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We introduce a semi-algebraic structure on the set Y of all isotopy classes of non-separating simple closed curves 
in any compact oriented surface and show that the structure is finitely generated. As a consequence, we produce 
a natural finite dimensional linear representation of the mapping class group of the surface. Applications to the 
Teichmiiller space, Thurston’s measured lamination space, the harmonic Beltrami differentials, and the first 
cohomology groups of the surface are discussed. Copyright 0 1996 Elsevier Science Ltd 

1. INTRODUCTION 

1.1. The main results 

Given a compact oriented surface of positive genus X, let Y = Y(C) be the set of all 
isotopy classes of non-separating simple closed unoriented curves in E. We introduce two 
relations, orthogonal and disjoint in 9’ as follows. Two classes a and /I in 9’ are said to be 
orthogonal, denoted by ml/?, if they represent simple closed curves u and b intersecting 
transversely at one point (in this case, we also say that a is orthogonal to b and denote it by 
alb). Two classes LX and #l in 9’ are said to be disjoint, denoted by an/3 = 4, if they represent 
simple closed curves a and b so that unb = 4. Our goal is to study Y under these two 
relations. 

Given two orthogonal simple closed curves p and q, define the product pq of p and q to 
be D,(q) where D, is the positive Dehn twist (a right twist) about the simple closed curve c. 
Geometrically, pq and qp are obtained from puq by breaking the intersection into two 
embedded arcs as in Fig. 1. 

Clearly the isotopy classes of pq and qp depend only on the isotopy classes of p and q. 

We use 1$] to denote the isotopy class of a simple curve p and define the product Cp] [q] to 
be [pq] when plq. Our first result states that 9’ is finitely generated in the product. 
Actually, a stronger form of the finiteness result holds. It is on the stronger form that we will 
focus. To this end, we introduce the following definition. 

Dejinition. Given a subset x of 9, the derived set x’ is Xu{a/LI 1 a, /?, and pa are in I>. 
Inductively define x” to be the derived set of x”- ’ for n > 1. We define U,“= 1 f to be the set 
generated by x, and denote it by xm. 

Our first theorem is the following. 

‘THEOREM I. If I2 is a compact orientable surface of positive genus, then there is a jinite 

subset F of isotopy classes of non-separating simple closed curves so that Rw = Y(E). 
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Fig. 1. In the figure, the orientation is the right-handed orientation in the plane. 

The next theorem (in Cl]) is an analogue of Dehn-Nielsen’s theorem that the mapping 
class group of a closed surface is the outer automorphism group of the fundamental group 
of the surface. To be more precise, given any orientation preserving self-homeomorphism 
4 of Z, 4 induces a bijective map of Y by the formula +,([a]) = [$(a)]. Clearly, 
& preserves disjointness, orthogonality and the product. 

THEOREM II. Ifh is a bijectiue map ofthe set of all isotopy classes of non-separating simple 
closed curves in a closed orientable surface so that h preserves disjointness, orthogonulity and 
the product, then h is induced by an orientation preserving self-homeomorphism of the surface. 

In [ 121, N. Ivanov has sketched a proof of a stronger version of Theorem II for surfaces 
with genus g 2 2. 

2.2. The motivations 

Theorems I and II are well known for the torus T2. As usual, choose an oriented 
meridian m and an oriented longitude 1 for T2. Each element in Y is uniquely represented 
by f (p [m] + q [ l]) in the first homology group where p and q are two relatively prime 
integers. By assigning the rational number p/q to the class, we identify 9’ with 
Qu{ co } c Ru (co} which is considered to be the natural boundary of the hyperbolic 
upper half-plane. Two classes p/q and r/s are orthogonal if and only if ps - qr = + 1. 
Furthermore, if ply, then fly and yb are symmetric with respect to the hyperbolic reflection 
about the geodesic ending at /? and y. Thus by the well known modular picture, one sees that 
Y is generated by 0, 1, and co as in Fig. 2. 

To see Theorem I for the torus, let us take a bijective map h of 9’ = Q w (a> preserving 
the orthogonality. Thus h(O), h(1) and h( cc ) are three pairwise orthogonal rational num- 
bers. Therefore, there is an element $ E GL(2, Z) acting on Qu{ co } as MSbius transforma- 
tions so that t&O) = h(O), $(l) = h(1) and $(oo) = h(a). S ince GL(2, Z) is the mapping class 
group of the torus, we may assume at that h leaves the three curves 0,l and 00 fixed. Thus 
by the modular pictures above, the bijection h leaves each rational number fixed. 

The other motivation for Theorem I comes from Thurston’s compactification of the 
Teichmiiller space [2,3], Bonahon’s interpretation of Thurston’s compactification [4] and 
the trace formula tr(XY) + tr(X-‘Y) = tr(X)tr(Y) for X and Y in SL(2, C). If two elements 
A and B in xl(C) have representatives in the free homotopy class [a], [b] in Y so that u_Lb, 
then the products AB and K’B are represented by the classes [ub] and [bu]. As a conse- 
quence of the trace formula, the hyperbolic lengths of the classes A, B, AB and A- ‘B 
with the above property satisfy the following nonlinear relation: cosh(ZAB/2) + cosh(l,-lB/2) = 
2cosh(1,/2) cosh(lB/2), i.e., it satisfies the following, 

f (aB) +f (84 = 2f (4f UQ7 MU. (1) 
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Fig. 2. 

Now if we consider a degenerate family of hyperbolic metrics which tends projectively 
to a simple closed curve c (or more generally a measured lamination) in Thurston’s compac- 
tification of the Teichmiiller space, then the relation (1) degenerates to I([a], [cl) + 
I([b], [c]) = max(I( Cab], [cl)), I([bu], [cl), i.e. it satisfies the following, 

f(a) +f(P) = max(f(4%.NW7 WI (2) 

where I(. , 0) is the geometric intersection number. Since eq. (2) is piecewise linear 
(max(x, y) = $(x + y + Ix - y I)), which may be one of the reasons why the action of the 
mapping class group on the measured lamination space is piecewise linear. 

Since both the Teichmiiller space and the measured lamination space are finite dimen- 
sional, this prompts us to ask about the existence of finite generators for 9’. 

1.3. Some consequences 

As a consequence of Theorem I, we produce a finite dimensional linear representation of 
the mapping class group ‘9 = 9(E) of the surface E. Recall that the mapping class group Y(Z) 
is defined to be Homeo+ (X)/isotopies where homeomorphisms are orientation preserving and 
59 acts naturally on Y by permuting the isotopy classes. The finite dimensional linear 
representations of 59 are constructed as follows. Take I/ to be the vector space C” of all 
complex valued functions on 9, i.e. V = {f: Y + C}. The mapping class group Y acts 
naturally linearly on I/ by permuting the Y coordinates. Let a, b, c and d be four specified 
complex numbers with cd # 0. Define a linear subspace Va,b,f,d of V by the equations 

4%) + WV) = cf(aB) + df(B4, MI. (3) 
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BY Theorem 1, Va,b,c,d is finite dimensional and is clearly invariant under the linear action of 
the mapping class group. 

PROPOSITION. If the genus of the surface is bigger than one, then the only space T/n,,& which 
contains a non-constantfunction is Vza,Zo,a,o = V,, 2, 1, 1. Furthermore, the dimension of V,, 2, 1, 1 

is at least (29 + n)(2g + n - 1)/2 where g is the genus and n is the number of boundary 
components of the surface. 

The basic idea of the proof (in [l]) is the following. If a simple closed curve s is orthogonal 
to another simple closed curve t, then there is a universal relation that [s&s)] = [t] (and also 
[(st)s] = [t]). This relation [s(ts)] = [t] implies the well known braid relation 
D,D,D, = D,D,D, up to isotopy in the mapping class group. By iterating the relation 
[s(ts)] = [t] several times for three pairwise orthogonal simple closed curves which are not in 
a torus with a hole, we obtain that 2a = 2b = c = d. To show that V,,,, 1, 1 contains 
non-constant solutions, we take the square of the algebraic intersection numberf (a) = i2(a, y) 
for a fixed class y in 9’. One sees easily that f satisfies the skein relation 

f (@) +f (Pa) = 2f (a) + 2f (8) w h enever al/I. Since for all choices of y in 9, these functions 

span a linear subspace of dimension at least (2g + n)(2g + n - 1)/2 in V,,,, i, 1 (the actual 
dimension of the subspace is (29 + n)(2g + n - 1)/2 if n # 0 and is g(2g + 1) if n = 0), the 
estimate on the dimension follows. 

Theorem I may give rise to a characterization of the length spectrum of a hyperbolic 
metric in a closed surface. Given a closed orientable surface C, let Teich (E) be the Teichmtiler 
space of X. For each equivalence class [Jj of hyperbolic metric in Teich(C), we produce 
a functionA from Y to {t E R 1 t > l> by setting &,,(a) = cosh(ld(or)/2) where Id(a) is the length 
of the geodesic in the class a in the metric d. By the remark above, we have 

frdl(afi) +_fidl(b) = 2hdl(akhfI@)~ alp. (4) 

The set 9 of all functions from Y to {t E R 1 t > l} satisfying (1) is finite dimensional by 
Theorem I. It is well known that the map from Teich(Z) to Y sending [a to fIdl is injective 
and continuous. It is natural to ask whether the map is an onto map. 

One possible approach to the above problem is to find the dimension of F-. Since 
harmonic Beltrami differentials are deformations of the hyperbolic metrics in the Teichmiiller 
space, given a function f satisfying the relation (1) above, it is tempting to call a function 
g satisfying 

s(Q) + s(B4 = 2f (a)g(B) + 2f (B)g(a), aJ-P (5) 

a harmonic Beltrami differential in the conformal structure given byJ: Denote T,(Y) the linear 
space (the tangent space of Y atf) of all functions g satisfying (5). One would expect to have 
a Riemann-Roth theorem which calculates the dimension of Tf(S). 

1.4. Sketch of the proofs 

Since the proofs of Theorems I and II are quite long, we sketch the main idea of the proof 
below. The main step in the proof of Theorem I is an induction on a norm 11 C 11 = 3g + n 
where C is a compact orientable surface of genus g with n boundary components. We show 
that there are finitely many subsurfaces & in X of smaller norms so that non-separating simple 
closed curves in Xi considered as non-separating simple closed curves in Y(Z) generate Y’(C). 
The main technical difficulty is due to the fact that separating simple closed curves in Xi may 
become non-separating in E. 
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We use several induction steps to achieve the above result. In each step of the induction 

process, we construct a finite collection G of isotopy classes of simple closed curves 

C&l, ... , [a,] and induct on a norm (1 a 1) G = I;= I I@, [ai]). Given a class a E 9, we would 
like to find two classes /l and y in Y so that bl_r, a = /3y and the norms of /I, y and r/3 are 
smaller than 11 a IIG. To this end, let us take pea so that /I a IJG = I;= 1 IpnaiI and find an arc 
c in C so that cn(puu~! 1 ai) = dc and c approaches both end points of&from different sides 
of p (we call it a cutting arc; see Definition 2.4). Indeed, assuming c has been constructed, we 
obtain three new non-separating simple closed curves representing p, y and r/I as in Fig. 4. 
Furthermore, a = fly. We call this an H-reduction on the curve p. Now if the arc c satisfies 

ac = cMJT’~ ai), then clearly II B IIc, II Y IIG are less than I/ a IIG (Lemma 2.5) and 

iI rfl IIG < iI aG II . 

Let us illustrate this by considering a torus, i.e. the modular picture is generated by 
hyperbolic reflections on the three sides of the ideal triangle with vertices 0 = [1], 1 = [mfl 
and cc = [ml. Given a class a = f (p[m] + q[fl) where p and q are relatively prime 
integers, define a norm /I a II = I pi + I ql = inf{ I unml + (unll luea}. Let uEa be arepresen- 
tative so that I/ a II = 1 unm 1 + I ad I where I an1 I = I p 1 and I unm I = I q I. Then all intersec- 
tion points in unm (and in ad, respectively) have the same intersection signs. Thus, if one of 
the numbers IunmJ or lunll is bigger than 1, say I unll > 2, then there are two adjacent 
intersection points x and y in the curves I so that there is an arc c in 1 joining x and y with 
cna = ac and cnm = 4. Then, the H-reduction on the curve a at c produces two classes fi and 
y so that ply, a = fly and the norms of /I, y and rb are smaller than II a 11. Finally, if both p and 
q are at most 1, then a is one of the four classes [m], [lj, [mlj and [Em]. Thus the result follows. 

There are two steps in the proof of Theorem I. In the first step, we show that there are 
finitely many non-separating simple closed curves {cl, . . . , ck} in 9 so that % = {a E 9’ I a is 
disjoint from one of [ci]} satisfies (9)” = 9’ (Lemma 2.10). This step is relatively easy to 
achieve. The next step is the major step in which we replace these curves Ci by non-boundary 
parallel essential separating simple closed curves in C. This is achieved by combining 
Propositions 2.8,2.15, and 2.18. Knowing this, we apply the induction on the norm II C II of the 
subsurfaces obtained as the closure of the components of the complement of ci in E and end of 
proof. The proof of Theorem I is given in Section 2. 

To prove Theorem II (in Cl]), we show that the Lickorish-Humphries basis 

Fo = (bI1, .‘. ,C@g+1 ]} (as a subset of 9; see Fig. 3) for the mapping class group of a closed 
surface of genus g satisfies the following property: Let F, be the set {a I a = by, where /I and 
y are in F,_ l}uF,_ 1. Then 9’ = lJ,“= 1 F,. This also shows that the subgroup generated by 
the Dehn twists on the curves [ail’s is the subgroup generated by the Dehn twists on the set of 
all non-separating simple closed curves. Indeed D, = D,D,D, 1 up to isotopy when plq (see 

[S-7] for details on generating the mapping class group by Dehn twists). Now any two 
Lickorish-Humphries bases are related by a self homeomorphism of the surface and a bijec- 
tive map of Y preserving disjointness and orthogonality sends a Lickorish-Humphries basis 
to a Lickorish-Humphries basis. Thus the result follows. This is an analogue of the modular 

Fig. 3. A Lickorish-Humphries basis. 
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group case where we use two curves 0 and co as bases. The basic technique of the proof is the 
same as that used in Theorem I. We do not have to consider the third curve yfl here but we do 
need to produce the minimal set of generators in the new sense. 

1.5. Some observations and questions 

There is an interesting similarity between the relations (l)-(3) above and the functional 
equations for the well known elementary functions from the set of integers Z to R. Namely, 
the trigonometric functions cosh(lt) satisfyf(x + y) + f(x - y) = 2f(x)f(y) with!(x) > 1, the 
absolute value functions 1 ;It 1 satisfy f(x) + f(y) = max(f(x + y),f(x - y)), and the square 
functions At2 satisfyf(x + y) +f(x - y) = 2f(x) + 2f(y). Here 1 is a parameter. It is easy to 
show that these are all non-constant solutions to the functional equations above. Note that 
cos@t) also satisfiesf(x + y) +f(x - y) = 2f(x)f(y). 

This leads one to ask several questions. 

Question 1. What is the dimension of the vector space T/2,2,1,1? 

Question 2. Given a closed orientable surface Z and a function f: Sp + (t ER 1 t > l} 
satisfies the relationf(a/?) +f(ba) = 2f(a)f(fi) whenever a_L/3, is it true thatf=hd7 for some 
hyperbolic metric d in the surface? 

It can be shown easily that there are non-constant solutions to the relation 
f(c$) +f(/?a) = 2f(a)f(/?) which take some values equal to one (see [11] for a solution to the 
length spectrum problem). One would also ask whether there is a similar notion of the cosine 
function for curves in surfaces. 

In view of the linear skein relations for Jones type knot invariants, one may call a function 
in V2,2,1, 1 a two-dimensional “Jones invariant”. More generally, one may define two- 
dimensional “Jones invariants” as follows. Take a finite collection of classes ctl, . . . , tlk in 
Y (or more generally the set of all isotopy classes of simple closed curves in the surface) and 
finite collection of non-zero numbers di, . . . ,dk. A two-dimensional “Jones invariant” is 
a functionf: Y -+ C satisfying a linear skein relation: 

i: dif(4*(ai)) = O (6) 

i=l 

for all 4 in the mapping class group of the surface. 
A natural candidate for the collection al, . . . , ak seems to be the one satisfying that ai is 

either disjoint from or orthogonal to aj for i # j. The goal of this approach is to construct 
finite dimensional linear representations of the mapping class group. 

As an example, take three pairwise orthogonal simple closed curves a, b and c so that 
anbnc # 4 and aubuc is not in a torus with a hole. Let CI = [a], /? = [b] and y = [cl. 
Clearly each function fin V2, 2, 1, 1 satisfies the following relation: 

f(aB) +f(Ba) +f(Br) +f(rP) +f(ra) +S(cV) = 4f(a) + 4f(P) + 4f(Y). (7) 

Is it true that the set of all solutions to relation (7) forms a finite dimensional vector space? 
F. Bonahon asked whether one could estimate the number of generators in Theorem I. It 

follows from the proof that the number of generators for Z:,,, is at most c3g+” for some 
universal constant c. But the smallest number might be quadratic in 3g + II. 
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2. PROOF OF THEOREM 

2.1. Notation. We will use C to denote a compact oriented connected surface of genus 

g with n boundary components. A 1-submanifold in E is either a simple closed curve or an 
embedded arc (possibly non-compact). A submanifold p is proper if p is closed in Z and 
8p = pnX2. All intersections of two submanifolds in C are assumed to be transverse If 
p and q are two oriented 1-submanifolds, the intersection sign at a point P~pnq is defined in 
the usual way. If P and Q are in pnq, then the intersection signs at P and Q being the same is 
independent of the orientations on p, q and C. 

Notation: 

N(G) 

1x1 

lpnql 
z 

int(S) 

Csl 
I(% B) 
its, 0 
ii IsI, [ItI) 
DS 

a small regular neighborhood of a graph (a one-dimensional CW complex) G 
in C 
the number of elements in a finite set X 
the geometric intersection number of two 1-submanifolds p and q 

isotopy 
the interior of a compact manifold S 
isotopy class of simple closed curves s 
inf{ 1 anb 11 a E a, b E /3}, the geometric intersection number of Q and /I in Y 
the algebraic intersection number of two oriented curves s and t 

the algebraic intersection number of the isotopy classes of oriented curves s and t 
the positive Dehn twist about a simple closed curve s 

2.2. Reductions. We begin by introducing several useful concepts. A cutting arc c for 
a simple closed curve p is a closed embedded arc in C with end points in p so that 
cnp = &np = ac and that c approaches both end points in & from different sides of p. It is 
clear that p has a cutting arc if and only if p is non-separating. If two embedded l- 
submanifolds p and q of C intersect in more than one point, then an adjacent arc for q in p is 
a segment in p which is bounded by two adjacent intersection points and which does not 
intersect q except at the end points. We will be mainly interested in finding adjacent cutting 
arcs. This is the same as finding adjacent arcs whose end points have the same intersection 
signs. In particular, if p is a simple closed curve and 1 pnq 1 is an odd number, then by checking 
parity, one finds an adjacent cutting arc for q in p. Again by checking the parity, we have the 
following very useful lemma. 

2.3. LEMMA (alternating principle). Suppose q1 and q2 are two simple closed curves and p is 

an arc in IZ so that q1 np = q2np. Let P and Q be the two outermost intersection points of q1 np 

in p. If the intersection signs of P and Q in q1 np are the same, and the intersection signs of P and 

Q in q2np are difSerent, then there exists an adjacent cutting arc for q1 or q2 in p. 

Y 

Fig. 4. In the figure, the orientation is the right handed orientation in the plane. 
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2.4. Dejinition (The H-operation). Suppose c is a cutting arc for a non-separating simple 
closed curve p. By changing the graph cup into simple closed curves as in Fig. 4, we obtain 
three simple closed non-separating curves x, y, xy. They are said to be the curves spanned by 

p and c, or obtained by the H-operation on p and c. The curve xy is said to be the third curve 

spanned by s and c. 

Note that x, y and xy are all in a regular neighborhood of cup. Suppose p is 
decomposed into pIup, by cnp. Then the curves x and y are isotopic to pluc and pzuc. Take 
two parallel copies cr and cz of c with end points in p so that cr and c2 are in different sides of 
p. The curve xy is isotopic to (p - int(N(c))) u clucz). ( By the construction, we have 
[x]_L[p], [y]l.[p], [x]ILy], [xy]I[x], and [xy]I[y]. Furthermore, xy is isotopic to D,y 
and p is isotopic to D,x. Thus [p] is spanned by [xl, [y] and [xy]. 

2.5. LEMMA. Let G be a graph and s be a simple closed curve in C so that s avoids the vertices 

of G and s intersects G transversely. Suppose c is a cutting arcfor s and x, y and xy are the curves 

spanned by c and s. 

(a) If ac = cn(Gns) = cnG and a parallel copy c’ of c with end points in s is disjointfrom 
G (us in Fig. 5(a) but not in Fig. 5(b)), then [xnGl < lsnG[ - 1, IynGl < IsnG( - 1 and 

IxynGI < IsnGI. 

(b) Zf G is a 1-submanifold and c c G is an adjacent cutting arc, then I xnG( < IsnGJ - 1, 
IynGl < IsnGl - 1 and IxynGl < IsnGl - 2. 

The proof is evident from the definition and the fact that x, y and xy are in a regular 

neighborhood of CVS. See Fig. 5. 

S S 

S S 

C 
---\ 

G “G 

tt 

(a) 

,’ c 
G ‘\ 

tt 

G 
-s I 

fJ-4 

This case is avoid 

Fig. 5. 
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2.6. Orientations. Although curves are regarded as unoriented in the paper, it is conve- 
nient to orient them arbitrarily in the proof so that one may compare the intersection signs 

easily. To this end, one adopts the following convention in the paper. If p is oriented, we orient 
x and y so that they induce the same orientations on p1 and pz (with respect to the orientation 
induced from p). Any orientation on xy will induce orientations on pl, pz, cl and c2 so that 
exactly one of the orientations on p1 and p2 is reversed (with respect to the orientation 
induced from p) and the orientations on cl and c2 are the same with respect to the parallel. We 
will orient p and xy arbitrarily. 

2.7. Marking and torus with holes. Given a compact oriented surface C of genus g (g > 1) 
so that C is not a torus nor a one-holed torus, choose a maximal collection of simple closed 
curvesaiandbifori= 1,2, . . . ,g on Z SO that ailbi and ainaj = ainbj = binbj = 8 for i #j. 

For each index i, let ci be a simple closed curve SO that ci_LQi, cilbi, cinainbi # 0, and ci is not 
isotopic into a regular neighborhood of aiubi. Our goal is to show the following crucial 
proposition. 

2.8. PROPOSITION. Let X be the subset {a ~9’ 1 there is an index i so that either 

Z(a, [ai]) = Z(a, [bi]) = 0, or 0 < Z(a, [ai]), Z(a, [b(l), Z(a, [Ci]) < l}. Then ST = 9. 

The proposition will be proved by inductions on a norm )a1 = ~~_l(Z(a, [uJ) + 

Z(a, [bi])) of a in Y and a semi-norm 11 a /I i = Z(a, [ai]) + Z(a, [bi]) + Z(a, [Ci]) indexed by i. 
Since the norms involve the geometric intersection numbers, we begin with a discussion of 
intersection of arcs with aiubi and with aiubiuci. 

Given two simple closed curves a and b with alb, a regular neighborhood N(aub) of aub 
is a one-holed torus. We will represent the figure eight uub as in Fig. 6(a) and its regular 
neighborhood N(aub) as in Fig. 6(b). The intersection of a simple closed curve with aub will 
be represented as in Fig. 6(c) where all intersection points are drawn to be near anb. 

Finally, the intersection as in Fig. 6(d) may be changed to the one in Fig. 6(e) by an 
isotopy which moves the intersection points along the open arcs a-b or kz. The graph aub is 
said to be a standard spine of the one-holed torus. 

a 

t 

b 

(a) 

a b 

C 

x 

(4 

a a a a 

(b) Cc) 

Fig. 6. 

(4 Cd 

(b) (4 

Fig. I. 

Cd) (4 
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If a, b and c are three simple closed curves so that alb, b_Lc, c_La, anbnc # 0, and c is not 
isotopic into a regular neighborhood of aub, then a regular neighborhood N(aubuc) of 
aubuc is a two-holed torus. The figure aubuc will be represented as in Fig. 7(a), and the 
regular neighborhood N(aubuc) will be represented as in Fig. 7(b). 

The intersection of the curve s with aubuc will be represented as in Fig. 7(c). We may also 
change the intersection sn(aubuc) as in Fig. 7(d) by an isotopy which moves the intersection 
points along the open arcs a-b, kc or c-a as in Fig. 7(e). The graph aubuc is said to be 
a standard spine of the two-holed torus N(aubuc). 

2.9. We begin the proof of Proposition 2.8 by showing the following lemma. 

2.10. LEMMA. Let CY be the subset (a ~9 1 there is an index i so that 0 < Z(a, [ai]) and 

Z(a, [bi] < l}. Then (rym = 9’. 

Proof: Given a in Y of norm [cl1 = cf=i (Z(a, [ail) + Z(a, [bi])) = m, we will use 
induction on m to show that a EfP. Choose a representative sin a, so that I Snai I = Z(a, [ail), 

and 1 snbi 1 = Z(a, [bi]) for all indices i. In particular, the norm 1 CC 1 = If= I (1 Snai 1 + ) snbi 1). 
We will assume that s avoids all the intersection points of ai and bi. Since s is non-separating, 
there is an index i so that one of the numbers I Snai I or I snbi I is an odd number. Thus I a I 2 1. 
If the equality holds, then a is in g. Suppose now that the result holds for all a is Y of norm 
less than or equal to m - 1. Given a = [s] of norm m, let us assume without loss of generality 
that either lsnal I or lsnbl I is an odd number. 

REDUCTION I. Zf there is an adjacent cutting arc cfor s in ai - bi, or in bi - Uip then a is 

in ?!I”. 

Indeed, let x, y and xy be the curves spanned by s and c. By applying Lemma 2.5 to the 
graph G = Uf= 1 (aiubi), we have that the norms of [xl, [y] and [xy] are all less than m. Thus 
[xl, [y] and [xy] are in +YI” by the induction hypothesis. Since [s] is spanned by [xl, l-y] and 
[xy], [s] is in ?Y/“. 

We assume in the following that no such adjacent cutting arcs exist for s, i.e. s is irreducible 
with respect to Reduction I. 

The proof is given in Figs 8-11. It consists of simplifying a chain of diagrams. Each 
diagram represents a case of the simplification process and is indexed by an ordered finite 
sequence of numbers. The following notations will be used in the figures. 

the H-operation on the dotted cutting arc and the curve 
breaking into cases 
isotopy of the curve in the diagram 

AP (123) by applying the alternating principle to compare the curve in the current case 
and the curve in case (123), we conclude that one of the two curves is reducible. 
This ends the proof 

AP the same as AP (123) when case (123) is the preceding diagram 
IND this ends the proof by the induction hypothesis 
Goto (123) go to case (123) 
SAA (123) the same argument used in reducing case (123) applies, and this ends the proof 
RED Reduction I applies and this ends the proof by the induction hypothesis 
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The basic reduction process to simplify a simple closed curve p is the H-operation on 
a cutting arc c for p. Take the graph G to be uf= I (aiubi). The cutting arc c is chosen so that 

cnG = & and a parallel copy c’ of c with end points in p is disjoint from G. Let x, y, and xy be 

the curves spanned by p and c. Then by Lemma 2.5, the norms of [x] and l-y] are less than 
that of [p] and the norm of [xy] is at most that of [p]. By the induction hypothesis, both [x] 
and [y] are in 9P’. Thus showing that Cp] E’SP is equivalent to showing [xy] E??P. Due to 
this, we will only draw the third curve xy in the diagram following the H-operation. We label 
the curves in the diagrams according to the following rule: (1) isotopic curves will be labeled 
by the same latter; (2) the three curves spanned by the curve s and a cutting arc c are labelled 
by x, y, and xy; and the three curves spanned by xiyi and a cutting arc are labelled by xi+ ‘, 

Y 
itl, and xi+lyi+l where x0 = x, y” = Y. We also assume that at each (non-final stage) 

diagram, the curve involved are irreducible with respect to Reduction I since otherwise 
Reduction I applies and the proof is finished. When we apply the alternating principle to two 
diagrams, the outmost intersection points are marked in the diagram. 

Case 1. [maI 1 or Isnbl 1 = 1. We will simplify s in the one-holed torus N(arubi) by 
reducing the intersection number I srq I + ) sub, 1. Let us assume without loss of generality 
that lsnul 1 = 1. If 1 snb, I < 1, then [s] ~g. If Isnb, 1 2 2, we simplify s according to the 
following chain of diagrams (see Fig. 8). 

Here are the details. We represent the figure a, ubl according to the scheme in Fig. 6(a). In 
case (l), the three intersection points in sn(ulubl) adjacent to ulnbl are shown in the 
diagram. Case (1) breaks into two subcases (11) and (12) according to the intersection signs as 
indicated. In case (12), we move snul to the other side of bl along the open arc al-b1 by an 
isotopy. This can be achieved since snul consists of only one point by the assumption. Thus 
case (121) is covered in case (11). The reduction from the (11) to (111) is an H-operation on the 
indicated cutting arc c. By the remark above, among the three curves x, y and xy spanned by 
s and c, [xl, b] are in V’. The third curve xy is drawn in case (111) since its norm could reach 
m. Assume the norm of [xy] is m and that xy is irreducible, since otherwise we are done by 
either the induction hypothesis or Reduction I. We proceed arc c1 as indicated and 
use the H-operation on c1 and xy. The third curve xly’ spanned by c1 and xy is shown 
in (1’) and xly’ is isotopic to the curve in (16) which has at most m - 1 intersection points 
with the graph G. 

Fig. 8. 
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Thus by the induction hypothesis, [x’y’] is in V. This in turn implies that a = [s] is in 
%P. In the other case (1112), we find a cutting arc c1 as indicated (c’ is parallel to an arc in al) 
and use the H-operation on the cutting arc cl and the curve xy. The resulting third curve xly’ 
is drawn in (11121). We apply the alternating principle to xlyl and bi-a1 in case (11121) and 
xy and &a1 in case (1112). The intersection signs of P and Q in x’y’nbi are the 
same, whereas the intersection signs of P and Q in xynb, are different. Since xy is irreducible, 
and xynbl = x’y’nb,, by the alternating principle, there is an adjacent cutting arc for 
X1$ in bl-al. Thus, by Reduction I, [x’y’] is in V’. This finishes the proof of 
case (1). 

Case 2. Neither 1 snal 1 nor lsnbl 1 is one. We will simplify s again in the one-holed torus 
N(ulubl). Since one of lsnal I or Isnb, I is an odd number, let us assume without loss of 
generality that I snul I is an odd number bigger than or equal to three This implies that there 
is an adjacent cutting arc for s in a, by a simple parity checking. Because the curve s is 
irreducible, the cutting arc c must intersect bl, i.e. the two intersection points of snul which 
are adjacent to ulnbl have the same intersection signs. 

Subcuse 2.1. lsnbl 1 2 2. We reduce s according to the chain of diagrams as in Fig. 9. 
Here are the details. Case (2) breaks into two subcases (21) and (22) according to the 

intersection signs of snbl at the point near ulnbl. In case (22), the same argument used in 
reducing case (21) applies. Thus, it suffices to consider case (21). Find a cutting arc c as 
indicated in (21) and use the H-operation on s and c. The third curve xy spanned by c and 
s indicated in (211) consists of two subcases (2111) and (2112) according to the intersection 
sign. In case (2112) we compare the curve xy and al-b1 with the curve s and al-b1 in case (21). 
Since s irreducible and snul = xynu, and the intersection signs of P and Q in xynu, are 
different, by the alternating principle, there is an adjacent cutting arc for xy in al-b1 . Thus, xy 
is reducible with respect to Reduction I and [xy] is in +Y. In case (211 l), we find a cutting arc 
c1 as indicated in (2111) and use H-operation on xy and cl. The three curves spanned by xy 
and c1 all have norm less than m by Lemma 2.5 and by an isotopy which reduces case (214) to 
case (215). Thus, by the induction hypothesis, the isotopy classes of all of them are in gym. This 
in turn implies that CI is in V. 

Subcuse 2.2. I snbl 1 = 0. Let x, y and xy be the curves spanned by s and c as indicated in 
Fig. 10. Then the norms of [xl, [y] and [xy] are at most m. Since I xnbl I = I ynbl I = 1, by 
case 1 or by the induction hypothesis if the norm is less than m, [x] and [y] are in gym. If the 
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Fig. 10. The H-operation on the arc c. 

norm of [xy] is less than m, we are done. If the norm of [xy] is m, since lxynal ) - I ma1 I is 
an even number, the curve xy satisfies that 1 xynu, 1 is an odd number and I xynbl I = 2. By 
case 2.1 or case 1, [xy] is in %m. This finishes the proof of Lemma 2.10 by induction. 

2.11. For each index i, let %i = (U E Y 10 < Z(a, [ai]), I(c~, [bi]) < 1}, and let 
Xi = {a E Y I either Z(C~, [ai]) = Z(a, [bi]) = 0, or 0 d Z(a, [ui]), Z(a, [bi]), I(a, [Ci]) 6 I}. 

Clearly by the definition, X = UT=, Xi and % = lJT=, %i. We will show below that 
gi c XF. Thus, % c X”. It follows from Lemma 2.10 that 9 c gm, and Proposition 2.8 

follows. 

2.12. LEMMA. For each index i, %i c S”t^p. 

Proof: Let us assume without loss of generality that the index i = 1. Consider the graph 
G = ulublucl and the norm II a II = Z(a, [al]) + Z(a, [bl]) + Z(a, [cl]) for a is 9’. We will 
also refer II a 11 as the norm of s when SEQ. We will use induction on the norm m = I/ a II to 
prove the lemma. Clearly if m = 1, then a is in Xy . 

Suppose the result holds for all aEgl of the norm 11 a 11 at most m - 1. Given a of the 
norm m, choose s E a so that I snul 1 = Z(a, [al]), I snbl I = Z(a, [bl]) and / sncl I = Z(a, [cl]). 

In particular, II a II = Isnul I + lsnbl I + lsncl I. We will reduce s according to 
(1 snul I, I snbl I) = (O,O), (l,O), (0, 1) or (1, 1). If it is (O,O), then by definition a is in Xy. 
Assume also that 1 sncl I 2 2 since otherwise a is in Xi. 

The curve s will be simplified in the two-holed torus N(ulublucl) by reducing the 
intersection number I sn(ulublucl)~ through a sequence of H-operations and isotopies. To 
begin the proof, we assume that the curve s is irreducible with respect to Reduction I, i.e. there 
is no cutting arc c for s in al-bl, or bl-cl, or cl-al. Otherwise, the H-operation on s and the 
cutting arc will produce three curves x, y, and xy of norm less than m by Lemma 2.5. Clearly 
[x], [y] and [xy] are all in gl. Thus by the induction hypothesis, [xl, l-y] and [xy] are all in 
X;o. 

The reduction process below consists of simplifying a chain of diagrams in Figs 11-15. The 
notations introduced in the proof of Lemma 2.10 will be used again. The graph 
G = ulublucl will be represented according to the scheme in Fig. 7(a). Only the intersection 
points of snG adjacent to ulnblncl are shown in each diagram. The cutting 
arcs are the dotted lines in the diagrams. We divide the proof into two cases where 
case (1) corresponds to (1 snq 1, I unb, I) = (1, 1) and case (2) corresponds to ( I snul 1, 
I snbl I = (1,0) or (0, 1). 

Case (1). (I snul 1, I snbl I) = (1, 1). This case is covered in Figs 11 and 12. 
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Here are the details of Fig. 11. Case (1) breaks into two cases (11) and (12) according to the 
intersection signs of ma1 and snbl at the points adjacent to al nbl. The second case (12) will 
be discussed later in Fig. 12. In case (ll), one finds a cutting arc c as indicated and uses the 
H-operation on the curve s and the cutting arc c to obtain the third curve xy spanned by s and 
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c in case (111). Case (111) consists of two subcases (1111) and (1112) according to the 
intersection signs. In case (111 l), we find a cutting arc c1 as indicated and use the H-operation 

on the cutting arc c1 and the curve xy to obtain the curve xly’ in case (15). Case (15) breaks 

into two subcases according to the intersection signs. 
In case (l(j), one finds a cutting arc as indicated and uses the H-operation on the cutting 

arc and the curve to obtain case (1’). The resulting third curve xzy2 in (1’) is isotopic to one 
as indicated in the diagram (18). Thus, the norm of [x2y2] is less than m. By the induction 
hypothesis, [xzy2] is in SF. In case (ls2), assuming that the curve xlyl has the norm m and is 
irreducible with respect to the Reduction I, one finds a cutting arc as indicated and uses the 
H-operation on the cutting arc and the curve to obtain (1’21). The resulting third curve x2y2 
in (1 521) is reducible with respect to Reduction I by the alternating principle. Indeed, applying 
the alternating principle to the curve xly’ in case (152) and x2y2 in (1521) with respect to the 
arc cl-al, one finds an adjacent cutting arc for x2y2 in cl-al. Thus [x2y2] is in %‘T by 
Reduction I. This implies that CI is in XT in case (1111). Lastly, in case (1112), one finds 
a cutting arc as indicated and uses the H-operation on the cutting arc and the curve to obtain 
case (11121). In case (11121), since the curve x’y’ intersects both a, and bl each at one point, it 
can be isotopic into a position as in (13212). Find a cutting arc in (13212) as indicated and use 
the H-operation on the cutting arc and the curve to obtain the third curve x2y2 in (13213). 
Case ( 13213) is already covered in case (1’). Thus, we have finished the simplification of 
case (11). 

We now come to case (12) as in Fig. 12. Case (12) breaks into two cases according to the 
intersection signs. In case (121), the curve s is isotopic into the position as in (1211) since 
1 snal 1 = ) snb, 1 = 1. Case (1211) is the same as in case (122). Thus, it suffices to consider case 
(122). In case (122), we find a cutting arc as indicated and use the H-operation to obtain case 
(1221). There are two subcases ( 122 1”) and ( 122 12) according to the intersection signs. If we are 
in case (122 1 2), we find a cutting arc as indicated and use the H-operation to transform (122 12) 
into ( 122 1 3). Case ( 122 1 3, is already covered in case ( 15) in Fig. 11. In case ( 122 12), the curve xy 
moved by an isotopy to the position as in (122121) since xynq consists of one point. One 
finds a cutting arc as indicated in (122121) and uses the H-operation to obtain case (1221212). 
There are now two cases depending on the intersection signs. If we are in case (1221213), then 
an isotopy of the curve xly’ as indicated transforms it into (1221214) without increasing the 
norm. Case (1221214) is reducible. Thus, by the Reduction I, [x’y’] is in Xr. This implies that 
crisin%?. If we are in case (12212122) and the curve x’y’ is irreducible, we find a cutting arc 
as indicated and use the H-operation to obtain case (122121221). Now the two curves x’y’ in 
(12212122) and x2y2 in (122121221) satisfy the condition in the alternating principle in the arc 
cl - al. Thus, x2y2 is reducible with respect to Reduction I. Thus the result follows. This 
finishes the proof of case (1). 

Case (2). (I snal 1, lsnbl I) = (1,0) or (0, 1). Let us assume without loss of generality that it 
is (LO). We reduce s according to the schemes in Figs 13-15. 

Let us consider Fig. 13 first. 
Here are the details of Fig. 13. Case (2) breaks into two subcases according to the 

intersection signs. Starting from case (21), one follows the routine reduction by finding cutting 
arcs as indicated in (21), (2111) and (21121) and using the H-operation to reduce the curves 
involved. Case (21111) and its preceding case (2111) satisfy the conditions of the alternating 

principle at the points marked. Thus, by Reduction I, we are done with case (21111). In case 
(21121, the curve xy is isotopic into the other side of b, as in Fig. (21121). This increases the 
intersection number of the curve xy with the graph G by two. Using the H-operation on the 
cutting arc in (21121), we obtain three curves x1, y’ and xlyl as in (211211), (211212) and 
(211213). Due to the increase of the intersection number I xynG 1, one has to make sure that 
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all the isotopy classes of x1, y’, and xly’ are in XT. In case (21121 l), the curve x1 intersects 
the graph G in at most m points and [xl] is in !Vi. If the norm of [xl] is m, then this case is 
already covered in case (1’); if the norm is less than m, [x’] is in %? by the induction 
hypothesis. In case (211212), the number of intersection points of y’ with G is at most m - 1 
and both 1 y’nq 1 and 1 ylnbl 1 are at most one, thus by the induction hypothesis, the isotopy 
class of the curve is in .%r. In case (211213), the curve xly’ intersects the graph G in at most 
m points, xly’ intersects al in one point, and xly’ intersects bl at two points of the same 
intersection signs. Thus Reduction I applies to xly’ at the adjacent cutting arc in &-al as 
indicated in (211213). By Lemma 2.5, the isotopy classes of the three curves x2, y2, x2y2 
spanned by xly’ and the cutting arc have the norms at most m - 1 and furthermore, they are 
all in CYl. Thus by the induction hypothesis, the isotopy classes [x2], b2] and [x2y2] are all in 
XT. Now that [xl], [y’] and [x’y’] are in 9-7, this in turn implies that tl is in 9-p. This takes 
care of case (21). In case (22), we obtain two subcases (221) and (222) according to the 
intersection signs. In case (221), the curve s is isotopic into the position as in (2211) since 
lsnai I = 1. The same type of reduction used in case (21) applies to (2211). Thus c1 is in Xp. 

We consider the most difficult case (222) in Figs 14 and 15 below. 
Here are the details of Fig. 14. Find a cutting arc c for s which cuts the graph G in one 

point as indicated in (222). We obtain three curves x, xy and y spanned by s and c as in (2221), 
(24) and (2223), respectively. We need to discuss each of the three curves [xl, l--y] and [xy] 
separately since the norms of [x] and b] may not be less than m and the curve [xy] is not in 
the set +Y/, . In cases (2221) and (2223), the dotted arrowed line segments indicate that these line 
segments may be part of the curves x and y. In case (2221), the curve x intersects each of 
a, and bl in one point, and x intersects the graph G in at most m points. Thus, if the norm of 
[x] is less than m, by the induction hypothesis [x] is in Z-y; if the norm is m, this is already 
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covered in case (1). Thus [x] is in XT. In the case (2223), the curve y intersects bl in one point, 
y does not intersect al, and y intersects Gin at most m points. If the norm of [y] is less than m, 

by the induction hypothesis, we are done. If the norm of b] is m, then the same reduction 
argument used in (211) applied to y. Thus, b] is also in XF. 

This shows that a is in SF if and only if [xy] in case (24) is in SF. Let us now proceed 
from (24). The curve xy in (2”) intersects G in at most m + 2 points, intersects ai in one point, 
and intersects b1 in two points of the same intersection signs. There are now two cases (241) 
and (2’) according to the intersection signs. Case (2’) will be covered in Fig. 15. In case (241), 
the curve xy is moved by an isotopy to the position indicated. Find a cutting arc c1 as 
indicated in (241) and use the H-operation on the cutting arc c1 and the curve xy. We obtain 
three curves x1, y’, and xlyl spanned by cl and xy as indicated in cases (241’), (2413) and 
(2412), respectively. In case (2412), the curve x1 intersects G in at most m - 1 points, and x1 
intersects each of a, and bl in at most one point. Thus by the induction hypothesis, [xl] is in 
!Z?. In case (2412), the curve xly’ can be moved by an isotopy to the position as in (24121). 
The curve x’yi in (24121) intersects Gin at most m points, intersects bl in two points, and al in 
one point. There are two subcases according to the intersection signs as indicated in (241212) 
and (241212). In the case (241212), there is an adjacent cutting arc for the curve xly’ in 
bl-ul . Thus Reduction I applies and we obtain three curves whose isotopy classes are all in 
%T by the same argument that we use to treat case (211213). Thus we are done with case 
(241212). In case (241212), we find a cutting arc as indicated. The H-operation on the cutting 
arc and xlyl produces the curve x2y2 in (2412121). The norm of x2y2 is at most m and there is 
an adjacent cutting arc for it in bl-al. Thus the result follows by the same argument that we 
use in case (241212). In case (2413), 11 y I( < m + 1, 1 ynbl 1 < 2, and 1 ynal ( < 1. We break case 
(2413) into two cases according to whether the dotted arrowed line segment is in y’ or not. In 
case (24131) the dotted arrowed line segment is not in y’, the isotopy class of the curve y’ is in 
SYl and it has either the norm less than m or it has the norm m but b’] is in the case (1). In 
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both situations, b’] is in %F by either the induction hypothesis or by the proof of case (1). In 
case (24132), we find a cutting arc in bl-a1 as indicated and use the H-operation on the cutting 
arc and y’ to obtain three curves x2, y2 and x2y2 in cases (241321), (241323), and (241322), 
respectively. Clearly all isotopy classes of x2, y2 and x2y2 are in 9Yy, and their norms are less 
than m. Thus, by the induction hypothesis, all of them are in SF. This finishes the proof that 
a is in L!Zy in case (241). 

We now consider the last case (25) in Fig. 15. 
Here are the details. We first break (25) into two cases according to (1 [xy] )I < m + 1 or 

II[ xy] 11 = m + 2. Case (251) is already covered in (24132). In case (26), compare the curves xy 
in (26) with the curve s in (222). Since xyn(c,-al) = sn(q-al), and the intersection signs at 
P and Q of xyn(cl-aI) are different, by the alternating principle, there is an adjacent cutting 
arc for xy in cl-al. Case (26) is divided into two cases according to whether the adjacent 
cutting arc contains the point P or not. If it does not contain P, we are in (261). Using 
the H-operation at the adjacent cutting arc and xy, we obtain three new curves x1, y’ and 
xlyl as in (2612), (2613) and (2612), respectively. The curve x1 in (2612) intersects G in at most 
m + 1 points, and xlyl is either in case (2413), or in case (1) or having the norm less than m. 
Thus, [x’] is in %y. The situation for y’ is the same as x1. Thus [y’] are in ST. 

In case (2’j12), the curve x’y’ has norm at most m. This case is already covered in case 
(24121). Thus, [x’y’] is in S?T. This takes care of (2’jl). In the last case (27) that the adjacent 
cutting arc contains P, let x1, y’ and xlyl be the curves spanned by xy and the adjacent 
cutting arc as in cases (271), (273), and (2*), respectively. Case (271) is already covered in (2413). 
Thus [x’] is in XT. In the case (2*), the norm of [x’y’] is at most m and x’y’ intersects a1 in 
one point and bl in two points. Thus, it is already covered in case (24121). Thus [x’y’] is in 



ON NON-SEPARATING SIMPLE CLOSED CURVES 399 

9-r. In the case (273), the norm of b’] is less than m and b’] is in Y I . Thus, by the induction 

hypothesis, [y’] is in LX?. 

This ends the proof of Lemma 2.12. Thus Proposition 2.8 is also proven. 

2.13. Curves in the two-holed torus. The following lemma shows that the curves al, bl and 
cl forming a standard spine are unique up to self-homeomorphism of the two-holed torus 
N(UiUblUCJ. 

2.14. LEMMA. Suppose S is a two-holed torus with two standard spines alublucl and 

a2ub2uc2. Then there is a self-homeomorphism of S sending al to a2, bl to b2, and cl to c2. In 
particular, there is a Z3 action on S which permutes aI, bl and cl. 

Proof Take a small regular neighborhood AJ(aiubiuci) Of aiubiuci in S for i = 1,2. There 

is a diffeomorphismf from N(aIubIucl) to N(a2ub2uc2) sending al to a2, bl to bz, and cl to 
c2, respectively. We can easily extend f to a diffeomorphism of S since by the assumption the 
complement S - int(N(aiubiuci)) consists of two disjoint annuli for i = 1, 2. 

To show the last assertion of the lemma, we consider the two-holed torus together with the 
standard spine drawn in Fig. 7(a). It has the required 3-fold symmetry induced by the 
2n/3-rotation in the plane. Furthermore, the 3-fold symmetry leaves each component of L?S 
invariant. 

2.15. PROPOSITION. Suppose S is an oriented two-holed torus with a standard spine aubuc. 

The order of a, b, and c are so chosen that abnc = bcna = canb = 8 as in Fig. 16. 
Let p be a proper 1-submanifold in S so that p intersects each of the three curves a, b and c in 

at most one point and pn(aubuc) # 8. Then: 

(a) If p is a simple closed curve, p is isotopic to one of the nine curves a, b, c, ab, bc, ca, &, 62, 

or Ca as in Fig. 16. Furthermore, Y(S) is generated by {a, b, c, ab, be, ca}; 
(b) if p is a proper arc, then p is isotopic in S to one of the six proper arcs as in Fig. 17 or to 

one of their images under the 3-fold symmetry which permutes a, b, c. 

Proof: Take a small regular neighborhood N = N(aubuc) of the standard spine aubuc 

in S. The complement S - int(iV) consists of two annuli A1 and A2 as in Fig. 18(a). The 
boundary aAi of Ai consists of a boundary component of&S and a boundary component ni of 
aN for i = 1,2. After an isotopy, we may assume that the intersection points of p with N are 
located exactly the same as intersection points of the model curves in Figs 16 and 17 (here we 
use the fact that N is a very small regular neighborhood) except when p is an arc and 
1 pna 1 = 1 pnb 1 = I pnc I = 1 with which we will deal later. 

We will use the following easy fact about proper arcs in an annulus. The proof of the 
lemma is omitted. 

jf c&n g& cg 2$$ g= 
- 

ab bc ca ab 52 Ei 

Fig. 16. In the figure, the orientation is the right-handed orientation in the plane. 
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a*b* 

(4 

r . 

b*a* a76* fx* a*b*c* 

Fig. 17. 

(b) arcs in A 1 

(c)arcsinA 2 

Fig. 18. 

2.16. LEMMA. Suppose q is a proper arc in an annulus A with i3A consisting of two 

components a, and a,. 

(a) If 1 qna, 1 = 1, then there is only one isotopy class of such arcs in A with respect to 

isotopies leaving 8, pointwise jixed. 

(b) If 1 qna, 1 = 2, then there are exactly two isotopy classes of such arcs in A with respect 
to isotopies leaving 8, pointwisejixed. Furthermore, if[qt] and [qz] are the two distinct isotopy 

classes and q3 is a proper arc joining 8, to &, then q3n(q1uqz) # 8. 

We now continue the proof of the Proposition 2.15. The triple of geometric intersection 

numbers V(P, 4, I(P, b), I(P, 4) are given by (1,40), (O,l,O), (QO, 9, (1, LO), (LO, I), ((31, I), 
and (1, 1,l). By Lemma 2.14, it suffices to consider cases where (Z(p, a), Z(p, b), Z(p, c)) is 

(l,QO), (1, LO) or U,L 1). 
In the first case (a) that p is a simple closed curve, the triples (l,O,O) and (1, 1,l) cannot 

occur by a simple Z,-homology argument. 
If (I(p, a), I(p, b), I(p, c)) is (1, l,O), we claim that p is either isotopic to c or ab or ri&. The 

intersection pnN cuts p into two arcs p1 and p2 where pi is a proper arc in Ai and api c ni. By 
Lemma 2.16 (b), there are exactly two isotopy classes of pi in Ai with respect to isotopies 
leaving ni pointwise fixed. These classes are listed in Fig. 18(b) and (c). 

Combing these arcs in various ways, we obtain all four possible isotopy classes of p in N as 
in Fig. 19. 
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a b a b a b a b 

64 

(2) (3) 

Fig. 19. 

Fig. 20. 

(b) cc> 

C 

(4) 

-96 = 

a 
. 

8:. q :’ b 
v P& .;,..,.,_*: ::,;& , 

. . . . . . . . . . :: .:... . . . 
c 

% 

. .~‘. . . 

7 
,... .- ,, ,. : ‘.. . . .:. ,:: :., : ,:’ ;’ A .;‘:. 

P, .-. 
(4 

Fig. 21. 

Now in case (l), p E’ c; in case (2), p z ab; in case (3), p g iiS; and in the last case (4), p E c 

by an isotopy which moves pm and pnb to the position Mow c. 
To show the last assertion in part (a), by Proposition 2.8, it suffices to prove that &is in 

{a, b, ab, bc, ca}“. This in turn follows from the chains of diagrams in Fig. 20. This finishes the 
proof of case (a). 

We now consider the case that p is a proper arc in S. There are three cases according to the 

t~ple(Ip~aI,Ipnbl,Ip~~I)bei~g(~,0,~~,(1,~,~),a~~(~,~,~). 
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In case (I pm I, I pnb 1, I pnc I) = (l,O,O), the intersection pnN cuts p into two arcs 
p1 and p2 with pi c Ai for i = 1,2. Each curve pi joints the two boundary components of 
a&. Hence by Lemma 2.16 part (a), there is only one isotopy class of pi with respect to 
isotopies leaving ni pointwise fixed. Thus p is unique up to isotopy in S. In particular, p E a* 

as in Fig. 17. 

In the second case (I pna 1, I pnb 1, I pnc ( = (1, LO), there are two types of arcs according 
to pn(&l, - nl) # 8 or pn(8A2 - n2) # 8. Let us assume without loss of generality that 
pn(lMl - nl) # 8. In this case, the intersection pnN cuts p into three arcs pl, q1 and p2 where 
p1 and q1 are proper arcs in Ai joining the two components of i3Ai and p2 is a proper arc in 
A2 with 8p2 c n2 as in Fig. 21. By Lemma 2.16, there is only one isotopy class of p1 (and 
q1 respectively) in Ai with repect to isotopies leaving n, pointwise fixed and there are two 
isotopy classes for p2 in A2 with respect to isotopies leaving n2 pointwise fixed. We now 
assemble these isotopy classes of pl, q1 and p2 as in Fig. 21(b) and (c) to recover p in S. We 
obtain two isotopy classes of p in S, namely a*b* and a*&* as in Fig. 17. To see that the two 
curves are not isotopic, we observe that I([a*b*], Cab]) = 0 and I([Z*6*], Cub]) = 2. 

In the final case that (I pna I, ) pnb 1, I pnc I) = (1, 1, l), there are three possibilities accord- 
ing to the order of pnu, pnb and pnc in p. Let us assume without loss of generality that pnb is 
between pna and pnc in p. We also assume that the three intersection points pna, pnb and 
pnc are fixed during the discussion. The arc p is cut by pnN into four arcs pl, ql, p2 and 
q2 where pi and qi are proper arcs in Ai as in Fig. 21(d). 

The arc pi joins the two boundary components of 8Ai and there is only one such isotopy 
class of pi in Ai with respect to isotopies leaving ni pointwise fixed. The end points of the arc 
qi are in ni and qinpi = 8. By Lemma 2.16, the disjointness Of qi from pi forces qi to be in only 
one isotopy class of such arcs with respect to isotopies leaving ni pointwise fixed. Thus, there is 
at most one isotopy class of such p in S. The existence is demonstrated by Fig. 17. 

2.17. Suppose I: = Z’s,” is a compact oriented surface of positive genus g with n boundary 
components. We define )I ZZ I/ to be 3g + n and use induction on I( X II to prove Theorem I for 
the surfaces in the class 9 = {X9,n 1 (g, n) # (2,0), g > l}. The remaining case that the surface 
is X2.0 will follow easily. 

To begin with, let us consider subsurfaces C’ in C. By convention, all subsurfaces are 
assumed to be connected with the orientation induced from C. Given a subsurface Z’ c C, the 
inclusion map i : C’ + C induces a map i .+:Y(C’) + 9’(E) by sending [a] to [i(u)]. The 

induced map i, preserves the disjointness, the orthogonality and the product. A subsurface 
X’ in C is said to be incompressible if the inclusion map i : E’ -+ C induces a monomorphism 
in the fundamental group. An equivalent definition of incompressibility is that each compo- 
nent of 8X’ is an essential curve in X. If X’ is incompressible in X:, and i: IS’ + IZ is 
not a homotopy equivalence, then (I E’ I/ < /I C 11. Furthermore, the induced map 
i, : Y(X’) + Y(X) is an injective map. We will identify from now on 9(X’) with i,(Y(Z’)) for 
incompressible subsurfaces X’ in Xc. A subsurface Z’ in X is said to be separating if each 
boundary component of dC’ is a separating simple closed curve in C. Each separating 
subsurface in C is obtained as the closure of the connected component of X - Ul= 1 si where 

{S 1, . . . , Sk} is a collection of disjoint separating simple closed curves in z. If Z’ is a separating 
subsurface with 8X:’ consisting of k circles s 1, . . . ,Sk, then there are k disjoint subsurfaces 
X 1, . . . ,& SO that X = C’U~:,, Ci and &nC’ = Si. It follows that if x’ is a separating 
subsurface of X and s is a simple closed curve in Z’, then s is separating in X’ if and only ifs is 
separating in X. 

The goal now is to construct a finite collection of essential non-boundary parallel 
separating simple closed curves {s 1, . . ..sk}inCsothatJY={(aE9(C)(ctn[Si]=~forsome 
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i} satisfies 9”” = 9’(Z). Assuming this is achieved, we let Czi-r and Ezi be the two 
incompressible separating subsurfaces obtained as the closure of the connected components 
of si in C, then .Z = uf:, Y(Ci). Since I/ ISi Ij < 11 C I/ by the construction, and Ci is in 
9 unless its genus is zero, the induction hypothesis applies to Ci. We find that 9(Ei) is 
finitely generated for each i. Putting these finitely many generators together, we obtain 
a finite set generating Y(C). 

To begin the proof, if 11 C II is 3 or 4, then C is either a torus or a l-holed torus. The result 
is well known as explained in the introduction (note that the map induced by the inclusion 
i, : 9(X1, J + S(X,,,,) is a bijective map). In both cases, Y(X) is generated by three elements. 
If /I C 11 = 5, then E is a 2-holed torus. By Propositions 2.8 and 2.15(a), 9(X,,,) is generated 
by six elements. Assume now that Theorem I holds for C in 9 of 11 C 11 < m. Given 
a compact surface C = Es,” in 9 with II X 11 = m > 6, we choose a collection of simple closed 
non-separating curves Ui, bi, and ci for i = 1,2, . . . ,g in C SO that: 

(1) ai_Lbi, bilci, cilai, ainbinci # 0 and ci is not isotopic into a regular neighborhood 
of aiubi for each i; 

(2) ainaj = ainbj = binbj = 0 when i #j; 

(3) each of the two boundary components di and ei of a small regular neighborhood 
N(Uiubiuci) of Uiubiuci is an essential separating curve. Furthermore, one of the curves, 
say di, is the boundary of a subsurface Pi in X SO that PinN(aiubiuci) = di with 
aPi - di c 22 and Pi is either a 3-holed sphere (in case n 2 2) or a l-holed torus (in case 
n d 1) as in Fig. 22. 

The properties (l), (2) and (3) can easily be realized since 3g + n > 6, g > 1, and 
(g, n) # (2,O). Note that the boundary component ei is non-boundary parallel unless 
I: := C1,3 or &. 

For simplicity, given a simple closed curve s in E, let Corn(s) be {cr~Y 1 an[cs] = 4}. If 
S is a finite set of simple close curves {s 1, . . . ,sk}, let Corn(S) be U:=, Com(si). 

By Proposition 2.8, Y = %^” where X = Uy= 1 Xi with Xi = {a E Y 1 there is an index i so 

that either Z(a, [ai]) = Z(a, [bi]) = 0, or 0 < Z(a, [ai]), Z(a, [bi]), Z(a, [ci]) < l}. On the 
other hand, if X c 9?‘, then 9?’ c 9’” and also X*uY/” c (%uY)~. Thus to finish the 
proof of Theorem I, it suffices to show the following. 

2.18. PROPOSITION. For each index i = 1, 2, . . . ,g, there is aJinite collection Wi of non- 

boundary parallel essential separating simple closed curves in E so that 5Yi c (Com(%‘i))“. 

a: 

Fig. 22. 



(3) (4) (9 

(a) 

(7) (8) (9) (10) 

Fig. 23. In (a) the intersection is connected and in (b) the intersection is not connected. 

By taking %? = UT=, gi, we have that .% c (CO~(%?))~. This completes the 
Theorem I for X # Cz, 0. 

(6) 

proof of 

Proof: For simplicity, we assume that the index i = 1 below and let N = N(alublucl) 
be the 2-holed torus. By the construction, aN = d1 uel consists of two essential separating 
simple closed curves and d1 = PlnN with 8P1 - dl c XZ where PI is either a 3-holed 
sphere (if n > 2) or a l-holed torus (if n < 1). The curve d1 is non-boundary parallel and the 
other curve el is also non-boundary parallel unless X = X1,s or Cz, i. By the construction, 
both subsurfaces NuPl and N are separating in X. 

Given a E X1, by Proposition 2.15, we may choose a representative s E a so that either (1) 
s c N, or (2) I@, [ai]) = (snal 1, Z(a, [bi]) = Isnb, 1, Z(a, [cl]) = lsncl 1, and snN is iso- 
topic to one of the ten types of arcs and their images under the 3-fold symmetry as in Fig. 23. 
Note that we represent N as in Fig. 7(b) and the 3-fold symmetry is induced by the 2rc/3 
rotation in the plane. Figure 23 is divided into two parts according to the connectivity of snN. 

Now if a has a representative s in N, then a E Com(dl). Thus, by taking [di] to be in the 
collection S1, we may assume that a is not in Y(N), i.e. snN consists of arcs. In this case, 
since both d1 and el are separating curves, I sndl ) and 1 me1 I are even numbers. Thus, types 
(l), (6), (8), (9), (10) and their images under the 3-fold symmetry in Fig. 23 cannot occur. 

We now divide the proof into four cases where case 1 corresponds to (g, n) # (1,3) and 
(2, 1) and PI being a 3-holed sphere, case 2 corresponds to (g, n) = (1, 3) and P, being 
a 3-holed sphere, case 3 corresponds to (g, n) # (1,3) and (2,l) and PI being a l-holed torus, 
and case 4 corresponds to (g, n) = (2, 1). 

2.19. Case 1. The surface C = C,,, has (g, n) # (1, 3), (2,1) and PI is a 3-holed sphere. 
Then el is non-boundary parallel. Take [eJ to be in the collection wl. Then if snN is of types 
(2), (3), (4) or (5), it follows that a is disjoint from one of the curves dl or el , i.e., a E COG. 

Thus, it remains to consider the only situation that snN is of type (7) in Fig. 23. 

In the 3-holed sphere PI, since I sndl I = 2 and 8P1 - dl c 8X,, the intersection snP, is 
an arc. It follows that the intersection sn(NuP,) is also an arc. By the Dehn-Thurston 
classification of curve systems [3,5,8], the curve system sn(NuPl) in NuP, is obtained by 
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N UP, 
(b) (d 

Fig. 24. In the figure, positive, negative, and half Dehn-twists are within the same class. 

Fig. 25. 

taking a copy of snN in N (there are three isotopy classes of them) and a copy of snP, in P1 
(there is one isotopy class of it) and gluing them along d1 with a twist. Therefore, there are 
three classes of sn(NuP,) as listed in Fig. 24. The classes (a), (b) and (c) are characterized by 
the triple of geometric intersection numbers (I(a, [al]), I(a, [bl]), I(a, [cl]) being (1, l,O), 

(l,O, 1) and (O,l, 1)). 
The three classes are induced by the 3-fold symmetry in N. In particular, there are two 

self-homeomorphisms +1 and & of C leaving each point in X - (NuP,) fixed which sends 
class (b) curves and class (c) curves to class (a) curves, respectively. Each curve system in 
class (a) is of the form oj,((tl) or oi,(tz) for some integer k where t1 and t2 are as in Fig. 25. 
Those curve systems of class (a) with positive (or negative) exponent k are said to have 
positive (or negative, respectively) Dehn-Thurston coordinate at dl. Within the class (a) 
curves, there is a self-(orientation reversing) homeomorphism & of C leaving NuP, 
invariant which sends curves of negative Dehn-Thurston coordinates to curves of positive 
coordinates. Note that each curve tl and t2 does not intersect a non-boundary parallel 
essential separating simple closed curve s1 and s2, respectively, as in Fig. 25. 

Thus to finish the proof of case 1, it suffices to enlarge the collection that we constructed 
so far to a finite collection %?i of non-boundary parallel essential separating curves so that 
!Zi = {a~.%“l 1 a has a representative s so that sn(NuP1) is a class (a) curve of positive 
Dehn-Thurston coordinate at d1 in Fig. 24) c CO~(%?~)~. Indeed, having constructed the 
finite collection U; we simply take V1 to be Uf=, 4i(%i). 

To construct %i, we introduce eight families of simple closed curves and arcs 

Ak, &, Ck, Dk, Ek, Fk, Gk, and Hk in NuP, of positive Dehn-Thurston coordinates at 
d1 as in Fig. 26 where the index k is the sum of numbers of intersection points of the curve 
or arc with the marked arc I1 and 12. Note that the two intersection points of the arc FI, 
or Gk or Hk with el have different intersection signs. This will be used to find cutting arcs 
for them. 

For simplicity, given a simple closed curve or a proper arc C in NuP,. we use C* to 
denote the set of all isotopy classes of simple closed non-separating curves in C so that each 
element has a representative s with sn(NuP1) isotopic to C. In particular, if C is a simple 
closed non-separating curve, then C* = [Cl. Also S”; = UT= 1 F:. 
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Ck 

Fig. 26. 

2.20. LEMMA. We have the following recurrent relations where 9 = Com(dl). 

(1) A: C (Bk*_~uCk*_&JDk*-~uAqrn; 

(2) B: c (A~_1uA~_3uB~_4uE~_zuE~_qu~)m; 

(3) c: c (A?_ +B,*_ 1 uDk*_ zu9qm; 

(4) 0: c (A~_1uA~_3~B~_ZuE~_4u~)~; 

(5) E; c (B+D$JS)“; 

(6) F: c (B~_1uG~_2uH~_luS)03; 

(7) G: c (B,*_,uF,*_~uH~_~u~)~; 

(8) H; c (B~_ZuB~_4uF~_~uG~_~uH~_2uH~_~u~)m. 

ProoJ: The proof of the lemma is given by the chain of diagrams in Fig. 27. The 
notations are the same as before. The surface NuPl (drawn as in Fig. 24) is abbreviated as 
N--d1 since all H-operations and isotopies are supported in the surface N. The cutting arcs 
are the darkened line segments in the diagrams. 

By Lemma 2.20, we conclude that the set .YXt^; c (lJf=, (A~uB~u ... uH:)u9jm. On 
the other hand, A,QB$C~uD:uE: c Com(e& for each i there is an integer k so that 

Fi* = Gom({%,(s1), %@A>) as in Fig. 25; similarly, for each Gr(and each H:) there is an 
essential non-boundary parallel separating simple closed curve r so that GF is a subset of 
Corn(r). This finishes the proof of case 1. 

2.21. Case 2. The surface X is X1, 3. This case is actually covered in Lemma 2.20(l)-(5). 
Indeed, by the reduction before, it suffices to show that the subset .Y^; = {CX E 3?1 1 therefore is 
a representative s of tl so that snN is of type (2) or (5) in Fig. 23 or their images under the 
3-fold symmetry} is finitely generated. However, .Y^; is the union of the images of 
X’; = U,“=, (A:uB,*uC:uE:) under the homeomorphism &, C& and &. Lemma 2.20 
shows that a; is generated by Ui,i (A:uB,*uC,*uD:uE’)u.?T, and 4t is finitely gener- 
ated by Proposition 2.15(a). Thus the result follows. 
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Fig. 27. Continued onfollowing two pages. 
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Dk 

B k-l 

Gr 

Fig. 21. continued 

2.22. Cases 3 and 4. PI is a l-holed torus. Choose two simple closed curves ml and II in 
PI so that mIllI. For each a in !EI, since Z(a, Cdl]) = 2, choose a representative s in CI so 
that 1 sndl 1 = 2 and I(a, [ml]) = 1 snml 1, I(a, [11]) = I snll I, and snP, is an arc. By the 
classification of curve systems in the l-holed torus PI, if one of the two numbers I snml I or 
I snll ( is bigger than 1, then there exists an adjacent cutting arc for s in either ml - II or 
1% - ml. This is due to the fact that any two intersection points of s with ml (or II, 
respectively) have the same intersection signs. Thus the set Y; = {LX E?#?~ IO < I(or, [ml]), 

Z(a, [11]) < l} generates .?ZI. By the reduction before, it suffices to show that the subset 
Y; = {aE Y; I there is a representative s for a so that snN is of type (2), or (5) or (7) in 
Fig. 23, or their images under the 3-fold symmetry} is finitely generated. Now each element 
a in Y; has a representative s which does not intersect one of the four non-separating curves 
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F k-3 

Gk-3 

Fig. 21. continued. 

ml, II, ml&, or &ml, and s is orthogonal to one of the three curves al, b1 or cl in N. By 
cutting X open along one of the four curves ml, 1 1, mill, or &ml which does not intersect s, 
we obtain a new surface Z’ with )I IS’ I/ < 11 ZZ 11 in 9 so that s is still non-separating in E’. 
Note that Z’ is incompressible, not separating in X, and II Z’ 11 c 1) C II . Since the image of 
a non-separating simple closed curve in E’ is still non-separating in X, by applying the 
induction hypothesis to the four possible surfaces C’, we obtain a finite collection of isotopy 
classes of non-separating simple closed curve in E which generates Y ;. This in turn shows 
that 9(C) is finitely generated. 

This finishes the proof of Theorem I for surfaces in 2. To see the result for &, O, we note 
that there is a natural inclusion i of Z 2, 1 into &, O which sends the boundary curve to a null 
homotopic loop. This induces a surjective map from 97X2, i) to 9(&J which preserves 
the orthogonality. Thus, Theorem I holds for &,. 

This completes the proof of the Theorem I. 
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