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The Laplace–Beltrami operator of a smooth Riemannian manifold is determined by the
Riemannian metric. Conversely, the heat kernel constructed from the eigenvalues and
eigenfunctions of the Laplace–Beltrami operator determines the Riemannian metric. This
work proves the analogy on Euclidean polyhedral surfaces (triangle meshes), that the dis-
crete heat kernel and the discrete Riemannian metric (unique up to a scaling) are mutually
determined by each other. Given a Euclidean polyhedral surface, its Riemannian metric is
represented as edge lengths, satisfying triangle inequalities on all faces. The Laplace–
Beltrami operator is formulated using the cotangent formula, where the edge weight is
defined as the sum of the cotangent of angles against the edge. We prove that the edge
lengths can be determined by the edge weights unique up to a scaling using the variational
approach.

The constructive proof leads to a computational algorithm that finds the unique metric
on a triangle mesh from a discrete Laplace–Beltrami operator matrix.

Published by Elsevier Inc.
1. Introduction

Laplace–Beltrami operator plays a fundamental role in
Riemannian geometry [26]. Discrete Laplace–Beltrami
operators on triangulated surface meshes span the entire
spectrum of geometry processing applications, including
mesh parameterization, segmentation, reconstruction,
compression, re-meshing and so on [16,24,31]. Laplace–
Beltrami operator is determined by the Riemannian metric.
The heat kernel can be constructed from the eigenvalues
and eigenfunctions of the Laplace–Beltrami operator;
conversely, it fully determines the Riemannian metric
(uniquely up to a scaling). In this work, we prove the
discrete analogy to this fundamental fact for surface case,
that the discrete heat kernel and the discrete Riemannian
metric are mutually determined by each other.
r Inc.

g).
1.1. Motivation

The Laplace–Beltrami operator on a Riemannian mani-
fold plays an fundamental role in Riemannian geometry.
The spectrum of its eigenvalues encodes the Riemannian
metric information, the nodal lines of its eigenfunctions re-
flects the intrinsic symmetry. Especially, the heat kernel
composed by both eigenvalues and eigenfunctions fully
determines the Riemannian metric.

The above theorems from Riemannian geometry have
been applied in a broad range of engineering applications.
The eigenfunctions corresponding to the zero eigenvalue
are called harmonic functions, which have been applied
for mesh parameterizations in graphics fields, such as thor-
ough surveys can be found in [9] and [15]. Spectrum has
been applied as shape-DNA [21] for surfaces or solids;
Eigenfunctions are applied for global intrinsic symmetry
detection [19]; Heat Kernel Signatures are applied for
shape analysis and comparison in [27]. More detailed sur-
vey for the applications of spectrum theory can be found in
[31].

http://dx.doi.org/10.1016/j.gmod.2012.03.009
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All these algorithms have the advantages from Laplace–
Beltrami operator theory, which are intrinsic to the
Riemannian metric, independent of embedding, invariant
under isometric transformation, stable under small pertur-
bation, and robust to geometric and topological noises.

All the applications above are based on the fundamental
theorem (see Theorem 2.2) that the heat kernel fully deter-
mines the Riemannian metric, or the eigenvalues and
eigenfunctions of the Laplace–Beltrami operator partially
determine the Riemannian metric. These results have been
proven only for smooth manifolds. However, all the compu-
tations are on discrete meshes. Therefore, it is important to
prove the discrete analogy of Theorem 2.2, that discrete
heat kernel (or equivalently, Laplace–Beltrami operator
matrix) determines the discrete Riemannian metric (see
the Main Theorem 3.5). This motivates the current work.
To the best of our knowledge, this work is the first one to
fill the huge gap and ensure the rigor for all these existing
computational algorithms in real applications.
1.2. Discretizations of Laplace–Beltrami operator

In real applications, a smooth metric surface is usually
represented as a triangulated mesh. The manifold heat ker-
nel is estimated from the discrete Laplace operator. There
are many ways to discretize the Laplace–Beltrami operator.

The most well-known and widely-used discrete formu-
lation of Laplace operator over triangulated meshes is the
so-called cotangent scheme, which was originally intro-
duced in [8,20]. Xu [30] proposed several simple discreti-
zation schemes of Laplace operators over triangulated
surfaces, and established the theoretical analysis on con-
vergence. Wardetzky et al. [29] proved the theoretical lim-
itation that the discrete Laplacians cannot satisfy all
natural properties, thus, explained the diversity of existing
discrete Laplace operators. A family of operations were
presented by extending more natural properties into the
existing operators. Reuter et al. [21] computed a discrete
Laplace operator using the finite element method, and
exploited the isometry invariance of the Laplace operator
as shape fingerprint for object comparison. Belkin et al.
[1] proposed the first discrete Laplacian that pointwise
converges to the true Laplacian as the input mesh approx-
imates a smooth manifold better. Dey et al. [7] employed
this mesh Laplacian and provided the first convergence
to relate the discrete spectrum with the true spectrum,
and studied the stability and robustness of the discrete
approximation of Laplace spectra.
1.3. Discrete curvature flow

The proof for the correspondence between the discrete
Laplace–Beltrami matrix and the discrete metric uses the
Legendre duality principle [18] (Lemma 4.3 in this work),
which is similar to the discrete curvature flow theory.
Legendre duality principle can be formulated as follows.
Given a convex function / : X! R defined on a convex do-
main X, r/(x) denotes the gradient at the point x 2X.
Then x ?r/(x) has one-to-one correspondence, x and
r/(x) are Legendre dual of each other.
All the existing discrete surface curvature flow theories
are based on Legendre duality principle. In discrete surface
curvature flow, there are different ways to discretize con-
formal transformation. Thurston [28] introduced circle
packing method. Colin de Verdiere [6] established the first
variational principle for circle packing and proved Thur-
ston’s existence of circle packing metrics. Chow and Luo
[5] generalized Colin de Verdiere’s work and introduced
the discrete Ricci flow and discrete Ricci energy on sur-
faces. The algorithmic was later implemented and applied
for surface parameterization [13,12]. Circle pattern was
proposed by Bowers and Hurdal [4], and has been proven
to be a minimizer of a convex energy by Bobenko and
Springborn [3]. An efficient circle pattern algorithm was
developed by Kharevych et al. [14]. Discrete Yamabe flow
was introduced by Luo in [17]. In a recent work of Spring-
born et al. [25], the Yamabe energy is explicitly given by
using the Milnor-Lobachevsky function.

In all above works, the discrete conformal factor and the
discrete Gaussian curvature form the Legendre dual pair.
All the proofs are to construct a convex energy defined
on the discrete conformal factor, the gradient of the energy
is the discrete curvature. If the space of all admissible con-
formal factor functions is convex, then by Legendre duality,
the correspondence between the conformal factor and the
curvature is one-to-one.

In the current work, we follow the same principle to
construct a convex energy and show that the edge length
(discrete metric) and the cotangent edge weight (discrete
Laplace–Beltrami operator) are Legendre dual pair, and
they mutually determine each other.

1.4. Contribution

The Laplace–Beltrami operator of a smooth Riemannian
manifold is determined by the Riemannian metric. Con-
versely, the heat kernel constructed from its eigenvalues
and eigenfunctions determines the Riemannian metric.
This work proves the analogy on Euclidean polyhedral sur-
faces (triangle meshes), that the discrete heat kernel and
the discrete Riemannian metric (uniquely up to a scaling)
are mutually determined by each other.

Given a Euclidean polyhedral surface, its Riemannian
metric is represented as edge lengths, satisfying triangle
inequalities on all faces. The Laplace–Beltrami operator is
formulated using the cotangent formula, where the edge
weight is defined as the sum of the cotangent of angles
against the edge. We prove that the edge lengths can be
determined by the edge weights uniquely up to a scaling
using the variational approach.

First, we show that the space of all possible metrics of a
polyhedral surface is convex. Second, we construct a spe-
cial energy defined on the metric space, such that the gra-
dient of the energy equals to the edge weights. Third, we
show the Hessian matrix of the energy is positive definite,
restricted on the tangent space of the metric space, there-
fore the energy is convex. Finally, by the fact that the
parameter on a convex domain and the gradient of a con-
vex function defined on the domain have one-to-one corre-
spondence, we show the edge weights determines the
polyhedral metric uniquely up to a scaling.
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The constructive proof leads to a computational algo-
rithm that finds the unique metric on a triangle mesh from
a discrete Laplace–Beltrami operator matrix.

1.4.1. Organization
The paper is organized as follows: Section 2 introduces

the theoretical background on Laplace–Beltrami operator
and heat kernel. Section 3 introduces discrete heat kernel
and presents the main theorem of this work. Section 4 de-
scribes the theoretic deduction details for the proposed
theorem. Numerical experiments are discussed in Section
5. Section 6 concludes the paper and gives the future work.

2. Theoretic background

In the following, we briefly introduce the theoretic
background for heat kernel. For more thorough theoretic
treatment, we refer readers to the differential geometry
textbook [23]. For more technical details of the applica-
tions of heat kernel on geometric processing, we refer
readers to [27].

2.1. Laplace–Beltrami operator

Suppose (M,g) is a compact Riemannian manifold with
a Riemannian metric g; u : M ! R is a function defined on
M. The Laplace–Beltrami operator computes the diver-
gence of the gradient of the function,

Dgu ¼ div � grad u:

Select a local coordinate coordinates {xi}, the Riemann-
ian metric tensor is given by g = gij dxi dxj, the inverse of (gij)
is denoted as (gij), the determinant is g = det(gij). Then the
local representation of the Laplace–Beltrami operator is

Dgu ¼ 1ffiffiffi
g
p
X

i;j

@

@xj
gij ffiffiffi

g
p @u

@xi

� �
:

The eigenfunction /i of Dg is defined as

Dg/i ¼ ki/i; ki 2 R:

Because Dg is bounded and symmetric negative semi-
definite, ki’s are non-negative real numbers, there are
countable eigenfunctions.

2.2. Heat kernel

The heat diffusion process on M is governed by the heat
equation, let uðx; tÞ : M � Rþ ! R represent the tempera-
ture field on M at time t, then it satisfies the following heat
equation

Dguðx; tÞ ¼ � @uðx; tÞ
@t

; ð1Þ

with initial condition u(x,0).

Definition 2.1. (Heat Kernel) The heat kernel Kðx; y; tÞ 2
C1ðM �M � RþÞ is given by

Kðx; y; tÞ ¼
X1
n¼0

e�knt/nðxÞ/nðyÞ:
The solution to the heat Eq. 1 can be explicitly given by
the heat kernel

uðx; tÞ ¼
Z

M
Kðx; y; tÞuðy;0Þdy:

Heat kernel plays a fundamental role in geometric model-
ing and shape analysis [27], because heat kernel is the
complete invariant of the Riemannian metric.

Suppose F: (M1,g1) ? (M2,g2) is a mapping between
two Riemannian manifolds, such that F preserves geodesic
distances, then we say F is an isometric map. In differential
geometry, F is isometric, then the pull back metric on M1

F⁄g2 induced by F equals to g1

F�g2 ¼ g1:

Then the following theorem shows heat kernel is the
complete invariant of the Riemannian metric:

Theorem 2.2. Let F: (M1,g1) ? (M2,g2) be a surjective map
between two Riemannian manifolds. F is an isometry,
F⁄g2 = g1, if and only if K2(F(x),F(y), t) = K1(x,y, t) for any x,
y 2M1 and any t > 0.

The main focus of the current work is to prove the dis-
crete analogy to the fundamental relation between the
heat kernel and the Riemannian metric.

3. Discrete heat kernel

In this work, we focus on discrete surfaces, namely
polyhedral surfaces. For example, a triangle mesh is piece-
wise linearly embedded in R3.

Definition 3.1. (Polyhedral Surface) A Euclidean polyhe-
dral surface is a triple (S,T,d), where S is a closed surface, T
is a triangulation of S and d is a metric on S, whose
restriction to each triangle is isometric to a Euclidean
triangle.
3.1. Discrete Laplace–Beltrami operator

The well-known cotangent edge weight [8,20] on a
Euclidean polyhedral surface is defined as follows:

Definition 3.2. (Cotangent Edge Weight) Suppose [vi,vj] is
a boundary edge of M, [vi,vj] 2 oM, then [vi,vj] is incident
with a triangle [vi,vj,vk], the angle opposite to [vi,vj], at the
vertex vk, is a, then the weight of [vi,vj] is given by
wij ¼ 1

2 cot a. Otherwise, if [vi,vj] is an interior edge, the two
angles opposite to it are a, b, then the weight is
wij ¼ 1

2 ðcot aþ cot bÞ.
The discrete Laplace–Beltrami operator is constructed

from the cotangent edge weight.

Definition 3.3. (Discrete Laplace Matrix) The discrete
Laplace matrix L = (Lij) for a Euclidean polyhedral surface
is given by

Lij ¼
�wij; i – jP

kwik; i ¼ j

�
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Because L is symmetric, it can be decomposed as

L ¼ UKUT ; ð2Þ

where K = diag(k0,k1, . . . ,kn), 0 = k0 < k1 6 k2 6 � � � 6 kn, are
the eigenvalues of L, and U = (/0—/1—/2— . . . —/n),
L/i = ki/i, are the orthonormal eigenvectors, n is the num-
ber of vertices, such that /T

i /j ¼ dij.

3.2. Discrete heat kernel
Definition 3.4. (Discrete Heat Kernel) The discrete heat
kernel is defined as follows:

KðtÞ ¼ Uexpð�KtÞUT : ð3Þ
3.3. Main theorem

The main theorem, called Global Rigidity Theorem, in
this work is as follows:

Theorem 3.5. Suppose two Euclidean polyhedral surfaces
(S,T,d1) and (S,T,d2) are given,

L1 ¼ L2;

if and only if d1 and d2 differ by a scaling.
Corollary 3.6. Suppose two Euclidean polyhedral surfaces
(S,T,d1) and (S,T,d2) are given,

K1ðtÞ ¼ K2ðtÞ;8t > 0;

if and only if d1 and d2 differ by a scaling.

Proof. Note that

dKðtÞ
dt

����
t¼0
¼ �L:

Therefore, the discrete Laplace matrix and the discrete
heat kernel mutually determine each other. h
4. Global Rigidity Theorem

The proof is based on the Legendre duality principle
[18] (Lemma 4.3 in this work). Same principle has also
been used in Rivin’s work [22], discrete Ricci flow work
[12,13] and Yamabe flow work [17].

4.1. Proof outline

The main idea for the proof is as follows. We fix the con-
nectivity of the polyhedral surface (S,T). Suppose the edge
set of (S,T) is sorted as E = {e1,e2, . . . ,em}, where m = —E— is
the number of edges and F denotes the face set. A triangle
[vi,vj,vk] 2 F is also denoted as {i, j,k} 2 F.

By definition, a Euclidean polyhedral metric on (S,T) is
given by its edge length function d : E! Rþ. We denote a
metric as d = (d1,d2, . . . ,dm), where di = d(ei) is the length
of edge ei. Let

Edð2Þ ¼ fðd1;d2;d3Þjdi þ dj > dkg
be the space of all Euclidean triangles parameterized by
the edge lengths, where {i, j,k} is a cyclic permutation of
{1,2,3}. In this work, for convenience, we use
u = (u1,u2, . . . ,um) to represent the metric, where uk ¼ 1

2 d2
k .

Definition 4.1. (Admissible Metric Space)Given a triangu-
lated surface (S,K), the admissible metric space is defined
as

Xu¼ ðu1;u2;u3; . . . ;umÞ
Xm

k¼1

uk¼m;
ffiffiffiffi
ui
p

;
ffiffiffiffiffi
uj

p
;
ffiffiffiffiffi
uk
p� �

2Edð2Þ; 8fi; j;kg2F

�����
( )

:

We show that Xu is a convex domain in Rm.
Definition 4.2. (Energy) An energy E : Xu ! R is defined
as:

Eðu1;u2; . . . ;umÞ ¼
Z ðu1 ;u2 ;...;umÞ

ð1;1;...;1Þ

Xm

k¼1

wkðuÞduk; ð4Þ

where wk(u) is the cotangent weight on the edge ek deter-
mined by the metric u, d is the exterior differential
operator.

Next we show this energy is convex in Lemma 4.10.
According to the following lemma, the gradient of the en-
ergy rEðdÞ : X! Rm

rE : ðu1;u2; . . . ;umÞ ! ðw1;w2; . . . ;wmÞ

is an embedding. Namely the metric is determined by the
edge weight uniquely up to a scaling.

Lemma 4.3. (Legendre Duality) Suppose X � Rn is an open
convex domain in Rn;h : X! R is a strictly convex function
with positive definite Hessian matrix, then rh : X! Rn is a
smooth embedding.

Proof. If p – q in X, let c(t) = (1 � t)p + tq 2X for all
t 2 [0,1]. Then f ðtÞ ¼ hðcðtÞÞ : ½0; 1� ! R is a strictly convex
function, so that

df ðtÞ
dt
¼ rh

����
cðtÞ
� ðq� pÞ:

Because

d2f ðtÞ
dt2 ¼ ðq� pÞT H

�����
cðtÞ

ðq� pÞ > 0;

df ð0Þ
dt

–
df ð1Þ

dt
;

therefore

rhðpÞ � ðq� pÞ–rhðqÞ � ðq� pÞ:

This means rh(p) –rh(q), therefore rh is injective.
On the other hand, the Jacobian matrix of rh is the

Hessian matrix of h, which is positive definite. It follows
that rh : X! Rn is a smooth embedding. h

From the discrete Laplace–Beltrami operator (Eq. 2) or
the heat kernel (Eq. 3), we can compute all the cotangent
edge weights, then because the edge weight determines
the metric, we attain the Main Theorem 3.5.



Fig. 1. A Euclidean triangle.
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4.2. Rigidity on one face

In this section, we show the proof for the simplest case,
a Euclidean triangle; in the next section, we generalize the
proof to all types of triangle meshes.

Given a triangle {i, j,k}, three corner angles denoted by
{hi,hj,hk}, three edge lengths denoted by {di,dj,dk}, as shown
in Fig. 1. In this case, the problem is trivial. Given
(wi,wj,wk) = (cothi, cothj, cothk), we can compute (hi,hj,hk)
by taking the arccot function. Then the normalized edge
lengths are given by

ðdi; dj;dkÞ ¼
3

sin hi þ sin hj þ sin hk
ðsin hi; sin hj; sin hkÞ:

Although this approach is direct and simple, it cannot
be generalized to more complicated polyhedral surfaces.
In the following, we use a different approach, which can
be generalized to all polyhedral surfaces.

The following Lemma 4.4 is called derivative cosine law
[18], which is well known in the literature [22,17,13,12,2].
Lemma 4.5 is the direct corollary of Lemma 4.4, which ap-
peared in [17,2]. For the sake of completeness, we give the
detailed proofs here.

Lemma 4.4. Suppose a Euclidean triangle is with angles
{hi,hj,hk} and edge lengths {di,dj,dk}, angles are treated as the
functions of the edge lengths hi(di,dj,dk), then

@hi

@di
¼ di

2A
ð5Þ

and

@hi

@dj
¼ � di

2A
cos hk; ð6Þ

where A is the area of the triangle.
Proof. According to Euclidean cosine law

cos hi ¼
d2

j þ d2
k � d2

i

2djdk
; ð7Þ

we take derivative on both sides with respective to di,

� sin hi
@hi

@di
¼ �2di

2djdk

@hi

@di
¼ di

djdk sin hi
¼ di

2A
; ð8Þ
where A ¼ 1
2 djdk sin hi is the area of the triangle. Similarly

@

@dj
d2

j þ d2
k � d2

i

	 

¼ @

@dj
ð2djdk cos hiÞ

2dj ¼ 2dk cos hi � 2djdk sin hi
@hi

@dj

2A
@hi

@dj
¼ dk cos hi � dj ¼ �di cos hk:

We get

@hi

@dj
¼ � di cos hk

2A
: �
Lemma 4.5. In a Euclidean triangle, let ui ¼ 1
2 d2

i and uj ¼ 1
2 d2

j

then

@ cot hi

@uj
¼ @ cot hj

@ui
: ð9Þ
Proof.

@ cot hi

@uj
¼ 1

dj

@ cot hi

@dj
¼ � 1

dj

1

sin2 hi

@hi

@dj

¼ 1
dj

1

sin2 hi

di cos hk

2A
¼ d2

i

sin2 hi

cos hk

2Adidj

¼ 4R2

2A
cos hk

didj
; ð10Þ

where R is the radius of the circumcircle of the triangle.
The righthand side of Eq. 10 is symmetric with respect to
the indices i and j. h

In the following, we introduce a differential form. We
are going to use them for proving that the integration
involved in computing energy is independent of paths. This
follows from the fact that the forms which are integrated
are closed, and the integration domain is simply
connected.

Corollary 4.6. The differential form

x ¼ cot hidui þ cot hjduj þ cot hkduk ð11Þ

is a closed 1-form.
Proof. By the above Lemma 4.5 regarding symmetry,

dx¼ @cothj

@ui
�@cothi

@uj

� �
dui^dujþ

@cothk

@uj
�@cothj

@uk

� �
duj

^dukþ
@cothi

@uk
�@cothk

@ui

� �
duk^dui¼0: �
Definition 4.7. (Admissible Metric Space) Let ui ¼ 1
2 d2

i , the
admissible metric space is defined as

Xu :¼ ðui;uj;ukÞ
ffiffiffiffi
ui
p

;
ffiffiffiffi
uj

p
;
ffiffiffiffiffi
uk
p� ��� 2Edð2Þ; uiþujþuk¼3

� �
:

Lemma 4.8. The admissible metric space Xu is a convex
domain in R3.



Fig. 2. The geometric interpretation of the Hessian matrix. The in circle of
the triangle is centered at O, with radius r. The perpendiculars ni, nj and nk

are from the incenter of the triangle and orthogonal to the edge ei, ej and
ek respectively.
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Proof. Suppose (ui,uj,uk) 2Xu and ð~ui; ~uj; ~ukÞ 2 Xu, then
fromffiffiffiffi

ui
p
þ

ffiffiffiffi
uj

p
>

ffiffiffiffiffi
uk
p

;

we get

ui þ uj þ 2
ffiffiffiffiffiffiffiffi
uiuj

p
> uk:

Define

uk
i ;u

k
j ;u

k
k

	 

¼ kðui;uj;ukÞ þ ð1� kÞð~ui; ~uj; ~ukÞ;

where 0 < k < 1. Then

uk
i uk

j ¼ ðkui þ ð1� kÞ~uiÞðkuj þ ð1� kÞ~ujÞ

¼ k2uiuj þ ð1� kÞ2~ui~uj þ kð1� kÞðui~uj þ uj~uiÞ

P k2uiuj þ ð1� kÞ2~ui~uj þ 2kð1� kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uiuj~ui~uj

q
¼ ðk

ffiffiffiffiffiffiffiffi
uiuj

p
þ ð1� kÞ

ffiffiffiffiffiffiffiffi
~ui~uj

q
Þ2:

It follows

uk
i þ uk

j þ 2
ffiffiffiffiffiffiffiffiffiffi
uk

i uk
j

q
P k ui þ uj þ 2

ffiffiffiffiffiffiffiffi
uiuj

p� �
þ ð1� kÞ ~ui þ ~uj þ 2

ffiffiffiffiffiffiffiffi
~ui~uj

q� �

> kuk þ ð1� kÞ~uk ¼ uk
k:

This shows ðuk
i ;u

k
j ;u

k
kÞ 2 Xu. h

Similarly, we define the edge weight space as follows.

Definition 4.9. (Edge Weight Space) The edge weights of a
Euclidean triangle form the edge weight space

Xh¼fðcothi;cothj;cothkÞj0<hi;hj;hk<p;hiþhjþhk¼pg:
Note that

cot hk ¼ � cotðhi þ hjÞ ¼
1� cot hi cot hj

cot hi þ cot hj
:

Lemma 4.10. The energy E : Xu ! R

Eðui;uj;ukÞ ¼
Z ðui ;uj ;ukÞ

ð1;1;1Þ
cot hi dsi þ cot hj dsj

þ cot hk dsk ð12Þ

is well defined on the admissible metric space Xu and is
convex.
Proof. According to Corollary 4.6, the differential form is
closed. Furthermore, the admissible metric space Xu is a
simply connected domain and the differential form is
exact. Therefore, the integration is path independent, and
the energy function is well defined.

Then we compute the Hessian matrix of the energy,

H¼�2R2

A

1
d2

i
� coshk

didj
� coshj

didk

�coshk
djdi

1
d2

j
� coshi

djdk

�coshj

dkdi
� coshi

dkdj

1
d2

k

2
66664

3
77775¼�

2R2

A

ðgi;giÞðgi;gjÞðgi;gkÞ
ðgj;giÞðgj;gjÞðgj;gkÞ
ðgk;giÞðgk;gjÞðgk;gkÞ

2
64

3
75:
As shown in Fig. 2, dini + djnj + dknk = 0,

gi ¼
ni

rdi
; gj ¼

nj

rdj
; gk ¼

nk

rdk
;

where r is the radius of the incircle of the triangle.
Suppose ðxi; xj; xkÞ 2 R3 is a vector in R3, then

½xi;xj;xk�
ðgi;giÞðgi;gjÞðgi;gkÞ
ðgj;giÞðgj;gjÞðgj;gkÞ
ðgk;giÞðgk;gjÞðgk;gkÞ

2
64

3
75

xi

xj

xk

2
64

3
75¼kxigiþxjgjþxkgkk

2 P0:

If the result is zero, then ðxi; xj; xkÞ ¼ kðui;uj;ukÞ; k 2 R.
That is the null space of the Hessian matrix. In the admis-
sible metric space Xu, ui + uj + uk = C(C = 3), then dui + -
duj + duk = 0. If (dui,duj,duk) belongs to the null space,
then (dui,duj,duk) = k(ui,uj,uk), therefore, k(ui + uj + uk) = 0.
Because ui, uj, uk are positive, k = 0. This shows the null
space of Hessian matrix is orthogonal to the tangent space
of Xu. Therefore, the Hessian matrix is positive definite on
the tangent space. In summary, the energy on Xu is
convex. h
Theorem 4.11. The mapping rE:Xu ? Xh, (ui,uj,uk)
? (cothi, cothj, cothk) is a diffeomorphism.
Proof. The energy E(ui,uj,uk) is a convex function defined
on the convex domain Xu. According to Lemma 4.3,

rE : ðui;uj;ukÞ ! ðcot hi; cot hj; cot hkÞ

is a diffeomorphism. h
4.3. Rigidity for the whole mesh

In this section, we consider the whole polyhedral
surface.

4.3.1. Closed surfaces
Given a polyhedral surface (S,T,d), the admissible met-

ric space and the edge weight have been defined in Section
3 respectively.

Lemma 4.12. The admissible metric space Xu is convex.
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Proof. For a triangle {i, j,k} 2 F, define

Xijk
u :¼ ðui;uj;ukÞ

ffiffiffiffi
ui
p

;
ffiffiffiffi
uj

p
;
ffiffiffiffiffi
uk
p� ��� 2 Edð2Þ

� �
:

Similar to the proof of Lemma 4.8, Xijk
u is convex. The

admissible metric space for the mesh is

Xu ¼
\

fi;j;kg2F

Xijk
u

\
ðu1;u2; . . . ;umÞ

Xm

k¼1

uk ¼ m

�����
( )

;

the intersection Xu is still convex. h
Definition 4.13. (Differential Form) The differential form
x defined on Xu is the summation of the differential form
on each face,

x ¼
X
fi;j;kg2F

xijk ¼
Xm

i¼1

2widui;

where xijk is given in Eq. 11 in Corollary 4.6, wi is the edge
weight on ei, m is the number of edges.
Lemma 4.14. The differential form x is a closed 1-form.
Proof. According to Corollary 4.6

dx ¼
X
fi;j;kg2F

dxijk ¼ 0: �
Lemma 4.15. The energy function

Eðu1;u2; . . . ;umÞ ¼
X
fi;j;kg2F

Eijkðu1; u2; . . . ;umÞ

¼
Z ðu1 ;u2 ;...;umÞ

ð1;1;...;1Þ

Xn

i¼1

wi dui

is well defined and convex on Xu, where Eijk is the energy
on the face, defined in Eq. 12.
Proof. For each face {i, j,k} 2 F, the Hessian matrices of Eijk

is semi-positive definite, therefore, the Hessian matrix of
the total energy E is semi-positive definite.

Similar to the proof of Lemma 4.10, the null space of the
Hessian matrix H is

kerH ¼ fkðd1;d2; . . . ; dmÞ; k 2 Rg:

The tangent space of Xu at u = (u1,u2, . . . ,um) is denoted
by TXu(u). Assume (du1,du2, . . . ,dum) 2 TXu(u), then fromPm

i¼1ui ¼ m, we get
Pm

i¼1dum ¼ 0. Therefore,

TXuðuÞ \ KerH ¼ f0g;

hence H is positive definite restricted on TXu(u). So the to-
tal energy E is convex on Xu. h
Theorem 4.16. The mapping on a closed Euclidean polyhe-
dral surface rE: Xu

! Rm; ðu1;u2; . . . ;umÞ ! ðw1;w2; . . . ;wmÞ is a smooth
embedding.
Proof. The admissible metric space Xu is convex as shown
in Lemma 4.12, the total energy is convex as shown in
Lemma 4.15. According to Lemma 4.3, rE is a smooth
embedding. h
4.3.2. Open surfaces
By the double covering technique [11], we can convert a

polyhedral surface with boundaries to a closed surface.
First, let ðS; TÞ be a copy of (S,T), then we reverse the orien-
tation of each face in M, and glue two surfaces S and S
along their corresponding boundary edges, the resulting
triangulated surface is a closed one. We get the following
corollary.

Corollary 4.17. The mapping on a Euclidean polyhedral
surface with boundaries rE : Xu ! Rm; ðu1;u2; . . . ;

umÞ ! ðw1;w2; . . . ;wmÞ is a smooth embedding.
Surely, the cotangent edge weights can be uniquely ob-

tained from the discrete heat kernel. By combining Theo-
rem 4.16 and Corollary 4.17, we obtain the main
Theorem 3.5, Global Rigidity Theorem, of this work.

5. Numerical Experiments

From above theoretic deduction, we can design the
algorithm to compute discrete metric with user prescribed
edge weights.

Problem. Let (S,T) be a triangulated surface, �wð �w1; �w2;

. . . ; �wnÞ are the user prescribed edge weights. The problem
is to find a discrete metric u = (u1,u2, . . . ,un), such that this
metric �u induces the desired edge weight w.

The algorithm is based on the following theorem.

Theorem 5.1. Suppose (S,T) is a triangulated surface. If there
exists an �u 2 Xu, which induces �w, then u is the unique global
minimum of the energy

EðuÞ ¼
Z ðu1 ;u2 ;...;unÞ

ð1;1;...;1Þ

Xn

i¼1

ð �wi �wiÞdui: ð13Þ
Proof. The gradient of the energy rEðuÞ ¼ �w�w, and
sincerEð�uÞ ¼ 0, therefore �u is a critical point. The Hessian
matrix of E(u) is positive definite, the domain Xu is convex,
therefore �u is the unique global minimum of the
energy. h

In our numerical experiments, as shown in Fig. 3, we
tested surfaces with different topologies, with different
genus, with or without boundaries. All discrete polyhedral
surfaces are triangle meshes scanned from real objects. Be-
cause the meshes are embedded in R3, they have induced
Euclidean metric, which are used as the desired metric �u.
From the induced Euclidean metric, the desired edge
weight �w can be directly computed. Then we set the initial
discrete metric to be the constant metric (1,1, . . . ,1). By
optimizing the energy in Eq. 13, we can reach the global
minimum, and recovered the desired metric, which differs
from the induced Euclidean metric by a scaling.



Fig. 3. Euclidean polyhedral surfaces used in the experiments.
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In Fig. 3, the first row shows three examples of surfaces
of genus zero, genus one, genus two, respectively, which
are embedded in R3; the second row shows the corre-
sponding triangulated meshing structures.
6. Conclusion and future work

This work proves the analogy on Euclidean polyhedral
surfaces (triangle meshes), that the discrete heat kernel
and the discrete Riemannian metric (unique up to a scal-
ing) are mutually determined by each other. We prove that
the edge lengths can be determined by the edge weights
unique up to a scaling using the variational approach,
and design the computational algorithm that finds the un-
ique metric on a triangle mesh from a discrete Laplace–
Beltrami operator matrix.

We conjecture that the Main Theorem 3.5 holds for
arbitrary dimensional Euclidean polyhedral manifolds,
which means discrete Laplace–Beltrami operator (or
equivalently the discrete heat kernel) and the discrete
metric for any dimensional Euclidean polyhedral manifold
are mutually determined by each other. On the other hand,
we will explore the possibility to establish the same theo-
rem for different types of discrete Laplace–Beltrami opera-
tors as in [10]. Also, we will explore further on the
sufficient and necessary conditions for a given set of edge
weights to be admissible.
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