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Abstract We generalise work of Young-Eun Choi to the setting of ideal triangulations with vertex
links of arbitrary genus, showing that the set of all (possibly incomplete) hyperbolic cone-manifold
structures realised by positively oriented hyperbolic ideal tetrahedra on a given topological ideal tri-
angulation and with prescribed cone angles at all edges is (if non-empty) a smooth complex manifold
of dimension the sum of the genera of the vertex links. Moreover, we show that the complex lengths
of a collection of peripheral elements give a local holomorphic parameterisation of this manifold.
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1 Introduction

The complement N of the vertices in a triangulated orientable 3–dimensional pseudo-manifold
P carries a complete hyperbolic cone-manifold structure, where the singular locus is contained
in the 1–skeleton and each ideal tetrahedron develops into an ideal hyperbolic tetrahedron.
For instance, such a structure is obtained by realising each ideal tetrahedron in N as a
regular ideal hyperbolic 3–simplex (see [9] and §2.4). Let T denote the (topological) ideal
triangulation of N and E the set of ideal edges. For any prescribed cone angles κ : E → IR,
let D+(T , κ) be the set of all (possibly incomplete) hyperbolic cone-manifold structures with
the ideal tetrahedra in T realised by positively oriented hyperbolic tetrahedra and with the
prescribed cone angles κ. We show that if this set is non-empty, then it is a smooth complex
manifold of dimension the sum of the genera of the vertex links (Corollary 3). This generalises
the first main theorem of Choi [2]. This result is deduced as a consequence of a more general
result (Theorem 2), which is essentially due to Neumann [6]. Moreover, we show that the
complex lengths of a collection of non-trivial peripheral elements, g for each vertex link
of genus g , give a local holomorphic parametrisation of D+(T , κ) (Corollary 10). This is
achieved through a generalisation (Theorem 9) of the second main theorem of Choi [2].

Our approach is different from Choi’s and includes new results on the interplay between
tangential angle structures, the boundary map and the study of the volume function. It
builds on previous work of Neumann [6] as well as Futer and Guéritaud [3].

The results of this paper show that the examples of pseudo-manifolds M with spherical
vertex links in [9] exhibit generic behaviour—for any prescribed cone angles at the edges, the
manifold D+(M,κ) is either 0–dimensional or empty. We conclude this paper by giving two
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examples, which both have two components where one might have expected one. The first
example is a once-cusped hyperbolic 3–manifold of finite volume with the property that the
two discrete and faithful characters lie on different components of the PSL2(C)–character
variety. It was found via an application of the volume function explained to us by Nathan
Dunfield. The second example is a manifold with two boundary components—a torus and a
genus two surface. In this example, one can find distinct prescribed cone angles κ1 and κ2
for the edges of an ideal triangulation with the property that κ1 and κ2 differ by 2π at two
edges. In contrast, for manifolds with only torus boundary components, a standard Euler
characteristic argument shows that at each edge the total cone angle has to be exactly 2π.

2 Preliminaries

2.1 Conventions for vector spaces

If X is a finite set, IRX denotes the real vector space of all functions X → IR and we assume
that IRX has the standard inner product, so that

X? = {x? ∈ IRX | x ∈ X and for all y ∈ X : x?(y) = δxy}

is an orthonormal basis of IRX , where Kronecker’s notation δxy =

{
1 if y = x

0 if y 6= x
is used.

2.2 Pseudo-manifolds and triangulations

Let ∆̃ be a finite union of pairwise disjoint, oriented Euclidean 3–simplices, and Φ be a family
of orientation-reversing affine isomorphisms pairing the facets in ∆̃, with the properties that
ϕ ∈ Φ if and only if ϕ−1 ∈ Φ, and every codimension-one facet is the domain of a unique
element of Φ. The elements of Φ are termed face pairings. The quotient space P = ∆̃/Φ with
the quotient topology is a closed, orientable 3–dimensional pseudo-manifold, and the quotient
map is denoted p : ∆̃ → P. The triple T = (∆̃,Φ, p) is a (singular) triangulation of P. The
adjective singular is usually omitted, and we will not need to distinguish between the cases
of a simplicial or a singular triangulation. We will always assume that P is connected. In the
case where P is not connected, the results of this paper apply to its connected components.

We will use the following notation:

T = {σi} = ∆̃(3), E = {ej} = P (1), V = {vk} = P (0).

Note that E and V are equivalence classes of 1–simplices and 0–simplices of ∆̃ respectively.

The set of non-manifold points of P is contained in the 0–skeleton. Denote this set Vs ⊆ V =
P (0). The cases of interest are usually when Vs = ∅ or Vs = V . In the first case P is a closed
3–manifold. In the second case T restricts to an ideal triangulation of the topologically finite,
non-compact 3–manifold N = P \ P (0) and P is the end-compactification of N.

For each vertex v ∈ V , Lk(v) is a closed orientable surface of genus gv ≥ 0, with a triangu-
lation Tv induced from T . We will repeatedly make use of the following fact, which follows
from a direct Euler characteristic calculation:

Lemma 1 |T | − |E|+ |V | =
∑
v∈V

gv .
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2.3 Quadrilateral index

Let σ be a 3–simplex. A quadrilateral type q in σ is a partition of its set of vertices into
two sets of cardinality two. The name alludes to its geometric realisation as a properly
embedded quadrilateral disc separating a pair of opposite 1–simplices e0 and e1 . See [10] for
an exposition of this well-known geometric viewpoint, which goes back to Haken [4]. It will be
convenient to regard a quadrilateral type as a set containing these two opposite 1–simplices,
and we write

{e0, e1} = q < σ

and say that e0 and e1 face q.

There are precisely three quadrilateral types in σ. There is a natural action of the symmetric
group Sym(4) on the set of vertices of σ . Choose an orientation of σ. The alternating group
Alt(4) fixes the orientation and permutes the three quadrilateral types. The stabiliser of a
quadrilateral type is the Klein four group K. So there is a natural faithful action of the cyclic
group C3

∼= Alt(4)/K on the set of all quadrilateral types, and hence a natural cyclic order
on that set. Throughout, q, q′, q′′ denote the three quadrilateral types in the 3–simplex σ and
the action of C3 is indicated by the prime mark, so (q′)′ = q′′ and (q′′)′ = q and the natural
cyclic order is therefore given by q → q′ → q′′ → q.

Denote 2 the set of all normal quadrilateral types in ∆̃. The quotient map p : ∆̃→ P induces
a natural map p : ∆̃(1) → P (1) = E. For any e ∈ E and q ∈ 2, the number of edges in the
preimage p−1(e) ⊂ ∆̃(1) facing q is:

i(q, e) = |q ∩ p−1(e)| ∈ {0, 1, 2}.

If i(q, e) > 0, we say that e faces q, and write q ∼ e.

2.4 Cone-deformation variety

The cone-deformation variety D(T ; ?) is the set of all (z, ξ) ∈ C2 × (S1)E satisfying:

i) for each edge e ∈ E , ∏
q∈2

z(q)i(q,e) = ξ(e), (1)

ii) for each q ∈ 2,

z(q′) =
1

1− z(q)
. (2)

Equation (2) is the parameter relation for q . Applying the cyclic ordering gives:

z(q′′) = 1− 1

z(q)
=
z(q)− 1

z(q)
and z(q)z(q′)z(q′′) = −1.

Equation (1) is the cone-hyperbolic gluing equation for e. Multiplying all of these equations
gives the identity ∏

e∈E
ξ(e) = 1.

If ξ(e) = 1, then equation (1) is the usual hyperbolic gluing equation of e.
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We have the projections onto the factors

s : D(T ; ?)→ C2 and c : D(T ; ?)→ (S1)E ,

where s gives the shapes of the tetrahedra and c gives the curvature at the edges.

Denote the upper half plane in C by IH and for each ξ ∈ (S1)E define

D+(T ; ξ) = D(T ; ?) ∩ (IH2 × {ξ}).

It was observed in [9] that the cone-deformation variety is non-empty for any triangulation
since one may choose each z(q) = 1

2(1 +
√
−3) to be the shape of the regular hyperbolic ideal

3–simplex, and this turns N into a complete hyperbolic cone-manifold. Hence there always
exists ξ ∈ (S1)E such that D+(T ; ξ) 6= ∅.

One can study the (topological) connected components of D+(T ; ξ) via the set of all κ ∈ IRE

with the property that z ∈ IH2 satisfies the parameter relations and for each edge e, we have:∑
q∈2

i(q, e) log(z(q)) = κ(e), (3)

and

ξ(e) = exp(iκ(e)). (4)

Throughout this paper, log is the standard branch on C \ (−∞, 0] unless stated otherwise.
It follows from analytic continuation that on each connected component of D+(T ; ξ), the
left-hand side of (3) is constant.

Below Corollaries 3 and 10 imply that if D+(T ; ξ) is non-empty, then it is a smooth complex
manifold of dimension the sum of the genera of the vertex links, and each of its components
has a holomorphic parametrisation by the holonomies of peripheral elements, one for each
genus. This will be proved using the more general complex-curvature and log-curvature maps
defined in §2.5, which respectively generalise the left-hand sides of (1) and (3).

2.5 The log-curvature map

Let IH be the upper half plane and Z = {z ∈ IH2|z(q′) = 1
1−z(q)}.

The log-curvature map G : Z → CE is defined by:

G(z)(e) =
∑
q∈2

i(q, e) log(z(q)).

The log-curvature map is, of course, closely related to the complex-curvature map c : Z → CE

c(z)(e) =
∏
q∈2

z(q)i(q,e).

For instance, a well-known Euler characteristic argument shows that if the link of each vertex
is a torus, then G−1(2πi, . . . , 2πi) = c−1(1, . . . , 1). In general, c−1(u) is a countable union of
sets of the form G−1(uk), and these sets are pairwise disjoint by analytic continuation. But
since c−1(u) is an affine algebraic set, at most finitely many of these sets will be non-empty.
Hence each level set G−1(uk) of the log-curvature function is also an affine algebraic set.
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3 Statements and proofs of the main results

Our central result is Theorem 9, generalising Choi’s main technical result [2, Theorem 4.13]
to pseudo-manifolds with positively oriented triangulations and prescribed log-curvature.

3.1 Rank of the log-curvature map

Fixing a preferred quadrilateral type q < σ for every 3–simplex, there is a natural identifica-
tion between Z and IHT via the projection map π : Z → IHT , where

π(z)(σ) = z(q).

Hence the log-curvature map can and will be viewed as a map G : IHT → CE . The following
result is a corollary of [6, Theorem 4.1]:

Theorem 2 (Neumann) dG has constant rank |T | −
∑
v∈V

gv .

Proof For each tetrahedron σi ∈ T , fix a quadrilateral type qi < σi . Using the quadrilateral
index, we let B = (bij) be the 2|T | × |E| matrix, where for all even i:{

bij = i(qi, ej)− i(q′i, ej),
bi+1j = i(q′i, ej)− i(q′′i , ej).

It is well known that dG has the same rank as B (see [8]), hence it is enough to show that
rankB = |T | −

∑
v∈V gv . This is the contents of [6, Theorem, 4.1]. Neumann defines a linear

map β : C1 → J , where C1 is the free ZZ–module generated by E and J is the free ZZ–module
generated by T 2 , and shows that

dim(Kerβ∗/ Imβ) = dim
⊕
v∈V

H1(Lk(v)) =
∑
v∈V

2gv,

where β∗ is the dual map. Moreover, Neumann shows Kerβ∗ = 2|T |−|E|+ |V |, and therefore

dim(Imβ) = dim(Kerβ∗)− dim
⊕
v∈V

H1(Lk(v)) = 2|T | − |E|+ |V | −
∑
v∈V

2gv.

Using particular bases of C0 and J , B is the matrix associated to β, giving

rankB = dim(Imβ) = 2|T | − |E|+ |V | −
∑
v∈V

2gv = T −
∑
v∈V

gv,

where the last equality follows from Lemma 1. �

Theorem 2 and the implicit function theorem imply the following result.

Corollary 3 For all u ∈ CE , the complex variety G−1(u) is either empty or a smooth

complex manifold of dimension
∑
v∈V

gv .
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3.2 Boundary Map

Let α be an oriented closed normal curve on Lk(v), representing a non–trivial element in

H1(Lk(v)) and let t ∈ T (2)
v be a normal triangle contained in tetrahedron σ ∈ T . A segment

of α with respect to t is an oriented connected component of α ∩ t. Let Stα be the set of all

segments of α with respect to t, and Sα =
⋃
t∈T∂

Stα be the set of all segments of α.

Figure 1: On the left: Each s ∈ Sα determines a quadrilateral type qs and isolates a vertex xs . For
an observer sitting in the cusp, xs here lies on the right side of s. On the right: α1, α2 encircle the
endpoint of an edge e ∈ E .

Each s ∈ Sα uniquely determines a quadrilateral type q ∈ 2 such that s ⊂ q , which will be
denoted by qs . If s ∈ Stα , s divides t in two regions and isolates one of the three vertices, say
xs (Figure 1). With respect to the orientation of s and the induced orientation on Lk(v), it
makes sense to say that xs lies on the right side or on the left side of s when viewed from the
cusp. We therefore define

η(s) =

{
+1 if xs lies on the right side of s,

−1 if xs lies on the left side of s,

η(q, s) =

{
η(s) if q = qs,

0 otherwise ,

and finally

η(q, α) =
∑
s∈Sα

η(q, s).

In particular, when α encircles one endpoint of an edge e ∈ E , then η(q, α) = ±i(q, e) for
all q ∈ 2, where the sign depends on whether α is oriented anticlockwise or clockwise with
respect to the cusp (Figure 1).

Hence we can write the log holonomy of α as hα : Z → C,

hα(z) =
∑
q∈2

η(q, α) log z(q).

Notice that if α1 is normally isotopic to α2 , then hα1(z) = hα2(z), and if α1 is the union
of n normal curves all normally isotopic to α2 , then hα1(z) = n hα2(z). We therefore have
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a natural extension of the log holonomy to NIR , the IR–vector space with basis the normal
isotopy classes of curves on Lk(v). For all a, b ∈ IR and α, β ∈ NIR define

haα+bβ(z) := a hα(z) + bhβ(z).

Note that if α−1 is the closed normal curve α with opposite orientation, then hα+α−1(z) = 0.

If G(z) 6= (2πi, . . . , 2πi), then the value of hα(z) may not be an invariant of the homology
class of α, but depends on the choice of normal representative since an isotopy pushing α
over a vertex in Lk(v) may change its value.

For each link Lk(vi), let gi denote its genus and choose a canonical homotopy group generating
set Li ∪Mi, where Li = {λi1, . . . , λigi} is the set of longitudes and Mi = {µi1, . . . , µigi} the
set of meridians, indexed and oriented such that the algebraic intersection number satisfies
ι(λij , µ

i
j) = 1 for all j and ι(α, β) = 0 for all other pairs of elements α, β ∈ Li∪Mi. Moreover,

we assume that each element of Li ∪Mi is an oriented normal curve on Lk(vi).

Let L =
⋃
i Li and define the boundary map HL : Z → CL by

HL(z)(λ) = hλ(z) for all λ ∈ L.

Similarly, we let M =
⋃
i

Mi and Lk(V ) =
⊔
i

Lk(vi). Hence L ∪M is a generating set for

H1(Lk(V )).

3.3 Tangential angle structures

Our study of derivatives naturally leads us (at least implicitly) to the tangent space of the
space of all angle structures on T . Following [5], the space of all tangential angle structures
TAS = TAS(T ) is the set of all α ∈ IR2 such that

•
∑
q<σ

α(q) = 0, ∀σ ∈ T , and

•
∑
q∈2

i(q, e)α(q) = 0, ∀e ∈ E .

The endgame of the proof of Theorem 9 uses a specific spanning set of

TASL = TASL(T ) = {w ∈ TAS |
∑
q∈2

η(q, λ)w(q) = 0 ∀λ ∈ L} ≤ TAS,

which we will now determine. For every edge e ∈ E and every normal curve γ on a vertex
link, let Qe, Qγ ∈ IR2 be defined by

Qe =
∑
q:q∼e

(q′)∗ − (q′′)∗,

Qγ =
∑
q∈2

η(q, γ)
(

(q′)∗ − (q′′)∗
)
.

In their study of angle structure on cusped manifolds, Futer and Guéritaud [3, Section 4]
introduced Qe and Qγ under the names of leading–trailing deformation around e and leading–
trailing deformation along γ respectively. In fact, for every edge e, one may choose a normal
closed curve ρ about one endpoint of e and an orientation of ρ such that Qe = Qρ. Hence Qe
can be thought of as a leading–trailing deformation along ρ. Some of the results of [3] extend
directly to the more general setting of an oriented pseudo-manifold. As in [3, Lemma 4.5], we
have Qe, Qγ ∈ TAS .
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Lemma 4 [3, Lemma 4.4] Let α, β be oriented closed normal curves on Lk(V ) that intersect
transversely, if at all. Then

∂

∂Qβ
im(hα) =

∑
q∈2

η(q, α)Qβ(q) = 2 ι(α, β).

Proof The proof in [3, Lemma 4.4] does not use the fact that ∂M is a union of tori (and
in particular that in this case hα is independent of the choice of normal curve in a homology
class) and applies verbatim. �

Lemma 5 The set {Qe}e∈E spans a subspace of dimension |T | −
∑

i gi .

Proof For each tetrahedron σj ∈ T fix a normal quadrilateral type qj < σj . Let B be the
(|E| × 3|T |) matrix whose i–th row is the vector Qei , namely(

Qei(q1), Qei(q
′
1), Qei(q

′′
1) . . . , Qei(q|T |), Qei(q

′
|T |), Qei(q

′′
|T |)
)
,

where ei ∈ E . For every vertex v ∈ V , we define a row vector rv ∈ IR|E| , whose i–th entry
is the number of endpoints that the i–th edge ei has at the vertex v .

In [3, Lemma 3.3], a matrix A and vectors rc were constructed in a similar fashion, and they
are related to B and rv as follows:

• Let σ ∈ S3 be the permutation (123) and Ai, Bi be the i-th columns of A,B respec-
tively. Then for all 0 ≤ k ≤ |T | and 1 ≤ i ≤ 3, B3k+i is the column vector made up of
the last |E| entries of A3k+σ−1(i) −A3k+σ(i) ;

• rv is the row vector made of the last |E| entries of rc .

Following the proof of [3, Lemma 3.3], one checks that the vectors rv form a basis for the
row null space of B and therefore rank(B) = |E| − |V |. The conclusion follows from Lemma
1. �

The following result generalises [3, Proposition 4.6]. To simplify notation, we write {Qλ} =
{Qλ}λ∈L etc.

Lemma 6 The set {Qλ}∪{Qµ} is linearly independent, and Span ({Qλ} ∪ {Qµ})∩Span{Qe} =
{0}. In particular,

i) dim Span{Qµ} =
∑

i gi,

ii) dim Span ({Qe} ∪ {Qλ}) = |T |,
iii) Span ({Qe} ∪ {Qλ} ∪ {Qµ}) = TAS(T ).

Proof For every edge e, choose a normal closed curve ρ about one endpoint of e. Then
we can choose an orientation on ρ such that Qe = Qρ and think of Qe as a leading–trailing
deformation along ρ.

Let I : Span ({Qλ} ∪ {Qµ} ∪ {Qρ}) −→ IR|L|+|M| be the map defined as follows. If X =∑
aiQλi +

∑
bjQµj +

∑
ckQρk , set ξ =

∑
aiλi +

∑
bjµj +

∑
ckρk and define

I(X) =

(
∂

∂Qλ1
im(hξ), . . . ,

∂

∂Qλ|L|
im(hξ),

∂

∂Qµ1
im(hξ), . . . ,

∂

∂Qµ|M|
im(hξ)

)
.

The linearity of hv implies that I is linear, and by Lemma 4, we have
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• I(Qρ) = (0, . . . , 0), i.e. Span{Qe} ⊂ Ker I ;

• I(Qλi) has 1 in the (|L|+ i)–th entry and 0 everywhere else,
i.e. maps to the (|L|+ i)–th standard basis vector.

• I(Qµj ) has 1 in the j–th entry and 0 everywhere else,
i.e. maps to the j–th standard basis vector.

This implies Span ({Qλ} ∪ {Qµ}) ∼= Im I = IR|L|+|M|, so {Qλ}λ∈L ∪ {Qµ}µ∈M is linearly
independent, and Span ({Qλ} ∪ {Qµ}) ∩ Span{Qe} = {0}. This implies (i), and together
with Lemma 5, it implies (ii). By [5, Corollary 2.3], we have

dim TAS = |V | − |E|+ 2|T | = |T |+
∑
i

gi.

It now follows from Lemma 5 that dim Span ({Qe} ∪ {Qλ} ∪ {Qµ}) = dim TAS, which implies
(iii). We also note that this shows Span{Qe} = Ker I. �

Theorem 7 The set {Qe}∪{Qλ} is a subset of TASL , whereas Span({Qµ})∩TASL = {0}.
Therefore Span ({Qe} ∪ {Qλ}) = TASL .

Proof Since {Qe} ∪ {Qλ} is a subset of TAS, the first part follows from checking that for
all λ, λ′ ∈ L and e ∈ E ∑

q∈2
η(q, λ′)Qe(q) = 0, (5)

∑
q∈2

η(q, λ′)Qλ(q) = 0. (6)

Observe that for all q, q ∈ 2,

(q′)∗(q)− (q′′)∗(q) = −
(

(q′)∗(q)− (q′′)∗(q)
)
,

hence ∑
q∈2

η(q, λ′)Qe(q) =
∑
q∈2

η(q, λ′)
∑
q∈2

i(q, e)
(
(q′)∗(q)− (q′′)∗(q)

)
=
∑
q∈2

i(q, e)
∑
q∈2

η(q, λ′)
(
(q′)∗(q)− (q′′)∗(q)

)
= −

∑
q∈2

i(q, e)
∑
q∈2

η(q, λ′)
(

(q′)∗(q)− (q′′)∗(q)
)

= −
∑
q∈2

i(q, e)Qλ′(q) = 0,

as Qλ′ ∈ TAS. This shows Qe ∈ TASL .

Now suppose λ, λ′ ∈ L, then ι(λ′, λ) = 0 as they are disjoint by assumption. By Lemma 4, this
shows that {Qλ}, and in particular {Qe} ∪ {Qλ}, is a subset of TASL , and by Lemma 6(ii),

dim TASL ≥ |T |.

For the next part, let
∑

i,j a
i
jQµij

be an element in Span({Qµ}) and suppose by contradiction∑
i,j a

i
jQµij

∈ TASL . Then for all l and for all λlk ∈ Ll , by Lemma 4,

0 =
∑
q∈2

η(q, λlk)

∑
i,j

aijQµij
(q)

 =
∑
i,j

aij ι(λ
l
k, µ

i
j).
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But ι(λlk, µ
i
j) 6= 0 if and only if i = l and k = j , therefore alk = 0 for all l, k and

Span({Qµ}) ∩ TASL = {0}.

It follows from Lemma 6(i) that dim TASL ≤ |T |. Hence dim TASL = |T | and so

Span ({Qe} ∪ {Qλ}) = TASL .

�

3.4 A Parametrization of G−1(u)

Using the identification Z = IHT , we write HL : IHT → CL, giving the map

(G,HL) : IHT → CE × CL

z 7→ (G(z), HL(z)) .

We already remarked that when G(z) 6= (2πi, . . . , 2πi), the value of the boundary map HL
depends on the choice of normal curves representing homology classes of peripheral curves.
The following lemma shows that the injectivity of the differential of (G,HL) is independent
of this choice.

Lemma 8 For each vertex vi ∈ V , let gi be the genus of Lk(vi). Let Ai = {αi1, . . . , αigi} and
Bi = {βi1, . . . , βigi} be two sets of longitudes on Lk(vi), such that αij and βij are representatives
of the same element in H1(Lk(vi)), and set A =

⋃
iAi and B =

⋃
iBi . Then

rank d(G,HA) = rank d(G,HB).

In particular d(G,HA) is injective if and only if d(G,HB) is injective.

Proof As αij and βij are in the same homotopy class,

hαij
(z) = hβij

(z) +
∑
e∈E

aeG(z)(e) for some ae ∈ IR.

Hence

∇ hαij
(z) = ∇ hβij

(z) +
∑
e∈E

ae∇G(z)(e),

i.e. each row of d(HA) is a linear combinations of the corresponding row of d(HB) and rows
of d(G). It follows that d(G,HA) is related to d(G,HB) by elementary row operations, hence
they have the same rank. �

Theorem 9 The derivative d(G,HL) : Tz(IH
T )→ CE × CL is injective for any z ∈ IHT .

Proof Let z ∈ Z . For every q ∈ 2, z(q) ∈ IH uniquely determines three angles α, β and γ

of the triangle with vertices (0, 1, z(q)) such that z(q) = sin(β)
sin(γ)e

iα and

z(q′) =
sin(γ)

sin(α)
eiβ z(q′′) =

sin(α)

sin(β)
eiγ .
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Hence we can identify Z with the set X = {x ∈ IR2
>0|
∑

q<σ x(q) = π} via the map φT : X →
Z , where

φT (x)(q) =
sin(x(q′))

sin(x(q′′))
eix(q).

Under this identification, we can write (G,HL) as a map (G,HL) : X → CE × CL = (IR ×
IR)E∪L where, for each edge e ∈ E and curve λ ∈ L,

G(x)(e) =
∑
q:q∼e

log

(
sin(x(q′))

sin(x(q′′))
eix(q)

)

=

(∑
q:q∼e

log(sin(x(q′)))− log(sin(x(q′′)),
∑
q∈2

i(q, e)x(q)

)
.

HL(x)(λ) =
∑
q∈2

η(q, λ) log

(
sin(x(q′))

sin(x(q′′))
eix(q)

)

=

(∑
q∈2

η(q, λ)
(
log(sin(x(q′)))− log(sin(x(q′′))

)
,
∑
q∈2

η(q, λ)x(q)

)
.

Now our goal is to show that d(G,HL) : TxX → (IR × IR)E∪L is injective for all x ∈
X . Let w ∈ TxX = {w ∈ IR2|

∑
q<σ w(q) = 0 ∀σ ∈ T} be a tangent vector such that

d(G,HL)(x)(w) = 0.

We recall the elementary fact that d
d t log(sin t) = cot t. For every edge e,∑

q:q∼e
cot(x(q′))w(q′)− cot(x(q′′))w(q′′) = 0, (7)

∑
q∈2

i(q, e)w(q) = 0. (8)

and for every curve λ,∑
q∈2

η(q, λ)
(
cot(x(q′))w(q′)− cot(x(q′′))w(q′′)

)
= 0, (9)

∑
q∈2

η(q, λ)w(q) = 0. (10)

Observe that (8) and (10) imply w ∈ TASL ≤ TAS ⊂ TxX.

Let F : IR2 → IR be the volume function

F (x) =
∑
q∈2

Λ(x(q)),

where Λ(x) = −
∫ x
0 log |2 sin(u)|du is the Lobachevsky function. The Hessian of F is the

diagonal matrix with diagonal entries − cot(x(q)), and it is negative definite at each point
x ∈ X (see, for instance, [3, pg. 17]). Recall that for e ∈ E and λ ∈ L, we have ,

Qe =
∑
q:q∼e

(q′)∗ − (q′′)∗,

Qλ =
∑
q∈2

η(q, λ)
(
(q′)∗ − (q′′)∗

)
.

11



Then by (7) and (9)

Qe ·Hessx(F )w = 0 ∀e ∈ E,
Qλ ·Hessx(F )w = 0 ∀λ ∈ L.

Theorem 7 shows that TASL is spanned by {Qe}e∈E ∪ {Qλ}λ∈L. Hence w can be written as
a linear combination of the Qe and Qλ , and so

w ·Hessx(F )w = 0.

But since Hessx(F ) is negative definite, we have w = 0 and hence d(G,HL) is injective. �

Theorem 2 shows that the rank of dG is constant |T | −
∑

v∈V gv , hence Theorem 9 implies
the following result.

Corollary 10 For all u ∈ CE such that G−1(u) 6= ∅, the restriction map

HL
∣∣
G−1(u)

: G−1(u) −→ CL

is a local diffeomorphism onto its image.

4 Two Dehn-surgery components

Our first example of a one-cusped hyperbolic 3–manifold of finite volume illustrates Choi’s
original result. It also has the property that the two discrete and faithful characters lie
on different components of the PSL2(C)–character variety. It was found via the following
construction due to Nathan Dunfield. Let N be a 2–cusped manifold with strong geometric
isolation (see [7] for a definition). Let A be the collection of all hyperbolic Dehn fillings on the
first cusp in N ; let M1 , M2 , M3 ,... be distinct manifolds in A. Fix an orientation of N, and
let χ0 be the character of an associated holonomy representation. Let χn be the character of
the holonomy representation of Mn that is in a small open neighbourhood of χ0, and let Xn

be the component of the character variety of Mn which contains χn . By strong geometric
isolation, the image of Xn in the character variety of the second cusp is independent of n,
call it C. Now the differential of the volume function on Xn pulls back from a 1–form on C.
Hence, the quantity

max{vol(χ) | χ ∈ Xn} −min{vol(χ) | χ ∈ Xn} (11)

is a constant V independent of n. By volume rigidity, V ≤ 2 min(vol(Mn)). So if Mn has
non-minimal volume (and of course vol(Mn) → vol(N) so there are many such), it follows
that χn and its complex conjugate must lie on different components of the character variety
of Mn.

The following explicit example was found by looking in the census due to Callahan, Hildebrand
and Weeks (as shipped with Regina [1]) for an example given by Neumann and Reid [7]. Let
M be the manifold t12046 in this census, and let N be the manifold obtained from M by
(2, 1)-Dehn filling on the first cusp. We fix the following ideal triangulation T on N :

Let zi be a shape parameter of the tetrahedron Ti , with respect to the edge (01), with
orientation such that z′i is the parameter at (02) and z′′i is at (03). A standard computation
provides the two solutions

z(0) =

(
i,

1 + i

2
, i,

2 + i

2
,

3 + i

5
, i ,
−1 + i

2

)
∈ C7
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Tetrahedron Face 012 Face 013 Face 023 Face 123

0 4 (203) 2 (321) 6 (032) 5 (120)

1 3 (312) 2 (012) 4 (013) 6 (031)

2 1 (013) 4 (213) 5 (123) 0 (310)

3 6 (312) 4 (012) 5 (203) 1 (120)

4 3 (013) 1 (023) 0 (102) 2 (103)

5 0 (312) 6 (012) 3 (203) 2 (023)

6 5 (013) 1 (132) 0 (032) 3 (120)

Table 1: The ideal triangulation T on N .

and its complex conjugate z(0) corresponding to discrete and faithful characters. Notice that
z(0) is positively oriented. The one-dimensional components C0 and C ′0 containing them have
the following rational parametrizations:

ϕ0(u) =



−1−i+u
−1+(1−i)u

1+i
(2+2i)−2u

(1 + i)− i
u

(1−i)−2u+2u2

2(−1+u)u

(−1+u)(−i+(1+i)u)
1−(1+i)u+(1+i)u2

u

(1−i)+2iu
(2+2i)u−2u2



and ϕ′0(u) =



−1+i+u
−1+(1+i)u

1−i
(2−2i)−2u

(1− i) + i
u

(1+i)−2u+2u2

2(−1+u)u

(−1+u)(i+(1−i)u)
1−(1−i)u+(1−i)u2

u

(1+i)−2iu
(2−2i)u−2u2


In particular, notice that ϕ0(u) = ϕ′0(u).

Henceforth, we will refer to the j -th components of ϕ0(u) and ϕ′0(u) by (ϕ0)j(u) and (ϕ′0)j(u)
respectively. The natural domain of ϕ0 is C \X , where X is the finite set of poles of (ϕ0)j .
A direct computation shows that X contains precisely 6 elements, whose image via ϕ0 are
all ideal points of C0 , therefore

Im(ϕ0) = Im(ϕ0).

Together with the image of u =∞, they sum up to a total of 7 ideal points, hence the image
of ϕ0 is a 7–punctured sphere. Moreover, a direct calculation reveals that the images of ϕ0

and ϕ′0 are disjoint.

Denoting by im(w) the imaginary part of a complex number w ∈ C, we recall that the
complete solution ϕ0(i) = z(0) is geometric in the sense that

im
(
(ϕ0)j(i)

)
= im(z

(0)
j ) > 0 ∀j ∈ {1, . . . 7}.

The set of all positively oriented solutions is

Q =

7⋂
j=1

{u ∈ C | im
(
(ϕ0)j(u)

)
> 0}.

13



Figure 2: Q is an ideal square.

For u = x + iy , {im
(
(ϕ0)j(u)

)
= 0} is a 1-dimensional subvariety of IR2, which can be

explicitly computed from ϕ0 .

im
(
(ϕ0)1

)
= (x− 1)2 + (y − 1

2
)2 − 1

4
,

im
(
(ϕ0)2

)
= y − x,

im
(
(ϕ0)3

)
= x2 + y2 − x,

im
(
(ϕ0)4

)
= (y +

1

2
)2 − (x

√
3− 1

2
√

3
)2 − 1

6
,

im
(
(ϕ0)5

)
= −1 + 3x− 3x2 + x3 − x2y + y2 + xy2 − y3,

im
(
(ϕ0)6

)
= y,

im
(
(ϕ0)7

)
= 2x− 3x2 − 2x3 + 2xy + y2 − 2xy2.

As shown in Figure 2, Q is a simply connected open set of the plane and

∂Q ⊂ V
(
im
(
(ϕ0)4(u)

)
, im

(
(ϕ0)5(u)

)
, im

(
(ϕ0)7(u)

))
.

We deduce that ϕ0(Q) is an ideal square contained in π′(C0).
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5 A reducible complex-curvature level set

Let M be the oriented pseudo–manifold given by the ideal triangulation T shown in Figure 3.
M has two vertices v1 and v2 , whose links are closed orientable surfaces of genus g1 = 1 and
g2 = 2 respectively. The induced triangulations of the links lk(v1) and lk(v2) are shown in
the bottom right corner of Figure 3 and in Figure 4, respectively.

Figure 3: Shown are the five tetrahedra in the triangulation of M and, in the bottom right corner,
the induced triangulation of the vertex link of v1 (viewed from the cusp).

Figure 4: Triangulation induced on v2 by T .

We use the same notation as in the previous example, so zi is the shape parameter of tetra-
hedron Ti with respect to edge (12), and z = (z0, z1, z2, z3, z4). From the face pairings of T
we deduce the following complex-curvature and log-curvature maps:
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Tetrahedron Face 012 Face 013 Face 023 Face 123

0 2 (032) 4 (012) 2 (123) 2 (120)

1 2 (013) 1 (213) 3 (013) 1 (103)

2 0 (312) 1 (012) 0 (021) 0 (023)

3 4 (013) 1 (023) 4 (312) 4 (230)

4 0 (013) 3 (012) 3 (312) 3 (230)

Table 2: The ideal triangulation T on N .

c(z) =


z′1

z′′0z
′
1z2z

′′
3z
′′
4

(z0z
′
0z
′′
0 )(z2z

′
2z
′′
2 )

z0z
′
0(z1z

′′
1 )2z′2z

′′
2 (z3z

′
3)

2z′′3 (z4z
′
4)

2z′′4

 =


z′1

z′′0z
′
1z2z

′′
3z
′′
4

1
z0z
′
0(z1z

′′
1 )2z′2z

′′
2z3z

′
3z4z

′
4

 ; (12)

G(z) =


log(z′1)

log(z′′0 ) + log(z′1) + log(z2) + log(z′′3 ) + log(z′′4 )
log(z0z

′
0z
′′
0 ) + log(z2z

′
2z
′′
2 )

log(z0z
′
0) + 2 log(z1z

′′
1 ) + log(z′2z

′′
2 ) + log((z3z

′
3)

2z′′3 ) + log((z4z
′
4)

2z′′4 )

 (13)

Notice that log(z − 1) = log(1− z)± πi where the sign ambiguity depends on the argument
of z . However, applying the combinatorial Gauss–Bonnet theorem to the vertex, we deduce
that

G(z)(e2) = 2πi

G(z)(e0) +G(z)(e1) +G(z)(e3) = 8πi

Hence

G(z) =



− log(1− z1)

log(z0 − 1)− log(z0)− log(1− z1) + log(z2) + log(z3 − 1)− log(z3) + log(z4 − 1)− log(z4)

2πi

log(z0)− log(z0 − 1) + 2 log(1− z1)− log(z2) + log(z3)− log(z3 − 1) + log(z4)− log(z4 − 1) + 8πi


.

We observe that dG has constant rank |T | − g1 − g2 = 5− 1− 2 = 2,

dG(z) =


0 −1

z1−1 0 0 0
1

z0(z0−1)
−1
z1−1

1
z2

1
z3(z3−1)

1
z4(z4−1)

0 0 0 0 0
−1

z0(z0−1)
2

z1−1
−1
z2

−1
z3(z3−1)

−1
z4(z4−1)

 .

Moreover, for all u = (u0, u1, u2, u3) ∈ ImG, G−1(u) is the 3–dimensional variety generated
by the ideal

I =
(
z1 + e−u0 − 1, (z0 − 1)z2(z3 − 1)(z4 − 1)− eu1z0(1− z1)z3z4

)
.

For instance, let

z0 =
(
e
π
3
i, e

π
3
i, e

π
3
i, e

π
3
i, e

π
3
i
)
,

then u0 = G(z0) = (π3 i,
5
3πi, 2πi, 6πi) and

G−1(u0) =
{

(z0, z1, z2, z3, z4) ∈ IH5 | z1 = e
π
3
i, z2 =

z0z3z4e
4
3
πi

(z0 − 1)(z3 − 1)(z4 − 1)

}
.
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For

z1 =

(
1

1− e
5
6
πi
, e

π
3
i,

1

1− e
5
6
πi
,

1

1− e
5
6
πi
,

1

1− e
5
6
πi

)
,

u1 = G(z1) =
(
π
3 i,

11
3 πi, 2πi, 4πi

)
, so

G(z0) 6= G(z1) but c(z0) = c(z1).

By analytic continuation G−1(u0) and G−1(u1) are disjoint, hence the above argument shows
that G−1(u0) and G−1(u1) are disjoint complex varieties contained in the complex variety
g−1(c(z0)). Moreover, because all shape parameters are assumed to have positive imaginary
part, it follows from (13) that 0 < G(z)(e1) < 5π and hence

g−1(c(z0)) = G−1(u0)
⋃
G−1(u1).

Let L = {λ1, λ2, λ3} be the set of three simple closed curves shown in Figures 3 and 4. The
boundary map with respect to L and its differential are

eHL(z) =



z′0
z′′2

z3
z4

z0z
′
2z

′
3z

′
4

z′1

 HL(z) =


− log(1− z0) + log(z2)− log(z2 − 1)

log(z3)− log(z4)

log(z0) + log(1− z1)− log(1− z2)− log(1− z3)− log(1− z4)

 ,

and

dHL(z) =


1

1−z0 0 −1
z2(1−z2) 0 0

0 0 0 1
z3

−1
z4

1
z0

−1
1−z1

1
1−z2

1
1−z3

1
1−z4

 .

Together with the differential of the log-curvature map we obtain:

d(G,H)(z) =



0 −1
z1−1 0 0 0

1
z0(z0−1)

−1
z1−1

1
z2

1
z3(z3−1)

1
z4(z4−1)

0 0 0 0 0
−1

z0(z0−1)
2

z1−1
−1
z2

−1
z3(z3−1)

−1
z4(z4−1)

1
1−z0 0 −1

z2(1−z2) 0 0

0 0 0 1
z3

−1
z4

1
z0

−1
1−z1

1
1−z2

1
1−z3

1
1−z4


.

The determinant of the minor obtained by removing the second and third row from d(G,H)(z)
is

−2(−1 + z0 + z3 + z4 + z0z2 − z0z2z3 − z0z2z4 − z3z4 − z0z3z4 + z0z2z3z4)

z0z1z2z3z4(1− z0)(1− z1)(1− z2)(1− z3)(1− z4)

For all u ∈ Im(G), the restriction map

HL
∣∣
G−1(u)

: G−1(u) −→ C3

17



is a local diffeomorphism onto its image. In particular we can parameterize G−1(u) through
HL . For u0 as above, we get the following local parameterization around z0 ,

z0 = 1− z4k;

z1 = e
π
3

z2 = −z4k′
1−z4k′

z3 = z4e
t2

z4 is the solution of the equation kk′

1−z4k′ = (1−z4k)et2+
4
3πi

(z4et2−1)(z4−1)

where k = e
5
6
πi+

t2+t3−t1
2 , k′ = e

5
6
πi+

t2+t3+t1
2 and for all (t1, t2, t3) ∈ C3 close to

HL(e
π
3
i, e

π
3
i, e

π
3
i, e

π
3
i, e

π
3
i) = (0, 0, πi).
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