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1 Introduction 

The purpose of this paper is to study the monodromy groups associated to the 
quasi-bounded holomorphic quadratic forms on punctured surfaces. As a conse- 
quence, we obtain a natural family of symplectic structures on the Teichm/iller 
space Tg,, for n > 0. As another consequence, we show that the projective mono-  
dromy map from a class of Fuchsian equations to the representation variety is 
generically a local diffeomorphism. 

Recall that a punctured Riemann surface S is a surface obtained from a closed 
Riemann surface S of genus g by removing finitely many points {Pl . . . .  , p,}, i.e., 
S is a surface of finite type (g, n). A projective atlas on S is an open cover of S by 
coordinate charts so that the transition functions are restrictions of projective 
transformations of CP1. A projective structure on S is an equivalence class of 
projective atlases. Since the set of all projective structures on S is naturally an affine 
space modeled on the space of all holomorphic quadratic forms on S, we may  
identify the space of all projective structures on S with the space of all holomorphic 
quadratic forms by the uniformization theorem. A quasi-bounded holomorphic 
quadratic form on S is the restriction of a meromorphic quadratic form (o(w)dw z 
on Sso  that the order of ~b at each puncture is greater than or equal to - 2 .  Denote 
the space of all quasi-bounded quadratic forms on S by Q2(S). For each 
(~(w)dw2~Q2(S) and each cusp point p ~ S - S ,  the coefficient of w -2 in the 
Laurent expansion of 4~(w) at p (where w is a local coordinate with w = 0 at p) is 
independent of the choice of local coordinates. We call it the residue of ~b(w)dw 2 at 
p, see Bers [Be, p. 141]. If the residue of(o(w)dw2~Qz(S) at p is - n2/2 for some 
n~Z,  p is called an apparent singularity of ~b(w)dw z. Suppose the residue of 
4)(w)dwa~Q2(S) at a cusp p is ~, then the monodromy homomorphism of 
~(!,v)dw 2 takes the parabolic transformation in the deck group corresponding to 
p to an element in PSL(2, C) whose trace squared is e2~i'~ -- 2~ + e - 2~i,/~- 2~ + 2. 
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Thus, at an apparent singularity p, the monodromy group element corresponding 
to the parabolic transformation is parabolic. 

Our result is the following. 

Theorem. Let Q be the fibration over the Teichmiiller space To." of surfaces S of type 
(g, n) whose fiber at a point S is the space of all quasi-bounded holomorphic quadratic 
forms without apparent singularities on S, and let 7~:Q-~Hom(Tzl(S), 
PSL(2, C))/PSL(2, C) be the monodromy map. Then the derivative DTz of ~z is 
injective from the tangent space T4~ Q to the Zariski tangent space of Hom(Tr~(S), 
PSL(2, C))/PSL(2, C) at 7z( (~ ). In particular, if Tz( O ) is a smooth point ofHom(Th (S), 
PSL(2, C))/PSL(2, C), then 7z is a local diffeomorphism near 4. 

Hom(ztl(S ), PSL(2, C))/PSL(2, C) is not a Hausdorff space in the quotient 
topology. The "Zariski tangent space" to Hom(ni (S), PSL(2, C))/PSL(2, C) at an 
equivalence class I-p] is defined to be the cohomology group H1(~1 (S)o, II) where 
II is the space of all polynomials of degree at most two and ~1(S) acts on II by 
(P 'v)(z)  = P(p(7)(z))/(p(7)'(z)). The derivative of the monodromy map from 
T o Q to the cohomology is well defined and is given by the variational formula of 
Earle (see Sect. 2.4). Let Hom-(rt l(S),  PSL(2, C)) be the open subset of 
Horn(n1 (S), PSL(2, C)) consisting of representations whose image group does not 
fix a point in CP 1. Then PSL(2, C) acts (by conjugation) properly on Hom - (hi (S), 
PSL(2, C)) and the quotient Hom-(Trl(S), PSL(2, C))/PSL(2, C) is an affine 
algebraic set whose Zariski tangent space is isomorphic to Hl(rcl(S)p, II). See 
Goldman [Gol] ,  or Gardiner and Kra [GK] for details. 

Projective structures associated to quasi-bounded forms are generalizations of 
the cone structures in geometry. Indeed, spherical cone structures on surfaces are 
projective structures associated to quasi-bounded holomorphic forms whose 
monodromies are representations into SO(3) and hyperbolic cone structures on 
surfaces are projective structures associated to quasi-bounded holomorphic forms 
whose monodromies are representations into PSL(2, R) and whose developing 
images are in the upper half plane. As a consequence of the theorem, we have, 

Corollary 1 (a) Suppose SP(g, n) is the space of all spherical cone structures so that 
none of the cone angles are 2~zk, k ~ Z, on surfaces S of type (g, n) modulo isometries 
homotopic to the identity relative to the cusps. Then the monodromy map from 
SP(g, n) to the representation variety Hom(~l(S), S0(3))/S0(3) is a local diffeomor- 
phism. 

(b) Suppose HY(g, n) is the space of all hyperbolic cone structures so that none of 
the cone angles are 2~zk, k 6 Z ,  on surfaces S of type (g, n) modulo isometries 
homotopic to the identity relative to the cusps. Then the monodromy map from 
HY(g, n) to the representation variety Hom(Tq (S), PSL(2, R))/PSL(2, R) is a local 
diffeomorphism. 

Given n non-negative numbers al . . . . .  a, so that no ai is 2kz for k e Z  and 
~ =  i ai < 2n(29 + n - 2), the subspace C(g; ai . . . . .  a,) of HY(g, n) consisting of 
cone metrics whose cone angle at the i-th puncture is ai is homeomorphic to the 
Teichm/iller space To,, by the uniformization theorem for hyperbolic cone metrics 
(See McOwen [Mc]). The space C ( g ; a l , . . . ,  a,) has a symplectic structure 
coming from the corresponding subvariety of Horn(hi(S), PSL(2, R))/PSL(2, R) 
whose symplectic form is derived from the Poincar6 duality of the first cohomology 
group of hi(S) with the Lie algebra sl(2, R) as coefficient module. See Iwasaki 
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[Iwl] and Goldman [ Go l ]  for a detailed discussion of the symplectic form. 
Therefore the Teichmfiller space Tg.n considered as a parametrization of the cone 
metric space inherits a symplectic structure. It seems likely that Wolpert's theorem 
[Wo] about the Weil-Petersson symplectic form generalizes to this case. Namely, 
the Fenchel-Nielson twist tangent vector along a simple closed geodesic c on the 
surface should be dual to the geodesic length function at c via the symplectic form. 

As another corollary of the theorem, we have, 

Corollary 2 Suppose F , (n  > 2) is the space of  all Fuchsian equations in C of  the form 

k=l (z - pk) 2 + ( ~ p ~ )  y so that 

(i) no Pk is an apparent nor a logarithmic singularity o f  the equation, 
(ii) Pl = 0 and P2 = 1, 
(iii) oo is a regular singular point and is not an apparent nor a looarithmie 

singularity. 
Let  rc:F, ~ Hom(F,  PSL(2, C))/PSL(2, C) be the projective monodromy map 

where F = rq ( C - { Pl . . . . .  p,}). Then the derivative Drc of  Tr is injective from T4~F . 
to the Zariski tangent space of  Horn(F, PSL(2, C))/PSL(2, C). In particular, if re(oh) 
is a smooth point o f  Horn(F, PSL(2, C))/PSL(2, C), the monodromy map is a local 
diffeomorphism at O. 

The theorem above is a generalization of the analogous result on the mono- 
dromy map associated to the holomorphic forms on closed surfaces. See Earle 
[Ea], Gunning [Gu], Hejhal [He], Goldman [Go2], and Hubbard [Hu] for 
references. The recent work of K. Iwasaki on Fuchsian equations [Iw2] is also 
related to the present work. 

The organization of the paper is as follows. In Sect. 2, we recall the basic facts 
concerning projective structures and Earle's variational formula for monodromy 
map. In Sect. 3, we prove the theorem by estimating the solutions of the Fuchsian 
equations in the cusp regions of the punctured surfaces. 

2 Projective structures and Earle's variational formula 

The materials in this section can be found in Earle's paper [Ea]. We present them 
here for the sake of completeness. 

2.1 Let S be a Riemann surface of genus 9 with n punctures (a surface of type 
(g, n)). Let F be a Fuchsian group acting on the open unit disc D such that 
S = O/F. Let Qz(F) (or Q2(S)) and B2(F)  (or Bz(S))  be the space of quasi-bounded 
and bounded holomorphic quadratic forms of F (or of S) respectively. As usual, 
a holomorphic quadratic form on S is represented by a holomorphic function 
q$:O ~ C so that q$(7(z))7'(z) 2 = q$(z) for all v~F  and z~O.  Indeed, the relation 
says that (o(z)dz 2 is the pull back of a holomorphic quadratic form on S. 

Given q$ ~ Q2(F), let f be a meromorphic locally homeomorphic function from 
D to (7 so that the Schwarzian derivative {f, z} = q$(z). There is a homomorphism 
p : F --+ PSL(2, C) of M6bius transformations such that 

(2.1) f ( v ( z ) )  = p ( 7 ) f ( z )  for all 7 ~ F, z ~ D  . 
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We say (f, p) is a projective structure associated to 4~ and we call p the monodromy 
homomorphism associated to the projective structure (also to the form ~b). The 
meromorphic functions g on D with {g,z} = qS(z) are precisely the functions 
g = Aof ,A e PSL(2, C). The associated monodromy homomorphism is 
Aop(7)oA-I .  We say ( f p )  and (Ao f ,AopoA  -~) are equivalent. Thus, each 
4) sQ2(F) determines an equivalence class of projective structures. Conversely, 
given a projective structure (f, p) i.e., f is a meromorphic local homeomorphism so 
that (2.1) holds, {f, z} is a holomorphic form on S. 

2.2 In order to study the variational formula, we introduce the Teichmfiller space 
To,, of Riemann surfaces of type (g, n). The surface S is represented by the point 
(D, F ) e  To,,. The Teichmfiller space To,, is a complex manifold of dimension 
3g + n - 3. A neighborhood of (D, F) in To," may be described as follows. Let W0 
be a small neighborhoold of 0 in Bz(F) with respect to the Nehari norm (see [Ga] )  
so that for each q5 s Wo,/~(z) = 2-2(z)~b(z) has L~ norm less than 1 where 
2(z)[dz[ is the Poincar6 metric on D. Then/~(z) d~/dz is F invariant and is called 
a harmonic Beltrami coefficient of F. For each q~ e Wo, let #(z) = 2-2(z)4~(z) for 
zeD and g(z) - 0 for zCD. The collection of all such It is denoted by W1. Given 

e W1, there is a unique quasi-conformal map w = w" of (7 onto itself satisfying the 
Beltrami equation w~ = #Wz and fixing 0, 1, oo. Furthermore, w"(D) is a Jordan 
domain and the group of M6bius transformations 7" = w" ~ ~ (w")-  t is a quasi- 
Fuchsian group F(#)  with invariant domain wU(D). A neighborhood system of 
(D, F) in T~., consists of the marked surfaces (w~(D), F(#)) f o r / ~  WI. There is 
a standard pairing between harmonic Beltrami coefficients and bounded forms 
which is induced by the Petersson pairing between bounded and integrable holo- 
morphic quadratic forms. 

2.3 There is a complex vector bundle Q2 over To,, whose fiber over a point S is the 
space of quasi-bounded holomorphic quadratic forms on S. Given q~ ~ Q2(/'(/~)), 
there is meromorphic local homeomorphism f :  w"(D) --. C and p : F ~ PSL(2, C) 
so that { f  z} = ~b(z) in wU(D), and 

f(7U(z)) = p(7)f(z) for all 7~F  and z~wU(D). 

It is the dependence of the conjugacy class of p on (#, ~b) that we wish to study. 

2.4 Variational formula of Earle 

Consider a projective structure (fo, Po) corresponding to q~o ~ Q2(F). Po induces an 
action of F on the space II of all polynomials of degree at most two, 

P'7  = P~ -1 for P e I I ,  7 ~ F .  

The tangent space at Po of Horn(F, PSL(2, C)) is the space Z a(F, II) of cocycles for 
this action. There is another way to describe the tangent space. Let V be the three 
dimensional solution space of the equation 

~r'" + 2qSoa' + ~b~a = 0 in D . 
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Then, F acts on V by 

a-V = aov(~')  - I  . 

The linear map P ~-~ P ~ is an isomorphism from II to V and conjugates the 
actions of F. Thus, the space Z I(F, V) of cocycles is isomorphic to Z I(F, II). The 
Zariski tangent space at [Po] in Horn(F, PSL(2, C))/PSL(2, C) is isomorphic to 
the cohomology group H~(F, V) (or equivalently Ha(F, II)). See Gardiner and 
Kra [GK, p. 1041]. 

To state the variational formula, we suppose that (#, q~) depends on a complex 
parameter t so that 

12 = tli, ~' = qSo + trio + o(t)6Q2(F(12)) . 

Let w ~ = w" be the quasi-conformal homeomorphism satisfying w~ = tliw~ and 
d 

fixing 0, 1, oe. It is known that ~(z) = ~ w'(z)[,=o is given by 

1 ( 1 z z - 1 )  
2~-51"! ~i(r ~- ~ ~ 5  +-2-- dr 

and 

~ ( z )  : j ( z ) ,  

~(z)  = O(Izl 2) a s  I z J  ~ o 0  �9 

We have/i(z)  = ) . - 2 ( z ) l / / ( z )  for all zED and for some ~6Bz(F), and/i(z)  = 0 
for zr (5 is a holomorphic function in O and is in general not in Qz(F) unless 
Fi = 0. Indeed, (/i, ri).is a tangent vector of Q2 at q~o. 

Find a solution f of 

a '"  + 2~boa' + ~b~f= ri i n D .  

Then/~(z) =)C(z) + k(z) gives rise to a cocycte Q~6ZI(F, V) by the formula, 

(2.2) Q~ = 1~(7(z))/7'(z ) - l~(z) . 

The variational formula of Earle's states that the derivative of the monodromy map 
takes the tangent vector (~,ri) in Tr to the tangent vector in Hi(F, V) 
represented by the cocycle (2.2). 

Our theorem can be restated as follows, 

Theorem. I f  ~bo~Qz(F ) is a quasi-bounded holomorphic quadratic form without 
apparent singularities, then the derivative of the monodromy map from Too Q2 to the 
Zariski tangent space Hi(F, V) of Horn(F, PSL(2, C)/PSL(2, C) at [~bo] is injec- 
tire. In particular, if the monodromy representation is a smooth point of the variety, 
then the monodromy map is a local diffeomorphism. 

3 Proof of the theorem 

The second part of the theorem is easy. Since F is a free group of rank 29 + n - 1, 
Horn(F, PSL(2, C))/PSL(2, C) has complex dimension 6g + 3n - 6 at its smooth 
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points. The dimension of Q2 is also 6g + 3n - 6. Thus the derivative of  mono-  
d romy m a p  is an isomorphism.  Therefore, it is a local diffeomorphism. 

To  prove  the theorem, we need to show that  Q~ = h o ~ / 7 ' - / ~  being a co- 
bounda ry  implies /i = 0 and 4; = 0. By choosing a different solution of 
a ' "  + 2~boa' + ~b~a = 4; in D, we m a y  assume that  Q~ = 0, i.e., 

(3.1) h(?(z))/?'(z) = h(z) for all y~F,  z e D  . 

Thus, h defines a C ~ vector field X of type (1, 0) on S. O u r  major  observat ion is 
that  condit ion (3.1) implies that  the vector field X on S has polynomial  growth at 
the cusps. To  be more  precise, suppose w is a local coordinate  in S near p so that  

w = 0 at p, and X = g ( w ) ~  in the coordinate.  Then, (3.1) implies 
o w  

(3.2) g(w) = O(twl[logw[N), for Iwl small 

where N is an integer. 
It  is clear from (3.2) tha t  for all bounded  forms ( b ~ B z ( F ) ,  ~sO(X~)  = 0 (see 

d2 
L e m m a  1 below). On the other  hand, J X  = /2  d-~' thus ~s/2~b = 0 for all bounded  

forms ~b ~Bz(F).  This is the inner product  of/2 with ~b under  the s tandard  pairing 
between Beltrami differentials and bounded  forms. Since ./2 is a ha rmonic  Beltrami 
differential, this implies/2 = 0. Therefore, ~ = 0, and h = f  is a ho lomorph ic  vector  
field satisfying (3.2). Thus h = 0, or  ~ = 0. This completes  the proof. 

3.1 Cusps and growth condition 

Let w : D -o S be the covering m a p  and let Uc = { z [ Im z > c }. To  every puncture  
p e S -  S, there corresponds  a parabol ic  element 7 E F, unique up to conjugation,  
with fixed point  ~eOD(~ 4: 1), and there is a M6bius  t ransformat ion  A with the 
following properties:  

(i) A ( ~ )  = ~, and A -  1 ~ ~ A is the t ranslat ion z ~ z + 2g. 
(ii) A { z [ I m z > c } c D f o r s o m e c > 0 .  
(iii) Two points  z l, z z of A (U~) are equivalent under  F if and only if z2 = 7"(Zl) 

for some integer n, and the image of A(U~) under  the covering m a p  is a deleted 
ne ighborhood  of p homeomorph ic  to a punctured  disc. 

We shall call Uc a cusp half  p lane belonging to p (under A). 

Definition. A vector  field X of type (1, 0) on S is said to have polynomial  growth  at 
a cusp p if in a local coordinate  w in S w i t h  w(p) = O, X =f(w)O/Ow and 

f ( w )  = O(Iw[llogw[ N) 

for some integer N as [ w [ ~  O. 
If  we take w = e 2~iz where z is a coordinate  for a cusp half  plane belonging to p, 

and pull back X to Uc, say we obtain 9(z)~/Oz, then the polynomia l  growth 
condit ion for X is equivalent to 

a(z) = O(Izl N) 

a s  I m z  ~ + oo.  
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L e m m a  1 (Bets) For any C z vector field X o f  type (1, 0) on a finite type Riemann 
surface S so that X has polynomial 9rowth at all cusps, we have 

~" ~ ( r  = 0 
s 

for  all cusp forms q~GB2(S ). 

Proof  (Sketch). By Stokes's theorem, the integral is lim~ ~ o S,~s, qSX where S, is the 
surface S with disc of radius e a round  each cusp removed.  Now, at each circle OS~ of 

radius e, r  ( a ) c? , = -w + ho lomorph ic  function dw z, X = f ( w ) ~  thus, 

r  < 2rce.--.2laL const, e . l log~l  N 

= const, el log ~1 N 

which tends to zero as e tends to zero. Therefore,  lim~ ~ o S,~s, q~X = 0. Another  way 
to prove this is to lift the integrat ion to an integrat ion in the universal cover  over 
a fundamenta l  domain  f2. Bounded holomorphic  forms r e B2(F) have exponential  
decay in Uc under the pull back m a p  A o w. By Stokes's theorem, the result follows. 
Fo r  detail, see Kra  [Kr2, p. 587]. 

3.2 Our  goal now is to establish the polynomial  growth condit ion for the vector 
field h(z)O/#z in the cusp half plane Uc for each cusp p under the assumpt ion  that 
qSo has no apparen t  singularities. Since all our  estimates will be made  in 
Uc = {z I I m z  > c}, we are going to pull back  all the functions q5 o,/i, w',  ~b', ~,f ,  
to Uc by A. The corresponding functions in Uc are indexed by 1. Thus, 
F1 = A - 1 o F o A denotes a Fuchsian group  acting on some half space H so that  
H/F~ = S; 

r  = 4)o(A(z))A'(z)2 eQ2(r~); 

l i l (z)  = I J (A ( z ) )A ' ( z ) /A ' ( z )  

is a Beltrami differential for F~; w] = A -  1o wto A is the quasi-conformal  homeo-  
morph i sm of C' which fixes A -  ~(oo), and satisfies the Beltrami equat ion 

W 5 ~ tf . l  1 W z , 

d 
wa = ~ w]] , :0  = k ( A ( z ) ) / A ' ( z ) ,  

~ : ( z )  -- O([zl ~) a s  I z l  ~ ~ , 

F] = w] ~ F1 ~  - a = A -1 o F(u)o  A , 

Ct 1 = r  , 
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and 

d 
4;a = ~ q~tl 1,=o = 4;(A(z))A'(z)  2 

is holomorphic  in A - I ( D ) ;  f ina l ly~ = f ( A ( z ) ) / A ' ( z ) .  

Lemma 2 (i) a satisfies a"'(z) + 2q~o(Z)#(z) + (a'o(Z)a(z) = 0 if and only if 
y = a (A(z ) ) /A ' ( z )  satisfies 

(3.3) y'"(z)  + 2(ol(z)y'(z)  + C~'l(z)y = O . 

(ii) J'satisfies a"' + 2~boa' + qSba = 4; if and only if ~ =J% A / A '  satisfies 

(3.4) y" '  + 2q51y' + ~b~y = 4;1 

Proof. The proof  is a direct computat ion.  Note  that [a (A( z ) ) /A ' ( z ) ]  = 

a ' " (A(z ) )A ' ( z )  z. 

3.3 Estimating the deformation 4;1 (z) 

Lemma 3 

(3.5) 

The deformation 4;x(z) in U~ has an expansion 

4;l(Z) = ~ (a'~ + b~"~z + ~'~.z2)e "z 
n = O  

where c"~ = O. 

Proof. It is well known that each d~(z)eQ2(F1) has a Fourier  expansion 

4)(z) = ~ a,e i"z in U~ 
n = O  

where ao = - Resz=pq~(z). 

Now, ~b] = r + t4;1 + o( t )eQ2(F]) .  There are two cases. 

Case 1 Suppose that  for all t, w ] ( o o ) =  oo. Then oo is still a fixed point  of 
a parabolic element 7 t ( z ) = z + e t  in F ]  where l i m t ~ o e t =  2n. Thus, each 
(o~ ~ Qz(F])  has a Fourier  expansion 

(3.6) ~b~(z) = ~ a,( t )e  (2~mt)i"z 
n = 0  

in some half space Vt where Vt converges to Uc as t tends to zero. Taking derivative 
of (3.6) with respect to t at t = 0, we have 

(3.7) 4;a(z) = ~ ('fi2, + b"~z)e '"z �9 
n = O  

Case 2 In general, let bt = w'~(oo) ( l imt~obt  = oo) and m, be the M6bius trans- 
formation 

mr(z) = btz/(bt - z) . 
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m, sends b, to oo and limt ~ o m,(z )  = z. Let w' ,  = m, o w'~, Then w' ,  fixes m and 
satisfies we = tli~w=. /~ '=  m,o F'~ o(m,) -~ = # 'o  Ft  ~  is a quasi-Fuchsian 
group with m as a parabolic fixed point and f ' =  ~ ' l ( m ~ - t ( z ) ) ( m 2 l ( z ) ' ) 2 e  
Q2(/~'). By Case 1, we have 

dt ~b'(z)[,=o : (a ,  + b , z ) e  i"'- 
n ~ O  

in U~. Now, ~b](z) : fa~(m,(z))m',{z) z. Thus, 

d 

d ~' z m t  2 d p 2 
= dt 4~ ( )1,=o ~(z) I,=o + (~ ' ) ' (z) l ,=o ~ m,l,=om,(z) [,=o 

~, , d 
+ 2~b (z)[,=om,[,=o ~ m't(z)l,=o . 

d d , 
To figure out ~ m ,  and ~ m , ,  let us recall that m , ( z ) =  b , a / ( b t - z )  and 

b, = w ~ ( ~ ) =  A - l ( w ' ( A ( o o ) ) ) =  A - l ( w ' ( ~ ) ) .  Furthermore,  A -1 sends ~ to ~ .  
Thus, A - l ( z )  = (cz + d ) / ( z  - () ,  c~ + d ~ O. Let at ~- w ' ( ( ) .  We have l im,~oa,  

d 
= (  and ~ a , ] , = o = ~ ( ~ ) .  Now, b , = A - l ( a , ) = ( c a , + d ) / ( a , - ( ) ,  and m , =  

b,z / (b ,  - z)  = (ca, + d ) z / ( ( c  - z)a,  + d + z() .  We calculate, 

d 
m',(z) = ~ m,(z)  = (ca, + d)2 / ( (c  - z)a, + d + z~) 2 , 

and 

d z 2 i m dt mt(z)]t=o - c~ + d w(~)' m,(z}l,=o 1, 

d 2z 
d-t m ' ( z l [ ' : ~  c~ + d ~+(~) 

Substituting these into the formula for 4;1(z), 
d 

(~ ') ' (z)[ ,=o = dzz (~'(z)[,=o), we obtain, 

and noting 

dpl(z) = (a .  + b.z )e  i"z + inc, e '"~ " c - ~ - ~ ' ~ ( ~ )  
n = O  n = O  ( )2z 
+ 2 c.e ~ " ~  ~'(~t 

n = O  

= Z ( ~  + N z  + ~z~ te  ~=, e~ ~ O. 
n = O  

that  

3.4 Suppose  the residue of(a1 at p is not  - nZ/2  f o r  n 6 Z  
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L e m m a  4 Let 1/1 be the three dimensional space of holomorphic solutions to the 
equation 

(3.8) y ' "  + 2~bxy' + ~b'~y = 0 in Uc �9 

I f  ye  I/1 has y(z + 2n) - y(z) = O(Iz[ u) as Imz--*  + oe for some integer N, then 

y(z) = 0(]z[ ~) as I m z ~  + oo . 

Proof Let the Four i e r  expans ion  of ~b~ in U~ be V ~~ a e i"z where - ao is the . (_an = 0 n 

residue of  ~bl at  p. We try to find a solut ion of (3.8) of the form 

y(z) = ~ ~,e""+P~L c~o * 0 .  
n = O  

We have, 

and  

y'(z) = ~ i(n + p)~,e it"+p)z 
n = O  

o0 
y'"(z) = ~ - i(n + p)3~,ei("+v)z . 

n = O  

Subst i tu t ing  these together  with the Four i e r  expansions  of q~l and  ~b'~ into (3.8), we 
obta in  the recurrence relat ion,  

n - 1  

(3.9) ( n + p ) [ ( n + p ) 2 - - 2 a o ] ~ , =  ~ (n + 2p +j)a,_jc 9 .  
j=o 

W h e n  n = 0, (3.9) reduces to 

p(pZ _ 2ao)0% = 0 . 

Since ~o 4 = 0, p = 0 or  p = _ w / ~ o .  Indeed,  the above  equa t ion  is the indicial  

equa t ion  of  (3.8) and  0, _+ x / / ~ o  are  the exponents .  Hav ing  de termined p, we now 
use (3.9) to de te rmine  c~. where ct o can be any nonzero  number .  Since ao se n2/2 for 

any  n E Z, _+ x / ~ o  are not  integers. Since the a , ' s  are the coefficients of the 
convergent  power  series, a Cauchy  ma jo ran t s  a rgument  appl ies  to c~.. Thus 
~,~=o ~,ei"Z converges in Uc. There  are now two cases. 

Case 1 +_ ~ o o  are not  half  integers. Then the differences of the three exponents  
are never integers. Thus there are three l inearly independent  convergent  series 
solut ions  

yl(z)  = ~ o:,e i"z, 
n = O  

y2(z) = e i2"/2~~ ~ fl, e i"~ , 
n = O  

y3(z)= e - i  2,/~o~ ~ ~,ei,Z, 
n = 0  

where ~o, flo, So are no t  zero. 
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To prove the assertion, suppose 

y = c ly l  + c 2 Y 2  -t- c 3 y  3 = C l y l  -I- ei  2"f~~ ) -I- e - iv'2a~ ) 

satisfies y ( z + 2 a ) - y ( z ) = O ( [ z ]  N) as I m z - +  + o 0 .  By the choice of 92,93, 
l i m l m ~ - .  + ~ O 2 ( Z )  = c2 f i  0 and l i m l m ~ + ~ g 3 ( z )  = e3])o. Clearly, y l (z)  = O(1) as 
I m z ~  + ~ .  Thus, we may assume c~ = 0. Now, 

y(z  + 270 - y(z)  = e i ~ ( e  2ziv/~a~ - t ) g z ( Z  ) + e - i ~ / ~ ( e  - 2~i.~2/~ao _ 1 ) g 3 ( z )  . 

�9 5 2 - .  
By the assumption on ao( # n2/2 for n ~ Z ) ,  e ++- 2~,V-,o 4: 1. Choose a ray L in U~ of 

the form x = ky so that as Im z ~ + ~ along L, one of e -+ ' ~  tends to infinity 
exponentially in I m z  and the other tends to zero exponentially in Imz.  We 
conclude that one of c2 or c3 must be zero. Therefore y ( z ) =  
const .(y(z + 27r) - y(z)). The result follows. 

Case 2 ~ o o  is a half integer. Then (3.8) has three linearly independent solutions of 
the form, 

y l (z )  = ~ ~,e i"z , 
,=o 

y z ( z )  = e i ~  ~ ]~ne inz , 
n=O 

y 3 ( Z )  = e - i 2,/2~o: ~ yneinZ + c z y 2 ( z )  ' 
n=o 

where ao, flo, 7o are not zero and c is a constant. 
The above argument  still works in this case since the last term in y3(a) is 

a linear polynomial  in z times y2(z). 

3.5 Growth o f  a solution o f  the inhomogeneous equation 

Lemma 5 For any (~I(Z) on U c o f  the form 

~ 2 ~ inz 4;1(z) = (a. + g . z  + c . z  ~ ~ , ~o : o ,  
n=O 

there is a solution g(z)  o f  the equation 

y"'  + 24)1y' + O'~Y = O~ 

so that g(z)  = ~=o(O:,  + fl, z + 7,z2)e i"z in Uc. In particular, g(z) = 0(Izl 2) as 
I m z ~  + oo. 

Remark. This is analogous to the following result for regular singular differential 
equations. Suppose 0 is a regular singular point  of a holomorphic  differential 
equation L(y )  = 0 of order n where L ( y )  = y~") + a l ( z ) y  (n-l) + . . . + a . (z )y  so 
that the roots of the indicial equation are nonintegers. Then for any meromorphic  
function 4) having a pole at 0 of order > - n, there is a (single valued) holomor-  
phic function f in a neighborhood of 0 so that L ( f )  = dp. 
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Proof. Again suppose ~bl (z) = ~.~=o a. ei"z in Uc. Suppose a solution is of the form 

9 ( z ) =  ~ ( a . + f l . z + y n z 2 ) e  i"z. 
n=O 

One calculates, 

g'(z) : • ( ( f l .  + 2y.z) + in(a .  + f l .z  + 7 . z2 ) ) e  i"z 
n=O 

= ~ ( ina.  + ft. + (intl.  + 27.)z + in~nzZ)e i"z 
n=O 

9" = ~, ((( int l .  + 27.) + 2inT.z)  + in( ina .  + ft. + (intl .  + 27.)z + inT . zZ) )e  i"z 
n=O 

= ~ (( --  n2an + 2intl .  + 27.) + ( - n 2 f l n  + 4inT.)Z + ( - n27n)zZ)e  i"z 
n=O 

9 " ' =  ~ ( ( - - n 2 f l .  + 4 i n T . ) - -  2nZT.z  + ( - - i n 3 a . - - 2 n 2 f l .  + 2inT.) 
n=O 

+ ( - in3fl .  -- 4 n 2 7 . ) z  - i naT . z2 )e  i"" 

-= ~ (( -- in3a.  -- 3n2 fln + 6in7.) + ( -- in3 fln -- 6n27 . ) z  -- i n 3 7 . z 2 ) e  inz . 
n=O 

Now, substituting these into the equation, one obtains 

n - 1  

(3.10) - in(n 2 -- 2ao)7. + i ~ (n - j ) a . _ i 7  j = c~"~ 
1 = 0  

. - 1  

-- in(n 2 -- 2ao)fl. + (4iao -- 6n2)7. + 2 ~ a._j ( i j f l i  + 27i) 
j = O  

. - 1  

+ i Z ( n - - j l a . _ j f l  i = b"~ 
j = O  

(3.11) 

and 

(3.12) 

n - 1  

-- in(n 2 - 2ao)a. + (2ao -- 3n2)fl. + 6i7. + 2 ~ a._i(/ja i + flj) 
j = O  

n - 1  

+ Z ( n - - j ) a . _ j a  i = a'-"~. 
j = O  

The recurrence relation (3.10) for n = 0 is valid since ~o = 0 by the assumption. To 
determine all 7., we use (3.11) for n = 0 to obtain 7o = ~o/4iao.  Since ao 4 : n 2 / 2  for 
all integers n, (3.10) determine 7.. Furthermore, a Cauchy majorants argument 
shows that ~,.~=o 7.e i"z converges for Imz > c. By the choice of 7o, (3.1l) is now 
valid for n = 0 .  To determine ft., we use (3.12) for n = 0  to obtain f lo= 
~ o / 2 a o -  6i7o. Now the recurrence relation (3.11) together with the known 
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7n einz values 7, determines all//. .  Since y'~= 0 a.e i,z and ~ . ~  0 are both convergent 
for Im z > c, a Cauchy majorants argument implies ~ , ~  o/~, e i.~- converges. Finally, 
to determine ~., we choose 7o to be any complex number since Lemma 4 provides 
a solution Ya which may be added to any solution 9. (3.12) for n = 0 is valid due to 
the choice of 70 and flo. The rest of ~,'s are determined by (3.12). Again ~ =  o ~, e/"~ 
converges in Ur by a Cauchy majorants argument. Thus, we obtain a solution 9(z) 
of polynomial growth of the inhomogeneous equation y'" + 2qS~y' + ~b:y = ~:.  

3.6 We can now conclude the proof of the polynomial growth condition for 
/~l(Z) = f l  (z) + ka (z)in Uc. Consider the parabolic transformation 7o(Z) = z + 2;:. 
We have h l ( 7 o ( Z ) ) - h : ( z ) = O  since 7 b ( z ) = l .  Thus, f i ( z + 2 r : ) - f i ( z ) =  

- (k l (z  + 21:) - ~l(z)). It is well known that the potential ffl(z) = . ~ (Az ) /A ' ( z )  
of a Beltrami differential has growth O(lz[ 2) as ]z[ ~ ~ .  Thus f l (z  + 21r) - 
fi(z) = O([z] 2) as Imz ~ + ~ .  Consider the solution 9 in Lemma 5 of polynomial 
growth. Since 9 and ~ both satisfy the same inhomogeneous equation (3.4), 
Y = f :  - 9 satisfies the homogeneous equation (3.8). Furthermore~ y(z  + 21:) - 
y(z)  has polynomial growth in Uc. By Lemma 4, y ( z ) = f l ( z ) - o ( z ) =  
O(hz[ ~) as I m z ~  + or. Hence, f l ( z ) =  O(]zl N) as Imz-~  + or. This implies 
ha(z) = O([zl N) as Imz ~ + ~ .  Thus, the proof is completed. 

3.7 The proof  o f  the corollary 2 

For any Fuchsian equation y " ( w ) =  -�89 on (7 with more than two 
singularities, we may lift the equation to the universal cover D ~ S = (7 - {poles of 
~b(w)}. Let w:O ~ S be the universal covering map, and let 9(z)  = y (w(z ) )  be the 
pull back function. Then we have, 

(3.13) 
W re 

9"(z)  = - �89 + ~ 7 9 ' ( z )  in D .  

Since w ' ( z ) +  0 in D, we may find a branch of (w')  1/z in D. Now the function 
f ( z )  = 9 ( z ) ( w ' ) -  1/z satisfies the equation 

(3.14) f " ( z )  = - �89 2 - {w, z } ) f  . 

This shows that the (projective) monodromy group of the Fuchsian equation 
y"(w)  = - �89 (~(w)y(w) is the same as the monodromy group of the quasi-bounded 
holomorphic quadratic form (ck(w(z))w'(z)  2 - {w, z})dzZE Qz(S). Therefore, the 
result follows from the theorem because the map sending a Fuchsian equation 
y"(w) = - � 89  in F,  to the quasi-bounded holomorphic quadratic form 
4 ( w ( z ) ) w ' ( z )  2 - {w, z}  is a diffeomorphism. 

3.8 Questions 

There are several questions arise from above considerations. 
Given a projective structure (fo, Po) corresponding to a quasizbounded holo- 

morphic form ~bo~Q2!F), an (holomorphic) Eichler integral f associated to 
a quasi-bounded form ~ is a solution of the equation ~'" + 24)oCr' + q~ ~<r = 4; in D. 
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An Eichler integral )kinduces an Eichler cohomology class [ Q~ ] E H t(F, V) by (2.2) 
(with ~ = 0) where V is the space of all solutions of a"'  + 2r  + ~b;o- = 0, i.e., 
V = {P~ P eII}. If r = 0, these notions coincide with the classical defini- 
tion of Eichler integral and Eichler cohomology class. A cohomology class 
[P~ ~ ~ H 1 (F, V) is called real if Pr is a real coefficient quadratic polynomial 

foreachTsF;andP, iscalledsphericali fP~satisf iesP~(~)=-Pv(z)~forallT; 

i.e., P~(z) = a~z 2 + 2brz - gt~ where by is a real number. It is well known that the 
isomorphism from the Lie algebra f~ of PSL(2, C) to II given by uefr  ~-~ 
limt~o(etU(z)-z)/t = p ( z ) s I I  conjugates the adjoint action of PSL(2, C) on 
fq and the action of PSL(2, C) on II by P. 7 = P ~ 7/?'. Under this isomorphism, 
real polynomials corresponds to the Lie algebra of PSL(2, R) and spherical 
polynomials corresponds to the Lie algebra of SO(3) in PSL(2, C). 

Question I Suppose r  Q2(F) has no apparent singularities and corresponds to 
a hyperbolic cone structure (fo, po), i.e., f o : D ~ H = { z l l m z > O }  and 
po:F--*PSL(2, R) c PSL(2, C). Is the Eichler cohomology class [Pr~ 
eHI(F,  V) corresponding to a bounded form 4~eBz(F) ever real? 

Question 2 Suppose r e Q2(F) has no apparent singularities and corresponds to 
a spherical cone structure (fo, Po), i.e., fo :D ~ (7 and Po : F ~ SO(3) c PSL(2, C). 
Is the Eichler cohomology class [P.r V) corresponding to 
a bounded form q~ e Bz(F) ever spherical? 

Question 3 (suggested by I. Kra) Generalize the result to quasi-bounded holomor- 
phic forms with apparent singularities. In this case, the deformation space 
Q(g; n, m) consists of quasi-bounded forms over all Riemann surfaces of type (g, n) 
so that the first m cusps are exactly the set of apparent singularities. The mono- 
dromy map takes Q(g; n, m) to the subvariety consisting of representations in 
Horn(F, PSL(2, C))/PSL(2, C) which maps the loops surrounding the first m cusps 
to parabolic elements. Is the monodromy map locally injective? 

Finally, there is also a Riemann-Hilbert type problem. 

Question 4 Is the monodromy map it:Q2 ~ H o m ( F ,  PSL(2, C))/PSL(2, C) an 
onto map where Qz is the complex vector bundle over Teichmfiller space 
To,. whose fibers are quasi-bounded holomorphic forms and F is the fundamental 
group of a surface of type (g, n)? 

Acknowledgement. I would like to thank the referee for useful comments, I. Kra for suggesting 
problem 3, and R. Stong for careful reading of the manuscript. 
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