
grant N00014-08-1-1101.

Z. Wen (B)
Department of Mathematics and Institute of Natural Sciences,
Shanghai Jiaotong University, Shanghai, China
e-mail: zw2109@sjtu.edu.cn

W. Yin · Y. Zhang
Department of Computational and Applied Mathematics,
Rice University, Houston, TX 77005, USA
e-mail: wotao.yin@rice.edu

Y. Zhang
e-mail: yzhang@rice.edu

123

334 Z. Wen et al.

Keywords Matrix completion · Alternating minimization · Nonlinear GS method ·
Nonlinear SOR method

Mathematics Subject Classification 65K05 · 90C06 · 93C41 · 68Q32

1 Introduction

The problem of minimizing the rank of a matrix arises in many applications, for
example, control and systems theory, model reduction and minimum order control
synthesis [22], recovering shape and motion from image streams [27,34], data mining
and pattern recognitions [8] and machine learning such as latent semantic indexing,
collaborative prediction and low-dimensional embedding. In this paper, we consider
the Matrix Completion (MC) problem of finding a lowest-rank matrix given a subset
of its entries, that is,

min
W∈Rm×n

rank(W), s.t. Wi j = Mi j , ∀(i, j) ∈ �, (1.1)

where rank(W) denotes the rank of W , and Mi, j ∈ R are given for (i, j) ∈ � ⊂
{(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Although problem (1.1) is generally NP-hard
due to the combinational nature of the function rank(·), it has been shown in [3,4,30]
that, under some reasonable conditions, the solution of problem (1.1) can be found by
solving a convex optimization problem:

min
W∈Rm×n

‖W‖∗, s.t. Wi j = Mi j , ∀(i, j) ∈ �, (1.2)

where the nuclear or trace norm ‖W‖∗ is the summation of the singular values of W .
In particular, Candès and Recht in [3] proved that a given rank-r matrix M satisfying
certain incoherence conditions can be recovered exactly by (1.2) with high probability
from a subset � of uniformly sampled entries whose cardinality |�| is of the order
O(r(m+n)polylog(m+n)). For more refined theoretical results on matrix completion
we refer the reader to [2,4,13,16,17,29,42].

Various types of algorithms have been proposed to recover the solution of (1.1)
based on solving (1.2). One method is the singular value thresholding algorithm [15]
using soft-thresholding operations on the singular values of a certain matrix at each
iteration. Another approach is the fixed-point shrinkage algorithm [24] which solves
the regularized linear least problem:

min
W∈Rm×n

μ‖W‖∗ + 1

2
‖P�(W − M)‖2F , (1.3)

where P� is the projection onto the subspace of sparse matrices with nonzeros
restricted to the index subset �. An accelerated proximal gradient algorithm is devel-
oped in [33] based on a fast iterative shrinkage-thresholding algorithm [1] for com-
pressive sensing. The classical alternating direction augmented Lagrangian methods
have been applied to solve (1.2) in [10,38] and the closely related sparse and low-rank

123

Solving a low-rank factorization model 335

matrix decomposition in [39]. Other approaches include [7,18,20,21,25,26]. All of
these algorithms bear the computational cost required by singular value decomposi-
tions (SVD) which becomes increasingly costly as the sizes of the underlying matrices
increase.

It is evident that computing a full SVD at every iteration is too costly to be practical
for solving truly large-scale problems. In some recent implementations such as [33],
a partial SVD strategy has been deployed where one only computes a proper subset
of dominant singular pairs (values and vectors) instead of the full set. This strategy,
capable of solving large scale problems, requires an estimated upper bound on the
rank of the solution at each iteration. Even so, the cost of computing a partial SVD can
still be quite high on a wide range of large matrices. It is therefore desirable to exploit
an alternative approach that avoids SVD computation all together, by replacing it with
some less expensive computation. The purpose of this paper is to investigate such a
non-SVD approach in order to more efficiently solve large-scale matrix completion
problems.

It is well known that any matrix W ∈ R
m×n of a rank up to K can be written into

a matrix product form W = XY where X ∈ R
m×K and Y ∈ R

K×n . Now we propose
to solve the following low-rank factorization model

min
X,Y,Z

1

2
‖XY − Z‖2F s.t. Zi j = Mi j , ∀(i, j) ∈ �, (1.4)

where X ∈ R
m×K , Y ∈ R

K×n, Z ∈ R
m×n , and the integer K should ideally be equal

to the rank of the the data matrix M . Since the correct rank is generally unknown in
advance, we will dynamically estimate and adjust the value of K during iterations, just
as in a partial SVD strategy for solving model (1.2). The variable Z is introduced for
a computational purpose that should become clear later. The premise of introducing
the low-rank factorization model (1.4) is that it can generally be solved much faster
than model (1.2). More specifically, the main computation of solving model (1.4) at
each iteration is a rank-revealing or regular QR factorization [5,6] instead of a full or
partial SVD. As a result, our rank estimation is based on rank-revealing QR factoriza-
tions instead of on singular value decompositions as in a partial SVD strategy. Both
heuristics are effective tools in estimating the correct rank, but on many matrices QR
factorizations are several times less expensive than corresponding partial SVDs.

There does exist a potential drawback of the low-rank factorization model (1.4),
that is, the non-convexity in the model may prevent one from getting a global solu-
tion. There is also a secondary concern that the approach requires an initial rank
estimate K . In this paper, we present convincing evidence to show that (a) on a wide
range of problems tested, the low-rank factorization model (1.4) is empirically as
reliable as the nuclear norm minimization model (1.2); and (b) the initial rank esti-
mate need not be close to the exact rank r of M ; for example, one could start with
K = min(m, n) (though a better initial estimate would be computationally benefitial).
We also allow a strategy of starting from K = 1 and gradually increasing K . We
observe that the global optimal value of (1.4) is monotonically non-increasing with
respect to K . In principle, if K is smaller than the unknown rank r , the quality of
the solution in terms of the objective function value can be improved by minimizing

123

336 Z. Wen et al.

(1.4) again, starting from the current point, with an appropriately increased rank esti-
mate.

A recent work in [16,18] is also based on a low-rank factorization model closely
related to (1.4) where the factorization is in the form of U SV T where U and V have
orthonormal columns. The authors derived a theoretical guarantee of recovery with
high probability for their approach that consists of three steps. The first step is called
trimming that removes from the sample P�(M) “over-represented” rows or columns.
The second step finds the best rank-r approximation matrix to the remaining sample
matrix via singular value decomposition (SVD) where r is the true rank and assumed
to be known. In the final step, starting from the computed SVD factor as an initial
guess, they solve the factorization model via a special gradient descent method that
keeps the variables U and V orthonormal. The key intuition for their theoretical result
is that the initial guess is so good that it falls into a certain neighborhood of the global
minimum where there exists no other stationary point with high probability. This
enables the authors to prove that their gradient descent method generates a sequence
residing within this small neighborhood and converging to the global solution in the
limit, despite the non-convexity of the factorization model. Given that our factorization
model (1.4) is essentially the same as theirs, our approach should be able to benefit
from the same initial point and possibly attain a similar theoretical guarantee. How-
ever, the proofs in [16] are specially tailored to the particularities of their algorithm and
do not apply to our algorithm presented in this paper. Extending a similar theoretical
result to our case is a topic of interest for future research. Meanwhile, the present paper
concentrates on algorithm construction, convergence (to stationary point) analysis and
performance evaluations. A low-rank factorization method based on the augmented
Lagrangian framework is proposed in [30] for an equivalent quadratic formulation
of the model (1.2). However, this method is only conceptual and the authors used
SeDuMi to solve the SDP formulation of (1.2) in their numerical experiments.

Our main contribution is the development of an efficient algorithm for (1.4) that
can reliably solve a wide range of matrix completion and approximation problems at
a speed much faster than the best of existing nuclear norm minimization algorithms.
Like in many other similar cases, the structure of (1.4) suggests an alternating mini-
mization scheme as a natural choice. In this case, one can update each of the variables
X , Y or Z efficiently while fixing the other two. The subproblems with respect to
either the variable X or Y are linear least squares problems only involving K × K
coefficient matrices in their normal equations, and the solution of the subproblem for
Z can also be carried out efficiently. This alternating minimization procedure can also
be viewed as a nonlinear (block) Gauss–Seidel (GS) scheme or a block coordinate
descent method. In this paper, we propose a more sophisticated nonlinear successive
over-relaxation (SOR) scheme with a strategy to adjust the relaxation weight dynami-
cally. Numerical experiments show that this SOR scheme is significantly faster than the
straightforward nonlinear GS scheme. The convergence of nonlinear GS (coordinate
descent) methods for several optimization problems has been studied, for example,
in [12,23,35,36]. However, we are unaware of any general convergence result for
nonlinear SOR methods on non-convex optimization that is directly applicable to our
nonlinear SOR algorithm. In this paper, we proved that our approach converges to a
stationary point under a very mild assumption.

123

Solving a low-rank factorization model 337

The rest of this paper is organized as follows. We first present an alternating min-
imization scheme for (1.4) in Sect. 2.1 with two efficient implementation variants.
Our nonlinear SOR algorithm is introduced in Sect. 2.2. An convergence analysis for
the nonlinear SOR algorithm is given in Sect. 3. Finally, two strategies for adjusting
the rank estimate K and numerical results are presented in Sect. 4 to demonstrate the
robustness and efficiency of our algorithm.

2 Alternating minimization schemes

2.1 Nonlinear Gauss–Seidel method

We start with a straightforward alternating minimization scheme for solving problem
(1.4). Although alternating minimization is a common strategy widely used in many
other similar situations, there is a subtlety in this case regarding efficiency. Given the
current iterates X, Y and Z , the algorithm updates these three variables by minimizing
(1.4) with respect to each one separately while fixing the other two. For example, by
fixing the values of Y and Z , we obtain the new point X+:

X+ = ZY † = argmin
X∈Rm×K

1

2
‖XY − Z‖2F ,

where A† is the Moore–Penrose pseudo-inverse of A. Similarly, we can update Y and
then Z , while fixing others at their latest available values. This procedure yields the
following iterative scheme:

X+ ← ZY † ≡ ZY
(Y Y
)†, (2.1a)

Y+ ← (X+)† Z ≡ (X
+X+)†(X
+Z), (2.1b)

Z+ ← X+Y+ + P�(M − X+Y+). (2.1c)

It follows from (2.1a) and (2.1b) that

X+Y+ =
(

X+(X
+X+)† X
+
)

Z = PX+ Z ,

where PA := A(A
A)† A
 = Q Q
 is the orthogonal projection onto the range
space R(A) of A and Q := orth(A) is an orthonormal basis for R(A). The pseudo-
inverse of A, the orthonormal basis of R(A) and the orthogonal projection onto R(A)

can be computed from either the SVD or the QR factorization of A. One can verify
that R(X+) = R(ZY
). Indeed, let Y = U�V
 be the economy-form SVD of Y ,
then X+ = Z V �†U
 and ZY
 = Z V �U
, implying that R(X+) = R(ZY
) =
R(Z V) and leading to the following lemma.

Lemma 2.1 Let (X+, Y+) be generated by (2.1).There holds

X+Y+ = PZY
 Z = ZY
(Y Z
ZY
)†(Y Z
)Z . (2.2)

123

338 Z. Wen et al.

We next present two iterative schemes equivalent to (2.1). Since the objective func-
tion (1.4) is determined by the product X+Y+, different values of X+ and Y+ are
essentially equivalent as long as they give the same product X+Y+. Lemma 2.1 shows
that the inversion (Y Y
)† can be saved when the projection PZY
 is computed. The
unique feature of our new schemes is that only one least square problem is involved
at each iteration. The first variant is to replace the step (2.1a) by

X+ ← ZY
, (2.3a)

while Y+ and Z+ are still generated by step (2.1b) and (2.1c). The second variant
computes the orthogonal projection PZY
 = V V
, where V := orth(ZY
) is an
orthogonal basis of R(ZY
). Hence, (2.2) can be rewritten as X+Y+ = V V
Z and
one can derive:

X+ ← V, (2.4a)

Y+ ← V
Z , (2.4b)

while Z+ is still generated by step (2.1c). The scheme (2.4) is often preferred since
computing the step (2.4b) by QR factorization is generally more stable than solv-
ing the normal equations. Note that the schemes (2.1), (2.3) and (2.4) can be used
interchangeably in deriving properties of the product X+Y+.

By introducing a Lagrange multiplier � ∈ R
m×n so that � = P�(�), the Lagrang-

ian function of (1.4) is defined as

L(X, Y, Z ,�) = 1

2
‖XY − Z‖2F −� • P�(Z − M), (2.5)

where the inner product between two matrices A ∈ R
m×n and B ∈ R

m×n is defined
as A • B :=∑

i j Ai j Bi j . Differentiating the Lagrangian function L(X, Y, Z ,�), we
have the first-order optimality conditions for (1.4):

(XY − Z)Y
 = 0, (2.6a)

X
(XY − Z) = 0, (2.6b)

P�c(Z − XY) = 0, (2.6c)

P�(Z − M) = 0, (2.6d)

plus the equations

P�(Z − XY) = �. (2.7)

Clearly, the multiplier matrix � measures the residual Z − XY in � and has no effect
in the process of determining X, Y, Z . It is also easy to see that the above alternat-
ing minimization schemes are exactly a Gauss–Seidel (GS) method applied to the
nonlinear and square system (2.6).

123

Solving a low-rank factorization model 339

2.2 A nonlinear SOR-like scheme

Numerical simulations shows that the simple approach in Sect. 2.1, though being very
reliable, is not efficient on large yet very low-rank matrices. A possible acceleration
technique may involve applying an extension of the classic augmented-Lagrangian-
based alternating direction method (ADM) for convex optimization to the factorization
model (see [31,37,41] for such ADM extensions). However, in this paper, we inves-
tigate a nonlinear Successive Over-Relaxation (SOR) approach that we found to be
particularly effective for solving the matrix completion problem.

In numerical linear algebra, the SOR method [11] for solving a linear system of
equations is devised by applying extrapolation to the GS method, that is, the new trial
point is a weighted average between the previous iterate and the computed GS iterate
successively for each component. A proper value of the weight often results in faster
convergence. Applying the same idea to the basic schemes (2.1), (2.3) and (2.4) gives
a nonlinear SOR scheme:

X+ ← ZY
(Y Y
)†, (2.8a)

X+(ω)← ωX+ + (1− ω)X, (2.8b)

Y+ ← (X+(ω)
X+(ω))†(X+(ω)
Z), (2.8c)

Y+(ω)← ωY+ + (1− ω)Y, (2.8d)

Z+(ω)← X+(ω)Y+(ω)+ P�(M − X+(ω)Y+(ω)), (2.8e)

where the weight ω ≥ 1. Obviously, ω = 1 gives the GS method.
Assuming that the matrix Y has full row rank, the two least squares problems in

(2.8) can be reduced into one like the second basic scheme (2.3). Let us denote the
residual by

S = P�(M − XY), (2.9)

which will be used to measure optimality. After each iteration, the variable Z , which is
feasible, can be expressed as Z = XY + S. Let Zω be a weighted sum of the matrices
XY and S, that is,

Zω � XY + ωS = ωZ + (1− ω)XY. (2.10)

Using the fact that the matrix Y Y
(Y Y
)† is the identity from our assumption, we
obtain

ZωY
(Y Y
)† = ωZY
(Y Y
)† + (1− ω)XY Y
(Y Y
)†

= ωX+ + (1− ω)X,

which is exactly the step (2.8b). Replacing Z by Zω in (2.3) and (2.4), we have the
following SOR-like scheme:

123

340 Z. Wen et al.

Zω ← ωZ + (1− ω)XY, (2.11a)

X+(ω)← ZωY
 or ZωY
(Y Y
)†, (2.11b)

Y+(ω)← (X+(ω)
X+(ω))†(X+(ω)
Zω), (2.11c)

P�c (Z+(ω))← P�c(X+(ω)Y+(ω)), (2.11d)

P�(Z+(ω))← P�(M). (2.11e)

Again, an implementation with a single QR decomposition can be utilized just as in
scheme (2.4).

Since a fixed weight ω is generally inefficient for nonlinear problems, we next
present an updating strategy for ω that is similar to the one adjusting the trust-region
radius in the trust region method [28] for nonlinear programming. After the point
(X+(ω), Y+(ω), Z+(ω)) is computed, we calculate the residual ratio

γ (ω) = ‖S+(ω)‖F

‖S‖F
, (2.12)

where

S+(ω) � P�(M − X+(ω)Y+(ω)). (2.13)

If γ (ω) < 1, this new pair of point is accepted as the next iterate since our object to
reduce the residual ‖S‖F := ‖P�(M − XY)‖F is achieved. In this case, the step is
called “successful”; otherwise, the step is “unsuccessful” and we have to generate a
new trial point using a new weight ω so that γ (ω) < 1 is guaranteed. Since the basic
GS method corresponds to ω = 1 and it can reduce the residual ‖S‖F , we simply
reset ω to 1 in a “unsuccessful” case. Once a trial point is acceptable, we consider
whether the weight ω should be updated. As our goal is to minimize the residual ‖S‖, a
small γ (ω) indicates that the current weight value ω works well so far and keeping the
current value will very likely continue to provide good progress. Hence, ω is increased
only if the calculated point is acceptable but the residual ratio γ (ω) is considered “too
large”; that is, γ (ω) ∈ [γ1, 1) for some γ1 ∈ (0, 1). If this happens, we increase ω to
min(ω + δ, ω̃), where δ > 0 is an increment and ω̃ > 1 is an upper bound. From the
above considerations, we arrive at Algorithm 1 below.

Algorithm 1: A low-rank matrix fitting algorithm (LMaFit)
Input index set �, data P�(M) and a rank overestimate K ≥ r .;1

Set Y 0 ∈ R
K×n , Z0 = P�(M), ω = 1, ω̃ > 1, δ > 0, γ1 ∈ (0, 1) and k = 0.;2

while not convergent do3

Compute (X+(ω), Y+(ω), Z+(ω)) according to (2.11) with (X, Y, Z) = (Xk , Y k , Zk).;4
Compute the residual ratio γ (ω) according to (2.12).;5
if γ (ω) ≥ 1 then set ω = 1 and go to step 4. ;6

Update (Xk+1, Y k+1, Zk+1) = (X+(ω), Y+(ω), Z+(ω)) and increment k.;7
if γ (ω) ≥ γ1 then set δ = max(δ, 0.25(ω − 1)) and ω = min(ω + δ, ω̃). ;8

123

Solving a low-rank factorization model 341

0 50 100 150 200 250 300 350 400
10−5

10−4

10−3

10−2

10−1

100

iteration

no
rm

al
iz

ed
 r

es
id

ua
l

SOR: k=12

SOR: k=20

GS: k=12

GS: k=20

(a) n=1000, r=10, sampling ratio = 0.08

0 20 40 60 80 100 120
10−5

10−4

10−3

10−2

10−1

100

iteration

no
rm

al
iz

ed
 r

es
id

ua
l

(b) n=1000, r=10, sampling ratio=0.15

SOR: k=12

SOR: k=20

GS: k=12

GS: k=20

Fig. 1 Comparison between the nonlinear GS and SOR schemes

For illustration, we compare the efficiency of the GS scheme (2.1) and the nonlinear
SOR-like scheme (2.11) on two random matrices M with m = n = 1,000, r = 10
with two different sampling ratios at, respectively, 0.08 and 0.15 (see Sect. 4.2 for
detailed construction procedure and algorithmic parameter setting). The algorithms
were run by using two different rank estimations K = 12 and 20. The normalized
residuals ‖P�(M − XY)‖F/‖P�(M)‖F are depicted in Fig. 1a and b, respectively.
The apparent jumps in the residuals were due to adjustments of rank estimations,
which will be explained later. From the figures, it is evident that the nonlinear SOR
scheme is significantly faster than the nonlinear GS scheme.

3 Convergence analysis

We now analyze Algorithm 1 by revealing the relationships between the residuals
‖S‖F and ‖S+(ω)‖F . Let V (ω) := orth(X+(ω)) and U := orth(Y
) be orthog-
onal bases of the range spaces of R(X+(ω)) and R(Y
), respectively. Consequently,
the orthogonal projections onto R(X+(ω)) and R(Y
) can be expressed as:

Q(ω) := V (ω)V (ω)
 = X+(ω)(X+(ω)
X+(ω))† X+(ω)
,

P := UU
 = Y
(Y Y
)†Y.

We list several useful identities that can be verified from the definition of pseudo-
inverse. For any A ∈ R

m×n ,

A† = A†(A†)
A
 = A
(A†)
A† = (A
A)† A
 = A
(AA
)†,

A = (A†)
A
A = AA
(A†)
.
(3.1)

The lemma below and its proof will provide us a key equality.

123

342 Z. Wen et al.

Lemma 3.1 Let (X+(ω), Y+(ω)) be generated by (2.11) and S be defined in (2.9).
There holds

ωS • (X+(ω)Y+(ω)− XY) = ‖X+(ω)Y+(ω)− XY‖2F . (3.2)

Proof It follows from Y
 = Y †Y Y
 (see (3.1)), X+(ω) = ZωY † and Zω = XY+ωS
that

X+(ω)Y Y
 = ZωY
 = XY Y
 + ωSY
.

Post-multiplying both sides by (Y Y
)†Y and rearranging, we have (X+(ω)− X)Y =
ωSY
(Y Y
)†Y ; i.e.,

(X+(ω)− X)Y = ωS P. (3.3)

On the other hand, the equalities X+(ω)
 = X+(ω)
X+(ω)(X+(ω))† and (3.3) yield

X+(ω)
X+(ω)Y+(ω) = X+(ω)
Zω = X+(ω)
(XY + ωS)

= X+(ω)
(X+(ω)Y − (X+(ω)− X)Y + ωS)

= X+(ω)
X+(ω)Y + ωX+(ω)
S(I − P).

Pre-multiplying both sided by X+(ω)(X+(ω)
X+(ω))† and rearranging, we arrive at

X+(ω)(Y+(ω)− Y) = ωQ(ω)S(I − P). (3.4)

Therefore, in view of (3.3) and (3.4), we obtain

X+(ω)Y+(ω)− XY = (X+(ω)− X)Y + X+(ω)(Y+(ω)− Y)

= ωS P + ωQ(ω)S(I − P) (3.5)

= ω(I − Q(ω))S P + ωQ(ω)S. (3.6)

Therefore,

‖X+(ω)Y+(ω)− XY‖2F = ω2‖(I − Q(ω))S P‖2F + ω2‖Q(ω)S‖2F . (3.7)

Finally, in view of (3.6) and the properties of orthogonal projections, we have:

ωS • (X+(ω)Y+(ω)− XY) = ω2S • (I − Q(ω))S P + ω2S • Q(ω)S

= ω2S P • (I − Q(ω))S P + ω2S • Q(ω)S

= ω2‖(I − Q(ω))S P‖2F + ω2‖Q(ω)S‖2F
= ‖X+(ω)Y+(ω)− XY‖2F ,

which proves the lemma. �

123

Solving a low-rank factorization model 343

It is easy to see that

1

ω
‖XY − Zω‖F = ‖S‖F . (3.8)

Therefore, after the first two steps in (2.11),

1

ω
‖X+(ω)Y+(ω)− Zω‖F ≤ ‖S‖F

and the strict inequality holds unless the first two equations of the optimality conditions
of (2.6) already hold. Or equivalently,

1

ω2

(
‖P�c(X+(ω)Y+(ω)− Zω)‖2F + ‖P�(X+(ω)Y+(ω)− Zω)‖2F

)
≤ ‖S‖2F .

(3.9)

Next we examine the residual reduction ‖S‖2F − ‖S+(ω)‖2F after each step of the
algorithm in detail.

Lemma 3.2 Let (X+(ω), Y+(ω)) be generated by (2.11) for any ω ≥ 1, then

1

ω2 ‖X+(ω)Y+(ω)− Zω‖2F = ‖(I − Q(ω))S(I − P)‖2F = ‖S‖2F − ρ12(ω),

(3.10)

where

ρ12(ω) � 1

ω2 ‖X+(ω)Y+(ω)− XY‖2F = ‖S P‖2F + ‖Q(ω)S(I − P)‖2F (3.11)

is the amount of residual reduction from ‖S‖2F after steps 1 and 2 in (2.11).

Proof From the definition of Zω and (3.5), we obtain

X+(ω)Y+(ω)− Zω = X+(ω)Y+(ω)− XY − ωS = ωS P + ωQ(ω)S(I − P)− ωS

= −ω(I − Q(ω))S(I − P),

which proves the first equality in (3.10). Using (3.2) and (3.7), we have:

‖X+(ω)Y+(ω)− Zω‖2F = ‖X+(ω)Y+(ω)− XY‖2F
+ω2‖S‖2F − 2ωS • (X+(ω)Y+(ω)− XY)

= ω2‖S‖2F − ‖X+(ω)Y+(ω)− XY‖2F
= ω2‖S‖2F − ω2ρ12(ω),

which proves the second equality in (3.10). �

123

344 Z. Wen et al.

After the third step in (2.11), we have

‖P�c(X+(ω)Y+(ω)− Z+(ω))‖F = 0.

Since P�c (Zω) ≡ P�c (XY) independent of ω, the residual reduction in the third step
is

ρ3(ω) � 1

ω2 ‖P�c(X+(ω)Y+(ω)− XY)‖2F . (3.12)

Finally, the change of the residual value after the fourth step is

ρ4(ω) � 1

ω2 ‖P�(X+(ω)Y+(ω)− Zω)‖2F − ‖S+(ω)‖2F ;

or equivalently,

ρ4(ω) � 1

ω2 ‖S+(ω)+ (ω − 1)S‖2F − ‖S+(ω)‖2F . (3.13)

Clearly, ρ4(1) = 0. For ω > 1, it follows from (3.13) that

ω2ρ4(ω)

ω − 1
= (ω − 1)(‖S‖2F − ‖S+(ω)‖2F)− 2S+(ω) • (S+(ω)− S). (3.14)

We will show next that the rate of change of ρ4(ω) at ω = 1+ is nonnegative.

Lemma 3.3

lim
ω→1+

ρ4(ω)

ω − 1
= 2‖P�c (X+(1)Y+(1)− XY)‖2F ≥ 0. (3.15)

Proof Let ω → 1 and S+ � S+(1). We obtain from (3.14), the definitions of S in
(2.9), and (3.2) that

lim
ω→1+

ρ4(ω)

ω − 1
= lim

ω→1+
ω2ρ4(ω)

ω − 1
= −2S+ • (S+ − S)

= −2‖S+ − S‖2F − 2S • (S+ − S)

= −2‖P�(X+Y+ − XY)‖2F + 2S • (X+Y+ − XY)

= 2‖P�c (X+Y+ − XY)‖2F ,

which completes the proof. �

If ρ4(ω) is continuous, then Lemma 3.3 guarantees that ρ4(ω) > 0 in some range

of ω > 1. In fact, suppose that rank(Zω) = rank(Z) as ω → 1+. The equality
rank(Y Z
ω ZωY
) = rank(Y Z
ZY
) holds as ω → 1+, hence, limω→1+(Y Z
ω Zω

Y
)† = (Y Z
ZY
)† holds by [32]. The continuity of the product X+(ω)Y+(ω)

123

Solving a low-rank factorization model 345

1 2 3 4 5 6 7 8
−30

−25

−20

−15

−10

−5

0

5

10

ω

ρ
12

(ω)

ρ
3
(ω)

ρ
4
(ω)

||S||
F
2 − ||S

+
(ω)||

F
2

(a)

1 2 3 4 5 6 7 8
−6

−4

−2

0

2

4

6

ω

ρ
12

(ω)

ρ
3
(ω)

ρ
4
(ω)

||S||
F
2 − ||S

+
(ω)||

F
2

(b)

Fig. 2 Continuity of the functions ρ12(ω), ρ3(ω) and ρ4(ω)

implies that ρ4(ω) is continuous as ω→ 1+. In Fig. 2a, b, we depict the continuity of
the functions ρ12(ω), ρ3(ω) on a randomly generated problem from two different pair
of points (X, Y, Z). As can be seen, the benefit of increasing ω can be quite significant.
For example, in Fig. 2b, when ω is increased from 1 to 4, the amount of total residual
reduction is more than doubled.

We have proved the following result about the residual-reduction property of the
nonlinear SOR algorithm.

Theorem 3.4 Assume that rank(Zω) = rank(Z),∀ω ∈ [1, ω1] for some ω1 ≥ 1.
Let (X+(ω), Y+(ω), Z+(ω)) be generated by the SOR scheme (2.11) starting from a
non-stationary point (X, Y, Z), and ρ12, ρ3 and ρ4 be defined as in (3.11), (3.12) and
(3.13), respectively. Then there exists some ω2 ≥ 1 such that

‖S‖2F − ‖S+(ω)‖2F = ρ12(ω)+ ρ3(ω)+ ρ4(ω) > 0, ∀ω ∈ [1, ω2], (3.16)

where ρ12(ω), ρ3(ω) ≥ 0 by definition. Moreover, whenever ρ3(1) > 0 (equivalently
P�c(X+(1)Y+(1)− XY) �= 0), there exists ω̄ > 1, so that ρ4(ω) > 0,∀ω ∈ (1, ω̄].

Next we present a convergence result for our algorithm. Since model (1.4) is non-
convex, we are only able to establish convergence to a stationary point under a mild
assumption. Note that the objective function is bounded below by zero and is decreased
by at least an amount of ρ3 at every iteration. There must hold (see (3.12))

P�c(Xk+1Y k+1 − XkY k)→ 0.

In light of the above, it is reasonable to assume that {P�c(XkY k)} remains bounded,
barring the unlikely alternative that ‖P�c (XkY k)‖ → ∞.

Theorem 3.5 Let {(Xk, Y k, Zk)} be generated by Algorithm 1 and {P�c(XkY k)} be
bounded. Then there exists at least a subsequence of {(Xk, Y k, Zk)} that satisfies the
first-order optimality conditions (2.6) in the limit.

123

346 Z. Wen et al.

Proof It follows from the boundedness of {P�c(XkY k)} and the algorithm construc-
tion that both {Zk} and {XkY k} are bounded sequences. It suffices to prove (2.6a)–
(2.6b) since the other conditions are satisfied by the construction of Algorithm 1.
Without loss of generality, we assume that {Xk} is generated by a scheme analogous
to (2.4): given (X, Y) = (Xk, Y k) and ω ∈ [1, ω̃]

Zω = ωZ + (1− ω)XY, X+ = orth(ZωY T), Y+ = X T+Zw.

Obviously, {Xk} is bounded. In addition, {Y k} is also bounded due to the boundedness
of both {Zk} and {XkY k}.

Let I = {k : ρk
4 (ωk) ≥ 0}, and Ic be the complement of I. It follows from (3.16)

that

‖S0‖2F ≥
∑
i∈I

ρi
12(ω) =

∑
i∈I
‖Si Pi‖2F + ‖Qi Si (I − Pi)‖2F . (3.17)

We consider the following three cases.
(i) Suppose |Ic| <∞. It follows from (3.17) that

lim
i→∞‖S

i Pi‖2F = 0 and lim
i→∞‖Q

i Si‖2F = 0. (3.18)

The construction of the scheme (2.11) gives the equalities:

P�(M) = P�(Zi), P�c(Zi) = P�c(Xi Y i), Pi = Ui (Ui)
,

where Ui = orth((Y i)
). Therefore, we obtain

Si Pi = P�(M − Xi Y i)Pi = P�(Zi − Xi Y i)Pi

= (Zi − Xi Y i)Pi = (Zi − Xi Y i)Ui (Ui)
,

which yields limi→∞(Zi − Xi Y i)Ui = 0 in view of the first part of (3.18). Since Ui

is an orthonormal basis for R((Y i)
) and the sequence {Y i } is bounded, we have

lim
i→∞(Zi − Xi Y i)(Y i)
 = 0. (3.19)

Using Qi = V i (V i)
, where V i is an orthonormal basis for R(Xi+1), we obtain

Qi Si =Qi Si+1+Qi (Si − Si+1)=V i (V i)
(Zi+1−Xi+1Y i+1)+Qi (Si − Si+1).

(3.20)

Using (3.7) and (3.18), we obtain

‖Si−Si+1‖2F ≤‖Xi+1Y i+1−Xi Y i‖2F ≤(ω̃)2(‖Si Pi‖2F+‖Qi Si (I − Pi)‖2F)→ 0,

123

Solving a low-rank factorization model 347

hence, limi→∞ ‖Si − Si+1‖F = 0. This fact, together with (3.18) and (3.20), proves

(V i)
(Zi+1 − Xi+1Y i+1)→ 0.

In view of the boundedness of {Xi }, we arrive at

lim
i→∞(Xi)
(Xi Y i − Zi) = 0. (3.21)

(ii) Suppose |Ic| = ∞ and |{k ∈ Ic : γ (ωk) ≥ γ1}| < ∞. That is, for k ∈ Ic

sufficiently large we have

‖Sk+1‖F < γ1‖Sk‖F .

Consquently, limk→∞,k∈Ic ‖Sk‖F = 0. Since ‖Sk‖ is nonincreasing, the full sequence
converges to the global minimizer of (1.4).

(iii) Suppose |Ic| = ∞ and |{i ∈ Ic : γ (ωi) ≥ γ1}| = ∞. Then Algorithm 1
resets ωi = 1 for an infinite number of iterations. We obtain from (3.17) that

‖S0‖2F ≥
∑
i∈I1

ρi
12(ω) =

∑
i∈I1

‖Si Pi‖2F + ‖Qi Si (I − Pi)‖2F . (3.22)

Hence, the subsequence in I1 satisfies (3.19) and (3.21) by repeating, in an analogous
fashion, the proof of part i). �

4 Computational results

In this section, we report numerical results on our nonlinear SOR algorithm and other
algorithms. The code LMaFit [40] for our algorithm is implemented in Matlab with a
couple of small tasks written in C to avoid ineffective memory usage in Matlab. Other
tested solvers include APGL (version 2012) [33], FPCA [24] and OptSpace [18],
where the first two are nuclear minimization codes implemented under the Matlab
environment. APGL also utilizes a Matlab version (with the task of reorthogonal-
ization implemented in C) of the SVD package PROPACK [19], and FPCA uses a
fast Monte Carlo algorithm for SVD calculations implemented in Matlab. The code
OptSpace, which has a C version that was used in our tests, solves a model closely
related to (1.4) using a gradient descent approach and starting from a specially con-
structed initial guess. All experiments were performed on a Lenovo D20 Workstation
with two Intel Xeon E5506 Processors and 10GB of RAM.

We tested and compared these solvers on two classes of matrix problems: com-
pletion and low-rank approximation. The key difference between the two classes lies
in whether a given sample is from a true low-rank matrix (with or without noise) or
not. Although theoretical guarantees exist for matrix completion, to the best of our
knowledge no such guarantees exist for low-rank approximation if samples are taken
from a matrix of mathematically full rank. On the other hand, low-rank approximation
problems are more likely to appear in practical applications.

123

348 Z. Wen et al.

4.1 Implementation details and rank estimation

Algorithm 1 starts from an initial guess Y 0 ∈ R
K×n . For the sake of simplicity, in all

our experiments we set Y 0 to a diagonal matrix with 1’s on the diagonal even though
more elaborate choices certainly exist that may lead to better performance. The default
values of the parameters ω̃, δ and γ1 were set to+∞, 1 and 0.7, respectively. Since the
increment δ is non-decreasing in Algorithm 1, the parameter ω can be increased too
fast. Hence, we also reset δ to 0.1 ∗max(ω− 1, δ) whenever γ (ω) ≥ 1. The stopping
criteria in our numerical experiments follow

relres = ‖P�(M − XkY k)‖F

‖P�(M)‖F
≤ tol

and

reschg =
∣∣∣∣1−

‖P�(M − XkY k)‖F

‖P�(M − Xk−1Y k−1)‖F

∣∣∣∣ ≤ tol/2,

where tol is a moderately small number.
Since a proper estimation to the rank K for the model (1.4) is essential for the

success of LMaFit, two heuristic strategies for choosing K were implemented. In
the first strategy, we start from a large K (K ≥ r) and decrease it aggressively once a
dramatic change in the estimated rank of the variable X is detected based on its QR
factorization [11] which usually occurs after a few iterations.

Specifically, let Q R = X E be the economy-size QR factorization of X , where
E is a permutation matrix so that d := |diag(R)| is non-increasing, where diag(R)

is a vector whose i th component is Rii . We compute the quotient sequence d̃i =
di/di+1, i = 1, . . . , K − 1, and examine the ratio

τ = (K − 1)d̃(p)∑
i �=p d̃i

,

where d̃(p) is the maximal element of {d̃i } and p is the corresponding index. A large
τ value indicates a large drop in the magnitude of d right after the pth element. In the
current implementation, we reset K to p once τ > 10, and this adjustment is done
only one time. On the other hand, by starting from a small initial guess, our second
strategy is to increase K to min(K + κ,rank_max) when the algorithm stagnates,
i.e., reschg<10*tol. Here, rank_max is the maximal rank estimation, and the
increment κ = rk_inc if the current K < 50; otherwise, κ = 2 ∗ rk_inc. The
default value of rk_inc is 5. In our code LMaFit, the first and second (or decreasing
and increasing rank) strategies can be specified by setting the option est_rank to 1
or 2, respectively, and will be called the decreasing rank and increasing rank strategies,
respectively.

Each strategy has its own advantages and disadvantages, and should be selected
according to the properties of the targeted problems. As will be shown by our numeri-
cal results, the decreasing rank strategy is preferable for reasonably well-conditioned

123

Solving a low-rank factorization model 349

10 15 20 25 30
0

50

100

150

200

250

300

rank estimation

ite
ra

tio
n

nu
m

be
r

SR=0.04

SR=0.08

SR=0.3

(a) Iteration number

10 15 20 25 30
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

rank estimation

cp
u

SR=0.04

SR=0.08

SR=0.3

(b) CPU time in seconds

Fig. 3 The sensitivity LMaFitwith respect to the initial rank estimation K

matrix completion problems, while the increasing rank strategy is more suitable for
low-rank approximation problems where there does not exist a clear-cut desirable rank.
Based on these observations, we use the decreasing rank strategy in the experiments
of Sect. 4.2, while the increasing rank strategy is used in Sects. 4.3–4.5.

4.2 Experiments on random matrix completion problems

The test matrices M ∈ R
m×n with rank r in this subsection were created randomly by

the following procedure (see also [24]): two random matrices ML ∈ R
m×r and MR ∈

R
n×r with i.i.d. standard Gaussian entries were first generated and then M = ML M
R

was assembled; then a subset � of p entries was sampled uniformly at random. The
ratio p/(mn) between the number of measurements and the number of entries in the
matrix is denoted by “SR” (sampling ratio). The ratio r(m + n − r)/p between the
degree of freedom in a rank r matrix to the number of samples is denoted by “FR”.

We first evaluate the sensitivity of LMaFit to the initial rank estimate K using
the decreasing rank strategy of rank estimation. In this test, we used matrices with
m = n = 1,000 and r = 10. Three test cases were generated at the sampling ratios
SR equal to 0.04, 0.08 and 0.3, respectively. In each case, we ran LMaFit for each
of K = 10, 11, 12, . . . , 30 on 50 random instances. The average number of iterations
and average CPU time corresponding to this set of K values are depicted in Fig. 3a
and b, respectively. In these two figures, we observe a notable difference at the rank
estimate K = 10 when the sampling ratio SR = 0.04. The reason is that at this low
sampling ratio the rank estimate routine of LMaFit mistakenly reduced the working
rank to be less than 10 and resulted in premature exists. For all other cases, we see
that the number of iterations stayed at almost the same level and the CPU time only
grew slightly as K increased from 10 to 30. Overall, we conclude that LMaFit is
not particularly sensitive to the change of K value on this class of problems over a
considerable range. Based on this observation, in all tests using the decreasing rank
strategy, we set the initial rank estimate K either to �1.25r� or to �1.5r�, where �x�
is the largest integer not exceeding x . Numerical results generated from these two K
values should still be sufficiently representative.

123

350 Z. Wen et al.

0 20 40 60 80 100 120
10−5

10−4

10−3

10−2

10−1

100

iteration

no
rm

al
iz

ed
 r

es
id

ua
l

r=10
r=50
r=100

(a)

0 50 100 150 200 250
10−5

10−4

10−3

10−2

10−1

10 0

iteration

no
rm

al
iz

ed
 r

es
id

ua
l

SR=0.04
SR=0.08
SR=0.3

(b)

Fig. 4 Convergence behavior of the residual in LMaFitruns

Our next test is to study the convergence behavior of LMaFit with respect to
the sampling ratio and true rank of M . In this test the dimension of M were set to
m = n = 1,000 and the initial rank estimate was set to �1.25r� in LMaFit. In
Fig. 4a, we plot the normalized residual ‖P�(M − XY)‖F/‖P�(M)‖F at all itera-
tions for three test cases where the sampling ratio was fixed at SR = 0.3 and rank
r = 10, 50 and 100, respectively. On the other hand, Fig. 4b is for three test cases
where SR = 0.04, 0.08 and 0.3, respectively, while the rank was fixed at r = 10. Not
surprisingly, these figures show that when the sampling ratio is fixed, the higher the
rank is, the harder the problem is; and when the rank is fixed, the smaller the sam-
pling ratio is, the harder the problem is. In all cases, the convergence of the residual
sequences appeared to be linear, but at quite different rates.

An important question about the factorization model (1.4) and our nonlinear SOR
algorithm is whether or not our approach (model plus algorithm) has an ability in
recovering low-rank matrices similar to that of solving the nuclear norm minimiza-
tion model by a good solver. Or simply put, does our algorithm for (1.4) provide a
comparable recoverability to that of a good nuclear norm minimization algorithm for
(1.2) or (1.3)? We address this recoverability issue in the next test by generating phase
diagrams in Fig. 5a, b for the two models (1.3) and (1.4), respectively. The solver
FPCA [24] was chosen to solve (1.3) since it has been reported to have a better recov-
erability than a number of other nuclear norm minimization solvers. In this test, we
used random matrices of size m = n = 500.

We ran each solver on 50 randomly generated problems with the sampling ratio
SR chosen in the order as it appear in {0.01, 0.06, 0.11, . . . , 0.86} and with each rank
value r ∈ {5, 8, 11, . . . , 59}. The two phase diagrams depict the success rates out of
every 50 runs by each solver for each test case where a run was successful when the
relative error ‖M −W‖F/‖M‖F between the true and the recovered matrices M and
W was smaller than 10−3. If a solver recovered all 50 random instances successfully
for SR= α and r = β, then it ought to have equal or higher recoverability for SR > α

and r = β. To expedite the part of the experiment involving FPCA, we chose to stop
testing all other SR > α with r = β, and increment the r value. In Fig. 5a, b, a
white box indicates a 100% recovery rate, while a black box means a 0% rate. The
parameter setting for LMaFit was tol = 10−4, K = �1.25r� and est_rank = 1,

123

Solving a low-rank factorization model 351

rank

sa
m

pl
in

g
ra

tio

10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Model (1.3) solved byFPCA
rank

sa
m

pl
in

g
ra

tio

10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Model (1.4) solved byLMaFit

Fig. 5 Phase diagrams for matrix completion recoverability

while for FPCA it was tol = 10−4 and μ = 10−4. All other parameters were set to
their respective default values. The two phase diagrams indicate that the recoverabil-
ity of LMaFit is marginally inferior to that of FPCA in this experiment. Given the
reported better recoverability of FPCA, it is reasonable to infer that the recoverability
of LMaFit is comparable to those of the other nuclear norm minimization solvers
studied in [24].

To have a quick assessment on the speed of LMaFit relative to those of other
state-of-the-art solvers, we compared LMaFit with two nuclear norm minimization
solvers, APGL and FPCA, and with a c version of OptSpace that solves a factor-
ization model similar to ours but uses an SVD-based initial guess, on a set of small
problems with m = n = 1000. The parameter setting for LMaFit was the same as
in the previous experiment. In particular, the decreasing rank strategy was used. The
parameter μ for the model (1.3) was set to 10−4σ as suggested by the testing scripts in
the package APGL, where σ is the largest singular value of P�(M). The stopping tol-
erance for all solvers was set to 10−4 and all other parameters were set to their default
values. A summary of the computational results is presented in Table 1, where “time”
denotes the CPU time measured in seconds and rel.err := ‖W − M‖F/‖M‖F denotes
the relative error between the true and the recovered matrices M and W (“tsvd” will
be explained below).

From Table 1, we see that LMaFit is at least several times (often a few orders of
magnitude) faster than all other solvers to achieve a comparable accuracy. We note
that the accuracy of the solver OptSpace on problems with rank 100 could not be
improved by using a smaller tolerance. Of course, the reported performances of all
the solvers involved were pertinent to their tested versions under the specific testing
environment. Improved performances are possible for different parameter settings, on
different test problems, or by different versions. However, given the magnitude of the
timing gaps between LMaFit and others, the speed advantage of LMaFit should be
more than evident on these test problems. (We also testedLMaFit with the increasing
rank strategy and found that it was not as effective as the decreasing rank strategy on
these random matrix completion problems.)

In Table 1, the item “tsvd” is the percentage of CPU time spent on SVD-related
calculations, as estimated by the MATLAB profiler and obtained from separate runs.

123

352 Z. Wen et al.

Table 1 Comparison of four solvers on small problems with varying rank and sampling ratio

Problem APGL FPCA OptSpace LMaFit

K = �1.25r� K = �1.5r�

r SR FR μ Time Rel.arr tsvd Time Rel.arr tsvd Time Rel.arr Time Rel.arr Time Rel.arr
(%) (%)

10 0.04 0.50 5.76e−03 3.01 2.91e−03 84 28.68 8.21e−01 17 21.98 4.44e−04 0.89 4.72e−04 0.95 4.35e−04

10 0.08 0.25 1.02e−02 1.62 4.63e−04 75 11.04 7.30e−04 18 10.16 2.42e−04 0.34 2.27e−04 0.36 2.19e−04

10 0.15 0.13 1.78e−02 1.97 2.47e−04 75 7.01 4.21e−04 42 8.26 1.32e−04 0.37 1.16e−04 0.39 1.48e−04

10 0.30 0.07 3.42e−02 2.89 1.56e−04 70 16.63 1.97e−04 71 9.36 1.02e−04 0.60 8.99e−05 0.64 9.91e−05

50 0.20 0.49 2.94e−02 75.50 2.75e−01 96 66.78 4.64e−04 55 312.05 2.71e−04 3.79 3.03e−04 4.75 2.63e−04

50 0.25 0.39 3.59e−02 21.23 5.52e−04 90 97.44 3.24e−04 65 228.40 1.84e−04 2.84 1.89e−04 3.03 2.11e−04

50 0.30 0.33 4.21e−02 15.29 6.20e−04 88 140.91 2.64e−04 73 236.26 8.90e−05 2.51 1.78e−04 2.70 1.91e−04

50 0.40 0.24 5.53e−02 15.86 3.68e−04 86 41.27 2.16e−04 77 120.72 7.79e−05 2.25 1.11e−04 2.61 1.65e−04

100 0.35 0.54 5.70e−02 49.96 1.42e−03 93 249.19 5.41e−04 77 1,410.64 2.83e−04 12.46 3.01e−04 16.41 3.09e−04

100 0.40 0.47 6.37e−02 43.11 5.50e−04 92 290.57 4.11e−04 79 1,202.14 2.33e−04 9.15 2.56e−04 10.74 2.41e−04

100 0.50 0.38 7.71e−02 50.12 4.71e−04 92 374.63 3.10e−04 80 908.55 1.65e−04 6.77 1.55e−04 7.11 1.92e−04

100 0.55 0.35 8.40e−02 42.56 4.32e−04 90 353.15 2.89e−04 81 851.55 1.52e−04 6.21 1.14e−04 6.97 9.99e−05

As can be seen, for APGL and FPCA SVD-related calculations essentially dominate
their total costs (with the exception of extremely low-rank cases for FPCA). On the
other hand, for LMaFit, the total cost is dominated by low-rank or sparse matrix to
matrix multiplications (which are also required by other solvers), while the cost of
solving the least squares problem in (2.11c) is either negligible or at most 11 % of
the total CPU time. Therefore, avoiding SVD-related calculations is a main reason
why LMaFit is much faster than the nuclear norm minimization solvers APGL and
FPCA, validating our original motivation of solving the factorization model.

The next test was on large-scale random matrix completion problems in which
we compared LMaFit with APGL following the experiment setup given in Sect. 4.2
of [33]. The other solvers FPCA and OptSpace were excluded from this com-
parison since they would have demanded excessive CPU times. Summaries of the
computational results are presented in Table 2 for noiseless data and Table 3 for
noisy data, where both the noiseless and noisy data were generated as in [33]. In
these two table, “iter” denotes the number of iterations used, and “#sv” denotes
the rank of the recovered solution. The statistics contained in these two tables ver-
ify two key observations: (a) solving the factorization model is reliable for matrix
completion on a wide range of problems, and (b) our nonlinear SOR algorithm, as
implemented in LMaFit, has a clear speed advantage in solving many large-scale
problems.

4.3 Experiments on random low-rank approximation problems

We now consider applying matrix completion algorithms to randomly generated low-
rank matrix approximation problems. The goal is to find a low-rank approximation
to a mathematically full-rank matrix M whose singular values gradually tend to zero,

123

Solving a low-rank factorization model 353

Table 2 Numerical results on large random matrix completion problems without noise

Problem APGL LMaFit (K = �1.25r�) LMaFit (K = �1.5r�)

n r SR FR μ Iter #sv Time Rel.arr Iter #sv Time Rel.arr Iter #sv Time Rel.arr

1000 10 0.119 0.167 1.44e−02 38 10 2.16 3.42e−04 28 10 0.36 1.63e−04 28 10 0.35 1.68e−04

1000 50 0.390 0.250 5.36e−02 40 50 13.70 3.08e−04 21 50 0.83 1.46e−04 24 50 0.97 1.45e−04

1000 100 0.570 0.334 8.58e−02 48 100 40.93 3.84e−04 21 100 1.58 1.57e−04 21 100 1.57 1.79e−04

5000 10 0.024 0.166 1.37e−02 48 10 9.98 1.85e−04 35 10 2.46 1.36e−04 35 10 2.64 1.39e−04

5000 50 0.099 0.200 6.14e−02 48 50 86.10 2.89e−04 29 50 22.44 1.58e−04 29 50 23.60 1.68e−04

5000 100 0.158 0.250 1.02e−01 52 100 242.09 2.60e−04 27 100 23.47 1.56e−04 28 100 24.85 1.32e−04

10000 10 0.012 0.166 1.37e−02 49 10 19.66 1.68e−04 38 10 5.68 1.48e−04 38 10 6.15 1.61e−04

10000 50 0.050 0.200 5.97e−02 50 50 188.35 2.54e−04 31 50 59.77 1.51e−04 31 50 64.04 1.53e−04

10000 100 0.080 0.250 9.94e−02 50 100 501.29 3.71e−04 34 100 187.41 1.74e−04 34 100 195.50 1.81e−04

20000 10 0.006 0.167 1.35e−02 55 10 48.44 2.03e−04 44 10 14.09 1.73e−04 45 10 15.63 1.74e−04

30000 10 0.004 0.167 1.35e−02 52 10 71.23 2.97e−04 46 10 24.00 1.40e−04 46 10 26.61 1.41e−04

50000 10 0.002 0.167 1.35e−02 61 10 153.55 1.73e−04 50 10 54.94 1.65e−04 49 10 59.33 1.64e−04

100000 10 0.001 0.167 1.34e−02 62 10 368.40 4.16e−04 52 10 144.61 1.57e−04 49 10 159.65 1.37e−04

Table 3 Numerical results on large random matrix completion problems with noise

Problem APGL LMaFit (K = �1.25r�) LMaFit (K = �1.5r�)

n r SR FR μ Iter #sv Time Rel.arr Iter #sv Time Rel.arr Iter #sv Time Rel.arr

1000 10 0.119 0.167 1.44e−02 33 10 2.45 4.54e−02 19 10 0.26 4.53e−02 19 10 0.24 4.53e−02

1000 50 0.390 0.250 5.36e−02 38 50 12.65 5.51e−02 17 50 0.66 5.51e−02 21 50 0.82 5.51e−02

1000 100 0.570 0.334 8.59e−02 44 100 33.50 6.40e−02 17 100 1.24 6.40e−02 17 100 1.33 6.40e−02

5000 10 0.024 0.166 1.38e−02 41 10 11.19 4.52e−02 26 10 1.81 4.51e−02 26 10 1.98 4.51e−02

5000 50 0.099 0.200 6.14e−02 38 50 59.31 4.98e−02 20 50 15.51 4.97e−02 20 50 16.76 4.97e−02

5000 100 0.158 0.250 1.02e−01 45 100 189.76 5.69e−02 19 100 16.75 5.68e−02 18 100 16.16 5.68e−02

10000 10 0.012 0.166 1.37e−02 45 10 26.92 4.52e−02 29 10 4.38 4.52e−02 29 10 4.84 4.52e−02

10000 50 0.050 0.200 5.97e−02 41 50 137.55 4.99e−02 23 50 46.14 4.99e−02 23 50 50.11 4.99e−02

10000 100 0.080 0.250 9.95e−02 49 100 493.15 5.73e−02 22 100 125.06 5.73e−02 22 100 133.10 5.73e−02

20000 10 0.006 0.167 1.35e−02 50 10 52.47 4.53e−02 33 10 10.70 4.53e−02 33 10 12.13 4.53e−02

30000 10 0.004 0.167 1.35e−02 52 10 87.87 4.52e−02 34 10 18.45 4.52e−02 34 10 21.18 4.52e−02

50000 10 0.002 0.167 1.35e−02 57 10 183.44 4.53e−02 37 10 39.92 4.53e−02 37 10 45.23 4.53e−02

100000 10 0.001 0.167 1.34e−02 58 10 398.58 4.53e−02 40 10 129.09 4.53e−02 40 10 142.82 4.53e−02

though none is exactly zero. Since there does not exist a “best low rank matrix” in
such approximations, any evaluation of solution quality must take into consideration
of two competing criteria: rank and accuracy. The only clear-cut case of superiority is
when one solution dominates another by both criteria, i.e., a lower rank approximation
with a higher accuracy.

In this experiment, all random instances of M ∈ R
m×n were created as follows: two

matrices ML ∈ R
n×n and MR ∈ R

n×n with i.i.d. standard Gaussian entries are first
generated randomly; then ML and MR are orthogonalized to obtain U and V , respec-
tively; finally the matrix M = U�V
 is assembled. Here � is a diagonal matrix
whose diagonal elements σi , for i = 1, . . . , n, are either the power-law decaying, that

123

354 Z. Wen et al.

10 20 30 40 50 60 70 80 90 100
10−6

10−5

10−4

10−3

10−2

10−1

100
σ

index

0 200 400

10
−5

10
0

σ

index

5 10 15 20 25 30 35 40 45 50
10−6

10−5

10−4

10−3

10−2

10−1

100

σ

index

0 200 400

10
−50

10
0

σ

index

Fig. 6 Illustration of decaying patterns of the singular values σ

Table 4 Numerical results on approximate low-rank problems

Problem APGL FPCA LMaFit (est_rank=1)LMaFit (est_rank=2)

SR FR μ #sv Time Rel.arr #sv Time Rel.arr #sv Time Rel.arr #sv Time Rel.arr

Power-low decaying

0.04 0.99 1.00e−04 96 5.14 6.59e−01 1 31.45 1.39e−01 5 0.69 3.68e−01 11 0.31 8.96e−03

0.08 0.49 1.00e−04 92 4.91 2.25e−01 2 36.90 4.38e−02 5 1.55 2.20e−01 20 0.43 1.13e−03

0.15 0.26 1.00e−04 63 3.12 2.64e−02 4 12.17 1.78e−02 5 1.38 1.52e−01 20 0.70 4.57e−04

0.30 0.13 1.00e−04 11 2.11 2.39e−03 4 28.65 1.04e−02 5 2.97 8.12e−02 22 1.26 2.36e−04

Exponentially decaying

0.04 0.99 1.00e−04 100 5.65 7.54e−01 14 31.69 5.05e−01 5 0.47 3.92e−01 16 0.85 4.08e−01

0.08 0.49 1.00e−04 102 5.96 3.47e−01 8 35.75 1.24e−01 5 0.43 2.66e−01 26 1.80 1.98e−02

0.15 0.26 1.00e−04 99 5.96 5.55e−02 13 11.40 2.76e−02 5 0.62 2.39e−01 28 1.61 7.26e−04

0.30 0.13 1.00e−04 74 4.08 9.61e−03 14 27.81 1.71e−02 6 1.02 1.71e−01 30 2.01 2.38e−04

is, σi = i−3, or the exponentially decaying, that is, σi = e−0.3i . Hence, all singular
values are positive, and there are 99 and 46 entries whose magnitude are greater than
10−6 in these two types of �, respectively. These diagonals are illustrated in Fig. 6a, b.
The sampling procedures are the same as those in Sect. 4.2. In this test, the dimension
and rank of M were set to n = 500 and r = 10, respectively.

We compared LMaFit with the solvers APGL and FPCA [24]. The parameter μ

for the model (1.3) was set to 10−4. The stopping tolerance for all solvers was set to
10−4. We set the parameters truncation = 1, and truncation_gap = 100 in
APGL. For LMaFit with est_rank = 1, we set K = 50 , and for LMaFit with
est_rank = 2, we set K = 1,rank_max = 50 andrk_inc = 1. All other param-
eters were set to default values for the two solvers. A summary of the computational
results is presented in Table 4. We can see that LMaFit with est_rank = 2 was
significantly better than other solvers. The decreasing rank strategy of LMaFit, as it
is currently implemented with est_rank = 1, is clearly not suitable for these low-
rank approximation problems since there is no “true low rank” as in matrix completion
problems. Specifically, this strategy (est_rank = 1) reduced the rank estimate too
aggressively.

123

Solving a low-rank factorization model 355

4.4 Experiments on “real data”

In this subsection, we consider low-rank matrix approximation problems based on
two “real data” sets: the Jester joke data set [9] and the MovieLens data set [14]. In
these data set, only partial data are available from the underlying unknown matrices
which are unlikely to be of exactly low rank. Nevertheless, matrix completion solvers
have been applied to such problems to test their ability in producing low-rank approx-
imations. As is mentioned above, an assessment of solution quality should take into
consideration of both rank and accuracy. The Jester joke data set consists of four prob-
lems “jester-1”, “jester-2”, “jester-3” and “jester-all”, where the last one is obtained by
combining all of the first three data sets, and the MovieLens data set has three problems
“movie-100K”, “movie-1M” and “movie-10M”.1 For LMaFit, we set the parameters
to tol = 10−3, est_rank = 2, K = 1, and rk_inc = 2. For APGL, the param-
eter setting was tol = 10−3, truncation = 1, and truncation_gap = 20.
In addition, the model parameter μ for APGL was set to μ = 10−4 which produced
better solutions than choosing 10−3σ as suggested by the testing scripts in the package
APGL, where σ is the largest singular value of the sampling matrix. Moreover, we set
the maximum rank estimate to 80 for the jester problems and to 100 for the MovieLens
problems for both LMaFit and APGL by specifying their parameters rank_max or
maxrank, respectively. We note that since the jester problems have only 100 columns,
it is not meaningful to fit a matrix of rank 100 to a jester data set. Since the entries of
a underlying matrix M are available only on an index set �, to measure accuracy we
computed the Normalized Mean Absolute Error (NMAE) as was used in [9,24,33],
i.e.,

NMAE = 1

(rmax − rmin)|�|
∑

(i, j)∈�
|Wi, j − Mi, j |,

where rmin and rmax are the lower and upper bounds for the ratings. Specifically, we
have rmin = −10 and rmax = 10 for the jester joke data sets and rmin = 1 and rmax = 5
for the MovieLens data sets. We tried using a part of the available data as was done in
[33] and found that APGL generally returned solutions with slightly higher NMAE-
accuracy but also higher ranks than those returned by LMaFit, creating difficulties in
interpreting solution quality (though the speed advantage of LMaFit was still clear).
Therefore, we only report numerical results using all the available data in Table 5,
where “#asv” denotes the approximate rank of a computed solution defined as the
total number of singular values exceeding 10−8.

As can be seen from Table 5, LMaFit and APGL obtained low-rank approximation
matrices of comparable quality on the all the problems, while LMaFit ran more than
twice as fast, and returned matrices of slightly lower approximate ranks (except for
“jester-all” and “movie-10M”). It is particularly interesting to compare the two solvers
on problem “jester-3” for which LMaFit reported a solution of rank 43 while APGL
of rank 80. Even with a much lower rank, the LMaFit solution is almost as accurate

1 They are available at http://www.ieor.berkeley.edu/~Egoldberg/jester-data and http://www.grouplens.
org, respectively.

123

http://www.ieor.berkeley.edu/~Egoldberg/jester-data
http://www.grouplens.org
http://www.grouplens.org

356 Z. Wen et al.

Table 5 Numerical results on “real data”

Problem APGL LMaFit

Name m/n μ Iter Time NMAE Rel.arr #asv Iter Time NMAE Rel.arr #asv

jester-1 24983/100 1.00e−04 33 84.02 2.34e−02 1.77e−01 80 117 46.24 2.50e−02 1.86e−01 78

jester-2 23500/100 1.00e−04 32 84.52 2.41e−02 1.78e−01 80 118 42.83 2.56e−02 1.87e−01 78

jester-3 24938/100 1.00e−04 34 46.16 9.30e−07 3.16e−05 80 235 29.50 4.06e−05 9.31e−04 43

jester-all 73421/100 1.00e−04 32 166.66 2.01e−02 1.66e−01 80 114 96.32 2.03e−02 1.65e−01 80

moive-100K 943/1682 1.00e−04 100 101.78 1.03e−03 2.05e−03 100 507 25.12 9.95e−04 2.07e−03 94

moive-1M 6040/3706 1.00e−04 61 172.76 6.67e−02 9.61e−02 100 190 67.44 6.78e−02 9.85e−02 92

moive-10M 71567/10677 1.00e−04 57 1,633.74 7.83e−02 1.32e−01 100 178 654.24 7.59e−02 1.29e−01 100

as the APGL solution. Finally, we comment that without proper rank restrictions, the
jester problems do not appear to be good test problems for low-rank matrix approxi-
mation since the matrices to be approximated have only 100 columns to begin with. In
fact, LMaFit with est_rank = 1 and K=100 was able to find “solutions” of rank
100 after one iteration whose NMAE is of order 10−16.

4.5 Image and video denoising or inpainting

In this subsection we apply LMaFit and APGL to grayscale image denoising (similar
to what was done in [24]) and to color video denoising of impulsive noise for visual-
izing solution quality. The task here is to fill in the missing pixel values of an image or
video at given pixel positions that have been determined to contain impulsive noise.
This process is also called inpainting, especially when the missing pixel positions are
not randomly distributed. In their original forms, these problems are not true matrix
completion problems, but matrix completion solvers can be applied to obtain low-rank
approximations.

In the first test, the 512 × 512 original grayscale image is shown in Fig. 7a, and
we truncated the SVD of the image to get an image of rank 40 in Fig. 7b. Figure
7c and f were constructed from Fig. 7a and b by sampling half of their pixels uni-
formly at random, respectively. Figure 7i was obtained by masking 6.34 % of the
pixels of Fig. 74b in a non-random fashion. We set the parameters tol = 10−3,
est_rank = 2, K = 20 and max_rank = 50 for LMaFit, and tol = 10−3,
truncation = 1, truncation_gap = 20 and maxrank = 50 for APGL. The
recovered images of Fig. 7c, f and i are depicted in Fig. 7d and e, g and h, and j and
k, respectively. A summary of the computational results is shown in Table 6. In the
table, rel.err denotes the relative error between the original and recovered images.
From these figures and the table, we can see that LMaFit can recover the images as
well as APGL can, but significantly faster.

Next, we apply LMaFit and APGL to fill in the missing pixels of a video sequence
“xylophone.mpg” (available with the MATLAB Image Processing Toolbox). The
video consists of p frames and each frame is an image stored in the RGB format,
which is an mr -by-nr -by-3 cube. Here, mr = 240, nr = 320, and p = 141. The
video was then reshaped into a (mr × nr)-by-(3 × p), or 76,800-by-423, matrix

123

Solving a low-rank factorization model 357

(a) original image (b) rank 40 image

(c) masked original image (d) APGL (e) LMaFit

(f) masked rank 40 image (g) APGL (h) LMaFit

(i) masked rank 40 image (j) APGL (k) LMaFit

Fig. 7 Image denoising and inpainting

Table 6 Numerical results on image inpainting

Problem APGL LMaFit

Image r μ Iter #sv Time Rel.arr Iter #sv Time Rel.arr

(c) 512 1.34e−02 33 50 4.81 8.73e−02 53 50 0.57 9.28e−02

(f) 40 1.34e−02 34 50 5.33 8.01e−02 45 40 0.47 7.94e−02

(i) 40 2.51e−02 32 50 4.97 9.07e−02 89 40 1.31 7.98e−02

123

358 Z. Wen et al.

original video

50% masked original video

recovered video by

recovered video by

Fig. 8 Video denoising

M . We sampled 50% pixels of the video uniformly at random. Three frames of
the original video and the corresponding 50 % masked images are shown in the
first and second rows of Fig. 8, respectively. We set the parameters tol = 10−3,
K = 20, rank_max = 80 and est_rank = 2 for LMaFit, and tol = 10−3,
truncation = 1, truncation_gap = 20 and maxrank = 80 for APGL.
A summary of computational results is presented in Table 7 and the recovered images
are shown in the third and fourth rows of Figure 8. From these figures, we can see
that LMaFitwas able to restore the static part of the video quite successfully, and the
moving part of the video was still recognizable. Table 7 shows that APGL obtained a
slightly higher accuracy than LMaFit did, but the latter was approximately 4 times
faster in reaching the same order of accuracy.

123

Solving a low-rank factorization model 359

Table 7 Numerical results on video inpainting

Problem APGL LMaFit

Video m/n μ Iter #sv Time Rel.arr Iter #sv Time Rel.arr

Xylophone 76800/423 3.44e+01 34 80 432.73 4.58e−02 64 75 91.63 4.93e−02

We emphasize again that the purpose of the above image/video denoising or in-
painting experiments was to visualize the solution quality for the tested algorithms,
rather than demonstrating the suitability of these algorithms for the tasks of denoising
or inpainting.

4.6 Summary of computational results

We performed extensive computational experiments on two classes of problems:
matrix completion and low-rank approximation. On the completion problems, our
nonlinear SOR algorithm, coupled with the decreasing rank strategy, has shown good
recoverability, being able to solve almost all tested problems as reliably as other
solvers. We do point out that randomly generated matrix completion problems are
numerically well-conditioned with high probability. On the other hand, any solver,
including ours, can break down in the face of severe ill-conditioning. On low-rank
approximation problems where the concept of rank can be numerically blurry and
the quality of solutions less clear-cut, our nonlinear SOR algorithm, coupled with
the increasing rank strategy, has demonstrated a capacity of producing solutions of
competitive quality on a diverse range of test problems.

Our numerical results, especially those on matrix completion, have confirmed the
motivating premise for our approach that avoiding SVD-related calculations can lead
to a much accelerated solution speed for solving matrix completion and approximation
problems. Indeed, in our tests LMaFit has consistently shown a running speed that
is several times, ofter a couple of magnitudes, faster than that of other state-of-the-art
solvers.

5 Conclusion

The matrix completion problems is to recover a low-rank matrix from a subset of
its entries. It has recently been proven that, by solving a nuclear-norm minimization
model, an incoherent low-rank matrix can be exactly recovered with high probability
from a uniformly sampled subset of its entries as long as the sample size is sufficiently
large relative to the matrix sizes and rank. In this paper, we study the approach of
solving a low-rank factorization model for matrix completion. Despite the lack of
a theoretical guarantee for global optimality due to model non-convexity, we have
shown empirically that the approach is capable of solving a wide range of randomly
generated matrix completion problems as reliably as solving the convex nuclear-norm
minimization model. It remains a theoretical challenge to prove, or disprove, that

123

360 Z. Wen et al.

under suitable conditions the low-rank factorization model can indeed solve matrix
completion problems with high probability.

The main contribution of the paper is the development and analysis of an effi-
cient nonlinear Successive Over-Relaxation (SOR) scheme that only requires solving
a linear least-squares problem per iteration instead of a singular-value decomposition.
The algorithm can be started from a rough over-estimate of the true matrix rank for
completion problems, or started from a small initial rank (say, rank-1) for low-rank
approximation problems. Extensive numerical results show that the algorithm can pro-
vide multi-fold accelerations over nuclear-norm minimization algorithms on a wide
range of matrix completion or low-rank approximation problems, thus significantly
extending our ability in solving large-scale problems in this area.

In order to solve large-scale and difficult problems, further research on rank esti-
mation techniques is still needed to improve the robustness and efficiency of not only
our algorithm, but also nuclear norm minimization algorithms that use partial singular
value decompositions rather than full ones. Given the richness of matrix completion
and approximation problems, different algorithms should be able to find usefulness in
various areas of applications.

Acknowledgments We would like to thank Kim-Chuan Toh for the discussion on the code NNLS, and
Sewoong Oh for the discussion on the code OptSpace. The authors are grateful to the Associate Editor and
two anonymous referees for their detailed and valuable comments and suggestions.

References

1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems. SIAM J. Imaging Sci. 2, 183–202 (2009)

2. Candès, E., Plan, Y.: Matrix completion with noise. Proc. IEEE 98, 925–936 (2010)
3. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math.

(2009)
4. Candès, E.J., Tao, T.: The power of convex relaxation near-optimal matrix completion. IEEE Trans.

Inf. Theory 56, 2053–2080 (2010)
5. Chan, T.F.: Rank revealing Q R factorizations. Linear Algebra Appl. 88(89), 67–82 (1987)
6. Chan, T.F., Hansen, P.C.: Low-rank revealing Q R factorizations. Numer. Linear Algebra Appl.

1, 33–44 (1994)
7. Dai, W., Milenkovic, O.: Set an algorithm for consistent matrix completion CoRR. abs/0909.2705

(2009)
8. Eldén, L.: Matrix Methods in Data Mining and Pattern Recognition (Fundamentals of Algo-

rithms). Society for Industrial and Applied Mathematics, Philadelphia (2007)
9. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste A constant time collaborative filtering

algorithm. Inf. Retr. 4, 133–151 (2001)
10. Goldfarb, D., Ma, S., Wen, Z.: Solving low-rank matrix completion problems efficiently. In: Proceed-

ings of the 47th Annual Allerton Conference on Communication, Control, and Computing, Allerton’09,
pp. 1013–1020 (2009)

11. Golub, G.H., Van Loan, C.F.: Matrix computations. In: Johns Hopkins Studies in the Mathematical
Sciences, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

12. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss–Seidel method under
convex constraints. Oper. Res. Lett. 26, 127–136 (2000)

13. Gross, D.: Recovering low-rank matrices from few coefficients in any basis, tech. rep. Leibniz Uni-
versity (2009)

14. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collab-
orative filtering. In: SIGIR ’99: Proceedings of the 22nd annual international ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 230–237. ACM, New York (1999)

123

Solving a low-rank factorization model 361

15. Jian-Feng, C., Candes, E.J., Zuowei, S.: A singular value thresholding algorithm for matrix completion
export. SIAM J. Optim. 20, 1956–1982 (2010)

16. Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from a few entries. IEEE Trans. Inform.
Theory 56, 2980–2998 (2010)

17. Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from noisy entries. J. Mach. Learn. Res. 99,
2057–2078 (2010)

18. Keshavan, R.H., Oh, S.: A gradient descent algorithm on the grassman manifold for matrix completion,
tech. rep., Dept. of Electrical Engineering, Stanford University (2009)

19. Larsen, R.M.: PROPACK Software for large and sparse svd calculations. http://soi.stanford.edu/rmunk/
PROPACK

20. Lee, K., Bresler, Y.: Admira atomic decomposition for minimum rank approximation. IEEE Trans.
Inf. Theor. 56, 4402–4416 (2010)

21. Liu, Y.-J., Sun, D., Toh, K.-C.: An implementable proximal point algorithmic framework for nuclear
norm minimization. Math. Program., 133(1–2), 399–436 (2011)

22. Liu, Z., Vandenberghe, L.: Interior-point method for nuclear norm approximation with application to
system identification. SIAM J. Matrix Anal. Appl. 31, 1235–1256 (2009)

23. Luo, Q.Z., Tseng, P.: On the convergence of the coordinate descent method for convex differentiable
minimization. J. Optim. Theory Appl. 72, 7–35 (1992)

24. Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization.
Math. Program., 128(1–2), 321–353 (2009)

25. Mazumder, R., Hastie, T., Tibshirani, R.: Regularization methods for learning incomplete matrices.
Stanford University, tech. rep. (2009)

26. Meka, R., Jain, P., Dhillon, I.S.: Guaranteed rank minimization via singular value projection. CoRR,
abs/0909.5457 (2009)

27. Morita, T., Kanade, T.: A sequential factorization method for recovering shape and motion from image
streams. IEEE Trans. Pattern Anal. Mach. Intell. 19, 858–867 (1997)

28. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Finan-
cial Engineering. Springer, Berlin (2006)

29. Recht, B.: A simpler approach to matrix completion. J. Mach. Learn. Res. (2010)
30. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via

nuclear norm minimization. SIAM Rev. 52, 471–501 (2010)
31. Shen, Y., Wen, Z., Zhang, Y.: Augmented lagrangian alternating direction method for matrix separation

based on low-rank factorization, tech. rep. Rice University (2010)
32. Stewart, G.W.: On the continuity of the generalized inverse. SIAM J. Appl. Math. 17, 33–45 (1969)
33. Toh, K.-C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized least

squares problems. Pacific J. Optim. 6, 615–640 (2010)
34. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization

method. Int. J. Comput. Vis. 9, 137–154 (1992)
35. Tseng, P.: Dual ascent methods for problems with strictly convex costs and linear constraints: a unified

approach. SIAM J. Control Optim. 28, 214–242 (1990)
36. Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization.

J. Optim. Theory Appl. 109, 475–494 (2001)
37. Xu, Y., Yin, W., Wen, Z., Zhang, Y.: An alternating direction algorithm for matrix completion with

nonnegative factors. tech. rep., Shanghai Jiaotong University (2011)
38. Yang, J., Yuan, X.: An inexact alternating direction method for trace norm regularized least squares

problem. tech. rep., Dept. of Mathematics. Nanjing University (2010)
39. Yuan, X., Yang, J.: Sparse and low-rank matrix decomposition via alternating direction methods. tech.

rep. Dept. of Mathematics, Hong Kong Baptist University (2009)
40. Zhang, Y.: LMaFit Low-rank matrix fitting (2009). http://www.caam.rice.edu/optimization/L1/

LMaFit/
41. Zhang, Y.: An alternating direction algorithm for nonnegative matrix factorization. tech. rep. Rice

University (2010)
42. Zhu, Z., So, A.M.-C., Ye, Y.: Fast and near-optimal matrix completion via randomized basis pursuit,

tech. rep. Stanford University (2009)

123

http://soi.stanford.edu/rmunk/PROPACK
http://soi.stanford.edu/rmunk/PROPACK
http://www.caam.rice.edu/ optimization/L1/LMaFit/
http://www.caam.rice.edu/ optimization/L1/LMaFit/

	Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm
	Abstract
	1 Introduction
	2 Alternating minimization schemes
	2.1 Nonlinear Gauss--Seidel method
	2.2 A nonlinear SOR-like scheme

	3 Convergence analysis
	4 Computational results
	4.1 Implementation details and rank estimation
	4.2 Experiments on random matrix completion problems
	4.3 Experiments on random low-rank approximation problems
	4.4 Experiments on ``real data''
	4.5 Image and video denoising or inpainting
	4.6 Summary of computational results

	5 Conclusion
	Acknowledgments
	References

