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1 Introduction

The main objects of study are geometry of polyhedral surfaces. Take a finite
set of points in the Euclidean 3-space E

3 and the convex hull of these points.
We obtain a convex polytope whose vertices are among the given finite set.
If the points are generic, then the convex polytope has triangle faces. In this
case, the boundary surface is a polyhedral surface. It has two properties. First
the surface is triangulated and second the induced metric on the surface is lo-
cally flat except at the vertices. Recall that a triangulation of a surface is
defined as follows. Take a finite collection of disjoint triangles and identify
pairs of edges by homeomorphisms. The quotient space is a surface with a
triangulation whose cells are the quotients of triangles, edges and vertices in
the disjoint union.

Definition 1.1. A Euclidean polyhedral surface is a triple (S, T, d) where
S is a closed surface, T is a triangulation of S, and (S, d) is a metric space
with metric d so that the restriction of d to each triangle is isometric to a
Euclidean triangle. We will call the metric d a Euclidean polyhedral metric.
The discrete curvature (or simply curvature) k0 of (S, T, d) is a function which
assigns each vertex 2π less the sum of inner angles at the vertex, i.e.,

k0(v) = 2π −
m∑
i=1

θi,

where θ1, ..., θm are the inner angles (of triangles) at the vertex v. See Figure
3.1.

We will also call above a E
2 polyhedral surface. If we use the spherical

(or hyperbolic) triangles instead of Euclidean triangles in definition 1.1, the
result is called a spherical (or S2) polyhedral surface (resp. H

2 or hyperbolic
polyhedral surface). Spherical and hyperbolic polyhedral surfaces have been
studied extensively. The discrete curvature k0 is defined by the same formula
for S2 and H

2 polyhedral surfaces.
From the definition, it is clear that the basic unit of discrete curvature is

the inner angle. Furthermore, the metric-curvature relation is given by the
cosine law. Just like the smooth case, one of the main problems of study in
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polyhedral surface is to understand the relationship between the metric and
its curvature. Naturally we should study the cosine law carefully.

The goal of the paper is to introduce some of the recent works on finding
geometric structures on triangulated surfaces using variational principles. Ever
since W. Thuston’s work on geometrization of Haken 3-manifolds and circle
packing in 1978, there have been many works in this area. The key step in
the variational framework is to define an appropriate action functional so that
the critical points of the functional are the geometric structures that one is
seeking.

The first such action functional was discovered in a seminal work by Colin
de Verdière [6] in 1991 for circle packing metrics. Colin de Verdière’s functional
is derived from the Schlaefli formula for volume of tetrahedra. In [6], Colin de
Verdière introduced the first variational principle on triangulated surfaces in
recent times and gave a proof of Thurston-Andreev’s existence and uniqueness
theorem for circle packing metrics. In a remarkable paper [18] in 1994, I. Rivin
used the 3-dimensional volume of a hyperbolic ideal tetrahedra as the action
functional and established a beautiful variational principle for Euclidean poly-
hedral surfaces. Since then, many other variational principles for polyhedral
surfaces have been established. See for instance, [4], [2], [7], [12], [13], [14],
[19], [20] and others. Amazingly, almost all action functionals discovered so
far are related to the Schlaefli formula. The only exception is in the beautiful
work of [2]. The action functional is derived from a discrete integrable sys-
tem. Very recently, we realized [15] that the cosine law and its derivative form
are rich sources for action functionals and these include all the previous ap-
proaches. These recently discovered action functionals, when view from some
perspectives, can be considered as 2-dimensional counterparts of the Schlaefli
formula. The complete list of all possible 2-dimensional counterparts of the
Schlaefli formula has been found in [15].

This paper is organized as follows. In section 2, we discuss the construction
of action functionals in 2-dimension. In section 3, we discuss various variational
principles associated to the action functionals. In section 4, we discuss the
problem of moduli space of all curvatures. The last section addresses some
open problems.

2 The Schlaefli formula and its counterparts in

dimension 2

One of the most beautiful identities in low-dimensional geometry is the Schlae-
fli formula. It states that for a tetrahedron in a constant curvature λ = ±1
space, the volume V , the length li and the dihedral angle ai at the i-th edge
are related by
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∂V

∂ai
=
λ

2
li (2.1)

where V = V (a1, ..., a6) is a function of the angles. The formula relates
the three most important 3-dimensional geometric quantities: volume, met-
ric (=length), and curvature (=dihedral angles) in a simple identity. One
consequence of (2.1) is that the differential 1-forms,

3∑
i=1

lidai and

3∑
i=1

aidli are closed. (2.2)

Indeed, 2dV = λ
∑3

i=1 lidai. One can recover (2.1) from (2.2) by integration.

By taking the Legendre transformation, one obtains H(l1, ..., l6) =
∑6

i=1 liai−
2λV so that

∂H

∂li
= ai. (2.3)

Identities (2.1) and (2.3) are the starting points of several variational princi-
ples for finding constant curvature metrics on triangulated 3-manifolds. They
are the basic ingredients in Regge calculus in physics which is a discretized
general relativity.

2.1 Regge calculus and Casson’s approach in dimension 3

Here is an illustration of the use of (2.3) after A. Casson and others. Fix a
triangulated closed 3-manifold (M,T ) and consider the space X of all hyper-
bolic polyhedral metrics on (M,T ). By definition, a hyperbolic polyhedral
metric on (M,T ) is a metric on M so that the restriction of the metric to each
tetrahedron is isometric to a hyperbolic tetrahedron. Let E be the set of edges
in the triangulation T . Then a polyhedral metric on (M,T ) is determined by
the edge length function l : E → R sending an edge to its length. The discrete
curvature (or simply curvature) K of the metric l is the function K : E → R
sending an edge to 2π less the sum of dihedral angles at the edge. If the curva-
ture K = 0, then the polyhedral metric is a smooth hyperbolic metric. This is
proved as follows. First, the curvature K = 0 shows that the metric is smooth
at the interior points of each edge. To show that it is also smooth at each
vertex, one considers the spherical link at the vertex. The link is isometric to
a spherical polyhedral 2-sphere with discrete curvature k0 = 0 at each vertex.
This shows the link is isometric to the standard 2-sphere. Thus the metric
on the 3-manifold is smooth at each vertex. Now in Casson’s approach, one
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defines the Einstein-Hilbert action of a polyhedral metric l to be:

F (l) = −
∑
σi

H(li1 , ..., li6) + 2π
∑
ej

lj

where the first sum is over all tetrahedra σi with six edge lengths li1 , ..., li6
and the second sum is all edges ej of length lj . One easy consequence of (2.3)
is that the Euler-Lagrangian equation for F , considered as a function defined
on X , is given by

∂F

∂li
= Ki (2.4)

where li and Ki are the length and curvature at the i-th edge. In particular,
it follows that the critical points of the Einstein-Hilbert functional are the
hyperbolic metrics. To derive the Euler-Lagrangian equation (2.4), let us as-
sume that the dihedral angles at the i-th edge are a1, ..., an and the tetrahedra
adjacent to the i-th edge are σ1, ..., σn. Then by the definition of F and the
Schlaefli formula (2.3) applied to each σj , we have

∂F

∂li
= (−a1 − ...− an) + 2π = Ki.

The above approach is ubiquitous in variational framework on triangulated
spaces. The important feature of this approach is that the action functional
is local. This means that the value of the action functional on a polyhedral
metric is the sum of the functional on its top dimensional simplexes. Thus the
main issue for variational framework for triangulated surfaces is to find action
functionals for geometric triangles.

2.2 The work of Colin de Verdière, Rivin,
Cohen-Kenyon-Propp and Leibon

For a long time, the Gauss-Bonnet formula for area of triangles had been
considered as the only counterpart of the Schlaefli formula in dimension 2.
This is probably due to the view point that one should emphasize the role
of volume in (2.1). The view changed when Colin de Verdière [6] produced
the first striking 2-dimensional counterpart of the (1.1) by paying attention to
(2.2). In this section, we will introduce briefly the action functionals in the
work of [6], [18], [7], and [12].

In the work of [6] which gives a new proof of Andreev-Thurston’s existence
and uniqueness of circle packing metrics using variational principle, Colin de
Verdière considers triangles of edge lengths r1 + r2, r2 + r3, r3 + r1 and angles
a1, a2, a3 where the angle ai faces the edge of length rj + rk, {i,j,k}={1,2,3}.
See Figure 2.1 (a). He proved that the following three 1-forms w are closed.
These are the counterparts of (2.2) in 2-dimension.
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For a Euclidean triangle, the 1-form

w =

3∑
i=1

ai
ri
dri =

3∑
i=1

aid ln ri (2.5)

is closed. For a hyperbolic triangle, the 1-form

w =

3∑
i=1

ai
sinh ri

dri =

3∑
i=1

aid ln tanh(ri/2) (2.6)

is closed. For a spherical triangle, the 1-form

w =
3∑

i=1

ai
sin ri

dri =
3∑

i=1

aid ln tan(ri/2) (2.7)

is closed. Furthermore, write the 1-form w as
∑3

i=1 aidui. Then he proved
that the integration F (u) =

∫ u
w is concave in u = (u1, u2, u3) in the cases

of Euclidean and hyperbolic triangles. We are informed by Colin de Verdière
that these 1-forms were discovered by considering the Schlaefli formula.

r
1


r
2


r
3


a
1


a
2


a
3


(a)
    (b)


Figure 2.1
The Legendre transformation of F (u) for Euclidean triangle was discussed

in the work of Braegger [4] who identifies it as the volume of a hyperbolic tetra-
hedron. The geometric meaning of other F (u)’s or its Legendre transformation
is not known.

Thurston’s original work on circle packing allows circles to intersect at
angles. See Figure 2.1(b). For these intersecting angle circle packing metrics,
Colin de Verdière’s 1-form are still closed. This is proved in [8].

In the work of Rivin [18] and Cohen-Kenyon-Propp [7], they consider
Euclidean triangles of edge lengths l1, l2, l3 so that the opposite angles are
a1, a2, a3. The action functional considered by Rivin is the Lengendre trans-
formation of that of Cohen-Kenyon-Propp. It is proved that the 1-form

w =
3∑

i=1

ai
li
dli =

3∑
i=1

aid ln li (2.8)
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is closed. The integral F (u) =
∫ u

w is shown to be convex in u = (ln l1, ln l2, ln l3)
(see [18]). It is proved in [18] that the Legendre transformation of F (u) is the
volume of the hyperbolic ideal tetrahedron with dihedral angles a1, a2, a3, a1, a2, a3.

In the work of [12], Leibon considers a hyperbolic triangle of edge lengths
li so that the opposite angle is rj + rk where {i, j, k} = {1, 2, 3}. He proved
that the 1-form

w =

3∑
i=1

ln sinh(li/2)dri (2.9)

is closed and its integration is strictly convex in (r1, r2, r3). Furthermore, the
integration

∫ r
w is proved in [12] to be the volume of a hyperbolic prism.

Evidently, (2.5)-(2.9) should be considered as 2-dimensional counterparts
of the Schlaefli formula (2.2). We will discuss the applications of these action
functionals in section 3.

2.3 The Cosine Law and 2-dimensional Schlaefli formulas

The 2-dimensional Schlaefli formulas that we are seeking are some relationship
between the lengths and angles of a triangle. Let E2,H2 and S2 be the
Euclidean plane, the hyperbolic plane and the 2-sphere respectively. Given a
triangle in H2, E2 or S2 of inner angles θ1, θ2, θ3 and edge lengths l1, l2, l3 so
that θi is facing the li-th edge, the cosine law expressing length li in terms of
the angles θr’s is,

cos(
√
λli) =

cos θi + cos θj cos θk
sin θj sin θk

where λ = 1,−1, 0 is the curvature of the space S2, or H2 or E2 and {i, j, k} =
{1, 2, 3}. Another related cosine law is

cosh(li) =
cosh θi + cosh θj cosh θk

sinh θj sinh θk

for a right-angled hyperbolic hexagon with three non-adjacent edge lengths
l1, l2, l3 and their opposite edge lengths θ1, θ2, θ3.

These formulas suggest that we should consider the following. Suppose a
function y = y(x) where y = (y1, y2, y3) ∈ C3 and x = (x1, x2, x3) is in some
open connected set in C3 so that xi’s and yi’s are related by

cos(yi) =
cosxi + cosxj cosxk

sin(xj) sin(xk)
(2.10)

where {i, j, k} = {1, 2, 3}. We say y = y(x) is the cosine law function. Let
ri =

1
2 (xj + xk − xi). Then r = (r1, r2, r3) is a new parametrization so that

xi = rj + rk. We will also consider the composition function y = y(r1, r2, r3).
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The following proposition establishes the basic properties of the cosine law
function. The proof of the proposition is a simple exercise in calculus and will
be omitted. See [15] for details.

Proposition 2.1. ([15]) Suppose the cosine law function y = y(x) is defined on
an open connected set in C3 which contains a point (a, a, a) so that y(a, a, a) =
(b, b, b). Let Aijk = sin yi sinxj sinxk where {i, j, k} = {1, 2, 3}. Then

Aijk = Ajki, i.e.,
sin(yi)

sin(xi)
=

sin(yj)

sin(xj)
(2.11)

tan(yi/2)

cos(ri)
=

tan(yj/2)

cos(rj)
(2.12)

A2
ijk = 1− cos2 xi − cos2 xj − cos2 xk − 2 cosxi cosxj cosxk.

At a point x where Aijk 6= 0, then,

∂yi
∂xi

=
sinxi
Aijk

,

∂yi
∂xj

=
∂yi
∂xi

cos yk,

cos(xi) =
cos yi − cos yj cos yk

sin yj sin yk
. (2.13)

In particular, (2.13) shows that the roles of x and y in the cosine law are
essentially symmetric. The identities (2.11) and (2.12) are called the Sine Law
and the Tangent Law of the cosine law function.

The problem of finding all 2-dimensional counterparts of the Schlaefli for-
mula can be rephrased as follows. It corresponds to generalizing Schlaefli
identity (2.2).

Problem 2.2. Suppose the cosine law function y = y(x) is defined on an open
connected set in C3.
(i) Find all smooth non-constant functions f(t) and g(t) so that the differential

1-form w =
∑3

i=1 f(yi)dg(xi) is closed.
(ii) Find all smooth non-constant functions f(t) and g(t) so that the differential

1-form
∑3

i=1 f(yi)dg(ri) is closed where ri =
xj+xk−xi

2 , {i, j, k} = {1, 2, 3}.
If we find these 1-forms w, then the integrals F =

∫
w will be used as action

functionals for variational principles on surfaces. By the construction of the
1-form, the function F satisfies

∂F

∂g(xi)
= f(yi)
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or

∂F

∂g(ri)
= f(yi).

These are all 2-dimensional counterparts of the Schlaefli formula (2.2).
Problem 2.2 was solved in [15].

Theorem 2.3. ([15]) The following is the complete list of functions f and
g up to scaling and complex conjugation. There exists a complex number h so
that, in the case (i),

f(t) =

∫ t

sinh(s)ds and g(t) =

∫ t

sin−h−1(s)ds

and in the case (ii),

f(t) =

∫ t

tanh(s/2)ds and g(t) =

∫ t

cos−h−1(s)ds.

In particular, all closed 1-forms
∑3

i=1 f(yi)dg(xi) and
∑3

i=1 f(yi)dg(ri) are
holomorphic or anti-holomorphic.

The details of the proof the theorem can be found in [15]. We give a sketch
of the proof here. To verify that the 1-forms listed above are closed is a straight

forward calculation using the sine law sin(yi)
sin(xi)

=
sin(yj)
sin(xj)

and the tangent law
tan(yi/2)
cos(ri)

=
tan(yj/2)
cos(rj)

. The proof that these are the complete list of all functions

f, g up to scaling and complex conjugation is due to the uniqueness of the sine
law and tangent law. To be more precise, in the case of the sine law, it can
be shown that ([15], lemma 2.3) if f, g are two smooth non-constant functions

so that f(yi)
g(xi)

=
f(yj)
g(xj)

for all x, then there are constants λ, µ, c1, c2 so that,

f(t) = c1 sin
λ(t) sinµ(t̄) and g(t) = c2 sin

λ(t) sinµ(t̄).
By specializing theorem 2.3 to triangles in S2, E2 and H2 and integrating

the 1-forms, we obtain various energy functionals for variational framework on
triangulated surfaces. We have identified all those convex or concave energies
constructed in this way.

Theorem 2.4 ([15]). Let l = (l1, l2, l3) and θ = (θ1, θ2, θ3) be lengths and
angles of a triangle in E2, H2 or S2. Let h ∈ R and u = (u1, u2, u3).

The following is the complete list, up to scaling, of all closed real-valued
1-forms of the form

∑3
i=1 f(θi)dg(li) for some non-constant smooth functions

f, g so that its integral is convex or concave.
(i) For a Euclidean triangle,

wh =
3∑

i=1

∫ θi sinh(t)dt

lh+1
i

dli.
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Its integral
∫ u

wh is locally convex in variable u where ui =
∫ li
1 t−h−1dt.

(ii) For a spherical triangle,

wh =

3∑
i=1

∫ θi sinh(t)dt

sinh+1(li)
dli.

The integral
∫ u

wh is locally strictly convex in u where ui =
∫ li
π/2

sin−h−1(t)dt.

The following are the complete list, up to scaling, of all closed real-valued
1-forms of the form

∑3
i=1 f(li)dg(ri) (where θi = rj + rk) or

∑3
i=1 f(θi)dg(ri)

(where li = rj + rk) for some non-constant smooth functions f, g so that its
integral is either convex or concave.
(iii) For a Euclidean triangle of angles θi and opposite edge lengths rj + rk,

ηh =

3∑
i=1

∫ θi coth(t/2)dt

rh+1
i

dri.

Its integral
∫ u

ηh is locally concave in u = (u1, u2, u3) where ui =
∫ ri
1
t−h−1dt.

(iv) For a hyperbolic triangle of angles θi and opposite edge lengths rj + rk,

ηh =

3∑
i=1

∫ θi coth(t/2)dt

sinhh+1(ri)
dri.

Its integral
∫ u

ηh is locally strictly concave in u where ui =
∫ ri
1

sinh−h−1(t)dt.
(v) For a hyperbolic triangle of edge lengths li and opposite angles rj + rk,

ηh =

3∑
i=1

∫ li tanhh(t/2)dt

cosh+1(ri)
dri.

Its integral
∫ u

ηh is locally strictly convex in u where ui =
∫ ri
1

cos−h−1(t)dt.
(vi) For a hyperbolic right-angled hexagon of three non-pairwise adjacent edge
lengths li and opposite edge lengths rj + rk,

ηh =

3∑
i=1

∫ li cothh(t/2)dt

coshh+1(ri)
dri.

Its integral
∫ u

ηh is locally strictly concave in u where ui =
∫ ri
1 cosh−h−1(t)dt.

A sketch of the proof of theorem 2.4 goes as follows. First, by theorem 2.3,
these 1-forms are closed. It remains to show that the integrals are convex or
concave. This follows by showing that the Hessian matrix of the integral is
positive (or negative) definite. We first observe that the Hessian matrices of∫
wh (or

∫
ηh) and

∫
wh′ (or

∫
ηh′) are congruent for different h, h′. Thus, it

suffices to check the convexity for one h. This was been achieved in various
cases by different authors. Indeed, case (i) for h = 0 is proved in [18], case (ii)
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for h = 0 is proved in [13], (iii) and (iv) for h = 0 are proved in [6], case (v)
for h = −1 is proved in [12], and case (vi) for h = −1 is proved in [14].

2.4 The geometric meaning of some action functionals

The geometric meaning of the integrals
∫
wh or

∫
ηh are not known except in

the following cases. The Legendre transform of
∫
w0 for Euclidean triangles

is the hyperbolic volume of an ideal tetrahedron first discovered by Rivin.
Leibon showed that the integral

∫
η−1 for hyperbolic triangle is the volume of

an ideal hyperbolic prism. We showed in [13] that
∫
w0 for a spherical triangle

is the volume of an ideal hyperbolic octahedron. In these three cases, there
is a common way to describe the action functional. Given a Euclidean, or a
hyperbolic or a spherical triangle, we consider the triangle to be drawn in the
sphere at infinity of the hyperbolic 3-space bounded by three circles. These
three circles will intersect at a finite set X of points in S2 where |X | = 4
for Euclidean triangle and |X | = 6 otherwise. Then the action functional
associated to the triangle is the hyperbolic volume of the convex hull of X in
the hyperbolic 3-space. See Figure 2.2.

Figure 2.2

3 Variational principles on surfaces

We discuss some applications of the 2-dimensional Schlaefli formulas in this
section. The most prominent applications are rigidity theorems for polyhedral
surfaces. For simplicity, let us assume that surfaces are closed in this section.
All results can be generalized without difficulties to compact surfaces with
boundary.

All of these applications to rigidity are based on the following simple lemma.

Lemma 3.1. Suppose Ω ⊂ Rn is an open convex set and W : Ω → Rn is
a smooth function with positive definite Hessian matrices. Then the gradient
▽W : Ω → Rn is a smooth embedding. If Ω is only assumed to be open in Rn,
then ▽W : Ω → Rn is a local diffeomorphism.
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Indeed, consider the graph G of the function W in Rn+1. The convexity
of W shows that the graph G is a strictly convex hypersurface. Thus normal
vectors to the graph G at different points are not parallel. However, normal
vectors are of the form (▽W,−1). It follows that ▽W : Ω → Rn is injective.
The Jacob matrix of ▽W is the Hessian ofW . Thus the map ▽W is a smooth
embedding.

3.1 Colin de Verdière’s proof of Thurston-Andreev’s
rigidity theorem

In his work [21] on constructing hyperbolic metrics on 3-manifolds, Thurston
introduced circle packing metrics on a triangulated surface (S, T ). Let V and
E be the sets of vertices and edges in the triangulation T . A circle packing
metric on (S, T ) is a polyhedral metric l : E → R>0 so that there is a map,
called the radius assignment, r : V → R>0 with l(vv

′) = r(v)+r(v′) whenever
the edge vv′ has end points v and v′.

Theorem 3.2. (Thurston, Andreev) Suppose (S, T ) is a triangulated
closed surface.

(i)([21], [1]) A Euclidean circle packing metric on (S, T ) is determined up
to isometry and scaling by the discrete curvature k0.

(ii) ([21]) A hyperbolic circle packing metric on (S, T ) is determined up to
isometry by the discrete curvature k0.

Colin de Verdière’s Proof ([6]). We will consider the case (ii) for simplicity.
The same argument also works for (i) with a little care. For a circle packing
metric, let r : V → R>0 be the radius assignment. Define u : V → R<0

by u(v) =
∫ r(v)

∞
1

sinh(s)ds. The set of all circle packing metrics on (S, T ) is

parameterized by RV
<0 via u.

Recall that for a triangle of edge lengths r1 + r2, r2 + r3, r3 + r1 and inner
angles a1, a2, a3, Colin de Verdière defines an action functional F (r1, r2, r3) by
integrating the 1-form (2.6) so that

∂F

∂ui
= ai (3.1)

where ui =
∫ ri
∞

1
sinh(s)ds and proves that F is strictly concave in (u1, u2, u3) in

(2.6). We call F (u1, u2, u3) the Colin de Verdière energy of the triangle. Define
the energy W (u) of u ∈ RV

<0 to be the sum of the Colin de Verdière energy of
the triangles in the circle packing metric r. Then by the construction, W (u)
is strictly concave in u due to the concavity of F . Furthermore, by (3.1),

▽W = 2π(1, ...., 1)− k0
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where k0 is the curvature of the circle packing metric. Thus, by lemma 3.1,
the map from r to its curvature k0 is injective. This is the statement in (ii).

We remark that Colin de Verdière [6] also gave a very nice proof of the
existence of the circle packing metrics.

3.2 The work of Rivin and Leibon

Given a polyhedral surface (S, T ), Rivin [18] introduced the curvature φ0 :
E → R sending an edge e to 2π − a − a′ where a, a′ are the angles facing
the edge. Leibon introduced in [12] the ψ0 : E → R curvature which sends

an edge e to b+c−a+b′+c′−a′

2 where a, a′ are the angles facing the edge e and
b, b′, c, c′ are the angles adjacent to e. The geometric meaning of φ0 and ψ0

are related to the dihedral angles of the associated 3-dimensional hyperbolic
ideal polyhedra. See Figure 3.1.
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Figure 3.1

Theorem 3.3. (Rivin, Leibon) (i)([18]). A Euclidean polyhedral metric on
(S, T ) is determined up to isometry and scaling by the φ0 curvature.

(ii) ([12]). A hyperbolic polyhedral metric on (S, T ) is determined up to
isometry by the ψ0 curvature.

The proof in [18] uses the Lagrangian multipliers method. The action
functionals in [18] and [12] are the integrations of (2.8) and (2.9) and their
Legendre transformations. Due to the convexity of the action functional, the
rigidity theorem follows essentially from lemma 3.1.

3.3 New curvatures for polyhedral metrics and some
rigidity theorems

Based on theorem 2.4, we introduced families of discrete curvatures in [15].
Recall that (S, T ) is a closed triangulated surface so that T is the triangulation,
E and V are the sets of all edges and vertices. Let E2, S2 and H2 be the
Euclidean, the spherical and the hyperbolic 2-dimensional geometries.
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Definition 3.4. Given a K2 polyhedral metric l on (S, T ) where K2 = E2,
or S2 or H2, the φh curvature of the polyhedral metric l is the function φh :
E → R sending an edge e to:

φh(e) =

∫ π/2

a

sinh(t)dt+

∫ π/2

a′

sinh(t)dt (3.2)

where a, a′ are the inner angles facing the edge e. See Figure 3.1.
The ψh curvature of the metric l is the function ψh : E → R sending an

edge e to

ψh(e) =

∫ b+c−a
2

0

cosh(t)dt +

∫ b′+c′−a′

2

0

cosh(t)dt (3.3)

where b, b′, c, c′ are inner angles adjacent to the edge e and a, a′ are the angles
facing the edge e.

The h-th discrete curvature kh of the polyhedral metric l on (S, T ) is the
function kh : V → R sending a vertex v to

kh(v) = −
m∑
i=1

∫ θi

π/2

tanh(t/2)dt+ (4 −m)π/2

where θ1, ..., θm are all inner angles at vertex v and m is the degree of the
vertex v. See Figure 3.1.

The curvatures φ0 and ψ0 were first introduced by I. Rivin [18] and G.
Leibon [12] respectively. The positivity of ψ0 and φ0 is shown in [18] and [12]
to be equivalent to the Delaunay condition for polyhedral metrics.

It is shown [15] that the positivity of the curvatures φh and ψh is indepen-
dent of h. To be more precise, due to (x+ y)(

∫ x

0
cosh(t)dt+

∫ y

0
cosh(t)dt) ≥ 0

for x, y ∈ [−π/2, π/2], we have ψh(e) ≥ 0 (or φh(e) ≥ 0) if and only if ψ0(e) ≥ 0
(or φh(e) ≥ 0). Thus the geometric meaning of positive ψh curvature is the
same Delaunay condition for polyhedral metrics.

The curvature φ−2(e) = cot(a)+ cot(a′) has appeared in the finite element
method approximation of the Laplace operator. It is called the cotangent
formula for discrete Laplacian.

We prove that,

Theorem 3.5. ([15]) Let h ∈ R and (S, T ) be a closed triangulated surface.
(i) A Euclidean circle packing metric on (S, T ) is determined up to isometry

and scaling by its kh-th discrete curvature.
(ii) A hyperbolic circle packing metric on (S, T ) is determined up to isom-

etry by its kh-th discrete curvature.
(iii) If h ≤ −1, a Euclidean polyhedral metric on (S, T ) is determined up

to isometry and scaling by its φh curvature.
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(iv) If h ≤ −1 or h ≥ 0, a spherical polyhedral metric on (S, T ) is deter-
mined up to isometry by its φh curvature.

(v) If h ≤ −1 or h ≥ 0, a hyperbolic polyhedral surface is determined up
isometry by its ψh curvature.

For any h ∈ R, there are local rigidity theorems in cases (i)-(v) (see theorem
6.2 in [15]). We conjecture that theorem 3.5 holds for all h. To the best of our
knowledge, theorem 3.5 for the simplest case of the boundary of a tetrahedron
is new.

The ideas of the proof are the same as the ones used in [6] and [18] by
applying the action functionals discovered in theorem 2.4. The extra constrains
that h ≤ −1 or h ≥ 0 in the theorem are caused by the condition on the
convexity of the domain Ω in lemma 3.1. To be more precise, these conditions
on h guarantee that the corresponding domains of the action functionals are
convex.

3.4 Application to Teichmüller theory of surfaces with
boundary

The counterpart of theorem 3.5(v) for hyperbolic metrics with totally geodesic
boundary on an ideal triangulated compact surface is the following. Recall
that an ideal triangulated compact surface with boundary (S, T ) is obtained by
removing a small open regular neighborhood of the vertices of a triangulation of
a closed surface. The edges of an ideal triangulation T correspond bijectively
to the edges of the triangulation of the closed surface. Given a hyperbolic
metric l with geodesic boundary on an ideal triangulated surface (S, T ), there
is a unique geometric ideal triangulation T ∗ isotopic to T so that all edges are
geodesics orthogonal to the boundary. The edges in T ∗ decompose the surface
into hyperbolic right-angled hexagons. The ψh curvature of the hyperbolic
metric l is defined to be the map ψh : { all edges in T } → R sending each edge
e to

ψh(e) =

∫ b+c−a
2

0

coshh(t)dt +

∫ b′+c′−a′

2

0

coshh(t)dt (3.4)

where a, a′ are lengths of arcs in the boundary (in the ideal triangulation T ∗)
facing the edge and b, b′, c, c′, are the lengths of arcs in the boundary adjacent
to the edge so that a, b, c lie in a hexagon. See Figure 3.1.

Theorem 3.6 ([15]). A hyperbolic metric with totally geodesic boundary on
an ideal triangulated compact surface is determined up to isometry by its ψh-
curvature. Furthermore, if h ≥ 0, then the set of all ψh curvatures on a fixed



16 Feng Luo

ideal triangulated surface is an explicit open convex polytope Ph in a Euclidean
space so that Ph = P0.

The first part of the theorem is proved by using lemma 3.1 and the action
functional in theorem 2.4(v).

The case when h < 0 has been recently established by Ren Guo [9]. He
proved that,

Theorem 3.7. (Guo) Under the same assumption as in theorem 3.6, if h < 0,
the set of all ψh curvatures on a fixed ideal triangulated surface is an explicit
bounded open convex polytope Ph in a Euclidean space. Furthermore, if h < µ,
then Ph ⊂ Pµ.

Theorem 3.6 was proved for h = 0 in [14] where the open convex polytope
P0 is explicitly described. Evidently for each h ∈ R, the curvature ψh can be
taken as a coordinate of the Teichmüller space of the surface. The interesting
part of the theorem 3.6 is that the images of the Teichmüller space in these
coordinates (for h ≥ 0) are all the same. Whether these coordinates are related
to quantum Teichmüller theory is an interesting topic. See [5], [10], [3], and
others for more information. Combining theorem 3.6 with the work of Ushijima
[22] and Kojima [11], one obtains for each h ≥ 0 a cell decomposition of the
Teichmüller space invariant under the action of the mapping class group. See
corollary 10.6 in [15].

4 The moduli spaces of polyhedral metrics

One of the applications of the rigidity theorems is on the space of all polyhedral
surfaces. The most prominent result in the area is the theorem of Andreev-
Thurston. It states that the space of all discrete curvatures of all circle packing
metrics on a triangulated surface is a convex polyhedron. We will present
Marden-Rodin’s elegant proof [16] of it in this section. Another proof of it can
be found in [6]. Many other results on the space of all curvatures will also be
discussed. Most of the results obtained in [15] on the space of all curvatures
are modelled on the Marden-Rodin’s method.

4.1 Thurston-Andreev’s theorem and Marden-Rodin’s
proof

Theorem 4.1. (Thurston-Andreev) ([1], [21]) The space of discrete curvatures
k0 of Euclidean or hyperbolic circle packing metrics on a closed triangulated
surface is a convex polytope.
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For simplicity, we will present Marden-Rodin’s proof of it for hyperbolic
circle packing metrics. Let (S, T ) be the closed triangulated surface so that
the set of vertices is V . By definition, a circle packing metric is given by the
radius parameter r ∈ RV

>0, its discrete curvature k0 ∈ RV . By Thurston-
Andreev’s rigidity theorem 3.2, the curvature map Π : RV

>0 → RV sending
a metric r to its curvature k0 is a smooth embedding. The goal is to show
that the image Π(RV

>0) is a convex polytope. To this end, one needs to study
how hyperbolic triangles degenerate. Suppose a hyperbolic triangle has edge
lengths r1 + r2, r2 + r3, r3 + r1 so that the angle opposite to ri + rj is θk,
{i, j, k} = {1, 2, 3}. We say a sequence of hyperbolic metrics degenerates if
one of ri converges to 0 or ∞.

The following simple lemma summarizes the degenerations. The best proof
of it is to draw a picture. See Figure 4.1 and [16] for a proof.

Lemma 4.2. ([16] and [21]). Under the assumption above,
(a) limri→∞ θi(r1, r2, r3) = 0 so that the convergence is uniform.
(b) Suppose f1, f2, f3 are positive real numbers. Then

lim
(ri,rj,rk)→(0,fj ,fk)

θi(r1, r2, r3) = π,

lim
(ri,rj,rk)→(0,0,fk)

(θi + θj)(r1, r2, r3) = π,

and

lim
(r1,r2,r3)→0

(θ1 + θ2 + θ3)(r1, r2, r3) = π.

i

θ −>0i

j r  small

r >ci

iθ −>0

iθ 

iθ 

r   large

Figure 4.1

Using the lemma, one can now determine the boundary of Ω = Π(RV
>0) as

follows. By the definition of the discrete curvature k0, the image Ω lies in the
open half-spaces

k0(v) < 2π. (4.1)
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To see that the equality holds in the limit case, take a sequence of circle
packing metrics r(n) converging to a point a in the boundary of RV

>0 in the
space [0,∞]V . If one of the coordinate of a, say a(v), is infinite, then by lemma
4.2, its curvature k0(v) converges to 2π, i.e., (4.1) becomes an equality. Now
suppose a ∈ [0,∞)V . Let I ⊂ V be the non-empty set {v ∈ V |a(v) = 0}. Let
FI be the set of all triangles having at least one vertex in I. Take a triangle
σ ∈ FI . Let the vertices of σ be v1, v2, v3 so that the inner angle at vi is θi.
There are three possibilities for σ: (i) there is only one vertex, say v1, of σ in
I; (ii) there are two vertices, say v2, v3, of σ in I; and (iii) all vertices v1, v2, v3
of σ are in I. In the case (i), by lemma 4.1, θ1 = π. In the case (ii), θ2+θ3 = π
(note that the individual value θi may not be well defined). In the case (iii),
θ1 + θ2 + θ3 = π. Consider the sum of all discrete curvatures at I,∑

v∈I

k0(v) = 2π|I| −
∑
θ∈X

θ

where X is the set of all inner angles having vertices in I. We may group
these inner angles in X according to the triangles they lie and sum over each
triangle first. The result is that

∑
θ∈X θ = π|FI | by the discussion above in

the three cases (i), (ii) and (iii), i.e.,∑
v∈I

k0(v) = 2π|I| − π|FI | (4.2)

On the other hand, it is easy to see that,∑
v∈I

k0(v) > 2π|I| − π|FI | (4.3)

due to the fact that the sum of inner angles of a hyperbolic triangle is less than
π. Thus the image Π(RV

>0) is the open bounded convex polytope bounded by
linear inequalities (4.1) and (4.3). This ends the proof.

4.2 Some other results on the space of curvatures

Similar results for the moduli spaces of all φh or ψh curvatures, or kh dis-
crete curvatures on a triangulated surfaces are obtained in [15] using the same
method.

Theorem 4.3. ([15]). Suppose h ≤ −1 and (S, T ) is a closed triangulated
surface so that V is the set of all vertices. Then,

(i) The space of all kh-discrete curvatures of Euclidean circle packing met-
rics on (S, T ) forms a proper codimension-1 smooth submanifold in RV .

(ii) The space of all kh-discrete curvatures of hyperbolic circle packing met-
rics on (S, T ) is an open submanifold in RV bounded by the proper codimension-
1 submanifold in part (a).
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A related theorem, proved in essentially the same way, is the following.
Given a closed triangulated surface (S, T ) and K2 = S2,H2,E2, let PK2(S, T )
be the space of all K2 polyhedral metrics on (S, T ) parameterized by the edge
length function. Let Φh (resp. Ψh): PK2(S, T ) → RE be the map sending a
metric to its φh (resp. ψh) curvature.

Theorem 4.4. ([15]) Suppose (S, T ) is a closed triangulated surface so that
E is the set of all edges. Let h ≤ −1.

(a) The space Φh(PE2(S, T )) is a proper smooth codimension-1 submanifold
in RE.

(b) The space Ψh(PH2 (S, T )) is an open set bounded by Φh(PE2(S, T )) and
a finite set of linear inequalities.

Using the same argument, we can give a proof ([15], §9) of the following
results of Rivin and Leibon. Recall that a Euclidean or hyperbolic polyhedral
surface is said to have Delaunay property if its ψ0 curvature is non-negative.

Theorem 4.5. (Rivin, Leibon) Suppose (S, T ) is a closed triangulated surface.
(i) ([18]) The space of all φ0-curvatures of Delaunay Euclidean polyhedral

metrics on (S, T ) is a convex polytope.
(ii) ([12]) The space of all ψ0-curvatures of Delaunay hyperbolic polyhedral

metrics on (S, T ) is a convex polytope.

4.3 A sketch of the proof theorems 3.6 and 3.7

Suppose E is the set of all edges in an ideal triangulation of a compact surface
S. Let Ψh : Teich(S) → RE be the map sending a hyperbolic metric to
its ψh curvature defined in (3.4). The first part of theorem 3.6 says Ψh is a
smooth embedding. It is proved using the variational principle associated to
the action functional in theorem 2.4(v). To prove the second part of theorem
3.6 and theorem 3.7, we need to show that the image Ψh(Teich(S)) is a convex
polytope. To this end, one must determine the degenerations of the right-
angled hexagons. This was achieved in [15] and [9].

The result corresponding to lemma 4.2 is the following,

Lemma 4.6. ([9], [15]) Suppose a hyperbolic right-angled hexagon has three
non-pairwise adjacent edge lengths l1, l2, l3 and opposite edge lengths θ1, θ2, θ3
so that θi = rj + rk, {i, j, k} = {1, 2, 3}. Then the following holds.

(a) limθi→0 lj(θ1, θ2, θ3) = ∞ for j 6= i.
(b) limli→0 ri(l1, l2, l3) = ∞.
(c) Suppose a sequence of hexagons satisfies that |r1|, |r2|, |r3| are uniformly

bounded. Then limli→∞ θj(l)θk(l) = 0 so that the convergence is uniform in l.

Using this lemma, by the same analysis of boundary points as in Marden-
Rodin’s proof, we establish theorem 3.6 that the image of Ψh(T (S)) is an open
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convex polytope in RE independent of the choice of h ≥ 0. In Guo’s work [9],
he was able to push the analysis further and obtained the result for all h < 0.

5 Several open problems

We believe that theorem 3.5 should be true for all parameters h.
The space of all polyhedral metrics on (S, T ) carries a natural Poisson struc-

ture. It is very interesting to know if the Poisson structure can be expressed
explicitly in φh and ψh coordinates for each h ∈ R. See the recent nice work
of Mondello [17] for related works.

By taking a sequence of polyhedral metrics converging to a smooth Rie-
mannian metric, we would like to know if the corresponding discrete curvatures
φh, ψh and kh converge in the sense of measure.

The following question concerning the metric-curvature relationships may
have an affirmative answer.

Problem 5.1. ([15]) Suppose (S, T ) is a closed triangulated surface. Let
Π : PK2(S, T ) → RV be the curvature map sending a metric to its discrete
curvature k0. Take p ∈ RV .

(a) For K2 = E2 or H2, show that the space Π−1(p) is either the empty
set or a smooth manifold diffeomorphic to R|E|−|V |.

(b) For K2 = S2, show that the space Π−1(p) is either the empty set or a
smooth manifold diffeomorphic to R|E|−|V |+µ where µ is the dimension of the
group of conformal automorphisms of a spherical polyhedral metric l ∈ Π−1(p).

Given a spherical polyhedral metric l on (S, T ), let V ′ be the set of all
vertices so that the discrete curvatures at the vertices are zero. The number
µ above is the dimension of the group of all conformal automorphisms of the
Riemann surface S − V ′ where the conformal structure is induced by l. In
particular, if the Euler characteristic of S − V ′ is negative, then µ = 0.

We have shown in [15] that the preimage Π−1(p) is either empty or a smooth
manifold of dimension |E| − |V | in the Euclidean or hyperbolic cases.
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