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Abstract

We investigate the rigidity of hyperbolic cone metrics on 3-manifolds which are isometric gluing
of ideal and hyper-ideal tetrahedra in hyperbolic spaces. These metrics will be called ideal and hyper-
ideal hyperbolic polyhedral metrics. It is shown that a hyper-ideal hyperbolic polyhedral metric is
determined up to isometry by its curvature and a decorated ideal hyperbolic polyhedral metric is
determined up to isometry and change of decorations by its curvature. The main tool used in the
proof is the Fenchel dual of the volume function.

1 Introduction

1.1 Statements of results

We study geometry of 3-dimensional spaces which are isometric gluing of (ideal and hyper-ideal) tetra-
hedra in hyperbolic spaces. Our main focus is on the rigidity of these spaces. The metrics of these spaces
are given by the lengths of edges of tetrahedra (in the underlying triangulation). The curvatures of the
spaces are 2π less the cone angles at the edges. Our main results state that for a fixed triangulation, the
curvature determines the edge lengths and hence these hyperbolic polyhedral metrics.

The tool used in the proof is a variational principle associated to the Schlaefli formula and its Legen-
dre transformation. The infinitesimal rigidity of hyperbolic cone metrics follows from the strict convexity
of the volume of the ideal and hyper-idea tetrahedra in terms of the dihedral angles. In the dual setting,
one considers the co-volume which is the dual of the volume of the tetrahedra and has the edge lengths as
the variables. The main difficult comes from the fact that the space of hyperbolic tetrahedra parametrized
by the edge lengths is not convex. We overcome the difficulty by showing that the co-volume function
(of the edge lengths) can be extended to a C1 smooth convex function defined on a convex open set. This
is very similar to the results established in [23]. By establishing the convex extensions of the co-volume
functions, we are able to prove several results on the volume optimization program of Casson and Rivin.
For instance, we show that the maximum volume angle structures are exactly those coming from the
generalized polyhedral metrics (see theorem 1.3).

We now state our results more precisely. Suppose (M, T ) is a triangulated compact pseudo 3-
manifold with a triangulation T and the set of edges E = E(T ).

Definition 1.1. A decorated hyperbolic polyhedral metric (respectively hyper-ideal polyhedral metric)
on (M, T ) is obtained by replacing each tetrahedra in T by an decorated ideal tetrahedron (respectively
hyper-ideal tetrahedron) and replacing the affine gluing homeomorphisms by isometries preserving the
decoration. The curvature of the metric assign each edge e 2π less the cone angle at e for interior edge
e and π less the cone angle for boundary edge e.

By the construction, these polyhedral metrics are determined by the lengths of the edges.

Theorem 1.2. Suppose (M, T ) is a triangulated compact pseudo 3-manifold (M, T ).
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(a) A decorated hyperbolic polyhedral metric on (M, T ) is determined up to isometry and change of
decorations by its curvature.

(b) A hyper-ideal hyperbolic polyhedral metric on (M, T ) is determined up to isometry by its curvature.

The rigidity results are closely related to the volume optimization of angle structures initiated by Cas-
son and Rivin. The program tries to find complete hyperbolic metrics on ideal triangulated 3-manifolds
(N, T ) using angle structures (see [20], [33]). Recall that a non-negative (respectively positive) angle
structure α on (N, T ) assigns each edge in a tetrahedron a non-negative (respectively positive) number
called the angle so that the sum of angles around each edge is 2π and the sum of angles at three edges
from each vertex of each tetrahedron is π. The volume of an angle structure α is well defined using the
Lobachevsky function (see §2.1). It is well known there are maximum volume non-negative angle struc-
tures. If the maximum volume angle structure is positive, then it is known [15, 5, 33] that there exists a
geometric triangulation of a complete hyperbolic metric on the manifold N − {vertices} realizing the
angle structure. Our result gives a characterization of maximum angle structures in the case some angles
are 0.

Theorem 1.3. Suppose (N, T ) is a triangulated closed pseudo 3-manifold which supports a positive
angle structure and α is a non-negative angle structure which maximizes volume in the space of all non-
negative angle structures on (N, T ). Then there exists an assignment of real number l(e) to each edge e
so that for each tetrahedron σ ∈ T ,

(1) if all angles of σ in α are positive, then α are the dihedral angles of the decorated ideal tetrahe-
dron of edge lengths given by l and,

(2) if one angle of σ in α is 0, then all angles of σ in α are 0, 0, 0, 0, π, π and their edge lengths in l
satisfy

e
l1+l4

2 > e
l2+l5

2 + e
l3+l6

2 (1.1)

where l1 is the length of the edge of angle π and li and li+3 are lengths of opposite edges.
Conversely, if l : E → R is any function so that (1) and (2) hold, then the corresponding angle α of

l defined by (1) and (2) maximizes volume.

In section 6, we introduce the corresponding notion of non-negative and positive angle structures of
hyper-ideal type (see Definition 6.1), and prove the following counterpart of theorem 1.3.

Theorem 1.4. Suppose (N, T ) is a triangulated closed pseudo 3-manifold which supports a positive
angle structure of hyper-ideal type and α maximizes the volume in the space of all non-negative angle
structures of hyper-ideal type on (N, T ). Then there exists an assignment of positive number l(e) to each
edge e so that for each tetrahedron σ ∈ T ,

(1) if all angles of σ in α are positive, then α are the dihedral angles of the hyper-ideal tetrahedron
of edge lengths given by l and,

(2) if one angle of σ in α is 0, then all angles of σ in α are 0, 0, 0, 0, π, π and the numbers assigned
by l to the edges of σ are not the edge lengths of any hyper-ideal tetrahedron.

Conversely, if l : E → R>0 is any function so that (1) and (2) holds, then the corresponding angle α
of l defined by (1) and (2) maximizes volume.

There have been many important work on rigidity of hyperbolic cone metrics on 3-manifolds. See
work of Hodgeson-Kerckhoff [17], Weiss [40], Mazzeo-Montcouquiol [27, 28] and Fillastre-Izmestiev [11,
12, 18] and others. The difference between their work and ours is that we consider the case where the sin-
gularity consists of complete geodesics from cusp to cusp or geodesics orthogonal to the totally geodesic
boundary with possible cone singularities.
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The paper is organized as follows. In Sections 2, we collect preliminary materials including decorated
hyperbolic tetrahedra, angle structures, volume functions and the Fenchel dual. In Section 3, we define
the co-volume function and reveal its relationship with the Fenchel dual of the volume function. As
a consequence, we prove Theorem 1.2 (a) and Theorem 1.3. The second part of the paper focuses on
polyhedral metrics and angle structures of hyper-ideal type. The corresponding preliminary materials are
included in Section 4, and Theorem 1.2 (b) and Theorem 1.4 are respectively proved in Section 5 and
Section 6.

The work is partially supported by the NSF DMS 1105808 and NSF DMS 1222663. We would like
to thank Steven Kerckhoff for discussions.

2 Preliminaries on triangulations, volume and Fenchel duality

Since this paper involves topological triangulations, geometry of tetrahedra in hyperbolic space H3 and
convex optimization, we will briefly recall the related material in this section.

2.1 Triangulations

Take a finite disjoint collection T of Euclidean tetrahedra and identify some of the codimension-1 faces
in T in pairs by affine homeomorphisms. The quotient space (M, T ) is a compact pseudo 3-manifold M
together with a triangulation T whose simplexes are the quotients of simplexes in T. If each codimension-
1 face of T are identified with another codimension-1 face, then M is a closed pseudo 3-manifold.
Otherwise, M is a compact pseudo 3-manifold with non-empty boundary which is the quotient of the
union of un-identified codimension-1 faces in T.

Two edges of tetrahedra in T are called equivalent if they are mapped to the same set inM.We define
edges in the triangulation T to be equivalence classes of edges in tetrahedra in T. We use E = E(T )
and T (T ) to denote the sets of all edges and tetrahedra in T respectively. Since a tetrahedron in the
triangulation T is the same as a tetrahedron in the original set T, we will identify T (T ) with the set T. A
quad in the triangulation T is a pair of opposite edges in T. Thus each tetrahedron contains three quads.
We use � = �(T ) to denote the set of all quads in T . If q ∈ �, e ∈ E and σ ∈ T, we use q ⊂ σ to
denote that the quad q is contained in the tetrahedron σ and use q ∼ e or e ∼ q to denote that q ∩ e = ∅
and there exists σ ∈ T with q ⊂ σ and σ ∩ e 6= ∅.

Using these notations and the fact that angles at opposite edges in a tetrahedron are the same for
any angle structure, a non-negative angle structure on a closed pseudo 3-manifold (M, T ) is a map
x : � → R>0 so that (1) ∀σ ∈ T,

∑
q⊂σ x(q) = π and (2) ∀e ∈ E,

∑
q∼e x(q) = 2π. See for instance

[25] for more details.

2.2 Decorated ideal tetrahedra in the hyperbolic 3-space

An ideal n-simplex s in the hyperbolic n-space Hn is the convex hull of n+1 points v1, ..., vn+1 in ∂Hn

so that {v1, ..., vn+1} are not in a round (n − 1)-sphere. Any two ideal triangles are isometric. An
ideal tetrahedron in H3 is determined up to isometry by its six dihedral angles. These angles satisfy the
condition that angles at opposite edges are the same and the sum of all angles is 2π. Thus the space of
all ideal tetrahedra modulo isometry can be identified with A = {(a, b, c) ∈ R3

>0|a+ b+ c = π}.
Following Penner [30], a decorated ideal n-simplex (or simply decorated simplex) is a pair (s,{H1,

...,Hn+1}) where s is an ideal n-simplex and Hi is an (n − 1)-horosphere centered at the i-th vertex vi.
We call {H1, ...,Hn+1} the decoration. Two decorated simplexes are equivalent if there is a decoration
preserving isometry between the underlying ideal simplexes. Each edge e = vivj in a decorated simplex
has the signed length lij defined as follows. The absolute value |lij | of the length is the distance between
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Hi∩e andHj ∩e so that lij > 0 ifHi andHj are disjoint and lij 6 0 ifHi∩Hj 6= ∅. Faces of decorated
ideal simplexes are decorated ideal simplexes. Also s ∩Hi is isometric to a Euclidean (n− 1)-simplex.

For a decorated ideal triangle (s, {H1, H2, H3}), we call the length ai of the horocyclic arc in Hi

bounded by the two edges of s from vi the angle at vi. Penner’s cosine law says that for {i, j, k} =
{1, 2, 3},

ai = e
ljk−lij−lik

2 . (2.1)

Given any three real numbers l2, l2, l3, there exists a unique decorated ideal triangle whose lengths are
l1, l2, l3. See [30].

The characterization of the lengths of decorated ideal tetrahedron is well known (see for instance
[24] lemma 2.5, or [4] lemma 4.2.3).

Lemma 2.1. Suppose {lij} are the edge lengths of a decorated ideal tetrahedron σ = (s, {H1, ...,H4}).
Then all four Euclidean triangles {Hi∩s} are similar to the Euclidean triangle τ of edge lengths e

lij+lkh
2 ,

so that
e
lij+lkh

2 + e
lik+ljh

2 > e
lih+ljk

2

for {i, j, k, h} = {1, 2, 3, 4}. The dihedral angle αij of σ at the edge vivj is equal to the inner angle

of τ opposite to the edge of length e
lij+lkh

2 . Conversely, if (l12, . . . , l34) ∈ R6 satisfies the triangular
inequalities above, then there is a unique decorated ideal tetrahedron having lij as the length at the edge
vivj .

One consequence of the lemma is that dihedral angles αij = αkl, i.e., dihedral angles at opposite
edges are the same. Thus, we can talk about the dihedral angle of a quad in a decorated simplex.

2.3 Generalized decorated tetrahedra, dihedral angles and volume

A generalized decorated tetrahedron is a (topological) 3-simplex of vertices v1, ..., v4 so that each edge
vivj is assigned a real number lij = lji, called the length. A decorated ideal tetrahedron (with the
signed edge lengths) is a generalized decorated tetrahedron. The space of all generalized decorated
tetrahedra parameterized by the length vectors l = (l12, ..., l34) is R6. The subspace of all (equiva-

lence classes) of decorated ideal tetrahedra is given by {(l12, . . . , l34) ∈ R6 | e
lij+lkh

2 + e
lik+ljh

2 >

e
lih+ljk

2 , {i,j,k,h} distinct}.
To define dihedral angles and volume of a generalized decorated tetrahedron σ, let us begin with

the notion of generalized Euclidean triangles and their angles. A generalized Euclidean triangle ∆ is a
(topological) triangle of vertices v1, v2, v3 so that each edge is assigned a positive number, called edge
length. Let xi be the assigned length of the edge vjvk where {i, j, k} = {1, 2, 3}. The inner angle
ai = ai(x1, x2, x3) at the vertex vi is defined as follows. If x1, x2, x3 satisfy the triangle inequalities
that xj + xk > xh for {h, j, k} = {1, 2, 3}, then ai is the inner angle of the Euclidean triangle of edge
lengths x1, x2, x3 opposite to the edge of length xi; if xi > xj + xk, then ai = π, aj = ak = 0. It is
known (see for instance [23]) that

Lemma 2.2. The angle function ai(x1, x2, x3) : R3
>0 → [0, π] is continuous so that a1 + a2 + a3 = π

and the C0-smooth differential 1-form
∑3

i=1 aid(lnxi) is closed on R3
>0. Furthermore, for ui = lnxi,

the integral F (u) =
∫ u

0

∑3
i=1 ai(u)dui is a C1-smooth convex function in (u1, u2, u3) on R3 so that F

is strictly convex when restricted to {u ∈ R3|u1 +u2 +u3 = 0, eui +euj > euk} and F (u+(k, k, k)) =
F (u) + kπ for all k ∈ R.

4



Here aC0-smooth 1-form is defined to be closed if its integration over anyC1-smooth null homotopic
loop is zero.

For a generalized decorated tetrahedron of length vector l = (l12, ..., l34) ∈ R6, the dihedral angle
αij = αij(l) at the edge vivj is defined to be the inner angle of the generalized Euclidean triangle of edge

lengths e
lij+lhk

2 , e
lij+ljh

2 and e
lih+ljk

2 so that αij is opposite to the edge of length e
lij+lhk

2 for h, i, j, k
distinct. In particular, the dihedral angles at opposite edges are the same and the total sum of all six
dihedral angles are 2π. If σ is a decorated ideal tetrahedron, then the two definitions of dihedral angles
coincide.

Recall that the Lobachevsky function is defined by Λ(x) = −
∫ x

0 ln |2 sin t|dt. It is a continuous
function of period π so that Λ(−x) = −Λ(x). The volume of a generalized decorated simplex σ of
lengths lij’s, denoted by vol(l), is defined to be 1

2

∑
i<j Λ(αij(l)). If the generalized decorated tetra-

hedron σ is a decorated ideal tetrahedron, then Lobachevsky showed that vol(l) is the hyperbolic vol-
ume of the underlying ideal tetrahedron. If σ is not a decorated ideal tetrahedron, then by definition,
vol(l) = Λ(0) + Λ(0) + Λ(π) = 0.

Since the space of all ideal tetrahedra can be parameterized byA = {(a, b, c) ∈ R3
>0 | a+b+c = π},

the volume function vol defined on A is given by vol(a, b, c) = Λ(a) + Λ(b) + Λ(c). By lemma 2.2, we
have

Lemma 2.3. (1) The function αij : R6 → R is continuous.
(2)(Rivin) The volume function vol : A = {(x, y, z) ∈ R3

>0 | x + y + z = π} → R is smooth
strictly concave and extends continuously to the closure A = {(x, y, z) ∈ R3

>0|x + y + z = π} so that
vol(x, y, z) = 0 if one of x, y, z is 0.

(3) The volume function on the space of generalized decorated tetrahedra R6, vol : R6 → [0,∞), is
continuous.

2.4 Fenchel Duality and hyperbolic volume

Recall that a proper convex function f : Rn → (−∞,∞] is a convex function so that f(a) 6= ∞ for
some a ∈ Rn. A function f : Rn → (−∞,∞] is called lower semi-continuous if for all a ∈ Rn,
lim infx→a f(x) > f(a). If X ⊂ Rn is a non-empty closed convex set and g : X → R is a convex
lower semi-continuous function, then the new function φg : Rn → (−∞,∞] defined by φg|X = g and
φg(x) =∞ for x /∈ X is a proper lower semi-continuous convex function. See for instance the classical
book [32] for details.

If u, v ∈ Rn, we use u · v or < u, v > to denote the standard inner product of u and v.

Definition 2.4. The Fenchel dual f∗ : Rn → (−∞,∞] of a proper function f : Rn → (−∞,∞] is

f∗(y) = sup{x · y − f(x)|x ∈ Rn}.

It is known that if f is a proper convex function then f∗ is a proper convex lower semi-continuous
function. A fundamental fact about f∗ is the following (see [32]),

Theorem 2.5 (Fenchel). If f : Rn → (−∞,∞] is a proper lower semi continuous convex function, then
(f∗)∗ = f.

Since the volume function vol : A = {(a, b, c) ∈ R3
>0|a+ b+ c = π} is concave and continuous, we

obtain a proper lower semi continuous convex function φ : R3 → (−∞,∞] defined by φ(x) = −vol(x)
if x ∈ A and φ(x) =∞ if x /∈ A.
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Proposition 2.6. The Fenchel dual φ∗ of φ is the C1-smooth convex function defined by

φ∗(y) =
3∑
i=1

(Λ(ai) + aiyi)

where a1(y), a2(y), a3(y) are inner angles of the generalized Euclidean triangle of edge lengths ey1 , ey2

and ey3 so that ai is opposite to the edge of length eyi . Furthermore,
(1) ∂φ

∗(x)
∂yi

= ai(y), and
(2) if θ = (θ1, θ2, θ3) ∈ R3

>0 so that θ1 + θ2 + θ3 = π, then the convex function ψθ(y) = φ∗(y) −∑3
i=1 θiyi satisfies that ψθ(y + (k, k, k)) = ψθ(y) for all k ∈ R and limmax |yi−yj |→∞ ψθ(y) =∞.

Proof. For y ∈ R3, define g(x) = gy(x) :=
∑3

i=1(xiyi + Λ(xi)) : A → R. By definition, φ∗(y) =
sup{x · y − φ(x)|x ∈ R3} = sup{

∑3
i=1 xiyi + Λ(xi)|x ∈ A} = max{g(x)|x ∈ A}. Let Ω =

{(z1, z2, z3)|ezi + ezj > ezk , i, j, k distinct}. If y ∈ Ω, then g has a critical point at (a1(y), a2(y), a3(y))
in A. Indeed, for the tangent vector ∂

∂xi
− ∂

∂xj
to A,

(
∂

∂xi
− ∂

∂xj
)(g) =yi − yj − ln(2| sin(xi)|) + ln(2| sin(xj)|)

= ln(
eyi

sin(xi)
)− ln(

eyj

sin(xj)
) = 0

(2.2)

at x = a(y) due to the sine law. Since g is a strictly concave function in x ∈ A, it follows that
a = (a1, a2, a3) is the unique maximum point of g in A, i.e.,

φ∗(y) = max{g(x)|x ∈ A} =

3∑
i=1

(aiyi + Λ(ai)).

If y /∈ ∆, say eyi > eyj + eyk , then ai = π, aj = ak = 0. The same calculation above shows that
g(x) has no critical points in A. Therefore max{g(x)|x ∈ A} = max{g(x)|x ∈ ∂A}. On the other
hand (Λ(x1) + Λ(x2) + Λ(x3))|∂A = 0, we obtain max{g(x)|x ∈ ∂A} = max{

∑3
r=1 xryr|xr >

0, x1 + x2 + x3 = π, and some xs = 0}. But for x ∈ ∂A,
∑3

i=1 xryr 6 (
∑3

r=1 xr)yi = πyi so that
equality holds for x with xi = π and xj = xk = 0. Therefore, φ∗(y) = πyi =

∑3
j=1 Λ(aj) + ajyj due

to ai = π, aj = ak = 0. In particular, we see that φ∗ is convex and hence continuous on R3.
To show C1-smoothness of φ∗, we first note that by the sine law for Euclidean triangles of angles

a1, a2, a3 and lengths ey1 , ey2 , ey3 , d(
∑3

i=1 Λ(ai)) = −
∑3

i=1 ln |2 sin(ai)|dai = −
∑3

i=1 yidai. See
for instance [33]. Therefore, if y ∈ Ω, dφ∗ =

∑3
i=1(aidyi + yidai) + d(

∑3
i=1 Λ(ai)) =

∑3
i=1 aidyi,

i.e.,5φ∗ = (a1, a2, a3). In the open set Ui = {y|eyi > eyj + eyk} we have φ∗(y) = πyi. Hence we also
have 5φ∗(y) = (a1, a2, a3) on Ui. On the other hand, the C1-smooth function F (y) defined in lemma
2.2 satisfies 5F = (a1, a2, a3) on R3. Therefore these two functions φ∗ and F have the same gradient
on the open dense subset Ω ∪ ∪3

i=1Ui. Since F and φ∗ are continuous, these two functions defer by a
constant. Hence φ∗ is C1-smooth.

To prove the last statement, note that ψθ(y + (k, k, k)) = ψθ(y) and convexity of ψθ follow from
the definition. Furthermore by lemma 2.2, ψθ is strictly convex when restricted to {y ∈ R3|

∑3
i=1 yi =

0, eyi + eyj > eyk}. Let l = (l1, l2, l3) ∈ R3 be the vector so that the Euclidean triangle of edge
lengths el1 , el2 , el3 has inner angles θ1, θ2, θ3 and

∑3
i=1 li = 0. Then 5ψθ(l) = 0. Consider the plane

P = {y ∈ R3|
∑3

i=1 yi = 0}. The restriction ψθ|P is a convex function with a minimal point l so that
ψθ is strictly convex near l. Therefore limp∈P,p→∞ ψθ(p) = ∞. Due to ψθ(y + (k, k, k)) = ψθ(y), this
shows, by projecting R3 to P, that limmax{|yi−yj |}→∞ ψθ(y) =∞.
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We remark that the function
∑3

i=1[Λ(ai(y)) + ai(y)yi] has appeared before in the work of Cohn-
Kenyon-Propp [7] and Bobenko-Pinkahl-Springborn [4]. The proposition is similar to the work of Colin
de Verdiére [8].

2.5 Generalized decorated metrics, angle assignments and volume

Suppose (M, T ) is a triangulated compact pseudo 3-manifold with the sets of edges E = E(T ) and
quads � = �(T ).

Definition 2.7 (Angle assignment). An angle assignment on (M, T ) is a map α : � → R>0 so that for
each tetrahedron σ ∈ T,

∑
q⊂σ α(q) = π. An angle assignment is called positive if α(q) > 0 for all

q. The cone angle of α is defined to be kα : E → R>0 where kα(e) =
∑

q∼e α(q). The volume of α,
denoted by vol(α), is defined to be vol(α) =

∑
q∈� Λ(α(q)).Given k : E → R>0, the space of all angle

assignments of cone angle k is denoted by A∗k(M, T ) and the space of all positive angle assignments of
cone angle k is denoted by Ak(M, T ).

By definition,
A∗k(M, T ) = {α ∈ R�>0|kα = k, ∀σ ∈ T,

∑
q⊂σ

α(q) = π},

and
Ak(M, T ) = {α ∈ R�>0|kα = k, ∀σ ∈ T,

∑
q⊂σ

α(q) = π}.

Note that if Ak(M, T ) 6= ∅, then the closure of Ak(M, T ) in R� is A∗k(M, T ). However, it is
possible that Ak(M, T ) = ∅ and A∗k(M, T ) 6= ∅.

The usual angle structures on closed pseudo 3-manifolds (M, T ) are positive angle assignments of
cone angle 2π at each edge.

As a consequence of lemma 2.3, we have

Corollary 2.8. The volume function vol : A∗k(M, T )→ R is continuous, concave and is smooth strictly
concave when restricted to Ak(M, T ).

Definition 2.9 (Generalized decorated metric). A generalized decorated metric on (M, T ) is given by a
map l : E(T )→ R, called the edge length function.

For each l ∈ RE , by replacing each tetrahedron σ in T by a generalized decorated tetrahedron whose
edge lengths are given by l, we define the dihedral angle of l at an edge e in a tetrahedron σ > e to be
the corresponding dihedral angles in the generalized decorated tetrahedron whose edge lengths are given
by l. Since dihedral angles are the same at two opposite edges in a generalized decorated tetrahedron,
the dihedral angle α = αl of the generalized decorated metric l, α : �→ [0,∞) is an angle assignment,
i.e., ∀σ ∈ T,

∑
q⊂σ α(q) = π. The cone angle of α is called the cone angle of the metric l. We denote it

by kl, i.e., kl = kαl .
The volume of a generalized decorated metric l ∈ RE is defined to be the volume of its dihedral

angle assignment, i.e., vol(l) =
∑

q∈� Λ(α(q)). The covolume of l ∈ RE , denoted by cov(l), is defined
to be

cov(l) = 2vol(l) + l · kl = 2
∑
q∈�

Λ(αl(q)) +
∑
e∈E

l(e)kl(e)

where kl is the cone angle of l and u · v is the standard inner product of u, v ∈ RE . By the definition of
cone angles, we have

cov(l) =
∑
σ∈T

∑
q⊂σ

[2Λ(αl(q)) + αl(q)
∑
e∼q

l(e)]. (2.3)

7



Proposition 2.10. The covolume function defined on the space of all generalized decorated tetrahedra
R6 is given by

cov(x1, ..., x6) = 2φ∗(
x1 + x4

2
,
x2 + x5

2
,
x3 + x6

2
) (2.4)

where x1, ..., x6 are the edge lengths so that xi and xi+3 are lengths of opposite edges. In particular,
cov : R6 → R is a C1-smooth convex function so that

∂cov(x)

∂xi
= αi (2.5)

when αi is the dihedral angle at the i-th edge.

Proof. For i = 1, 2, 3, let yi = xi+xi+3

2 and α1, α2, α3 be the angles of the generalized Euclidean
triangle of edge lengths ey1 , ey2 , ey3 . Then by proposition 2.6, φ∗ =

∑3
i=1[Λ(αi) + 1

2αi(xi +xi+3)] and
∂φ∗

∂yi
= αi. Now by definition, the dihedral angles of generalized tetrahedron of lengths xi’s are αi and

αi+3 = αi for i = 1, 2, 3. Therefore by (2.3), cov(x) = 2
∑3

i=1[Λ(αi) + 1
2αi(xi + xi+3)] = 2φ∗(y).

Furthermore, for i = 1, 2, 3, ∂cov(x)
∂xi

= 2 · 1
2 ·

∂φ∗

∂yi
= αi. The result also works for i = 4, 5, 6 due to

αi+3 = αi.

3 Volume maximization and covolume minimization

A decorated ideal hyperbolic polyhedral metric on (M, T ) is a generalized metric l ∈ RE so that each
tetrahedron σ ∈ T becomes a decorated ideal hyperbolic tetrahedron in the length l. These metrics are the
same as complete finite volume hyperbolic cone metrics on M − V (T ) which are obtained as isometric
gluing of ideal tetrahedra along codimension-1 faces together with a horosphere centered at each cusp.
The collection of the horospheres is called a decoration.

We will establish the main results for decorated ideal hyperbolic polyhedral metrics in this section.
These results imply theorems stated in §1.

Theorem 3.1. Suppose (M, T ) is a compact triangulated pseudo 3-manifold.

1. If l ∈ RE(T ) is a generalized decorated metric on (M, T ) with dihedral angle α = αl ∈
A∗k(M, T ) of cone angle k, then α is a maximum volume point for vol on A∗k(M, T ).

2. If k ∈ RE(T ) so that Ak(M, T ) 6= ∅ and α ∈ A∗k(M, T ) is a maximum volume angle assignment,
then there exists a generalized decorated metric l ∈ RE(T ) so that its dihedral angle function is α.
Furthermore, the maximum volume angle point α is unique.

Theorem 3.2. A decorated ideal hyperbolic polyhedral metric on (M, T ) is determined up to isometry
and change of decoration by its cone angles at edges.

Theorems 3.1 and 3.2 are consequences of a duality result for volume and covolume to be proved
below.

3.1 A combinatorics of triangulations

For a triangulation T of edges E = E(T ) and vertices V = V (T ), the vector space RV (T ) acts linearly
on RE(T ) by

(w + x)(vv′) = w(u) + w(v′) + x(vv′) (3.1)
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where w ∈ RV (T ), x ∈ RE(T ) and the edge vv′ has vertices v, v′. We will identify RV (T ) with the linear
subspace RV (T ) + 0 of RE(T ). For each tetrahedron σ ∈ T, let E(σ) and V (σ) be the sets of edges and
vertices in σ so that RV (σ) acts on RE(σ) according to (3.1). Let Lσ : RE(T ) → RE(σ)/RV (σ) be the
composition of the restriction map and quotient map. The following lemma was proved in [29], also see
[6] page 1354.

Lemma 3.3 (Neumann). The kernel of the linear map
∏
σ∈T Lσ : RE(T ) →

∏
σ∈T RE(σ)/RV (σ) is

RV (T ). In particular, the induced linear map RE(T )/RV (T ) →
∏
σ∈T RE(σ)/RV (σ) is injective.

Indeed, if x ∈ RE(T ) is in the kernel, then for each tetrahedron σ, we can find a function fσ :
V (σ)→ R so that

x(vv′) = fσ(v) + fσ(v′). (3.2)

The goal is to show that if σ and σ′ are two tetrahedra sharing the same vertex v, then fσ(v) = fσ′(v).
Now if σ and σ′ have a common triangle face t > v, then the result follows by considering the three
equations (3.2) at three vertices of t. The geneneral case follows by producing a sequence of tetrahedra
σ0 = σ, σ1, ..., σm = σ′ so that σi and σi+1 have a common triangular face ti > v.

3.2 The covolume functions

For a triangulated pseudo 3-manifold (M, T ), define

C(T ) = {k ∈ RE(T )|A∗k(M, T ) 6= ∅} (3.3)

to be the space of all cone angles of angle assignments. For a tetrahedron σ with sets of edges E(σ)
and vertices V (σ), the covolume function covσ : RE(σ) → R sends x ∈ RE(σ) to

∑
q⊂σ[2Λ(α(q)) +

α(q)
∑

e∼q x(e)] is C1-smooth and convex. By proposition 2.10, we have ∂covσ(x)
∂x(e) =

∑
q∼e α(q). Fur-

thermore, by lemma 2.2, for any k ∈ C(σ) and w ∈ RV (σ), the function covσ(x)− x · k satisfies

covσ(w + x)− (w + x) · k = covσ(x)− x · k. (3.4)

In particular, covσ is a convex function defined on the quotient space RE(σ)/RV (σ). Furthermore, if
k = kθ so that θ(q) > 0 for all q ∈ �, then

lim
x→∞, x∈RE(σ)/RV (σ)

[covσ(x)− x · k] = +∞. (3.5)

This follows from corollary 2.10 and lemma 2.2. For kθ ∈ C(T ) (i.e., kθ(e) =
∑

q∼e θ(q) for an
angle assignment θ), consider the function covT (x)− x · kθ.

Proposition 3.4. (1) For any w ∈ RV (T ), covT (w + x)− (w + x) · kθ = conT (x)− x · kθ.
(2) If θ(q) > 0 for all q, then

lim
x→∞, x∈RE(T )/RV (T )

[covT (x)− x · k] = +∞.

In particular, covT − x · kθ has a minimal point in RE(T ).

Proof. We can rewrite the function as

covT (x)− x · kθ =
∑
σ∈T

[
∑
q⊂σ

2Λ(α(q)) + (α(q)− θ(q))
∑
e∼q

x(e)].
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Therefore, statement (1) follows from that of covolume function for single tetrahedron (3.4). Part (2)
follows from the condition that θ(q) > 0 for all q, lemma 3.3 and (3.5). Since the function covT (x)−x·k
is convex on RE and is invariant under the linear action of RV , it is a convex function on the Euclidean
space RE/RV which tends to infinity as x tends to infinity. Therefore, covT (x) − x · k has a minimal
point in RE/RV which implies that it has a minimal point in RE .

3.3 Fenchel dual of volume

The space of all cone angles C(T ) defined by (3.3) is a compact convex polytope in RE . Indeed, it is
the image of the compact convex polytope of all angle assignments in R� under a linear map. Define
W : RE → R to be the function

W (k) =

{
2 min{−vol(a) | a ∈ A∗k(M, T )} if k ∈ C(T ),

+∞ if k /∈ C(T ).
(3.6)

The function W (k) encodes the volume optimization program. For instance, W (2π, ..., 2π) is the
Casson-Rivin’s program of finding complete hyperbolic metrics of finite volume.

Proposition 3.5. The function W : C(T ) → R is convex and lower semi-continuous in the compact
convex set C(T ).

This proposition follows from the lemma 3.6 below by takingX = {x ∈ R�>0|∀σ ∈ T,
∑

q⊂σx(q) =

π}, f(x) = −2
∑

q∈� Λ(x(q)) = −2
∑

σ∈T
∑

q⊂σ Λ(x(q)) and L : R� → RE to be L(x)(e) =∑
q∼e x(q).

Lemma 3.6. SupposeX ⊂ Rm is a compact convex set, f : X → R is a continuous convex function and
L : Rn → Rm is linear. Then g(y) = min{f(x)|x ∈ X,L(x) = y} is convex and lower semi-continuous
on L(X).

Proof. Take y1, y2 ∈ L(X) and choose x1, x2 ∈ X so that L(xi) = yi and g(yi) = f(xi) for i = 1, 2
and t ∈ [0, 1]. Then L(tx1 + (1 − t)x2) = ty1 + (1 − t)y2. Therefore, g(ty1 + (1 − t)y2) 6 f(tx1 +
(1 − t)x2) 6 tf(x1) + (1 − t)f(x2) = tg(y1) + (1 − t)g(y2), i.e., g is convex. To see lower semi
continuity of g, suppose yn ∈ L(X) so that limn yn = b ∈ L(X). By the compactness of X, after
selecting a subsequence, we may assume that yn = L(xn) so that limn xn = a inX and g(yn) = f(xn).
Clearly due to continuity limn f(xn) = f(a) and L(a) = b. This shows that limn g(yn) = limn f(xn) =
f(a) > g(b).

One of the two main technical results of the paper is the following,

Theorem 3.7. The Fenchel dual of the C1 smooth convex covolume cov : RE → R is the lower semi-
continuous convex function function W : RE → (−∞,∞] defined by (3.6) .

Proof. By the Fenchel duality theorem for convex function, it suffices to show the dual cov∗(y) =
sup{x · y − cov(x)|x ∈ RE} of cov is the function W. Take y ∈ RE . We will show that if y /∈ C(T ),
then cov∗(y) =∞ and if y ∈ C(T ), then cov∗(y) = W (y).

Case 1. y /∈ C(T ). Suppose otherwise that cov∗(y) < ∞, i.e., there exists C1 > 0 so that x · y −
cov(x) 6 C1 for all x ∈ RE . Since vol(x) is uniformly bounded for all x and cov(x)−x ·kx = 2vol(x),
there exists C2 > 0 so that for all x ∈ RE ,

x · y − x · kx 6 C2. (3.7)
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where kx is the cone angle of x considered as a generalized decorated metric.
Consider the linear map L : R� → RE × RT defined by

L(z)(e) =
∑
q∼e

z(q), L(z)(σ) =
∑
q⊂σ

z(q).

By the assumption that y /∈ C(T ), (y, π, ..., π) /∈ L(R�>0). Since L(R�>0) is a closed convex cone in
RE × RT , by the separation theorem applied to (y, π, ..., π) and L(R�>0), there exists h ∈ RE × RT so
that

< h, (y, π, ..., π) >= C2 + 1,

and for all t ∈ R�>0

< h,L(t) >6 0

where < u, v > is the standard inner product in RE × RT .
We can rewrite above two inequalities as∑

e∈E
h(e)y(e) + π

∑
σ∈T

h(σ) = C2 + 1, (3.8)

and, ∑
e∈E

[h(e)
∑
q∼e

t(q)] +
∑
σ∈T

[h(σ)
∑
q⊂σ

t(q)] 6 0. (3.9)

Equation (3.9) can be written as,∑
q∈�

t(q)(
∑
e∼q

h(e) +
∑
q⊂σ

h(σ)) 6 0.

Since it holds for all t ∈ R�>0, hence for all q ∈ �∑
e∼q

h(e) +
∑
q⊂σ

h(σ) 6 0. (3.10)

Now since (3.7) holds for all x ∈ RE , it holds for the projection of h ∈ RE ×RT to RE . Taking this
projection as x in (3.7), letting the diehedral angle of x be α = αx and using (3.8) and (3.9), we obtain

C2 >
∑
e∈E

h(e)y(e)−
∑
e∈E

h(e)(
∑
q∼e

α(q))

=C2 + 1− π
∑
σ∈T

h(σ)−
∑
e∈E

(
∑
q∼e

α(q))h(e)

=C2 + 1−
∑
σ∈T

h(σ)(
∑
q⊂σ

α(q))−
∑
e∈E

(
∑
q∼e

α(q))h(e)

=C2 + 1−
∑
q∈�

α(q)(
∑
q⊂σ

h(σ) +
∑
e∼q

h(e))

>C2 + 1.

Here we have used (3.8) and (3.10) in steps 2 and 4 in the derivation above. This is a contradiction.
Therefore, cov∗(y) =∞.
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Case 2. y ∈ C(T ), say y = kθ for an angle assignment θ ∈ R�>0 where y(e) =
∑

q∼e θ(q). For this
choice of θ, and for any x ∈ RE with dihedral angles α(q) = αx(q), we can write

x · y − cov(x) =
∑
e

x(e)y(e)− 2vol(x)− x · kx

= −
∑
σ∈T

[
∑
q⊂σ

(2Λ(α(q)) +
∑
e<σ

x(e)
∑
q∼e

(α(q)− θ(q))].

Lemma 3.8. If θ1, θ2, θ3 > 0 and θ1 + θ2 + θ3 = π, then for any x1, x2, x3 ∈ R so that α1, α2, α3 are
inner angles of the generalized Euclidean triangle of edge lengths ex1 , ex2 , ex3 , we have

3∑
i=1

Λ(αi) +
3∑
i=1

xi(αi − θi) >
3∑
i=1

Λ(θi).

Proof. The lemma follows from proposition 2.6 on convexity and C1-smoothness of the covolume func-
tion cov : R3 → R (for single tetrahedron). For any C1-smooth convex function F on Rn, we have
F (x) −DF (l)(x − l) > F (l). Now using the fact that ∂cov∂xi

= αi and take l ∈ R3 so that the angles of
the generalized Euclidean triangle of edge lengths el1 , el2 , el3 are θi’s, the result follows.

Summing up the inequalities in lemma 3.8 over all tetrahedra in T, we obtain

2vol(x) + x · kx − x · kθ > 2vol(θ).

This implies, for any angle assignment θ ∈ A∗y(M, T ), we have

x · y − cov(x) 6 −2vol(θ),

and hence
x · y − cov(x) 6W (y). (3.11)

Taking the supremum in x of the inequality above, we obtain

cov∗(y) 6W (y).

We claim that the equality holds. There are two steps involved in the proof. In the first step, we
assume that y = kθ where θ ∈ Ay(M, T ). In this case, by proposition 3.4, the function cov(x)−x · y of
variable x has a minimal point x∗ in RE . Let θ∗ be the dihedral angles of x∗. Then by ∂cov(x)

∂xe
= kx(e),

we obtain kx∗ = y (due to ∂(cov(x)−x·y)
∂xe

= kx(e) − y(e) = 0 for x = x∗). Therefore, at this point x∗,
x∗ · y − cov(x∗) = −2vol(θ∗) > W (y). This shows cov∗(y) > W (y). Combining with (3.11), we
conclude cov∗(y) = W (y).

Next, both cov∗(y) and W (y) are convex and semi-continuous on the closed convex set C(T ) so that
they coincide in the subset {y|Ay(M, T ) 6= ∅} of C(T ) which contains the relative interior of C(T ).
Therefore, cov∗(y) = W (y) on C(T ) is a consequence of the lemma below.

Lemma 3.9 ([32], corollary 7.3.4). Suppose X ⊂ Rn is a closed convex set and f, g : X → R are
convex semi-continuous functions. If f and g coincide on the relative interior of X, then f = g.
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3.4 Proofs of main theorems

We begin with the following,

Proposition 3.10. Suppose k ∈ RE so that Ak(M, T ) 6= ∅. Then there is a unique maximum point of
the volume function vol : A∗k(M, T )→ R.

Proof. The maximum point exists since the vol is continuous on the compact set A∗k(M, T ). Suppose
otherwise that α, α′ are two distinct maximum points of volume in A∗k(M, T ). Then due to convexity,
all points in the line segment tα + (1 − t)α′ for t ∈ [0, 1] are maximum point. On the other hand, the
work of Rivin [33] shows that, due toAk(M, T ) 6= ∅, for any maximum volume point β ∈ A∗k(M, T ) if
β(q) = 0 for some q ⊂ σ, then for the other two quads q′, q′′ ⊂ σ, {β(q′), β(q′′)} = {0, π}. This shows
if α(q) = π, then α′(q) = π. For otherwise, the values of the maximum point 1

2(α + α′) at the three
quads q, q′, q′′ ⊂ σ would be 0, µ, π − µ for some µ ∈ (0, π). Now due to Ak(M, T ) 6= ∅, vol(α) > 0.
Therefore, there is a tetrahedron σ ∈ T so that α(q), α′(q) > 0 for all q ⊂ σ. Hence the function
g(t) = vol(tα + (1 − t)α′) =

∑
σ∈T

∑
q⊂σ Λ(tα(q) + (1 − t)α′(q)) is a sum of concave functions so

that one of it is strictly concave in t. This implies g(t) is not a constant function which contradicts that
g(t)’s are the maximum value vol(α).

3.4.1 A proof of theorem 3.1

To prove part (1) of theorem 3.1, take any θ ∈ A∗k(M, T ) whose cone angle is k. By definition W (k) 6
−2vol(θ). But by the duality theorem 3.7, W (k) = cov∗(k) = sup{y · k − cov(y)|y ∈ RE} >
x · k − cov(x) = −2vol(α). Thus vol(α) > vol(θ), i.e., α is a maximum volume point.

To prove part (2) of theorem 3.1, sinceAk(M, T ) 6= ∅, by proposition 3.4, the function cov(x)−x ·k
has a minimal point l ∈ RE . Let β be the dihedral angle of l. Then by5(cov(x)− x · k) = 0 at x = l,
we see that the cone angle of β is k, i.e., β ∈ A∗k(M, T ). By part (1), β is a maximum volume point
in A∗k(M, T ). Therefore, both β and α are maximum volume points in A∗k(M, T ). By proposition 3.10,
α = β. Thus the result follows.

3.4.2 A proof of theorem 3.2

To prove theorem 3.2, suppose that x, y ∈ RE are two decorated ideal hyperbolic polyhedral metrics
on (M, T ) so that their cone angles kx and ky are the same. We will show that y = w + x for some
w ∈ RV (T ), i.e., x, y differ by a change of decoration. Let k = kx. By the assumption that x is a
decorated ideal hyperbolic polyhedral metric, Ak(M, T ) 6= ∅. By theorem 3.1, the dihedral angles αx
and αy of x and y are the maximum volume points in A∗k(M, T ). On the other hand, proposition 3.10
shows the maximum volume point is unique. Therefore αx = αy. This implies that the underlying
hyperbolic metrics for x and y are isometric. Therefore, x and y differ by a change of decoration, i.e.,
x = w + y, for some w ∈ RV .

Note that we have proved a slightly stronger statement that we only need to assume x is decorated
hyperbolic metric and y is a generalized decorated metric of the same cone angle.

4 Hyper-ideal tetrahedra

4.1 Preliminaries

We recall some of the basic results on hyper-ideal tetrahedra in this subsection. Following [2] and [14],
a hyper-ideal tetrahedron σ in H3 is a compact convex polyhedron that is diffeomorphic to a truncated
tetrahedron in E3 with four hexagonal faces right-angled hyperbolic hexagons (see Figure 1 (a)). The
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four triangular faces isometric to hyperbolic triangles are called vertex triangles. An edge in a hyper-ideal
tetrahedron is the intersection of two hexagonal faces, and a vertex edge is the intersection of a hexagonal
face and a vertex triangle. The dihedral angle at an edge is the angle between the two hexagonal faces
adjacent to it. The dihedral angle between a hexagonal face and a vertex triangle is always π/2.

Let ∆i, i = 1, 2, 3, 4, be the four vertex triangles of σ. We use eij to denote the edge joining ∆i

to ∆j , and use Hijk to denote the hexagonal face adjacent to eij , ejk and eik. (See Figure 1 (a).) The
length of eij is denoted by lij and the dihedral angle at eij is denoted by aij . The length of the vertex
edge ∆i ∩Hijk is denoted by xijk. As a convention, we always assume lij = lji and aij = aji.
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Figure 1: Hyper-ideal and flat hyper-ideal tetrahedra.

Proposition 4.1. ([2], [14]) Suppose σ is a hyper-ideal tetrahedron in H3.

(a) The isometry class of σ is determined by its dihedral angle vector (a12, . . . , a34) ∈ R6 which satisfies
the condition that aij > 0, and

∑
j 6=i aij < π for each fixed i.

(b) Conversely, given (a12, . . . , a34) ∈ R6
>0 so that

∑
j 6=i aij < π for each i, where aij = aji, there

exists a hyper-ideal tetrahedron having aij as its dihedral angle at the ij-th edge.

(c) The isometry class of σ is determined by its edge length vector (l12, . . . , l34) ∈ R6
>0.

Thus, the space of isometry classes of hyper-ideal tetrahedra parametrized by dihedral angles is the
open convex polytope

B =
{

(a12, . . . , a34) ∈ R6
>0

∣∣ ∑
j 6=i

aij < π for each i, where aij = aji
}
. (4.1)

Let vol : B → R be the hyperbolic volume of the hyper-ideal tetrahedra considered as a function in
the dihedral angles. Then the Schlaefli formula says

∂vol

∂aij
= − lij

2
.

See [1] for the Schlaefli formula in a more general setting.

Proposition 4.2. The volume function has the following properties.
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(a) ([36]) The volume function vol : B → R is smooth and has positive definite Hessian matrix at each
point in B.

(b) ([35]) The function vol can be extended continuously to the compact closure B of B in R6, where

B =
{

(a12, . . . , a34) ∈ R6
>0

∣∣ ∑
j 6=i

aij 6 π for each i, where aij = aji
}
.

Let L be the set of vectors (l12, . . . , l34) such that there exists a hyper-ideal tetrahedron having lij as
the length of the ij-th edge. It follows from Proposition 4.1 that L is a simply connected open subset of
R6. The volume function can be considered as defined on L. The Legendre transform of vol : B → R,
to be called the co-volume function, is cov : L → R given by

cov(l) = 2vol(l) +
∑
i<j

aijlij . (4.2)

It is known (see [21]) that cov has a positive definite Hessian matrix at each l ∈ L and hence cov is
locally strictly convex. However, the open subset L ⊂ R6

>0 is not convex. One of the main technical
results in this paper is that cov can be extended to a C1-smooth and convex function on R6 by studying
the flat hyper-ideal tetrahedra.

Recall that a flat hyper-ideal tetrahedron is defined as follows. Take a right-angled hyperbolic oc-
tagon Q with eight edges cyclically labelled as ∆1,e12,∆2,e23,∆3,e34,∆4, e41. Let e13 (and e24) be the
shortest geodesic arc in Q joining ∆1 to ∆3 (and ∆2 and ∆4). We call (Q, {eij}) a flat hyper-ideal
tetrahedron with six edges eij . See Figure 1 (b). The dihedral angles at e13 and e24 are π and are 0 at all
other edges. The volume of a flat hyper-ideal tetrahedron is defined to be zero.

4.2 Generalized hyper-ideal tetrahedra, dihedral angles and volume

In this subsection, we investigate the space of hyper-ideal tetrahedra parametrized by the edge lengths and
their degenerations. One of the goals is to extend the locally convex function cov to a convex function
defined on R6

>0. To this end, let us define a generalized hyper-ideal tetrahedron to be a topological
truncated tetrahedron so that each edge is assigned a positive number, called the edge length. We will
define the dihedral angles and volume and covolume of generalized hyper-ideal tetrahedra in this section.

Suppose σ is a generalized hyper-ideal tetrahedron with edges eij joining the i-th and the j-th vertices
and lij = lji is the edge length of eij . To define the dihedral angle aij at eij , we need the following
compatibility property, which is a special case of Proposition 3.1 of [22].

Lemma 4.3. For (l12, . . . , l34) ∈ R6
>0 and {i, j, k, h} = {1, 2, 3, 4}, let lji = lij for i 6= j and let

xijk = cosh−1
(cosh lij cosh lik + cosh ljk

sinh lij sinh lik

)
(4.3)

and

φikh =
coshxijk coshxijh − coshxikh

sinhxijk sinhxijh
. (4.4)

Then φikh = φjkh.
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Proof. Let cij = cosh lij , sij = sinh lij , c
k
ij = coshxkij and skij = sinhxkij for {i, j, k} ⊂ {1, . . . , 4}.

By definition, we have

φikh =
1

sijks
i
jh

(cijcik + cjk
sijsik

cijcih + cjh
sijsih

− cikcih + ckh
siksih

)
=
cikcih + cjkcjh + cijcikcjh + cijcihcjk − s2

ijckh

sijks
i
jhs

2
ijsiksih

,

(4.5)

and similarly

φjkh =
cjkcjh + cikcih + cijcihcjk + cijcikcjh − s2

ijckh

sjiks
j
ihs

2
ijsjksjh

. (4.6)

To see φikh = φjkh, it suffices to show that the two denominators in (4.5) and (4.6) are the same. To this
end, we have

(sijksijsik)
2 =
(
(cijk)

2 − 1
)
s2
ijs

2
ik

=
((cijcik + cjk

sijsik

)2 − 1
)
s2
ijs

2
ik

= 2cijcikcjk + c2
ij + c2

ik + c2
jk − 1.

Therefore,

φikh(l) = φjkh(l) =
cikcih + cjkcjh + cijcikcjh + cijcihcjk − s2

ijckh√
2cijcikcjk + c2

ij + c2
ik + c2

jk − 1
√

2cijcihcjh + c2
ij + c2

ih + c2
jh − 1

. (4.7)

Note that if σ is a hyper-ideal tetrahedron of edge lengths lij , then by the cosine law, xijk and
arccos(φkh) in lemma 4.3 are the lengths of the vertex edge ∆i ∩ Hijk and the dihedral angle at
ekh. In particular, the conclusion of the lemma is obvious for σ. For a generalized hyper-ideal tetra-
hedron (σ, {lij}), using lemma 4.3 we call xijk the length of the vertex edge and define the function
φij : R6

>0 → R by φij(l) = φikh(l). Then we have

Proposition 4.4. The space of all hyper-ideal tetrahedra parametrized by the edge lengths is

L =
{
l ∈ R6

>0

∣∣ φij(l) ∈ (−1, 1) for all {i, j} ⊂ {1, 2, 3, 4}, i 6= j
}
.

Proof. If l is the edge length vector of a hyperbolic tetrahedra, then each of the dihedral angles aij(l) ∈
(0, π). By the cosine law for the hyperbolic triangle ∆k and right-angled hexagonHijk,we have φij(l) =
cos aij(l) ∈ (−1, 1). This shows φij ∈ (−1, 1). Conversely, for each l ∈ R6

>0 with φij(l) ∈ (−1, 1) for
all {i, j} ⊂ {1, . . . , 4}, by (4.4), xijk, x

i
jh and xikh satisfy the triangular inequality. Then there exists

a unique hyperbolic triangle ∆i having them as edge lengths. Taking aij = cos−1(φij) ∈ (0, π), by
Lemma 4.3, we see that aij , aik and aih are the angles of ∆i. Hence they satisfy aij + aik + aih < π.
By Proposition 4.1, there is a unique hyper-ideal tetrahedron σ with dihedral angles {aij}. Applying the
Cosine Law to the vertex triangles {∆i} and hexagons {Hijk}, we see that l is the edge lengths of σ.

Proposition 4.5. Let ∂L be the frontier of L in R6
>0. Then ∂L = X1 t X2 t X3, where each Xi,

i = 1, 2, 3, is a real analytic codimension-1 submanifold of R6
>0. The complement R6

>0 \ L is a disjoint
union of three manifolds Ωi with boundary so that Ωi ∩ ∂L = Xi, i = 1, 2, 3.
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For {i, j} ⊂ {1, . . . , 4}, let Ω±ij = {l ∈ R6
>0 | ± φij(l) > 1} and X±ij = {l ∈ R6

>0 |φij(l) = ±1}.
Then by Proposition 4.4, we have

R6
>0 \ L =

⋃
i 6=j

(
Ω+
ij ∪ Ω−ij

)
.

Lemma 4.6. For {i, j, k, h} = {1, 2, 3, 4}, we have

(1) Ω−ij ∩ Ω−ik = ∅.

(2) Ω−ij = Ω−kh and Ω+
ij = Ω−ik ∪ Ω−ih.

(3) X−ij = X−kh and X+
ij = X−ik ∪X

−
ih.

Proof. For each l ∈ Ω−ij , we have φikh(l) 6 −1 and xijk + xijh 6 xikh, which implies φijk(l) > 1 and
φijh(l) > 1. Therefore, (1) holds and Ω−ij ⊂ Ω+

ik ∩ Ω+
ih. On the other hand, for each l ∈ Ω+

ik ∩ Ω+
ih,

we have φijh(l) > 1 and φijk(l) > 1, which implies that xijh 6 |xijk − xikh| and xijk 6 |xijh − xikh|.
As a consequence, xijk + xijh 6 xikh and φikh(l) 6 −1. Therefore, we have Ω+

ik ∩ Ω+
ih ⊂ Ω−ij , hence

Ω−ij = Ω+
ik ∩ Ω+

ih. By symmetry, we have Ω−ij = Ω+
jk ∩ Ω+

jh, from which we see Ω−ij = Ω+
ik ∩ Ω+

ih ∩
Ω+
jk ∩ Ω+

jh = Ω−kh. Now for l ∈ Ω+
ij , we have φikh(l) > 1, which implies that xikh 6 |xijk − xijh|. If

xikh 6 xijk − xijh, then φijh(l) 6 −1 and l ∈ Ω−ik. If xikh 6 xijh − xijk, then φijk(l) 6 −1 and l ∈ Ω−ih.

Therefore, we have Ω+
ij ⊂ Ω−ik ∪ Ω−ih. On the other hand, since Ω−ik ⊂ Ω+

ij and Ω−ih ⊂ Ω+
ij , we have

Ω−ik ∪ Ω−ih ⊂ Ω+
ij , from which (2) follows. (3) follows from the same argument with the inequalities

replaced by equalities.

Proof of Proposition 4.5. Let bh =
√

2cijcikcjk + c2
ij + c2

ik + c2
jk − 1, cij = cosh lij and sij = sinh lij

for each l = (l12, . . . , l34) ∈ R6
>0 and lij = lji. We have

∂φij
∂lkh

= −
s2
ijskh

bkbh
6= 0,

which implies ∇φij 6= 0. Therefore, −1 is a regular values of φij . By the Implicit Function Theorem,
X−ij = φ−1

ij (−1) is a smooth codimension-1 submanifold of R6
>0. Since each φij is real analytic in

R6
>0, the submanifold X−ij is real analytic. Let Ω1 = Ω−12, Ω2 = Ω−13 and Ω3 = Ω−14, and similarly let

X1 = X−12, X2 = X−13 and X3 = X−14. As a consequence of Lemma 4.6, we have

R6
>0 \ L = Ω1 t Ω2 t Ω3

is a disjoint union of three 6-dimensional submanifolds with boundary. By Lemma 4.6, Xi = ∂Ωi

and ∂L ⊂ t3
i=1∂Ωi = t3

i=1Xi. We claim that Xi ⊂ ∂L. Indeed, for each l = (l12, . . . , l34) ∈ X1,
say, we construct a sequence {l(n)} ⊂ L convergent to l as follows. We let εn → 0+, and define
l(n) = (l12 − εn, l13, . . . , l34) → l. Then for n large enough, by (4.3) xi (n)

jk , x
i (n)
jh and xi (n)

kh satisfy the
triangular inequalities, and by (4.4) each φij(l(n)) ∈ (−1, 1). By Proposition 4.4, l(n) ∈ L for n large
enough. Therefore, we have ∂L = t3

i=1Xi, which completes the proof.

Lemma 4.7. The function φij extends continuously to R6
>0, and φij(l) = 1 when lij = 0.

Proof. Since the denominator of φij is never equal to 0, the function continuously extends R6
>0. Fur-

thermore a direct calculation show if lij = 0, i.e., cij = 1, then φij(l) = 1. Indeed, both numerator and
denominator in (4.7) are (cik + cjk)(cih + cjh).
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Proposition 4.8. For each subset S of the edges of a tetrahedron, let

DS =
{
l ∈ R6

>0

∣∣ l(e) > 0 for e ∈ S and l(e) = 0 for e /∈ S
}
,

and let Xi, i = 1, 2, 3, be the closure of Xi in R6
>0. If DS ∩ Xi 6= ∅, then XS

i
.
= DS ∩ Xi is a real

analytic codimension-1 submanifold of DS .

Proof. LetX−ij be the closure ofX−ij in R6
>0.We first observe that if eij /∈ S, thenDS∩X−ij = ∅. Indeed,

by Lemma 4.7, if l ∈ X−ij , then φij(l) = −1, and if l ∈ RS , then φij(l) = 1. Therefore, if l ∈ DS ∩X−ij ,
then eij ∈ S and hence sij 6= 0. By Lemma 4.6, X−ij = X−kh, which implies ekh ∈ S, hence skh 6= 0.
Letting cij , sij and bi be as before, we have

∂φij
∂lkh

= −
s2
ijskh

bkbh
6= 0,

which implies that the projection of∇φij to the tangent space ofDS at l ∈ DS∩X−ij is non-vanishing, i.e.,

DS andX−ij transversely intersect. By the Implicit Function Theorem, the intersectionDS∩X−ij = DS∩
φ−1
ij (−1) is a smooth codimension-1 submanifold ofDS . Since each φij is real analytic, the submanifold

is real analytic in DS .

Let L be the closure of L in R6
>0 and let LS = DS ∩ L. For i 6= j, by definding aij |Ω+

ij

= 0 and

aij |Ω−ij
= π, we have

Corollary 4.9. The dihedral angle function aij : L → R can be extended continuously to R6
>0 so that its

extension, still denoted by aij : R6
>0 → R, is a constant on each component of DS \ LS for each subset

S of the edges.

We call aij in corollary 4.9 the dihedral angle of the generalized hyper-ideal tetrahedron (σ, {lrs}).

4.3 Covolume of generalized hyper-ideal tetrahedron

The locally convex function covolume function cov : L → R defined by (4.2) satisfies the Schlaefli
identity that

∂cov

∂lij
= aij

for i 6= j,where aij : L → R is the dihedral angle function at the ij-th edge. In particular, the differential
1-form ω =

∑
i<j aijdlij = dcov is closed in L, and we can recover covolume cov by the integration

cov(l) =
∫ l
ω.

For each l = (l12, . . . , l34) ∈ R6, we let l+ = (l+12, . . . , l
+
34) ∈ R6

>0 where l+ij = max{0, lij}. By
Corollary 4.9, we can extend the function aij : L → R to a continuous function aij : R6 → R by

aij(l) = aij(l
+),

and call a(l) = (a12(l), . . . , a34(l)) the dihedral angle vector of l ∈ R6. We define a new continuous
1-form µ on R6 by

µ(l) =
∑
i 6=j

aij(l)dlij .

Proposition 4.10. The continuous differential 1-form µ =
∑

ij aij(l)dlij is closed in R6, i.e., for any
Euclidean triangle ∆ in R6,

∫
∂∆ µ = 0.
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Proof. We prove it in two steps. In the first step, we prove that µ is closed in R6
≥0. Next, we show µ is

closed in R6.
By Corollary 4.9, the differential 1-form µ =

∑
ij aij(l)dlij is continuous in R6. The restriction

µ|L =
∑

ij aijdlij = dcov is closed. By corollary 4.9, aij is a constant in each connected component of
R6
>0\L. Proposition 4.5 shows that the subset L in R6

>0 is open and bounded by a smooth codimension-1
submanifold. Now we use the following lemma.

Lemma 4.11. (Propositions 2.4 and 2.5, [23]) Suppose U ⊂ RN is an open set and λ =
∑

i αi(x)dxi
is a continuous 1-form on U.

(1) If A ⊂ U is an open subset bounded by a smooth codimension-1 submanifold of U, and λ|A and
λ|U\A are closed, then µ is closed in U.

(2) If U is simply connected, then F (x) =
∫ x

λ is a C1-smooth function such that

∂F

∂xi
= αi.

(3) If U is convex and A ⊂ U is an open subset of U bounded by a codimension-1 real analytic sub-
manifold of U so that F |U and F |U\A are locally convex, then F is convex in U.

Thus, by Lemma 4.11 (1), the differential 1-form µ is closed in R6
>0.

For each subset S of the edges, by Equation (4.7), Lemma 4.7 and a direct calculation, µ|DS is closed
in LS . By definition, µ|DS is constant in each connected component of DS \ LS . Now Proposition 4.8
shows that the subset LS in DS is open and bounded by a smooth codimension-1 submanifold. Thus,
by Lemma 4.11 (1), the differential 1-form µ|DS is closed in DS . For each Euclidean triangle ∆ in a
quadrant Q of R6, let S be set of edges e so that l(e) > 0 for all l ∈ Q, and let ∆S be the projection
of ∆ to DS . By definition and Lemma 4.7, aij(l) ≡ 0 if lij 6 0, which implies

∫
∆ µ =

∫
∆S

µ|DS = 0.

As a consequence, µ is closed in each of the quadrants of R6. Repeating applying Lemma 4.11 (1), we
conclude that µ is closed in R6.

Corollary 4.12. The function cov : R6 → R defined by the integral

cov(l) =

∫ l

(0,...,0)
µ+ cov(0, . . . , 0) (4.8)

is a C1-smooth convex function.

Proof. By Lemma 4.11 (2) and Proposition 4.10, cov is a C1-smooth function in R6. By Lemma 4.11
(3) and Lemma 4.9, cov is convex in R6

>0. By the continuity, for each subset S of the edges, cov|DS is
convex in DS . Since aij(l) ≡ 0 if lij 6 0, we have cov(l) = cov(l+) and l+ ∈ DS for some S. As a
consequence, cov is convex in each quadrant of R6. Repeat using Lemma 4.11 (3), we conclude that cov
is convex in R6.

Remark 4.13. By the work of Ushijima [39], cov(0, . . . , 0) = 2vol(0, . . . , 0) = 16Λ(π/4), where Λ is
the Lobachevsky function defined by

Λ(a) = −
∫ a

0
ln |2 sin t|dt,

and vol(0, . . . , 0) is the maximal volume amongst the generalized hyperbolic tetrahedra.
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5 Global rigidity of hyper-ideal polyhedral metrics

In this section, we prove Theorem 1.2 (b) using the convex extension of cov in corollary 4.12.
Let (M, T ) be triangulated closed pseudo 3-manifold and letE = E(T ), V = V (T ) and T = T (T )

respectively be the sets of edges, vertices and tetrahedra in T . Replacing each 3-simplex in T by a
hyper-ideal tetrahedron and gluing them along codimension-1 by isometries, we obtain an hyper-ideal
polyhedral metric on (M, T ). This metric is the same as assigning a positive number to each edge
e ∈ E(T ) so that each tetrahedron σ becomes a hyper-ideal tetrahedron with assigned numbers as edge
lengths. They are the same as hyperbolic cone metrics on M − N(V ) with singularity consisting of
geodesic arcs between totally geodesic boundary. Here N(V ) is an open regular neighborhood of V in
M. We denote by L(M, T ) the space of all hyper-ideal polyhedral metrics on (M, T ) parametrized by
the edge length vector l : E → R>0. If l ∈ L(M, T ), its curvature is a map Kl : E(T ) → R sending
each edge to 2π less the sum of dihedral angles at the edge. The curvature map K : L(M, T ) → RE
sends l to Kl.

The rigidity theorem 1.2 (b) can be rephrased as

Theorem 5.1. For any closed triangulated pseudo 3-manifold (M, T ), a hyper-ideal polyhedral metric
on (M, T ) is determined by its curvature, i.e., the curvature map K : L(M, T )→ RE(T ) is injective.

Proof. For each l ∈ L(M, T ) and each tetrahedron σ ∈ T, let lσ ∈ R6
>0 be the edge length vector of σ

in the hyperbolic polyhedral metric l. Define the co-volume function

cov(l) =
∑
σ∈T

cov(lσ) (5.1)

on L(M, T ). By proposition 4.2 (a), the Hessian matrix of the function cov(lσ) is positive definite at
each point in L. Therefore, the Hessian matrix of cov is positive definite. In particular, cov is locally
strictly convex. On the other hand, it is shown in [21] that the gradient of cov is 2π minus the curvature
map Kl ∈ RE , i.e.,∇cov = 2π(1, 1, ..., 1)−Kl. Therefore, it suffices to show that∇cov is injective.

We extend the co-volume function cov : L(M, T ) → R defined by (5.1) to a C1-smooth convex
function, still denoted by cov : RE>0 → R, by

cov(l) =
∑
σ∈T

cov(lσ),

where cov(lσ) is the extended convex function given by corollary 4.12. The convexity of cov follows
from the fact that each summand cov(lσ) is convex.

Now suppose otherwise that there exist l1 6= l2 ∈ L(M, T ) so that Kl1 = Kl2 . Joint l1 and l2 in R6
>0

by the line segment tl1+(1−t)l2, t ∈ [0, 1], and consider the convex functionw(t) = cov(tl1+(1−t)l2),
t ∈ [0, 1]. By the construction, w : [0, 1] → R is a C1-smooth convex function so that w′(t) = ∇cov ·
(l2 − l1). Now ∇cov(li) = (2π, . . . , 2π)−Kli and Kl1 = Kl2 . It follows that w′(0) = w′(1). Since w
is convex, w(t) mush be a linear function in t. However, cov is strictly convex near l1 and l2. Therefore,
w is strictly convex in t near 0 and 1. This is a contradiction.

6 Volume maximization of angle structures

Let (M, T ) be closed triangulated pseudo 3-manifold with set of edges E and set of tetrahedra T.

20



Definition 6.1 (Angle assignment of hyper-ideal type). An angle assignment (respectively positive angle
assignment) of hyper-ideal type on (M, T ) assigns each edge e in each tetrahedra σ a non-negative
(respectively positive) number a(e, σ), call the dihedral angle of e in σ, so that sum of the dihedral angles
at three edges in the same tetrahedron σ adjacent to each vertex is less than or equal to (respectively
strictly less than) π. The cone angle of an angle assignment is the function k ∈ RE>0 sending each edge
e to the sum of dihedral angles at e.

For any k ∈ RE>0, we denote respectively by B∗k(M, T ) and Bk(M, T ) the spaces of angle assign-
ments and positive angle assignments with cone angles k. Note that if Bk 6= ∅, then B∗k is the compact
closure of Bk. When k = (2π, . . . , 2π), we denote respectively by B∗(M, T ) and B(M, T ) the space
of the corresponding angle assignments and positive angle assignments of cone angles 2π. We note that
B(M, T ) coincides with the space of linear hyperbolic structures on (M, T ) defined in [21].

By the work of [2] and [14], a positive angle assignment a on (M, T ) is the same as making each
tetrahedra σ ∈ T a hyper-ideal tetrahedron so that its dihedral angles are given by a. In particular, we can
define the volume of a positive angle assignment as the sum of the hyperbolic volume of the hyper-ideal
tetrahedra, i.e., the volume function vol : Bk(M, T )→ R is

vol(a) =
∑
σ∈T

vol(aσ),

where aσ ∈ B is the hyper-ideal tetrahedron with dihedral angles given by a. By the work of Schlenker
[36], vol is smooth and strictly convex on Bk(M, T ). A theorem of Rivin [35] shows that vol can be
extended continuously to the compact closure B∗k(M, T ) of Bk(M, T ).

Definition 6.2 (Generalized hyper-ideal metric). We call a map l : E → R>0 a generalized hyper-ideal
metric on (M, T ).

For each l ∈ RE>0, by replacing each tetrahedron σ in T by a generalized hyper-ideal tetrahedron
whose edge lengths are given by l, we define the dihedral angle of l at an edge e in a tetrahedron σ > e
to be the corresponding dihedral angles in the generalized hyper-ideal tetrahedron whose edge lengths
are given by l. The cone angle of l at e is the sum of dihedral angles of l at e in all the tetrahedra σ that
contain e. The goal of this section is to prove the following

Theorem 6.3. Suppose (M, T ) is a closed triangulated pseudo 3-manifold so that Bk(M, T ) 6= ∅. Then,

(a) there is a unique a ∈ B∗k(M, T ) that achieves the maximum volume, and

(b) for each generalized hyper-ideal metric l ∈ RE>0 with cone angles k, the dihedral angles a(l) of l is
the maximum volume on B∗k(M, T ).

(c) If a ∈ B∗k(M, T ) achieves the maximum volume, then there exists a generalized hyperbolic metric
l ∈ RE>0 whose dihedral angles a(l) = a.

Theorem 6.3 implies Theorem 1.4 in §1. It is known to Kojima [19] that every compact hyperbolic 3-
manifold with totally geodesic boundary admits a geometric ideal triangulation so that each tetrahedron
is either hyper-ideal or flat hyper-ideal whose dihedral angles are 0 and π. One consequence of Theorem
6.3 (b) is

Corollary 6.4. Suppose M is a compact hyperbolic 3-manifold with totally geodesic boundary and T is
a geometric ideal triangulation of M so that each tetrahedron is either hyper-ideal or flat hyper-ideal.
If B(M, T ) 6= ∅, then the maximum volume on B∗(M, T ) is equal to the hyperbolic volume of M.

The counterpart of Corollary 6.4 for cusped hyperbolic 3-manifolds was proved in [24].
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6.1 Volume function and sub-derivatives

Recall that B ⊂ R6 is the space of dihedral angle vectors of hyper-ideal tetrahedra defined by (4.1) and
let B be its closure, i.e.,

B =
{

(a12, . . . , a34) ∈ R6
>0 |

∑
j 6=i

aij 6 π for each i, where aij = aji
}
.

By [35], the volume function vol on B is continuous and convex. To study the volume optimization, we
need to classify points in B.

Definition 6.5. We call a = (a12, . . . , a34) ∈ B generalized dihedral angles

I. of type I if for each i ∈ {1, . . . , 4},
∑

j 6=i aij < π,

II. of type II if a = (π, 0, 0, 0, 0, π), (0, π, 0, 0, π, 0) or (0, 0, π, π, 0, 0), and

III. of type III if not of types I and II.

We denote by BI , BII and BIII respectively the set of generalized dihedral angles of types I, II and
III. Note that B ⊂ BI . For each {i, j} ⊂ {1, . . . , 4}, we let ψij : B → R be the function defined by

ψij(a) =
s2
ijckh + cikcjk + cihcjh + cijcikcjh + cijcihcjk√

2cijcikcih + c2
ij + c2

ik + c2
ih − 1

√
2cijcjkcjh + c2

ij + c2
jk + c2

jh − 1
,

where sij = cos aij and cij = cos aij . By the Cosine Law, if a ∈ B is the dihedral angles of a hyper-ideal
tetrahedron σ with l(a) = (l12(a), . . . , l34(a)) the edge lengths, then lij(a) = cosh−1 ψij(a).

Lemma 6.6. The function ψij : B → R continuously extends to BI , and ψij(a) = 1 when aij = 0.

Proof. Since
∑

j 6=i aij < π for i = 1, . . . , 4, the denominator of ψij is not equal to 0, hence the function
continuously extends. If aij = 0, then cij = 1 and ψij(a) = 1.

For a ∈ BI ,we let lij(a) = cosh−1 ψij(a) and call l(a) = (l12(a), . . . , l34(a)) ∈ R6
>0 the associated

edge lengths of a. Given a tetrahedron σ, let S be a set of edges in σ and define

BS
.
= {a ∈ BI | aα > 0 for α ∈ S and aα = 0 for α /∈ S}.

The set BS is an open convex polytope in the smallest affine space containing it since BS is defined by
strict linear inequalities and linear equalities.

Proposition 6.7. For each S, the restriction of the volume function is smooth and strictly concave in BS .

Proof. By Lemma 6.6, the edge lengths continuously extend to BS with lα = 0 for α /∈ S. From the
definition, each ψα for α ∈ S is smooth in BS .As a consequence, the function lα = cosh−1 ψα is smooth
and the following differential 1-form ωS = −1

2

∑
α∈S lαdaα is smooth in BS . From the definition and

a direct calculation, we have ∂lα
∂aβ

=
∂lβ
∂aα

for α, β ∈ S, i.e., the differential 1-form ωS is closed in BS .
For each a ∈ BS , take a0 ∈ BS close to a, and define a function g : BS → R by g(a) =

∫ a
a0
ωS ,

where the path in the integral is any smooth path in BS connecting a0 and a. Since ωS is smooth and
closed, g is well defined and smooth in BS and ∂g

∂aα
= − lα

2 for each corner α ∈ S. We claim that
g(a) = vol(a)−vol(a0). The claim implies that the volume function vol is smooth in BS and ∂vol

∂aα
= − lα

2

for each α ∈ S. Now since a0 is close to a, we can take a vector w ∈ R6 so that a+w, a0 +w ∈ B. Let
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v = a− a0 and let f(t, s)
.
= −1

2

∑
α lα(a0 + tv + sw)vα, where the summation is over all the dihedral

angles. By the continuity of vol, we have vol(a)−vol(a0) = lims→0+
(
vol(a+sw)−vol(a0 +sw)

)
=

lims→0+
∫ 1

0 f(t, s)dt.One the other hand, since lα continuously extends toBS , it is uniformly continuous
on the compact parallelogram determined by a0, a, a0 +w and a+w. As a consequence, f is uniformly
continuous on the compact square [0, 1]× [0, 1] and g(a) =

∫ 1
0 f(t, 0)dt =

∫ 1
0 lims→0+ f(t, s)dt. Again,

since f is uniformly continuous, we can switch the order of taking limit and integrating, and we have
g(a) = vol(a)− vol(a0).

Now we show the strict concavity of vol in BS . Let l : BS → R6
>0 be map defined by the restriction of

the associated edge lengths and let LS = l(BS). From the definition, each φα for α ∈ S is smooth in LS ,
hence the function aα = cos−1 φα is smooth in LS . Now we have two smooth maps a = (aα) : LS →
BS and l = (lα) : BS → LS which are, by the Cosine Law, inverses of each other. As a consequence,
the map l : BS → LS is a local diffeomorphism and the Jocobi matrix [∂lα/∂aβ]α,β∈S is non-singular.
Since BS is connected, the signature of the Hessian matrix −1

2 [∂lα/∂aβ]α,β∈S of the volume function
vol on BS is independent of the choice of a ∈ BS . By a direct calculation, using the formula in Guo ([16],
Theorem 1), the matrix−1

2 [∂lα/∂aβ]α,β∈S is negative definite at aα = π/4 for each α ∈ S. This implies
that vol is locally strictly concave in BS . Since BS is convex, the volume function vol is strictly concave
in BS .

Lemma 6.8. Let l ∈ R6
>0 be the edge length vector of a generalized hyper-ideal tetrahedron with

dihedral angles a(l) ∈ BII , and let v ∈ R6 so that a(l) + v ∈ B. Then

lim
t→0+

d

dt
vol(a(l) + tv) 6 −1

2
v · l.

Proof. Let f : [0, 1] → R be the function defined by f(t) = vol(a(l) + tv). For (1), by the concavity
of vol and the Mean Value Theorem, we have f ′(t) < f(t)−f(0)

t for all t ∈ (0, 1). Since a(l) ∈ BII ,
f(0) = vol(a(l)) = 0, and

f ′(t) <
f(t)

t
. (6.1)

By Proposition 4.5, L is open in R6
>0 and ∂L is a smooth codimension–1 submanifold, hence for each

l ∈ ∂L, there exists a sequence {l(n)} ⊂ L converging to l and the corresponding dihedral angles
{a(n)} converging to a(l). Since the volume function vol is strictly concave in B, we have for all n
and for all b ∈ B that vol(b) − vol(a(n)) < ∇vol(a(n)) · (b − a(n)). By Schlaefli formula, vol(b) −
vol(a(n)) < − l(n)

2 · (b − a
(n)). Since vol is continuous on B and vol(a(l)) = 0, as n approaches +∞,

vol(b) 6 − l
2 · (b− a(l)). In particular, when b = a(l) + tv, we have

f(t) 6 − t
2
v · l. (6.2)

By (6.1) and (6.2), we have f ′(t) < −1
2v · l, hence limt→0+ f

′(t) 6 −1
2v · l. For l = (l12, . . . , l34) /∈ L,

by Proposition 4.4, there exists anm = (m12, l13, . . . , l34) ∈ ∂L such that a(m) = a(l). By the previous
case, we have

lim
t→0+

f ′(t) 6 −1

2
v ·m. (6.3)

Without loss of generality, we may assume that a(l) = (π, 0, 0, 0, 0, π). By Cosine Law, l12 > m12.
Since a(l) + v ∈ B, we have π + v12 = (a(l) + v)12 < π, hence v12 < 0. As a consequence,
v · l − v ·m = v12(l12 −m12) < 0. Combined with (6.3), we have limt→0+ f

′(t) < −1
2v · l.
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Lemma 6.9. Let a ∈ BIII . Then for each v ∈ R6 so that a+ v ∈ B, one has

lim
t→0+

d

dt
vol(a+ tv) = +∞.

Proof. We let sij(t) = sin(aij + tvij), cij(t) = cos(aij + tvij) and

uij(t) = s2
ij(t)ckh(t) + cik(t)cih(t) + cjk(t)cjh(t) + cij(t)cik(t)cjh(t) + cij(t)cih(t)cjk(t)

for {i, j} ⊂ {1, . . . , 4}, and let

bi(t) =
√

2cij(t)cik(t)cih(t) + c2
ij(t) + c2

ik(t) + c2
ih(t)− 1

for i ∈ {1, . . . , 4}. Then cosh lij(a + tv) =
uij(t)

bi(t)bj(t)
. Let mij > 0 and ni > 0 respectively be the

asymptotic orders of uij(t) and bi(t) as t approaches 0, i.e., uij(t) = uijt
mij+o(tmij ) and bi(t) = bit

ni+
o(tni) for some constants uij 6= 0 and bi 6= 0. As t approaches 0, cosh(lij(a+ tv)) =

uij
bibj

tmij−ni−nj +

o(tmij−ni−nj ), and by Schlaefli formula,

limt→0+

( d
dt
vol(a+ tv)−

(
− 1

2

∑
i 6=j

vij(mij − ni − nj)
)

ln t
)

=− 1

2

∑
i 6=j

vij lim
t→0

(
lij(a+ tv)− (mij − ni − nj) ln t

)
= −1

2

∑
i 6=j

vij ln
uij
bibj

is a finite number. Therefore, to prove the result, it suffices to prove that the−1
2

∑
i 6=j vij(mij−ni−nj)

is strictly negative. First we consider the case that, up to a permutation of the vertices, a 6= (0, α, π −
α, π− α, α, 0) for some a ∈ (0, π) and a 6= (π, 0, 0, 0, 0, β) for some β ∈ [0, π). In this case, if aij = π
for some {i, j} ⊂ {1, . . . , 4}, then aik = aih = ajk = ajh = 0, which was ruled out by the assumption.
If aij ∈ (0, π) for some {i, j} ⊂ {1, . . . , 4}, then we claim thatmij = 0, i.e., uij(0) 6= 0. Indeed, letting
sij = sin aij and cij = cos aij , we have uij(0) = s2

ij(ckh + cikcjk) + (cih + cijcik)(cjh + cijcjk) and
also uij(0) = s2

ij(ckh + cihcjh) + (cik + cijcih)(cjk + cijcjh). Since a ∈ B, we have cpq + cprcps > 0,
{p, q, r, s} = {1, 2, 3, 4}, and the equality holds if and only if apq + apr + aps = π and one of apr and
aps equals 0. Therefore, since s2

ij > 0, uij(0) = 0 only if ckh + cikcjk = 0, ckh + cihcjh = 0 and one
of cih + cijcik and cjh + cijcjk equals 0. If, say, cjh + cijcjk = 0, then from the last equation, we have
ajk = 0 and ajh = π− aij ∈ (0, π). With ckh + cihcjh = 0, we have aih = 0 and akh = π− ajh = aij .
From ckh + cikcjk = 0 and ajk = 0, we have aik = π − akh = π − aij . As a consequence, up to a
permutation of indices, a = (0, aij , π − aij , π − aij , aij , 0) with aij ∈ (0, π), which was ruled out by
the assumption. Hence the claim is true. Now for aij = 0, since a+ v ∈ B, we have vij = aij + vij > 0
and −1

2vij(mij − ni − nj) 6 1
2vij(ni + nj). By the definition of bi(t), we have ni > 0 if and only if∑

j 6=i aij = π. Since a is of type III, there exists at least one i ∈ {1, . . . , 4} with
∑

j 6=i aij = π. For such
i, since a+v ∈ B, we have

∑
j 6=i vij < 0. Thus,−1

2

∑
i 6=j vij(mij−ni−nj) 6 1

2

∑
i 6=j vij(ni+nj) =

1
2

∑4
i=1(

∑
j 6=i vij)ni < 0. The two sporadic cases are verified by a direct calculation. In the case that

a = (0, α, π − α, π − α, α, 0) with a ∈ (0, π), we have ni = 2 for each i ∈ {1, . . . , 4}, n13 = n14 =
n23 = n24 = 1 and n12 = n34 = 2. Since a12 = a34 = 0 and

∑
aij = 2π, we have v12 > 0, v34 > 0

and
∑
vij < 0. Therefore, −1

2

∑
vij(mij − ni − nj) = v12 + v34 + 3

2(v13 + v14 + v23 + v24) <
3
2

∑
vij < 0. In the case that a = (π, 0, 0, 0, 0, β) with β ∈ [0, π), we have n1 = n2 = 2, n3 = n4 = 0,

m12 = m13 = m14 = m23 = m24 = 2 and m34 = 0. Since a12 = π, we have v12 < 0 and
−1

2

∑
vij(mij − ni − nj) = v12 < 0.
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6.2 Fenchel duality

Let (M, T ) be closed triangulated pseudo 3-manifold. The space of all generalized hyper-ideal poly-
hedral metrics on (M, T ), parameterized by the edge length vectors, is RE . The co-volume function
cov : RE → R is defined by

cov(l) =
∑
σ∈T

cov(lσ),

where each summand is the function defined by (4.8). By Corollary 4.12, cov is C1-smooth and convex,
hence its Fenchel dual function

cov∗(k) = sup{k · l − cov(l) | l ∈ RE}

is well-defined, convex and lower semicontinuous in RE . The goal of this subsection is to show that
the Fenchel dual function cov∗(k) optimizes the volume function on the space of non-positive angle
assignments of given cone angles.

Theorem 6.10. Let
D(T ) =

{
k ∈ RE | B∗k(M, T ) 6= ∅

}
and let U : RE → R be the function defined by

U(k) =

{
min{−2vol(a) | a ∈ B∗k(M, T )} if k ∈ D(T ),

+∞ if k /∈ D(T ).

Then cov∗(k) = U(k) for all k ∈ RE .

The proof of Theorem 6.10 relies on the following propositions.

Proposition 6.11. U is convex and continuous in D(T ).

Proof. The proof follows by the same argument of Proposition 3.5.

Proposition 6.12. For each k ∈ RE so that Bk(M, T ) 6= ∅, the function covk : RE → R defined by

covk(l) = cov(l)− k · l

has a critical point. Moreover, all the critical points of covk are in RE>0.

Proof. We will use the method developed by Colin de Verdière’s [8]. Take any a ∈ Bk(M, T ). We
rewrite covk as

covk(l) =
∑
σ∈T

(
cov(lσ)− aσ · lσ

)
.

For each σ ∈ T, we let l(aσ) ∈ R6 be the edge length vector of the hyper-ideal tetrahedron whose
dihedral angles are aσ. Then l(aσ) is the unique critical point of the convex function covσ,k : R6 → R
defined by

covσ,k(l) = cov(l)− aσ · l.

Since covσ,k is strictly convex near lσ, the function covσ,k is closed in R6, i.e., lim|l|7→+∞ covσ,k(l) =

+∞.As a consequence, the function covk is closed and convex in RE . This shows that covk has a critical
point l in RE . Moreover, since Bk(M, T ) 6= ∅, k(e) > 0 for each edge e. This implies that l(e) > 0 for
each e ∈ E, i.e., l ∈ RE>0. Indeed, if otherwise l(e) 6 0 for some e ∈ E, then by Lemma 4.7, all the
dihedral angles of l at e are zero, hence k(e) = 0, which is a contradiction.
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As consequences of Proposition 6.12, we have

Proposition 6.13. If Bk(M, T ) 6= ∅, then there exists a generalized hyper-ideal metric l ∈ RE>0 such
that the dihedral angles a(l) ∈ B∗k(M, T ).

Proof. Any critical point of covk satisfies the desired condition.

Proposition 6.14. The image K(L(M, T )) ∩ (π, 2π)E is a convex open polytope in RE .

Proof. Denoting by K(T ) the convex open polytope

{(2π, . . . , 2π)− k | Bk(M, T ) 6= ∅}.

We claim that K(L(M, T )) ∩ (π, 2π)E = K(T ) ∩ (π, 2π)E . Indeed, since K(L(M, T )) ⊆ K(T ),
we have that K(L(M, T )) ∩ (π, 2π)E ⊆ K(T ) ∩ (π, 2π)E . On the other hand, by Proposition 6.13,
for each k ∈ K(T ) ∩ (π, 2π)E , there exists an l ∈ RE>0 such that K(l) = k. It now suffices to show
that l ∈ L(M, T ). Since k ∈ (π, 2π)E , the cone angle of l at each edge e is in the range (0, π). As a
consequence, all the dihedral angles of T in l are in the range (0, π). Thus, all the tetrahedra of T are
hyper-ideal in l, and l is in L(M, T ).

There are examples showing that the whole image K(L(M, T )), or the subset K(L(M, T )) ∩
(0, 2π)E , is in general neither convex nor a polytope in RE .

Proof of Theorem 6.10. We first show that if k /∈ D(T ), then cov∗(k) > C for all C > 0. Since the
space BT of all possible dihedral angles is compact and vol is continuous, there exists a constant C1 > 0

so that vol(a) 6 C1 for all a ∈ BT . Since {k} and D(T ) are compact and convex in RE , by the
Separation Theorem of Convex Sets, there exists an l0 ∈ RE so that

k · l0 − c · l0 > C + 2C1

for all c ∈ D(T ). In particular, letting c(l0) ∈ D(T ) be the cone angle vector of l0, we have

k · l0 − c(l0) · l0 > C + 2C1.

Therefore,

cov∗(k) > k · l0 − cov(l0)

= k · l0 − c(l0) · l0 − 2vol(a(l0))

> C + 2C1 − 2C1 = C.

Now we prove that cov∗(k) = U(k) in D(T ). By Proposition 6.12, if Bk(M, T ) 6= ∅, the function
covk has a critical point l ∈ RE>0, and cov∗(k) = −covk(l) = −2vol(a(l)). To show that U(k) =
−2vol(a(l)), i.e., a(l) achieves the maximum volume, it suffices to show that the sub-derivative

lim
t→0+

d

dt
vol((1− t)a(l) + tb) 6 0

for each b ∈ Bk(M, T ). Let v = b − a(l) and let vσ = bσ − aσ(l) for each σ ∈ T. We have∑
σ⊃e b(e, σ) =

∑
σ⊃e a(l)(e, σ) = k(e), hence

∑
σ⊃e v(e, σ) = 0 for each edge e. From this, we
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see
∑

σ∈T vσ · lσ =
∑

e∈E
(∑

α<e vα
)
l(e) = 0. Let S be the subset of T consisting of hyper-ideal

tetrahedra in l and let F = T \ S. We have −
∑

σ∈S vσ · lσ =
∑

σ∈F vσ · lσ. Then by Schlaefli formula,

lim
t→0+

d

dt
vol(a(l) + tv) =

∑
σ∈F

lim
t→0+

d

dt
vol(aσ(l) + tvσ)− 1

2

∑
σ∈S

vσ · lσ

=
∑
σ∈F

(
lim
t→0+

d

dt
vol(aσ(l) + tvσ) +

1

2
vσ · lσ

)
6 0,

where the inequality is from Lemma 6.8. Hence cov∗ and U coincide on the subset {k | Bk(M, T ) 6= ∅}
of D(T ) which contains the relative interior of D(T ). Since cov∗ and U are convex and lower semicon-
tinuous, by Lemma 3.9, cov∗(k) = U(k) on D(T ).

6.3 Proofs of the main results

6.3.1 A proof of Theorem 6.3

For (a), suppose otherwise that there exist a(1) 6= a(2) ∈ B∗k(M, T ) that achieve the maximum volume.
Connect a(1) and a(2) by the line segment L(t) = ta(1) +(1− t)a(2), t ∈ [0, 1], and consider the concave
function f(t) = vol(ta(1) + (1− t)a(2)). By the maximality of a(i), the function vol is constant in [0, 1].

On the other hand, we let a(i)
σ ∈ B be the restriction of a(i) to σ and let fσ(t) = vol(ta

(1)
σ + (1− t)a(2)

σ )

for each σ ∈ T. Then by the maximality and Lemma 6.9, each Lσ(t)
.
= ta

(1)
σ + (1 − t)a(2)

σ is not of
type III. As a consequence, the interior of the line segment Lσ lies in BI or BII . Since BII is discrete
in B and a(1) 6= a(2), there is at least one σ0 ∈ T such that Lσ0 lies in BI . We claim that the interior
of Lσ0 lies in BS for some subset S of the edges of σ0. Indeed, if Lσ0(t1) ∈ BS1 and Lσ0(t2) ∈ BS2
for some t1, t2 ∈ (0, 1), then the interior of Lσ0 lies in BS1∪S2 . By Proposition 6.7, the function fσ0 is
strictly concave, hence f =

∑
σ∈T fσ is strictly concave in [0, 1], which is a contradiction. For (b), by

the assumption, l is a critical point of the function covk, and covk(l) = 2vol(a(l)). By Theorem 6.10,
covk(l) = −cov∗(k) = −U(k) = max{2vol(a) | a ∈ B∗k(M, T )}. For (c), by Proposition 6.13, there
exists an l ∈ RE>0 such that a(l) ∈ B∗k(M, T ). By (b), a(l) achieves the maximum volume, and by (a),
a(l) = a.

6.3.2 A proof of Corollary 6.4

Let l ∈ RE>0 be the edge length vector in the hyperbolic metric of (M, T ) for which T is geometric.
Then the dihedral angles a(l) ∈ B∗(M, T ). By Theorem 6.3 (b), a(l) achieves the maximum volume on
B∗(M, T ). Since the triangulation T is geometric, vol(a(l)) equals the hyperbolic volume of M.
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