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1 Introduction

One of the most important identities in low-dimensional geometry is the Schlae-
fli formula. It states that for a tetrahedron in a constant curvature λ = ±1
space, the volume V , the length xij , and the dihedral angle aij at the ij-th
edge are related by
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∂V

∂aij
=

λ

2
xij (1.1)

where V = V (a12, a13, a14, a23, a24, a34) is a function of the angles. See for
instance [5] or [1] for a proof.
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Figure 1.1
In 3-dimensional polyhedral geometry, a space is obtained by isometrically

gluing tetrahedra along their codimension-1 faces. The metric is determined
by the edge lengths and the curvature at an edge is 2π less the sum of dihedral
angles at the edge. From this point of view, the Schlaefli formula relates the
most important geometric quantities: the volume, the metric (=edge lengths)
and the curvature (= dihedral angles) in a simple elegant identity. The Schlaefli
formula plays a vital role in a variational principle for triangulated 3-manifolds.
See for instance Regge’s work [6] on discrete general relativity.

One consequence of (1.1) is that differential 1-forms
∑

xijdaij and
∑

aijdxij (1.2)

are closed.
We may recover the volume function V in (1.1) by integrating the 1-form∑
xijdaij . Thus the closeness of the 1-forms in (1.2) essentially captures the

Schlaefli formula.
The basic problem in polyhedral geometry is to understand the relation-

ship between the metric and its curvature. In the case of tetrahedra, this
prompts us to study the curvature map K(x) = a sending the edge length x =
(x12, x13, x14, x23, x24, x34) to the dihedral angle a = (a12, a13, a14, a23, a24, a34).

The Jacobian matrix D(K) of the curvature map is the 6×6 matrix [
∂aij

∂xrs
]6×6.

The closeness of the 1-forms in (1.2) is equivalent to say that the Jacobian

matrix D(K) is symmetric. It turns out the Jacobian matrix [
∂aij

∂xrs
]6×6 enjoys

many more symmetries. One of the symmetry was discovered by E. Wigner
[9] and Taylor-Woodward [8]. The purpose of this paper is to find the com-



3-Dimensional Schlaefli Formula and Its Generalization 3

plete set of symmetries of the Jacobian matrix D(K) of the curvature map.
These symmetries should have applications in 3-dimensional topology and ge-
ometry. In particular, the relationships between the Jacobian matrix D(K),
the 6j symbols, the quantum 6j symbols, and the volume conjecture are very
attractive problems. See for instance the work of [8] and [7].

The complete set of symmetries was discovered by us a few years ago. We
thank Walter Neumann for suggesting us to write it up for publication.

This paper is dedicated to the memory of Xiao-Song Lin who made impor-
tant contributions to low-dimensional topology. He was a great colleague and
friend.

The paper is organized as follows. In §2, we state the main theorem. These
theorems are proved in §3. A more general version of it involving complex
valued lengths and angles can be found in [4].

2 The main theorem

Let a tetrahedron in S3 or H3 or E3 have vertices v1, v2, v3, v4. Let aij and xij

be the dihedral angle and the edge length at the ij-th edge vivj . We consider
the angle aij as a function of the lengths x12, x13, x14, x23, x24, x34.

Here is our main result.

Theorem 2.1. Define P ij
rs = 1

sin(aij) sin(ars)
∂aij

∂xrs
. Then these quantities sat-

isfy the following identities for any tetrahedron in any of the three geometries
S3,H3,E3. The indices i, j, k, l are assumed to be pairwise distinct.

(i) (Schlaefli) P ij
rs = P rs

ij .

(ii) ([9], [8]) P ij
kl = P ik

jl = P il
jk.

(iii) P ij
ik = −P ij

kl cos ajk.

(iv) P ij
ij = P ij

klwij where wij = (cijcjkcki+cijcjlcli+cikcjl+cilcjk)/ sin
2(aij)

and crs = cos(ars).

(v) P ij
rs = P i′j′

r′s′ where {i, j} 6= {r, s} and for a subset {a, b} ⊂ {i, j, k, l},
the set {a′, b′} is {i, j, k, l} − {a, b}.

In the spaces S3 and H3 of constant curvature λ = ±1, a tetrahedron is
determined by its dihedral angles aij . Thus the length xij can be considered
as a function of the angles. The similar theorem is,

Theorem 2.2. Define Rij
rs = 1

sin(
√
λxij) sin(

√
λxrs)

∂xij

∂ars
. Then these quantities

satisfy the following identities for any tetrahedron in spherical and hyperbolic
geometries. Let the indices i, j, k, l be distinct.

(i) (Schlaefli) Rij
rs = Rrs

ij .
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(ii) ([9], [8]) Rij
kl = Rik

jl = Ril
jk.

(iii) Rij
ik = Rij

kl cos(
√
λxil).

(iv) Rij
ij = Rij

klwij where

wij =
−cijcikcil − cjicjkcjl + cikcjl + cilcjk

sin2(
√
λxij)

,

and crs = cos(
√
λxrs),

(v) Rij
rs = Ri′j′

r′s′ where {i, j} 6= {r, s} and for a subset {a, b} ⊂ {i, j, k, l},
the set {a′, b′} is {i, j, k, l} − {a, b}.

We remark that the matrices [
∂aij

∂xrs
] and [

∂xij

∂ars
] are inverse of each other when

λ 6= 0. Theorem 2.2 follows from theorem 2.1 by taking the dual. Indeed, in
the spherical tetrahedral case, the dual tetrahedron has dihedral angle π− xij

and edge length π − aij at the kl-th edge of the dual simplex. Thus, theorem
2.2 follows. The hyperbolic tetrahedra case in theorem 2.2 can be deduced
from spherical case by analytical continuation.

Theorem 2.1 suggests that the matrixMD(K)M = [P ij
rs]6×6 whereM is the

diagonal matrix whose diagonal entries are 1
sin(aij)

exhibits more symmetries

than the Jacobian matrix D(K).
Both theorems are special cases of a complex valued edge-length and dihe-

dral angle relation. This will be discussed in [4].

3 A proof of theorem 2.1

We need to recall the cosine law and its derivative form in order to compute
the Jacobian matrix [

∂aij

∂xrs
] effectively.

Let K2 = S2, or H2 or E2 be the space of constant curvature λ = 1,−1, or
0. Define a function Sλ(t) as follows. S0(t) = t; S1(t) = sin(t) and S−1(t) =
sinh(t). The sine law for a triangle of lengths l1, l2, l3 and opposite angles
a1, a2, a3 in K2 can be stated as

Sλ(li)

sin(ai)
=

Sλ(lj)

sin(aj)
(3.1)

A different way to state the sine law is that the expression

Aijk = sin(ai)Sλ(lj)Sλ(lk)

is symmetric in indices i, j, k where {i, j, k} = {1, 2, 3}. For this reason, we
call Aijk = A123 the A-invariant of the triangle.

Proposition 3.1.([2], [3]) Let a triangle in K2 have inner angles a1, a2, a3
and edge lengths l1, l2, l3 so that li-th edge is opposite to the angle ai. Then
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(i) ∂ai

∂lj
= −∂ai

∂li
cos(ak) where {i, j, k} = {1, 2, 3},

(ii) ∂ai

∂li
= Sλ(li)

A123

See [2] or [3] for a proof.

Let us introduce some notations before beginning the proof. The indices
i, j, k, l are pairwise distinct, i.e., {i, j, k, l} = {1, 2, 3, 4}. The face triangle
∆vivjvk will be denoted ∆ijk. The inner angle at the vertex vk of the triangle
∆ijk is denoted by bkij . The link at the vertex vk, denoted by Lk(vk), is a

spherical triangle with edge lengths bkji, b
k
il, b

k
lj and inner angles aki, akj , akl so

that aki is opposite to bkjl. The A-invariant of the triangle ∆ijk is denoted by
Aijk.

In the calculation below, we consider bijk as a function of xrs’s using the
cosine law for the triangle ∆ijk. By the definition, we have,

∂bijk
∂xrs

= 0 (3.2)

if {r, s} is not a subset of {i, j, k}. The function aij is considered as a function
of brst’s by the cosine law applied to either the link Lk(vi) or Lk(vj). In this
way the dihedral angle aij , when considered as a function of the lengths xrs’s,
is a composition function.

To prove theorem 2.1, note that identity (i) in theorem 2.1 is the Schlaefli
formula (1.2). Identity (v) follows from identity (iii). By symmetry, we only

need to consider three partial derivatives:
∂aij

∂xkl
,

∂aij

∂xik
and

∂aij

∂xij
.

3.1 The partial derivatives
∂aij

∂xik
and

∂aij

∂xkl

Consider the link Lk(vi). Using proposition 3.1(ii), the chain rule and (3.2),
we have (see Fig. 2.1(a)),

∂aij
∂xkl

=
∂aij
∂bikl

∂bikl
∂xkl

=
∂aij
∂bikl

Sλ(xkl)

Aikl

. (3.3)

Similarly, using Lk(vj), we have

∂aij
∂xkl

=
∂aij

∂bjkl

∂bjkl
∂xkl

=
∂aij

∂bjkl

Sλ(xkl)

Ajkl

. (3.4)
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Figure 2.1

Now we use the link Lk(vj) to find
∂aij

∂xik
. By (3.2) and the chain rule, we

have

∂aij
∂xik

=
∂aij

∂bjik

∂bjik
∂xik

. (3.5)

By proposition 3.1 applied to Lk(vj) and ∆ijk, we see (3.5) is equal to,

− ∂aij

∂bjkl
cos(ajk)

Sλ(xik)

Aijk

. (3.6)

Using (3.4), we can write (3.6) as,

− ∂aij
∂xkl

cos(ajk)
AjklSλ(xik)

AijkSλ(xkl)
. (3.7)

Now by the definition of the A-invariant of triangles ∆ijk and ∆jkl (see
Fig. 2.1(b)), we have,

Ajkl = Sλ(xjk)Sλ(xkl) sin(b
k
jl) and Aijk = Sλ(xjk)Sλ(xik) sin(b

k
ij). (3.8)

Thus (3.7) can be simplified to

− ∂aij
∂xkl

cos(ajk)
sin(bkjl)

sin(bkij)
. (3.9)

By the sine law applied to the spherical triangle Lk(vk), we see (3.9) is equal
to

∂aij
∂xik

= − ∂aij
∂xkl

cos(ajk)
sin(aik)

sin(akl)
. (3.10)

This is equivalent to identity (iii),

P ij
ik = −P ij

kl cos ajk. (3.11)

Use the Schlaefli formula that P ij
ik = P ik

ij , we obtain from (3.11)
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−P ij
kl cos(ajk) = −P ik

jl cos(ajk).

This shows that

P ij
kl = P ik

jl . (3.12)

By symmetry, identity (ii) holds for all indices.

3.2 The partial derivative
∂aij

∂xij

By (3.2), the chain rule, we have, in the triangle Lk(vi),

∂aij
∂xij

=
∂aij
∂bijk

∂bijk
∂xij

+
∂aij
∂bijl

∂bijl
∂xij

. (3.13)

Using proposition 3.1, we see that (3.13) is equal to

∂aij
∂bikl

cos(aik) cos(b
j
ik)

Sλ(xjk)

Aijk

+
∂aij
∂bikl

cos(ail) cos(b
j
il)

Sλ(xjl)

Aijl

. (3.14)

Using (3.3), we see (3.14) is equal to

∂aij
∂xkl

[cos(aik) cos(b
j
ik)

Sλ(xjk)Aikl

Sλ(xkl)Aijk

+ cos(ail) cos(b
j
il)

Sλ(xjl)Aikl

Sλ(xkl)Aijl

]. (3.15)

Using the sine law for triangles ∆ikl and ∆ijl as in (3.8), we can rewrite
(3.15) as

∂aij
∂xkl

[cos(aik) cos(b
j
ik)

sin(bkil)

sin(bkij)
+ cos(ail) cos(b

j
il)

sin(blik)

sin(blij)
]. (3.16)

Using the sine law in triangles Lk(vk) and Lk(vl), we see that (3.16) is the
same as

∂aij
∂xkl

[cos(aik) cos(b
j
ik)

sin(akj)

sin(akl)
+ cos(ail) cos(b

j
il)

sin(alj)

sin(alk)
]. (3.17)

= P ij
kl [cos(aik) cos(b

j
ik) sin(akj) sin(aij) + cos(ail) cos(b

j
il) sin(alj) sin(aij)].

(3.18)
On the other hand, by the cosine law for the spherical triangle Lk(vj), we

have

cos(bjik) sin(akj) sin(aij) = cos akj cos aij + cos alj .

and
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cos(bjil) sin(alj) sin(aij) = cos ajl cos aij + cos ajk.

Substitute these into (3.18), we obtain

∂aij
∂xij

= P ij
kl [cijcjkcki + cijcjlcli + cikcjl + cilcjk]

where crs = cos(ars).

This is the identity (iv) since P ij
ij = 1

sin2(aij)
∂aij

∂xij
.
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