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SOLVING THURSTON EQUATION IN A COMMUTATIVE RING

FENG LUO

Abstract. We show that solutions of Thurston equation on triangulated 3-
manifolds in a commutative ring carry topological information. We also intro-
duce a homogeneous Thurston equation and a commutative ring associated to
triangulated 3-manifolds.

1. introduction

1.1. Statement of results. Given a triangulated oriented 3-manifold (or pseudo
3-manifold) (M, T ), Thurston equation associated to T is a system of integer co-
efficient polynomials. W. Thurston [19] introduced his equation in the field C of
complex numbers in order to find hyperbolic structures. Since then, there have been
much research on solving Thurston equation in C, [9], [2], [13], [18], [21], [1] and
others. Since the equations are integer coefficient polynomials, one could attempt
to solve Thurston equation in a ring with identity. The purpose of this paper is
to show that interesting topological results about the 3-manifolds can be obtained
by solving Thurston equation in a commutative ring with identity. For instance,
by solving Thurston equation in the field Z/3Z of three elements, one obtains the
result which was known to H. Rubinstein and S. Tillmann that a closed 1-vertex
triangulated 3-manifold is not simply connected if each edge has even degree.

Theorem 1.1. Suppose (M, T ) is an oriented connected closed 3-manifold with a
triangulation T and R is a commutative ring with identity. If Thurston equation on
(M, T ) is solvable in R and T contains an edge which is a loop, then there exists
a homomorphism from π1(M) to PSL(2, R) sending the loop to a non-identity
element. In particular, M is not simply connected.

We remark that the existence of an edge which is a loop cannot be dropped in
the theorem. Indeed, it was observed in [6], [18], and [20] that for simplicial trian-
gulations T and any commutative ring R, there are always solutions to Thurston
equation. Theorem 1.1 for R = C was first proved by Segerman-Tillmann [17]. A
careful examination of the proof of [17] shows that their method also works for any
field R. However, for a commutative ring with zero divisors, the geometric argu-
ment breaks down. We prove theorem 1.1 by introducing a homogeneous Thurston
equation and studying its solutions. Theorem 1.1 prompts us to introduce the uni-
versal construction of a Thurston ring of a triangulated 3-manifold. Theorem 1.1
can be phrased in terms of the universal construction (see theorem 5.2).

Thurston equation can be defined for any ring (not necessary commutative)
with identity (see §2). We do not know if theorem 1.1 holds in this case. The
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2 F. LUO

most interesting non-commutative rings for 3-manifolds are probably the algebras
of 2 × 2 matrices with real or complex coefficients. Solving Thurston equation in
the algebra M2×2(R) has the advantage of linking hyperbolic geometry to Ad(S3)
geometry. See [3] for related topics.

Motivated by theorem 1.1, we propose the following two conjectures.

Conjecture 1. If M is a compact 3-manifold and γ ∈ π1(M) − {1}, there exists
a finite commutative ring R with identity and a homomorphism from π1(M) to
PSL(2, R) sending γ to a non-identity element.

Conjecture 2. If M 6= S3 is a closed oriented 3-manifold, then there exists a
1-vertex triangulation T of M and a commutative ring R with identity so that
Thurston equation associated to T is solvable in R.

Conjecture 2 is supported by the main result in [8]. It states that if M is closed
hyperbolic and T is a 1-vertex triangulation so that all edges are homotopically
essential, then Thurston’s equation on T is solvable in C.

1.2. Organization of the paper. In §2, we recall briefly triangulations of 3-
manifolds and pseudo 3-manifolds and Thurston equation. A homogeneous Thurston
equation is introduced. In §3, we recall cross ratio and projective plane in a commu-
tative ring. Theorem 1.1 is proved in §4. In §5, we introduce a universal construc-
tion of Thurston ring of a triangulated 3-manifold and investigate the relationship
between Thurston ring and Pachner moves. Some examples of solutions of Thurston
equation in finite rings are worked out in §6.

1.3. Acknowledgement. We thank Sergei Matveev and Carlo Petronio for an-
swering my questions on triangulations of 3-manifolds.

2. Preliminaries on Triangulations and Thurston Equation

All manifolds and tetrahedra are assumed to be oriented in this paper. We
assume all rings have the identity element.

2.1. Triangulations. A compact oriented triangulated pseudo 3-manifold (M, T )
consists of a disjoint union X = ⊔iσi of oriented Euclidean tetrahedra σi and a
collection of orientation reversing affine homeomorphisms Φ between some pairs of
codimension-1 faces in X . The pseudo 3-manifoldM is the quotient space X/Φ and
the simplices in T are the quotients of simplices in X . The boundary ∂M of M is
the quotient of the union of unidentified codimension-1 faces in X . If ∂M = ∅, we
call M closed. The sets of all quadrilateral types (to be called quads for simplicity)
and normal triangle types in T will be denoted by � = �(T ) and △ = △(T )
respectively. See [5], [4] or [7] for more details. The most important combinatorics
ingredient in defining Thurston equation is a Z/3Z action on � which we recall now.
If edges of an oriented tetrahedron σ are labelled by a, b, c so that opposite edges are
labelled by the same letters (see figure 1(a)), then the cyclic order a→ b→ c → a
viewed at vertices is independent of the choice of the outward normal vectors at
vertices and depends only on the orientation of σ. Since a quad in σ corresponds
to a pair of opposite edges, this shows that there is a Z/3Z action on the set of all
quads in σ by cyclic permutations. If q, q′ ∈ �, we use q → q′ to indicate that q, q′

are in the same tetrahedron so that q is ahead of q′ in the cyclic order. The set of
all i-simplices in T will be denoted by T (i). Given an edge e ∈ T (1), a tetrahedron
σ ∈ T (3) and a quad q ∈ �(T ), we use e < σ to indicate that e is adjacent to
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σ; q ⊂ σ to indicate that q is inside σ; and q ∼ e to indicate that q and e are
in the same tetrahedron and q faces e (in the unidentified space X). See [7] for
more details. An edge e ∈ T (1) is called interior if it is not in the boundary ∂M .
In particular, if (M, T ) is a closed triangulated pseudo 3-manifold, all edges are
interior.

2.2. Thurston equation.

Definition 2.1. Give a compact triangulated oriented pseudo 3-manifold (M, T )
and a ring R (not necessary commutative) with identity, a function x : �(T ) → R
is called a solution to Thurston equation associated to T if

(1) whenever q → q′ in �, x(q′)(1 − x(q)) = (1− x(q))x(q′) = 1,
(2) for each interior edge e ∈ T (1) so that q1, ..., qn are quads facing e labelled

cyclically around e,

x(q1).....x(qn) = 1, x(qn)...x(q1) = 1.

a


a

b


b


c


c


(a)
 (b)


3 quads and 4 normal triangles in a tetrahedron
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Figure 1. cyclic order on three quads in a tetrahedron

Note that condition (1) implies both x(q) and x(q) − 1 are invertible elements
in R with inverses 1− x(q′′) and x(q′) where q′′ → q. If the ring R is commutative
which will be assumed from now on, we only need one equation in each of (1) and
(2).

Example 2.2. If R = Z/3Z = {0, 1, 2} is the field of 3 elements. Then a solution x
to Thurston equation must satisfy x(q) = 2 for all q. In this case, the first condition
(1) holds. The second equation at an edge e becomes 2k = 1 where k is the degree
of e. Since 2k = 1 if and only if k is even, we conclude that Thurston equation has
a solution in Z/3Z if and only if each interior edge has even degree.

A related homogeneous version of the equation is

Definition 2.3. (Homogeneous Thurston Equation (HTE)) Suppose (M, T ) is a
compact oriented triangulated pseudo 3-manifold and R is a commutative ring with
identity. A function z : � → R is called a solution to the homogeneous Thurston
equation if

(1) for each tetrahedron σ ∈ T ,
∑

q⊂σ z(q) = 0,
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(2) for each interior edge e so that the set of all quads facing it is {q1, ..., qn},

n
∏

i=1

z(qi) =

n
∏

i=1

(−z(q′i))

or simply
∏

q∼e

z(q) =
∏

q∼e

(−z(q′)),

where q → q′.

Note that if z solves HTE and k : T (3) → R is any function, then w(q) =
k(σ)z(q) : � → R, q ⊂ σ, is another solution to HTE. Let R∗ be the group of
all invertible elements in R. If z solves HTE and z(q) ∈ R∗ for all q ∈ �, then
x(q) = −z(q)z(q′)−1 for q → q′ solves Thurston equation. Indeed, condition (2) in
definition 2.1 follows immediately from condition (2) in definition 2.3 by division.
To check condition (1), suppose q → q′ → q′′ → q. Then z(q′′) = −z(q) − z(q′).
Furthermore, x(q) = −z(q)/z(q′) and x(q′) = −z(q′)/z(q′′) = z(q′)/(z(q)+z(q′)) =
1/(1− x(q)). Conversely, we have,

Lemma 2.4. If R is a commutative ring with identity and x : � → R solves
Thurston equation, then there exists a solution z : � → R∗ to HTE so that for all
q ∈ �, x(q) = −z(q)/z(q′).

Proof. By definition, each x(q) is invertible. For each tetrahedron σ containing
three quads q1 → q2 → q3, we have x(q2) = 1/(1−x(q1)), x(q3) = (x(q1)−1)/x(q1).
Define a map z : � → R∗ by z(q1) = x(q1), z(q2) = −1, z(q3) = 1− x(q1). Then by
definition x(q) = −z(q)/z(q′) for all q and

∑

q⊂σ z(q) = 0 for each σ ∈ T (3). Due to

x(q) = −z(q)/z(q′) and
∏

q∼e x(q) = 1, we see that
∏

q∼e z(q) =
∏

q∼e(−z(q
′)). �

We remark that the solution z in the lemma depends on the specific choice of
the quad q1 in each tetrahedron.

There is a similar version of homogeneous Thurston equation where we re-
place the condition

∏

q∼e z(q) =
∏

q∼e(−z(q
′)) at interior edge e by

∏

q∼e z(q
′′) =

∏

q∼e(−z(q
′)) where q′′ → q → q′. In this setting, the transition from HTE to

Thurston equation is given by x(q) = −z(q′)/z(q′′).

3. Cross ratio and projective line in a commutative ring

Let R be a commutative ring with identity and R∗ be the group of invertible ele-
ments in R. Let GL(2, R) and PGL(2, R) = GL(2, R)/ ∼ where M ∼ λM , λ ∈ R∗

be the general linear group and its projective group. The group GL(2, R) acts

linearly from the left on R2 = {

(

a
b

)

|a, b,∈ R}. Define the skew symmetric bilin-

ear form <,> on R2 by <

(

a
b

)

,

(

c
d

)

>= ad− bc which is the determinant of
[

a c
b d

]

. Note that for X =

[

a c
b d

]

, its adjacent matrix adj(X) =

[

d −c
−b a

]

satisfies Xadj(X) = det(X)I. We also use the transpose to write

(

a
b

)

as (a, b)t.

By the basic properties of the determinant, we have
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Lemma 3.1. Suppose A,B,A1, ..., An ∈ R2 and X ∈ GL(2, R). Then
(1) < A,B >= − < B,A > and < XA,XB >= det(X) < A,B >;

(2) If A =

(

a
b

)

and B =

(

c
d

)

so that < A,B >∈ R∗, then XA =

(

1
0

)

and XB =

(

0
1

)

where X = 1
<A,B>

[

d −c
−b a

]

;

(3) < A1, A2 > A3+ < A2, A3 > A1+ < A3, A1 > A2 = 0;
(4) Let Rijkl =< Ai, Aj >< Ak, Al >. Then Rijkl = Rjilk = Rklij = −Rjikl =

−Rijlk and Rijkl +Riklj +Riljk = 0.

Indeed, (1) and (2) follow from the properties of determinant. To see (3), let

Ai =

(

ai
bi

)

, then the left-hand-side of (3) is of the form

(

x
y

)

where x =

det





a1 a2 a3
b1 b2 b3
a1 a2 a3



 and y = det





a1 a2 a3
b1 b2 b3
b1 b2 b3



 by the row expansion formula

for determinants. Now these two 3 × 3 determinants are zero. Thus (3) follows.
The first set of identities for Rijkl follow from the definition. The second follows
from (3) by applying the bilinear form <,> to it with Ai. We remark that Rijkl

enjoys the same symmetries that a Riemannian curvature tensor does.

Definition 3.2. (Cross ratio) Suppose A1, ..., A4 ∈ R2. Then their cross ratio,

denoted by (A1, A2;A3, A4) is defined to be the vector

(

R1423

R1324

)

=

(

R1423

−R1342

)

∈

R2 where Rijkl =< Ai, Aj >< Ak, Al >.

For instance,

<

(

1
0

)

,

(

0
1

)

;

(

a
b

)

,

(

x
y

)

>=

(

−ay
−bx

)

(1)

By lemma 3.1, we obtain,

Corollary 3.3. Suppose A1, ..., An ∈ R2. Then
(1) (A1, A2;A3, A4) = (A3, A4;A1, A2) = (A2, A1;A4, A3),

(2) if (A1, A2;A3, A4) =

(

a
b

)

, then (A2, A1;A3, A4) =

(

b
a

)

,

(3) (A1, A2;A3, A4) + (A1, A3;A4, A2) + (A1, A4;A2, A3) = 0,
(4) if X ∈ GL(2, R), then (XA1, XA2;XA3, XA4) = det(X)2(A1, A2;A3, A4),
(5) if B,C ∈ R2 and An+1 = A1, then

n
∏

i=1

(< B,Ai+1 >< C,Ai >) =

n
∏

i=1

(< B,Ai >< C,Ai+1 >).

Corollary 3.3 shows that the cross ratio (A1, A2;A3, A4) = (Ai, Aj ;Ak, Al) when-
ever {i, j} = {1, 2}, {k, j} = {3, 4} and (i, j, k, l) is a positive permutation of
(1, 2, 3, 4), i.e., the cross ratio depends only on the partition {i, j} ⊔ {k, l} of
{1, 2, 3, 4} and the orientation of (1, 2, 3, 4). This shows that if σ is an oriented
tetrahedron so that its i-th vertex is assigned a vector Ai ∈ R2, then one can define
the cross ratio of a quad q ⊂ σ to be (Ai, Aj ;Ak, Al) where q corresponds to the
partition {i, j} ⊔ {k, l} of the vertex set {1, 2, 3, 4} and (i, j, k, l) determines the
orientation of σ.
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Example 3.4. (Solutions of HTE by cross ratio) Given any compact triangulated
pseudo 3-manifold (M, T ) and f : △ → R2 so that f(t) = f(t′) when two normal
triangles t, t′ share a common normal arc, we define a map F : �(T ) → R2 by

F (q) = (f(t1), f(t2); f(t3), f(t4)) =

(

z(q)
y(q)

)

where t1, .., t4 are the four normal

triangles in a tetrahedron σ containing q so that q separates {t1, t2} from {t3, t4}
and t1 → t2 → t3 → t4 defines the orientation of σ. Then corollary 3.3 shows that
z : � → R is a solution to HTE. Note that y(q) = −z(q′) with q → q′.

This example serves as a guide for us to solve Thurston equation and HTE.
Indeed, the goal is to solve Thurston equation by writing each solution x : � → R
in terms of cross ratio in the universal cover (M̃, T̃ ).

Let R2/ ∼ be the quotient space where u ∼ λu, u ∈ R2 and λ ∈ R∗. If
x = (a, b)t ∈ R2, then [x] = [a, b]t denotes the image of x in R2/ ∼.

Definition 3.5. The projective line PR1 = {A ∈ R2|there exists B ∈ R2 so that <
A,B >∈ R∗}/ ∼ where A ∼ λA for λ ∈ R∗. A set of elements {A1, ..., An}
(or {[A1], ..., [An]}) in R2 (or in PR1) is called admissible if < Ai, Aj >∈ R∗ for
all i 6= j. The cross ratio of four points αi, i = 1, 2, 3, 4 in PR1, denoted by
[α1, α2;α3, α4], is the element [(A1, A2;A3, A4)] ∈ R2/ ∼ so that Ai ∈ αi. We also
use [A1, A2;A3, A4] ∈ PR1 to denote [(A1, A2;A3, A4)].

Proposition 3.6. (1) Given an admissible set of three elements A1, A2, A3 ∈ R2

and v =

(

c1
c2

)

, there exists a unique A4 ∈ R2 so that (A1, A2;A3, A4) = v.

Furthermore, A1, ..., A4 form an admissible set if and only if c1, c2, c1 − c2 ∈ R∗.
(2) Suppose A1, ..., A4, B1, ..., B4 ∈ R2 so that both {A1, ..., A4} and {B1, ..., B4}

are admissible and [A1, A2;A3, A4] = [B1, B2;B3, B2]. Then there exists a unique
X ∈ PGL(2, R) so that [XAi] = [Bi] for all i. Furthermore, if Y ∈ GL(2, R) so
that [Y Ai] = [Ai], i = 1, 2, 3, then Y = λI for λ ∈ R∗.

Proof. To see the existence part of (1), let Ai = (ai, bi)
t and consider X = 1

<A1,A2>
(

b2 −a2
−b1 a1

)

∈ GL(2, R). Then XA1 = (1, 0)t and XA2 = (0, 1)t. By corollary

3.3(4), after replacing Ai by XAi, we may assume that A1 = (1, 0)t, A2 = (0, 1)t.
Then by identity (1), (A1, A2;A3, A4) = (−a3b4,−a4b3)t. By the assumption that
< Ai, A3 >∈ R∗ for i = 1, 2, we see that a3, b3 ∈ R∗. It follows that a4 = −c1/b3
and b4 = −c2/a3. This shows that A4 exists and is unique.

Now given that {A1, A2, A3} is admissible, the set {A1, ..., A4} is admissible if
and only if < A4, Ai >∈ R∗, i.e., c1, c2, c1 − c2 ∈ R∗.

To see part (2), by the proof of part (1) and the assumption < A1, A2 >
,< B1, B2 >∈ R∗, after replacing Ai by Y Ai and Bi by ZBi for some Y, Z ∈
GL(2, R), we may assume that A1 = B1 = (1, 0)t and A2 = B2 = (0, 1)t. Let
A3 = (a, b)t, A4 = (a′, b′)t, B3 = (c, d)t and B4 = (c′, d′)t. Then the admissible
condition implies that a, b, c, d, a′, b′, c′, d′ ∈ R∗. Furthermore, [A1, A2;A3, A4] =

[B1, B2;B3, B4] implies that there exists λ ∈ R∗ so that a′ = λdd′

b
and b′ = λcc′

a
.

This shows that the matrix X =

[

c
a

0
0 d

b

]

∈ GL(2, R) satisfies XA1 = c
a
B1,

XA2 =
d
b
B2, XA3 = B3 and XB4 = λ cd

ab
B4.

To see the uniqueness, say Y Ai = λiAi for λi ∈ R∗. We claim that λ1 = λ2 = λ3
and Y = λ1I. Indeed, by definition, det(Y ) < Ai, Aj >=< Y Ai, Y Aj >= λiλj <
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Ai, Aj >. Since < Ai, Aj >∈ R∗, we obtain λiλj = det(Y ). This implies that
λi = λ1 for i = 2, 3. We conclude that Y [A1, A2] = λ1[A1, A2]. Since the matrix
[A1, A2] ∈ GL(2, R), it follows that Y = λ1I.

�

4. A proof of theorem 1.1

We will prove a slightly general theorem which holds for compact oriented pseudo
3-manifolds (M, T ). LetM∗ beM with a small regular neighborhood of each vertex
removed and let T ∗ be the ideal triangulation {s ∩M∗|s ∈ T } of the compact 3-
manifold M∗.

Theorem 4.1. Suppose (M, T ) is a compact triangulated pseudo 3-manifold and
R is a commutative ring with identity so that Thurston equation on T is solvable in
R. Then each edge e ∈ T ∗ lifts to an arc in the universal cover M̃∗ of M∗ joining
different boundary components of M̃∗. Furthermore, if M is a closed connected
3-manifold so that there exists an edge e having the same end points, then there
exists a representation of π1(M) into PSL(2, R) sending the loop [e] to a non-
identity element.

The main idea of the proof is based on the methods developed in [9], [17], [18],
and [21] which construct pseudo developing map and the holonomy associated to a
solution to Thurston equation.

4.1. Pseudo developing map. Let π : M̃∗ →M∗ be the universal cover and T̃ ∗

be the pull back of the ideal triangulation T ∗ of M∗ to M̃∗. We use △̃ and �̃ to
denote the sets of all normal triangle types and quads in T̃ ∗ respectively. The sets
of all normal triangle types and quads in T ∗ are the same as those of T and will
still be denoted by △ and �. The covering map π induces a surjection π∗ from △̃
and �̃ to △ and � respectively so that π∗(d1) = π∗(d2) if and only if d1 and d2
differ by a deck transformation element.

Suppose x : � → R solves Thurston equation on T and z : � → R∗ is an
associated solution to HTE constructed by lemma 2.1. Let w : � → PR1 be the
map w(q) = [z(q),−z(q′)]t where q → q′. Let x̃ = xπ∗, z̃ = zπ∗ and w̃ = wπ∗ be

the associated maps defined on �̃. By the construction, x̃ and z̃ are solutions to
Thurston equation and HTE on T̃ ∗.

Definition 4.2. (See [18], [17], [21], [9]) Given a solution x to Thurston equation

on (M, T ), a map φ : △̃ → PR1 is called a pseudo developing map associated to x
if

(1) whenever t1, t2 are two normal triangles in △̃ sharing a normal arc, denoted
by t1 ∼ t2 in the sequel, then φ(t1) = φ(t2),

(2) if t1, t2, t3, t4 are four normal triangles in a tetrahedron σ then {φ(t1), ..., φ(t4)
} is admissible and

[φ(t1), φ(t2);φ(t3), φ(t4)] = w̃(q) (2)

where t1 → t2 → t3 → t4 determines the orientation of the tetrahedron σ and q ⊂ σ
is the quad separating {t1, t2} from {t3, t4}.

The main result in this section is

Theorem 4.3. Given any solution x to Thurston equation on a compact pseudo
3-manifold (M, T ), there exists a pseudo developing map associated to x.
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Proof. The proof is based on the following result which is an immediate consequence
of proposition 3.6.

Lemma 4.4. Suppose {t1, t2, t3, t4} are four normal triangles in σ ∈ T̃ (3) so that
t1 → t2 → t3 → t4 determines the orientation and q is a quad in σ separating
{t1, t2} from {t3, t4}. If φ(ti) ∈ PR1, i = 1, 2, 3, are defined and {φ(t1), φ(t2), φ(t3)}
is admissible, then there exists a unique φ(t4) ∈ PR1 so that [φ(t1), φ(t2);φ(t3), φ(t4)]
= w̃(q). Furthermore, {φ(t1), ..., φ(t4)} is admissible.

Indeed, the existence and uniqueness follows from proposition 3.6. The admissi-
bility of {φ(t1), ..., φ(t4)} follows from that fact that z(q),−z(q′), z(q)− (−z(q′)) =
−z(q′′) are in R∗ where w̃(q) = [z(q),−z(q′)]t and q → q′ → q′′.

We now use the lemma to construct the pseudo developing map φ by the “com-
binatorial continuation” method. To begin, by working on connected component
of M , we may assume that M is connected. Let G be the connected graph dual
to the ideal triangulation T̃ ∗ of M̃∗, i.e., vertices of G are tetrahedra in T̃ ∗ and
edges in G are pairs of tetrahedra sharing a codimension-1 face. An edge path
α = [σ1, ..., σn; τ1, ..., τn−1] in G consists of tetrahedra σi and codimension-1 faces
τi so that τi ⊂ σi ∩ σi+1. If σn = σ1, we say α is an edge loop.

Lemma 4.5. Suppose α is an edge path from σ1 to σn and t1, t2, t3 are normal
triangles in σ1 adjacent to the codimension-1 face τ1 so that φ(t1), φ(t2), φ(t3) are
defined and admissible. Then there exists an extension φα of φ (depending on α) to
all normal triangles t in σi’s so that conditions (1) and (2) in definition 4.2 hold.

Proof. Suppose t4 is the last normal triangle in σ1. By lemma 4.4, we define φα(t4)
so that identity (2) holds for the quad q separating t1, t2 from t3, t4 (subject to
orientation). Note that this implies that identity (2) holds for all other quads q∗ in
σ1 due to the basic property of cross ratio (corollary 3.3) and that x solves Thurston
equation. Now we extend φα to normal triangles in σ2 as follows. Suppose t′1, t

′
2, t

′
3

are the normal triangles in σ2 so that t′i ∼ ti, i.e., they share a normal arc. Define
φα(t

′
i) = φα(ti) and then use lemma 4.4 to extend φα to the last normal triangle in

σ2. Inductively, we define φα for all normal triangles t in σi. By the construction,
both conditions (1) and (2) in definition 4.2 hold for φα. �

We call φα the “combinatorial continuation” of φ along the edge path α and
denote it by φσ1

α to indicate the initial value. From the construction, if β is an edge
path starting from σn to σm and βα is the multiplication of the edge paths α and
β, then

φσn

β (t) = φσ1

βα(t) (3)

for all normal triangles t in σm.
Our goal is to show that the extension φσ1

α is independent of the choice of edge
path α, i.e., φσ1

α (t) = φσ1

α′ (t) for two edge paths α and α′ from σ1 to σn and t ⊂ σn.
By (3), this is the same as showing φσn

α′α−1(t) = t. Therefore, it suffices to show

Lemma 4.6. If α is an edge loop in G from σ1 to σ1, then φ
σ1
α (t) = t for all normal

triangles t in σ1.

Proof. Form the 2-dimensional CW complexW by attaching 2-cells to the graph G

as follows. Recall that an edge e ∈ T̃ ∗
(3)

is called interior if it is not in the boundary
∂M̃∗. For each interior edge e in T̃ ∗ adjacent to tetrahedra δ1, ..., δm, ordered
cyclically around e, there corresponds an edge loop αe = [δ1, ..., δm; ǫ1, ..., ǫm] where
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ǫi ⊂ δi ∩ δi+1 and δm+1 = δ1. We attach a 2-cell to G along αe for each interior

edge e to obtain W . By the construction, the universal cover space M̃∗ is obtained
from W by attaching a product space B × [0, 1) along a surface B × 0. Thus W is

homotopic to M̃∗. In particular, W is simply connected. This shows that the edge
loop α is a product of edge loops of the form αe, for interior edges e, and loops of
the form ββ−1 for some edge paths β. By the identity (3), the lemma holds for
edge loops of the form ββ−1. Therefore, it remains to prove the lemma for edge
loops α = αe = [δ1, ..., δm; ǫ1, ..., ǫm].

To this end, suppose that φ is defined at the normal triangles t10, t
1
+, t

1
∞ in the

tetrahedron δ1 so that the edge e is adjacent to t10, t
1
∞. Let the normal triangles in

the tetrahedron δi be t
i
0, t

i
+, t

t+1
− , ti∞ so that ti0, t

i
∞ are adjacent to the edge e and

ti0 → ti∞ → ti+ → ti+1
− defines the orientation. Then by the construction, ti0 ∼ ti+1

0 ,

ti∞ ∼ ti+1
∞ and ti+ ∼ ti− where indices are counted modulo m. See figure 1(c). Let

qi be the quad in δi separating {ti0, t
i
∞} from {ti+, t

i+1
− } and w̃(qi) = [ai, bi]

t. By
the assumption that x solves Thurston equation,

∏

i ai =
∏

i bi. By the definition

of φδ1αe
, denoted by ψ for simplicity, we have ψ(ti0) = ψ(ti+1

0 ), ψ(ti∞) = ψ(ti+1
∞ ),

ψ(ti+) = ψ(ti−) and

[ψ(t0), ψ(t∞);ψ(ti+), ψ(t
i+1
− )] = w̃(qi). (4)

We claim that ψ(tm+1
− ) defined by the identity (4) above is equal to ψ(t1+).

Indeed, by corollary 3.3(5) and
∏

i ai =
∏

i bi where all ai, bi ∈ R∗ and the admis-

sibility, we see that [ψ(t0), ψ(t∞);ψ(tm+ ), ψ(tm+1
− )] = [ψ(t0), ψ(t∞);ψ(tm+ ), ψ(t1+)].

By the uniqueness of the cross ratio, we conclude that ψ(tm+1
+ ) = ψ(t1−). �

Now to define φ : �̃ → PR1, fix a tetrahedron σ0 ∈ T̃ ∗. Let t1, t2, t3 be three
normal triangles in σ0. Define φ(t1) = [1, 0]t, φ(t2) = [0, 1]t and φ(t3) = [1, 1]t and

use combinatorial continuation to define φ on △̃. �

4.2. The holonomy representation. Suppose x is a solution to Thurston equa-
tion on (M, T ) in a ring R and φ : △̃ → PR1 is an associated pseudo developing
map. Then there exists a homomorphism ρ : π1(M

∗) → PSL(2, R) so that for
all γ ∈ π1(M

∗), considered as a deck transformation group for the universal cover

π∗ : M̃∗ →M∗,

φ(γ) = ρ(γ)φ. (5)

We call ρ a holonomy representation of x. It is unique up to conjugation in
PSL(2, R). Here is the construction of ρ. Fix an element γ ∈ π1(M

∗). By the

construction, π1(M
∗) acts on M̃∗, T̃ ∗, △̃ and �̃ so that π∗(γ) = π∗ for γ ∈ π1(M

∗).
This implies

[φ(t1), φ(t2);φ(t3), φ(t4)] = [φ(γt1), φ(γt2);φ(γt3), φ(γt4)]

for all normal triangles t1, ..., t4 in each tetrahedron σ in T̃ (3). By proposition 3.6,
there exists an element ρσ(γ) ∈ PSL(2, R) so that

φ(γti) = ρσ(γ)φ(ti)

where ti ⊂ σ. We claim that ρσ(γ) = ρσ′(γ) for any two σ, σ′ ∈ T̃ ∗
(3)

. Indeed,
since any two tetrahedra can be joint by an edge path in the graph G, it suffices to
show that ρσ(γ) = ρσ′(γ) for two tetrahedra sharing a codimension-1 face τ . Let
t1, t2, t3 and t′1, t

′
2, t

′
3 be the normal triangles in σ and σ′ respectively so that ti ∼ t′i
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and t1, t2, t3 are adjacent to τ . Now φ(ti) = φ(t′i) and γφ(ti) = γφ(t′i), therefore,
ρσ(γ)φ(ti) = ρσ′(γ)φ(ti) for i = 1, 2, 3. By the uniqueness part of proposition
3.6(2), it follows that ρσ(γ) = ρσ′(γ). The common value is denoted by ρ(γ). Given
γ1, γ2 ∈ π1(M

∗), by definition, ρ(γ1γ2)φ = φ(γ1γ2) = ρ(γ1)φ(γ2) = ρ(γ1)ρ(γ2)φ
and the uniqueness part of proposition 3.6, we see that ρ(γ1γ2) = ρ(γ1)ρ(γ2), i.e.,
ρ is a group homomorphism from π1(M

∗) to PSL(2, R).

Note that the representation ρ is trivial if and only if φ(γt) = φ(t) for all t ∈ △̃
and γ ∈ π1(M

∗). In this case, the pseudo developing map φ is defined on △ → PR1

so that [φ(t1), φ(t2);φ(t3), φ(t4)] = [z(q),−z(q′)]t. This was the construction in
example 3.1. In particular, the holomony representations associated to solutions in
example 3.1 are trivial.

4.3. A proof of theorem 4.1. Suppose otherwise that there exists an edge e ∈
T ∗ whose lift is an edge e∗ in T̃ ∗ joining the same boundary component of M̃∗.
Take a tetrahedron σ containing e∗ as an edge and let t1, t2, t3, t4 be all normal
triangles in σ so that t1, t2 are adjacent to e∗. By definition, the pseudo developing
map φ : △̃ → PR1 satisfies the condition that {φ(t1), ..., φ(t4)} is admissible. In
particular, φ(t1) 6= φ(t2). On the other hand, since e∗ ends at the same connected

component of ∂M̃∗ which is a union of normal triangles related by sharing common
normal arcs, there exists a sequence of normal triangles s1 = t1, s2, ..., sn = t2 in △̃
so that si ∼ si+1. In particular, φ(si) = φ(si+1). This implies that φ(t1) = φ(t2)
contradicting the assumption that φ(t1) 6= φ(t2).

To prove the second part of theorem 4.1 thatM is a closed connected 3-manifold,
we first note that π1(M

∗) is isomorphic to π1(M) under the homomorphism induced

by inclusion. We will identify these two groups and identify M̃∗ as a π1(M) invariant

subset of the universal cover M̃ of M . If e is an edge in T ending at the same
vertex v in T , let γ ∈ π1(M, v) be the deck transformation element corresponding
to the loop e. We claim that ρ(γ) 6= id in PSL(2, R). Indeed, suppose e∗ is
the lifting of e. Then by the statement just proved, e∗ has two distinct vertices
u1 and u2 in M̃ and φ(u1) 6= φ(u2). By definition γ(u1) = u2. It follows that
φ(u2) = φ(γu1) = ρ(γ)φ(u1). Since φ(u1) 6= φ(u2), we obtain ρ(γ) 6= id. This ends
the proof.

5. A universal construction

Recall that (M, T ) is a compact oriented triangulated pseudo 3-manifold. The
boundary ∂M of M is triangulated by the subcomplex ∂T = {s ∩ ∂M |s ∈ T }. An
edge in T is called interior if it is not in ∂T . The goal of this section is to introduce
the Thurston ring R(T ) and its homogeneous version Rh(T ). We will study the
changes of R(T ) when the triangulations are related by Pachner moves.

We will deal with quotients of the polynomial ring Z[�] with q ∈ � as variables.
As a convention, we will use p ∈ Z[�] to denote its image in the quotient ring
Z[�]/I.

5.1. Thurston ring of a triangulation. The “ground” ring in the construction
is the following. Let σ be an oriented tetrahedron so that q → q′ → q′′ are the
three quads in it. Then the Thurston ring R(σ) is the quotient of the polynomial
ring Z[q, q′, q′′] modulo the ideal generated by q′(1 − q) − 1, q′′(1 − q′) − 1, and
q(1 − q′′) − 1. Note that this implies in R(σ), q′ = 1/(1 − q) and q′′ = (q − 1)/q
and furthermore, R(σ) ∼= Z[x, 1/x, 1/(1 − x)] where x is an independent variable.
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Similarly, we defined Rh(σ) to be the quotient ring Z[q, q′, q′′]/(q + q′ + q′′) where
(q + q′ + q′′) is the ideal generated by q + q′ + q′′. Note that Rh(σ)(σ) ∼= Z[x, y]
the polynomial ring in two independent variables.

Recall that the tensor product R1 ⊗ R2 of two rings R1 and R2 is the tensor
product of R1 and R2 considered as Z algebras.

Definition 5.1. Suppose (M, T ) is a compact oriented pseudo 3-manifold. The
Thurston ring R(T ) of T is the quotient of the tensor product ⊗σ∈T (3)R(σ) mod-
ulo the ideal generated by elements of the form We − 1 where We =

∏

q∼e q for

all interior edges e. The homogeneous Thurston ring Rh(T ) is the quotient of
⊗σ∈T (3)Rh(σ) modulo the ideal generated by elements of the form Ue =

∏

q∼e q −
∏

q∼e(−q
′), q → q′, for all interior edges e. The element We =

∏

q∼e q is called the
holonomy of the edge e.

By the construction, given a commutative ring R with identity, Thurston equa-
tion on T is solvable in R if and only if there exists a non-trivial ring homomorphism
from R(T ) to R. Therefore theorem 1.1 can be stated as,

Theorem 5.2. Suppose (M, T ) is a triangulated closed connected 3-manifold so
that one edge in T is a loop. If R(T ) 6= {0}, then π1(M) 6= {1}.

Note that R(T ) is also the quotient Z[�]/I where I is the ideal generated by
q′(1− q)− 1 for q → q′ and We − 1 for interior edges e and Rh(T ) is the quotient
of Z[�]/Ih where Ih is the ideal generated by q + q′ + q′′ for q → q′ → q′′ and
Ue for interior edges e. We remark that if there is q ∈ � so that q = 0 in R(T ),
then R(T ) = {0}. Indeed, in this case the identity element 1 = 1 − q(1 − q′′) is in
the ideal I, therefore, R(T ) = {0}. In particular, if T contains an interior edge of
degree 1 (i.e., adjacent to only one tetrahedron), then R(T ) = {0}.

The relationship betweenR(T ) andRh(T ) is summarized in the following propo-
sition. To state it, recall that if S is a multiplicatively closed subset of a ring R, then
the localization ring RS of R at S is the quotient R×S/ ∼ where (r1, s1) ∼ (r2, s2)
if there exists s ∈ S so that s(r1s2 − r2s1) = 0. If 0 ∈ S, then RS = {0}.

Proposition 5.3. Let S = {q1....qm|qi ∈ �} be the multiplicatively closed subset of
all monomials in � in Rh(T ). Then there exist a natural injective ring homomor-
phism F : R(T ) → Rh(T )S and a surjective ring homomorphism G : Rh(T )S →
R(T ) so that GF = id. In particular, R(T ) = {0} if and only if Rh(T )S = {0}.

Proof. Define a ring homomorphism F : Z[�] → Rh(T )S by F (q) = −q/q′ where
q → q′. We claim that F (I) = {0} and thus F induces a homomorphism, still
denoted by F , fromR(T ) to Rh(T )S . The generators of I are q′(q−1)−1 andWe−

1. If q → q′ → q′′, then F (q′(1− q)− 1) = − q′

q′′
(1+ q

q′
)− 1 = − q+q′+q′′

q′′
= 0. For an

interior edge e, F (
∏

q∼e q−1) = 1∏
q∼e

(−q′) (
∏

q∼e q−
∏

q∼e(−q
′)) = 0. To construct

the inverse of F , we define G : Z[�] → R(T ) as follows. For each tetrahedron
σ containing q1 → q2 → q3 where q1 is specified, define G(q1) = q1, G(q2) =
−1, G(q3) = 1 − q1 in R(T ). By the construction, we have G(q) = −qG(q′) for
q → q′ in� and

∑

q⊂σ G(q) = 0 for each tetrahedron σ. We claim thatG(Ih) = {0},
i.e., G induces a ring homomorphism, still denoted by G : Rh(T ) → R(T ). Indeed,
we have just verified the first equation associated to each σ ∈ T . For the second
type equation, given any interior edge e, due to G(q) = −qG(q′), G(

∏

q∼e q −
∏

q∼e(−q
′)) =

∏

q∼eG(q) −
∏

q∼e(−G(q
′)) = [

∏

q∼e(−G(q
′))][

∏

q∼e q − 1] = 0.



12 F. LUO

Note that by the construction of R(T ), for q ∈ �, then q and 1− q are invertible in
R(T ) with inverses 1− q′′ and q′ where q → q′ → q′′. From the above calculation,
we see that G induces a homomorphism from Rh(T )S → R(T ). To check GF = id,
it suffices to see that GF (q) = q for q ∈ �. Let q → q′ → q′′ where G(q′) = −1.
Then GF (q) = G(−q/q′) = −q/(−1) = q, GF (q′) = G(−q′/q′′) = 1/(1 − q) = q′

and GF (q′′) = G(−q′′/q) = (q − 1)/q = q′′.
To see the last statement, ifRh(T )S = {0}, thenR(T ) = {0} since F is injective.

On the other hand, if R(T ) = {0}, then we claim that q = 0 in Rh(T ) for some
q ∈ �. Indeed, if not, then due to F (q) = −q/q′ 6= 0, we see that q 6= 0 in
R(T ). This contradicts the assumption. Therefore the multiplicatively closed set
S contains 0. Hence Rh(T )S = {0}.

�

5.2. Pachner moves. It is well known that any two triangulations of a closed
pseudo 3-manifold are related by a sequence of Pachner moves [14], [15], [11]. There
are two types of Pachner moves: 1 ↔ 4 move and 2 ↔ 3 move. Two more moves
of types 0 ↔ 22 and 0 ↔ 23 are shown in figure 2. There moves create two new
tetrahedra from a triangle and a quadrilateral. The 1 ↔ 4 move is a composition
of a 0 ↔ 23 move and a 2 ↔ 3 move.

0-2 moves


T
022


T
023


1-4 move


2-3 move


T
021
 T
33


0 -->2
 2


0-->2
 3


Figure 2. Pachner moves

We will focus on the moves 0 ↔ 2i i = 2, 3 and 2 ↔ 3 in the rest of the
paper and investigate their effects on the Thurston ring R(T ). For this purpose,
we introduce the directed Pachner moves i → j which means the Pachner move
change a triangulation of fewer tetrahedra to a triangulation of more tetrahedra,
i.e., 0 → 22, 0 → 23 and 2 → 3. The following problem which improves Pachner’s
theorem was investigated before. It dual version for special spines was established
by Makovetskii [10]. However, we are informed by S. Matveev [12] that the following
question is still open.

Problem. Suppose T1 and T2 are two triangulations of a closed pseudo 3-manifold

M so that T
(0)
1 = T

(0)
2 . Then there exists a third triangulation T of M so that T

is obtained from both T1 and T2 by directed Pachner moves 0 → 22 and 2 → 3.
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5.3. The directed moves 0 → 2 and 2 → 3. There are four standard trian-
gulations of the 3-ball related to the moves 0 → 22, 0 → 23 and 2 → 3. Let
T021, T022 and T023 be the standard triangulations of the 3-ball by two tetrahedra
σ+ and σ−. They are shown in figure 2 where the two tetrahedra in T02i share i
codimension-1 faces. The 2 → 3 move replaces T022 by T33. We will calculate the
ring R(T02i) and R(T33) in this section. The results in subsection are elementary
and were known to experts in a less general setting. See [16], [18] and others. We
will emphasis the naturality of the associated ring homomorphisms and holonomy
preserving properties.

For T02i, take a triangle in σ+ ∩ σ− and let its edges be e1, e2, e3 so that e3 →
e2 → e1 in σ+. Let q±i be the quads in σ± so that q±i ∼ ei. Note that by the
construction q+1 → q+2 → q+3 and q−3 → q−2 → q−1 .

Lemma 5.4. For T021, denote q
+
1 and q−1 by x, y in R(T021) respectively. Then

R(T021) ∼= R(σ+) ⊗R(σ−) and the holonomies Wei are: We1 = xy, We2 = y−1
y−xy

,

We3 = x−1
x−xy

. The holonomies at all other edges are x, y, 1/(1− x), 1/(1− y), (x −

1)/x, (y − 1)/y. In particular, if We1 = 1, then Wei = 1 for i = 2, 3.

Proof. By definition, q+2 = 1/(1 − x), q+3 = (x − 1)/x, q−2 = (y − 1)/y and q−3 =
1/(1− y). Since Wei = q+i q

−

i , the result follows. �

Proposition 5.5. (1) For the triangulation T023, the inclusion homomorphism
φ : R(σ±) → R(σ+) ⊗ R(σ−) induces an isomorphism Φ : R(σ±) → R(T023).
Furthermore, the holonomy We of each boundary edge is 1 in R(T023).

(2) For the triangulation T022, let e±0 < σ± be the two boundary edges of de-
gree 1 and assume that e1 is the interior edge. Then the inclusion homomorphism
φ : R(σ±) → R(σ+) ⊗ R(σ−) induces an isomorphism Φ : R(σ±) → R(T022).
Furthermore, the holonomies We

±

0
= q±1 and We = 1 for all other boundary edges

e.

T
021

x


y


(x-1)/x


(
y
-1)/
y


xy


(
y
-1)/(
y
-
xy
)


(x-1)/(x-
 xy
)


1/(1-x)


1/(1-
 y
)


T
023


T
022


xy
 (x-1)/(x-xy)
(y-1)/(y-xy)

1


1


1


x


y
1


1


1


1
 xy


Figure 3. Pachner moves and Thurston rings

Proof. To see part (1), let e1 and e2 be the interior edges. Since Wei = q+i q
−

i , we
have q−i = 1/q+i ∈ R(σ+) for i = 1, 2. By lemma 5.4 and that q±1 q

±

2 q
±

2 = −1,
we have q−3 = 1/q+3 . It follows that Φ : R(σ+) → R(T023) is onto. On the other
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hand, by exactly the same calculation as in lemma 5.4, we see that We2 = 1 and
We3 = 1 are consequence of We1 = 1, i.e., the ideal I in R(σ+)⊗R(σ−) generated
byWe1 −1 containsWe2 −1 andWe3 −1. This shows that Φ is injective. Therefore,
Φ is a ring isomomorphism. Furthermore, by definition, for each boundary edge e∗i ,
the holonomy We∗

i
= q+i q

−

i = 1.

To see part (2), let q± = q±1 . By definitionR(T022) = R(σ+)⊗R(σ−)/(q+q−−1).
In particular, q− = 1/q+ and that Φ is an isomorphism. The holonomies We = 1
follow from the definition and lemma 5.4.

�

Proposition 5.6. The map φ : �(T021) → R(T33) defined by φ(
∏

q∼e q) =
∏

q∼e q

for each degree-1 edge e induces a ring homomorphism Φ : R(T021) → R(T33) so
that for all edges e ∈ T021, Φ(

∏

q∼e q) =
∏

q∼e q, i.e., Φ preserves holonomies.
Furthermore, let S be the multiplicatively closed set consisting of monomials in
xiyi − 1. Then Φ induces an isomorphism from R(T021)S → R(T33).

e
i

+


e
i

-


e
i


x
i


y
i


a
i


e
i

+


e
i

-


e
i


2       3


Figure 4. 2 → 3 Pachner move

Proof. Let e±i be the opposite edges of ei in σ± and σi be the tetrahedra in T33
so that ei < σi. The quads in σ± are denoted by xi and yi so that xi ∼ ei and
yi ∼ ei respectively. The quads in σi facing ei is denoted by ai. Let bi = a′i and
ci = b′i. Note that by the construction x′i = xi+1 and y′i+1 = yi. Furthermore,
by definition, We

+
i

(T021) = xi, We
−

i

(T021) = yi, Wei (T021) = xiyi, Wei(T33) = ai,

We
+
i

(T33) = bi+2ci+1, We
−

i

(T33) = bi+1ci+2, and we0(T33) = a1a2a3 where e0 is the

interior edge in T33. All indices are calculated modulo 3.
By definition, the map φ : �(T021) → T (T33) is defined by φ(xi) = bi+2ci+1,

φ(yi) = bi+1ci+2. To show that φ induces a ring homomorphism Φ : R(T021) →
R(T33), it suffices to show that φ(xi+1)(1 − φ(xi)) = 1 and φ(yi)(1 − φ(yi+1) = 1.
Indeed, we have bi = 1/(1− ai), ci = (ai − 1)/ai and aiai+1ai+2 = 1. Thus,

φ(xi+1)(1− φ(xi)) = bici+2(1 − bi+2ci+1)

= (
1

1− ai
)(
ai+2 − 1

ai+2
)(1− (

1

1− ai+2
)(
ai+1−1

ai+1
))

= (
ai+1ai+2

ai+1ai+2 − 1
)(
ai+2 − 1

ai+2
)(

1− ai+1ai+2

(1− ai+2)ai+1
) = 1
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The calculation for φ(yi)(1−φ(yi+1) = 1 is very similar and we omit the details.
To establish the identity φ(We) = We for the edges e = ei, i.e., we must verify

that Φ(xiyi) = ai. Note that aibici = −1 and a1a2a3 = 1. Thus Φ(xiyi) =
bi+1bi+2ci+1ci+2 = 1

ai+1ai+2
= ai.

To see that Φ induces an isomorphism from R(T021)S to R(T33), consider the

map ψ : �(T33) → R(T021) so that ψ(ai) = xiyi, ψ(bi) =
1

1−xiyi
and ψ(ci) =

xiyi−1
xiyi

.

We claim that ψ induces a ring homomorphism Ψ : R(T021)S → R(T33) so that for
all edges e, Ψ(

∏

q∼e q) =
∏

q∼e q and ΨΦ = id, ΦΨ = id.

Indeed, to see that ψ induces a ring homomorphism, we must verify that Ψ(a1a2a3) =
1. This holds since Ψ(a1a2a3) = x1x2x3y2y2y3 = (−1)(−1) = 1. To check that Ψ
preserves the holonomies, it suffices to show Ψ(We

±

i

) = We
±

i

. Since xi+1 = 1
1−xi

and yi =
1

1−yi+1
, we have

Ψ(We
+
i

) = Ψ(bi+2ci+1) = (
1

1− xi+2yi+2
)(
xi+1yi+1 − 1

xi+1yi+1
)

= (
1

1− yi+1−1
(1−xi+1)yi+1

)(
xi+1yi+1 − 1

xi+1yi+1
)

=
(1− xi+1)yi+1(xi+1yi+1 − 1)

((yi+1 − xi+1yi+1)− yi+1 + 1)xi+1yi+1

=
xi+1 − 1

xi+1
= xi =We

+
i

.

Essentially the same calculation shows Ψ(We
−

i

) =We
−

i

. Finally, due to holonomy

preserving property of ΦΨ and ΨΦ, we have ΨΦ = id, ΦΨ = id. �

5.4. Effects of Pachner moves. Suppose (Mi, Ti) (i = 1, 2) are two compact
triangulated oriented pseudo 3-manifolds obtained as the quotients Mi = Xi/ ∼i

of disjoint union Xi of tetrahedra. Take X = X1 ⊔ X2 and extend the identifica-
tions ∼i further by identifying pairs of unidentified codimension-1 faces in X by
orientation reversing affine homeomorphisms Φ. The quotient X/ ∼= M1 ∪Φ M2

is called a gluing of M1 and M2 along some subsurfaces of ∂M1 and ∂M2 by affine
homeomorphism Φ. The resulting triangulation will be denoted by T1 ∪Φ T2. If
M2 = ∅, then Φ is a self-gluing of M1. We denote the result by (M1∪Φ, T1∪Φ). By
definition,

R(T1 ∪Φ T2) = (R(T1)⊗R(T2))/I (6)

where the ideal I is generated by elements of the form We1(T1)We2(T2)− 1 with e1
and e2 being two boundary edges which are identified to become an interior edge in
T1∪ΦT2. Note that there are natural ring homomorphisms induced by the inclusion
maps from �(Ti) to �(T1 ∪Φ T2).

Using these notations, we can describe the effect of directed Pachner moves
0 → 23, or 0 → 22 and 2 → 3 on Thurston rings as follows. The moves 0 → 23 and
0 → 22 are of the form of replacing a self-glued T ∪Φ1 by T ∪Φ2 T02i for i = 2, 3.
The move 2 → 3 replaces T ∪Φ T021 by T ∪Φ T33.

Combining the definition (6) with the main results in §5.3, we have,

Proposition 5.7. Suppose T ′ is obtained from T by a directed Pachner move
0 → 22, 0 → 23 or 2 → 3. Then there exists a holonomy preserving natural ring
homomorphism R(T ) → R(T ′).
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6. Example of solving Thurston equation in finite rings

Suppose (M, T ) is a closed oriented pseudo 3-manifold and R is a commutative
ring with identity and x : � → R solves Thurston equation. If p is a prime number,
let Fpn be the finite field of pn elements.

Example 6.1. For R = F3, then x : � → F3−{0, 1} is the constant map x(q) = 2.
Thus, as mentioned in §1.1, Thurston equation is solvable if and only if each edge
has even degree.

Example 6.2. For R = F5 = {0, 1, 2, 3, 4} and we are looking for x : � → {2, 3, 4}.
Due to 1/(1 − 2) = 4, 1/(1 − 4) = 3, 4 = 22, 3 = 23 so that 24 = 1, we can write
x(q) = 2z(q) where z ∈ {1, 2, 3}. Thus Thurston equation is solvable if and only if
for q → q′ → q′′, (z(q), z(q′), z(q′′)) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} so that for each
edge e,

∑

q∼e z(q) = 0 mod 4.

Example 6.3. For R = F22 = {0, 1, a, b} where b = a + 1 = a2 and a3 = 1, we
have 1/(1− a) = a and 1/(1− b) = b. By writing solution x of Thurston equation
as x(q) = az(q) where z(q) ∈ {1, 2}, we see that z(q) = z(q′) if q → q′. Therefore,
Thurston equation is solvable if and only if there is z : T (3) → {1, 2} so that for
each edge e, |{σ ∈ T (3)|σ > e, z(σ) = 1}| + 2|{σ ∈ T (3)|σ > e, z(σ) = 2}| = 0
mod 3.

Example 6.4. For the field F7, write x(q) = 3z(q). Then Thurston equation is
solvable if and only if z : � → {1, 2, 3, 4, 5} satisfies that (z(q), z(q′), z(q′′)) ∈
{(1, 1, 1), (5, 5, 5), (2, 3, 4), (3, 4, 2), (4, 2, 3)} when q → q′ → q′′ and for each edge e,
∑

q∼e z(q) = 0 mod 6.

Example 6.5. For the ring Z/9Z (not F32), since a solution x(q) must satisfy x(q)
and x(q) − 1 are invertible, we conclude that x(q) ∈ {2, 5, 8} = {2, 25, 23}. Write
x(q) = 2z(q). Therefore, Thurston equation is solvable if and only if there is z : � →
{1, 3, 5} so that (z(q), z(q′), z(q′′)) ∈ {(1, 3, 5), (3, 5, 1), (5, 1, 3)} if q → q′ → q′′ and
for each edge e,

∑

q∼e z(q) = 0 mod 6. This implies that the degree of each edge
must be even.

Example 6.6. For the ring Z/15Z, the same argument as in example 6.5 shows
that Thurston equation is solvable if and only if x : � → {2, 8, 14} satisfies
(x(q), x(q′), x(q′′)) ∈ {(2, 14, 8), (14, 8, 2), (8, 2, 14)} if q → q′ → q′′ and for each
edge e,

∏

q∼e x(q) = 0 mod 15.
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