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1. Introduction

Given an open disc̊D
2

with a Lorentz metricg, we are interested in finding a

conformal embedding of (̊D
2
, g) into E1,1 whereE1,1 denotesR2 with coordi-

nates{x, y} and the metricdx dy. This is equivalent to find a smooth embedding

of (D̊
2
, g) into E1,1 so that the two transverse foliations ofD2 obtained from

the null directions ofg are mapped into the horizontal and vertical lines. Our
investigation is based on the classification theory of foliations of open discs de-
veloped by W. Kaplan (1941), A. Haefliger and G. Reeb (1957). According to

this theory, one associates to each foliation of an open disc (D̊
2
, one foliation) the

quotient space which is a smooth simply-connected (in general non-Hausdorff)
1-manifold. This 1-manifold essentially classifies the once foliated disc up to
smooth equivalence. For instance, the 1-manifold associated to the plane with
the horizontal foliation is diffeomorphic to the open interval (0,1). Due to the
existence of nonstandard smooth structures on simply-connected (non-Hausdorff)
1-manifolds (see Haefliger and Reeb [HR]), there are very few smooth embed-
dings of the twice foliated disc into the twice foliated plane (see [SW1]). We are
therefore led to the problem of finding a conformal (homeomorphic) embedding
of an open disc with a Lorentz metric into the planeE1,1. By this we mean a

topological embedding of (̊D
2
, g) E1,1 taking the associated foliations into the

horizontal and vertical lines. We will use the language of twice transversely fo-
liated discs instead of the language of conformal classes of Lorentz metrics in
discs and all maps are in theC0 category in this paper. Two such foliations are
called isomorphic if there is a homeomorphism between the discs so that the
leaves are sent to leaves, i.e., their associated Lorentz metrics are conformally
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isomorphic. It is not always possible to conformally embed a Lorentz metric on
the disc into the planeE1,1; the main difficulty is described by the following
definition.

Definition 1. We will say that a leaf L in a twice transversely foliated open disc

(D̊
2
; Fh, Fv) is short if there is an arc A in a leaf transverse to L, an end of L

and two leaves K and K′ of the other foliation on that end of L such that every
leaf L′ transverse to A other than L meets one of K or K′ but L meets neither K
nor K ′ (see Fig. 1). Equivalently, L is short if there is an embedding (as a twice
foliated disc but not necessarily a proper embedding) ofR2 with one of the four
rays {(x, 0) : x ≥ 0}, {(x, 0) : x ≤ 0}, {(0, y) : y ≥ 0}, or {(0, y) : y ≤ 0}
removed into (̊D

2
; Fh, Fv) such that the restriction to{(x, 0) : −1 ≤ x < 0},

{(x, 0) : 0< x ≤ 1}, {(0, y) : −1≤ y < 0}, or {0, y) : 0 < y ≤ 1} respectively
is a proper embedding of a half open interval into L.

Fig. 1. A short leafL

Strictly speaking the definition of a short leaf should probably include some
notation as to which end of the leaf is short but for simplicity this has been
omitted. An example of a twice foliated disc containing a short leaf is given
in Fig. 2. The short leafL ends at the cusp point. This twice-foliated disc also
gives an example of a twice-foliated disc which cannot be embedded (as a twice-
foliated disc) into the plane. We will show that if a twice-foliated disc has no

short leaves or if all the short leaves in (D̊
2
; Fh, Fv) are manageable then an

embedding of (̊D
2
; Fh, Fv) in R2 exists. Thus we have the following result.

Theorem 1. Let (D̊
2
; Fh, Fv) be an open disc with two transverse foliations. If

(D̊
2
; Fh, Fv) has no short leaves, then there is a topological embedding ofD̊

2

into the plane sending leaves of Fh (resp. Fv) to horizontal (resp. vertical) lines.

The related problems in the smooth category are much more difficult. Smooth
conformal embedding of Lorentz surfaces was first considered by R. Kulkarni
[Ku]. T. Weinstein and her students have done much work in the field of Lorentz
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Fig. 2. A twice foliated disc with a short leafL. (In fact it is a bad-bad short leaf hence nonembeddable

surfaces recently. See [Kr], [Sm], [SW1], [SW2], and [W]. The book [W] is an
excellent introduction to this subject.

The organization of the paper is as follows. In Sect. 2, we will recall the
basic facts concerning the classification of a foliated disc and we will develop
the basic definitions needed to prove the theorem above. We will also define
precisely what we mean by manageable short leaves in Sect. 2. In Sect. 3 we
prove this stronger version of Theorem 1. Finally in Sect. 4 we give a number of
examples of twice-foliated discs which cannot be embedded in the plane. These
examples arise naturally when one tries to remove the short leaves of a twice
foliated disc. Unfortunately the study of such examples has proved to be quite
complicated and tedious. We have therefore contented ourselves with an informal
description.

2. Preliminaries

We will use the following notation and conventions. SupposeD̊
2

is an open

disc with a codimension one topological foliationF . It is known that (̊D
2
; F )

is classified by the directed, simply-connected (non-Hausdorff) orbit manifold
Mf , where a point [L] of Mf is a leafL of F and a Euclidean neighborhood of
[L] is the set of leaves intersecting a transverse arc toL, see Kaplan [K1], [K2]
and Haefliger and Reeb [HR] for proofs. There are countably many points inMf

where the Hausdorff condition fails. We call these points the branch points of
Mf and the corresponding leaves the branch leaves. It is easy to show from the

classification theorem that (D̊
2
; F ) can be topologically embedded (preserving

foliations) in the plane foliated by the horizontal lines if and only if (D̊
2
; F ) does

not contain a simply-connected subdomainD ′ so that the restricted foliation (D ′;
F |D′ ) is isomorphic to horizontal foliation of the “cusp” shown in Fig. 2 above.

Suppose that (̊D
2
; Fh, Fv) is an open disc with two transverse foliations. We

will call a leaf in Fh (resp.Fv) an h-leaf (resp.v-leaf). Let Mh and Mv be the

directed orbit manifolds respectively and letph : D̊
2 → Mh and pv : D̊

2 → Mv
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be the quotient maps. It is well known that bothph andpv are submersions. By

this we mean that for each pointx ∈ D̊
2

there is an open arc containingx which
is mapped homeomorphically intoMh (resp.Mv).

Lemma 1. There exist surjective local homeomorphisms fh : Mh → R and fv :
Mv → R.

Proof. For a proof see Haefliger and Reeb 1957.ut
An immediate corollary of this lemma is that the product mapfv◦pv×fh◦ph :

D̊
2 → R2 gives an immersion, i.e., a local homeomorphism, of the twice foliated

disc into the plane sending the leaves to horizontal and vertical lines. The goal of
this paper is to study when this immersion can be arranged to be an embedding.
The following easy lemma will be the central technical tool needed for the proof.

Lemma 2. Suppose (̊D
2
; Fh, Fv) is an open disc with two transverse foliations

such that either Mh ∼= R or Mv
∼= R. Then the product map fv ◦ pv × fh ◦ ph :

D̊
2 → R2 is an embedding.

Proof. Suppose for definitiveness thatMh = R and suppose thatfv ◦pv× fh ◦ph is

not one-to-one. Then there are two distinct pointsx, y in D̊
2

which are mapped
to the same point inR2. Hencex andy must lie on the sameh-leaf L. Consider
the restriction offv◦pv to L. The restriction ofpv to L is a local homeomorphism,
therefore the restrictionfv ◦ pv to L must also be a local homeomorphism. Thus
fv ◦ pv|L is injective. However sincex andy have the same image inR2, fv ◦ pv

must have the same value atx as aty. This contradicts the assumption thatx
andy are distinct. ut

Suppose we are given a shorth-leaf L (whose short end is the right one) in

(D̊
2
; Fh, Fv). By definition there is a subsetU ⊂ D̊

2
such that (U ; Fh|U , Fv|U )

is isomorphic (as a twice foliated disc) toR2 with the ray {(x, 0) : x ≥ 0})

removed and the right end ofL is sent to{(x, 0) : −1 ≤ x < 0}. Let K ⊂ D̊
2

be thev-leaf sent to{(−1, y)}. Let V = p−1
h (ph(K )). Then by Lemma 2 there

is an embedding ofV in the plane. Assume this embedding is arranged so
that (U ; Fh|U , Fv|U ) is sent to the open square (−1, 1)× (−1, 1) with the line
segment{(x, 0) : 0 ≤ x < 1} removed and the imageV ′ of V is contained in
(−2, 2)× (−2, 2).

Consider the intersection of (V ′)c with the open upper half planeH+. Let x+,
be the smallest positive number such that (x+, 0) is a limit point of (V ′)c ∩ H+.
There may be vertical lines inV ′ which have lower endpoint (x, 0) for somex >

0 (necessarily withx < x+) and for which the correspondingv-leaf K ′ of (D̊
2
; Fh,

Fv) would extend below the x-axis. Phrased differently thev-leaf K ′ meets some
h-leaf which lies below everyh-leaf of (V ′)c ∩ H+. If so letw+ be the infimum
of all suchx-coordinates if not letw+ = ∞. We will use the parametersx+ and
w+ to describe the upper side of the shorth-leaf L. Corresponding definitions can
be made for the intersection of (V ′)c with the open lower half planeH− giving
numbersx− andw− or for shortv-leaves.
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Definition 2. We will say the upper side (resp. lower side) of the short h-leaf L
is very bad ifw+ = 0 (resp.w− = 0). We will say it is bad ifw+ < x+ (resp.
w− < x−). Otherwise we will say the side is good (and analogously for short
v-leaves). We will say a short leaf is of type good-good if both sides are good,
good-bad if one side is good and the other is bad, etc..

This distinction turns out to be central to the problem as the following lemma
shows.

Lemma 3. If any short leaf of (̊D
2
; Fh, Fv) has a very bad side or if both sides

are bad, then (̊D
2
; Fh, Fv) cannot be embedded (as a twice foliated disc) in the

plane.

Proof. Any bad side contains a subset homeomorphic to a single “tooth”, a very
bad side contains a subset homeomorphic to sequence of “teeth” converging down
to the origin (see for instance Fig. 7). Therefore it is enough to show that the
twice foliated discs built from these models cannot be embedded. This however
is easy. ut

In contrast, if all short leaves of (D̊
2
; Fh, Fv) are of type good-good then we

will show that an embedding of (̊D
2
; Fh, Fv) in the plane always exists. Thus

we have the stronger version of Theorem 1 alluded to above.

Theorem 1’. Let (D̊
2
; Fh, Fv) be an open disc with two transverse foliations. If

(D̊
2
; Fh, Fv) has only short leaves of type good-good, then there is an embedding

of D̊
2

into the plane sending leaves of Fh (resp. Fv) to horizontal (resp. vertical)
lines.

Before proving this theorem we need to develop a few more useful sets of
definitions. First note that the definition of a short leaf and Definition 2 above
treat the two sides of a leafL separately. Thus we will sayL is half-short (at a
particular end) if there is an arcA in a leaf transverse toL, an end ofL, a side
of L and a leafK of the other foliation such that every leafL′ transverse toA on
the chosen side ofL meetsK but L does not meetK . We will further say that
this side is good, bad or very bad in the cases described above.

For the remaining definitions fix av-leaf L, the side of the leafL under
discussionV and an end of the leafL. We will use the letterL with primes or
other marks forv-leaves and the letterK with primes forh-leaves. Interchanging
the roles ofv- and h-produces the analogous definition forh-leaves. The key
idea is that inV near the chosen end ofL there is a notion of the angle of the
foliations. This angle will be taken to be a (positive) multiple of 45◦. Precise
definitions will be given below but roughly the angle will bex◦ if it should be
possible to embedV so that near that end ofL the embedding lies within an arc
of x◦ about that endpoint ofL.

Definition 3. (1) The angle is45◦ if for everyv-leaf L′ in V there is a neighbor-
hood A (depending on L′) of the end of L such that every h-leaf K which meets L
inside A misses L′ (see Fig. 3).
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(2) The angle is90◦ if there is a h-leaf K not in V with the same endpoint as
L which is a short or half-short leaf and L is on a good short side of K .

(3) The angle is135◦ if it is not 45◦ or 90◦ and if for any h-leaf K in V above
L there is a neighborhood B of L such that K does not meet anyv-leaf L′ in B
(see Fig. 4).

(4) If L is a short or half-short leaf and V is a good short side of L, then the
angle is180◦.

(5) If the angle is not one of the above and there is nov-leaf L̂ parallel to L
with a common endpoint, then the angle is225◦. If there is such a leaf̂L, then we
define the angle recursively. LetV̂ be the side of̂L not containing L and define
the angle to be180◦ more than the angle of̂V nearL̂ (see Fig. 5)

Fig. 3. An end of angle 45◦

Fig. 4. An end of angle 135◦

Notice that for odd multiples of 45◦ these angles are local in the sense that
they only depend on what the two foliations look like in a neighborhood of
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the end ofL. These angles in fact are almost a geometric concept by virtue of
Proposition 1 below.

3. Construction of embeddings

With the terminology developed above we can now state and prove a sharper
form of Theorem 1’ stated above. The outline of the proof is as follows. We
break the disc up into blocks each of which has one orbit manifoldR. Then we
use Lemma 2 to construct embeddings of these blocks into the plane. We wish
to combine these embeddings of blocks one at a time to produce an embedding
of the entire disc. To make sure that we can do so and keep the union embedded
we use the notion of angle defined above. For each block the angles determine
how much room we will need to embed it disjoint from previous parts of the
construction. We rescale the previous embedding to make sure there is enough
room and add the next block. These rescalings are performed in a locally finite
manner so we may proceed inductively to embed all of the discs.

Fix a twice foliated disc (̊D
2
; Fh, Fv) with only good-good short leaves. Take

a horizontal leaf and letU0 be the union of allv-leaves intersecting that horizontal
leaf. ThenU0 is a twice foliated disc whose vertical leaf space inR. FurtherU0

can be embedded as a bounded set in the plane since its vertical 1-manifold isR.

Fix such an embedding. The frontier ofU0 in D̊
2

consists of a set of branchv-

leaves ofD̊
2
. Fix such a leafL and consider extending this embedding toU0∪L.

The image ofL must be a vertical segment. Thex-coordinate of this segment is
determined sinceL is a limit of v-leaves inU0. The range ofy-coordinates is also

determined; it is they-coordinates of theh-leaves ofU0 which in D̊
2

meetL.

Thus the embedding ofU0 can be extended uniquely tōU0 ⊂ D̊
2
. This extension

is continuous and 1-1 but need not be a homeomorphism onto its image.

Consider a particular branchv-leaf L and letV ⊂ D̊
2

be the component of

D̊
2 − U0 containingL. In order to extend the embedding pastL we must alter

the embedding ofU0 nearL to make room forV . The angles defined above will
tell us how much room we need. To guarantee that we can get enough room we
need the following lemma.

Lemma 4. Let (D̊
2
; Fh, Fv) be a twice foliated disc with only good-good short

leaves. Let L be a leaf and fix an end of L. Then the sum of the angles at that end
of L on the two sides of L is at most360◦.

Proof. Let V be a side ofL. Assume for definitiveness thatL is vertical andV
is the right side ofL. If the angle ofV at the end ofL is at least 90◦, thenV
contains a subset homeomorphic to{(x, y) : x ≥ 0, y < 0} whereL is sent to the
ray {(0, y) : y < 0}. Thus if there is ah-leaf K on the side oppositeV which
shares the endpoint withL, then it is at least half-short. If the angle is more than
90◦, then that side ofK must in fact be bad or very bad. If the angle is at least
180◦, thenV contains a subset homeomorphic to{(x, y) : x > 0 or x = 0 and
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y < 0} whereL is sent to the ray{(0, y) : y < 0}. ThusL is at least half-short.
If the angle is more than 180◦, then in factL must be bad or very bad on that
side.

Similar results hold for larger multiples of 90◦. Therefore if the sum exceeds

360◦, thenD̊
2

contains a short leaf with at least one side bad or very bad.ut
Let V be an open disc̊D

2
together with part of∂D2. Suppose we are given

two foliations onV (V ; Fh, Fv) such that each boundary component is av-leaf
and letL be a boundary component. Fix an open vertical segmentL′ in the plane
(which we will view as the image ofL). The angle at an end ofL determines a
quadrant of the plane based at the corresponding endpoint ofL′ or a ray parallel
to one of the axes and emanating from the endpoint. A model region forV can be
built as follows. Choose either monotonic curves emanating from the endpoints
of L′ lying in the appropriate quadrant and extending to infinity or the coordinate
ray whichever is appropriate. These curves together withL′ divide the plane into
two regions and one region naturally corresponds toV . The model region is
this region truncated by intersecting with a rectangle containingL′ with sides
parallel to the coordinate axes. The model region will be said to be standard if
the monotonic curves are chosen to be lines with slope a multiple of 45◦. If U
and U ′ are any two model regions forV , then there is clearly an embedding
h : U → U ′ which is an isomorphism on the boundary arcs and sends horizontal
(resp. vertical) lines to horizontal (resp. vertical) lines. Thus in some sense all
model regions forV are equivalent. The following result shows that the angles
defined above have the correct geometric meaning.

Proposition 1. LetD̊
2 ⊂ V ⊂ D2 be such that V∩∂D2 is an open subset of∂D2.

Suppose Fh and Fv are transverse foliations on V such that every component of
V ∩ ∂D2 is a v-leaf and let L be one such component. If V has only good-good
short leaves, V is embedded in the plane and Mv(int(V )) ∼= R, then V can be
reembedded inside the standard model region determined by the angles at L in
such a way that L is sent to the boundary arc of the model.

Proof. Consider first the top end ofL. Assume that the embedding is bounded,
that L lies on they-axis with upper limit point the originO and thatV lies to
the right of L. SupposeV meets the positivey-axis. SinceMv(int(V )) ∼= R it
must be the case thatint(V ) never meets they-axis belowL and there must be
another branch leaf̂L aboveL.

If the angle ofV at the top ofL were 360◦ or more thenL̂ would be a short
leaf and the side containingL would be bad or very bad. Hence the angle ofV at
the top ofL is at most 315◦ and thereforeV c must contain points arbitrarily near
O in the third quadrant. Choose pointsPi = (xi , yi ) in V c in the third quadrant
converging toO monotonically in both coordinates. We may choose thePi so
that V misses the vertical rays with upper endpoints thePi . To see this, note
that if V is embedded in the closed right half plane this is obvious. If not we
may assume (after possibly omitting the first few terms) thatint(V ) meets the
vertical rays with lower endpoints thePi . SinceMv(int(V )) ∼= R, int(V ) must
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Fig. 5. The recursive definition of angles

miss the vertical ray with upper endpointPi . Now consider thev-leaf L′ of V
sent into the line{(x, yi )}. If L′ is not a short leaf then movingPi slightly we
may assumePi ∈ int(V )c, henceV must also miss the vertical ray with upper
endpointPi . If L′ is a short leaf it must be good-good and hence againV must
also miss the vertical ray with upper endpointPi . Let U be the complement of
these rays in the plane. ThenU can be embedded in the plane above the graph
of some monotonically nondecreasing functionf on (−∞, 0] with f (0) = 0. For
later use note that this reembedding can be arranged explicitly as follows. View
U as the region{(x, y) ∈ R2: if xi ≤ x < xi +1, theny > yi } with a collection
of strips attached. Then the strip attached to{(x, yi ) : xi < x < xi +1} can be
foreshortened to lie aboveyi−1. This embedding restricted toV embeds it over
the graph of some monotonically nondecreasing function and a further rescaling
embedsV above the ray{(x, x) : x ≤ 0} (see Fig. 6).

If the angle ofV at the top ofL is 315◦, then we are done. Suppose the
angle is 270◦. Let K be theh-leaf which hasO as its left endpoint (the leaf
sent into the positivex-axis.) Leta be the least real number such that there is
a sequence of pointsPi = (xi , yi ) in V c in the second quadrant converging to
(−a, 0) monotonically in both coordinates. SinceK is half-short, we must have
a > 0. Since that side ofK is goodV must lie above the x-axis for−a < x < 0.
As above after possibly omitting the first fewPi and moving a few others we may
assumeV is embedded in the complement of the vertical rays with upper end
points thePi . Let U be the complement of these rays in the plane. ThenU can
be embedded in the plane above the graph of some monotonically nonincreasing
function f on (−∞,−a] with f (−a) = 0. An explicit version can be defined as
above. This completes the argument for 270◦.
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Fig. 6. The rescaling map

Suppose the angle ofV at the top ofL is at most 225◦. Since the angle of
V at the top ofL is at most 225◦ V c must contain points arbitrarily nearO
in the second quadrant. Now we proceed exactly as in the case of 270◦ except
with a = 0. ThusV can be embedded in the plane above the graph of some
monotonically nonincreasing functionf on (−∞, 0] with f (0) = 0. A further
rescaling embedsV above the ray{(x,−x) : x ≤ 0)}.

If the angle ofV at the top ofL is at most 180◦, thenV cannot meet they-
axis aboveL. In the case of 180◦ this completes the argument. For angles of 45◦

through 135◦ the argument now proceeds exactly as above except that we choose
points in the first or fourth quadrants and remove the rays above them instead
of below. Note that the rescaling done involves only rescaling they-coordinate
and only on horizontal leaves above the leaves throughL. Therefore the top and
bottom ends can be done independently. Repeating this procedure on the lower
end ofV putsV inside the desired model.ut.

Note that there are really two different types of rescalings. The first one
using the removed rays makes a fundamental change in the embedding and
puts V inside a (nonstandard) model region. The second is a purely cosmetic
rescaling which achieves a standard model. The first rescaling is local. Given a
neighborhoodA×R of L we may alterV only in this neighborhood to produce an
embedding whose intersection with some smaller neighborhoodB ×R of L lies
in a (nonstandard) model. This extra strength will be used below. A reembedding
theorem is actually needed for slightly more complicated regions. Suppose that
V ′ is obtained fromV by adjoining model regions to the boundary arcs other
thanL and thatV ′ also contains only good-good short leaves. The model regions
have an interesting property, they retract inside themselves into an arbitrarily
small neighborhood of the boundary arc. Therefore they may be arranged to be
disjoint from thePi and from the rays above or below them as required. Thus if
V ′ can be embedded then it can be reembedded inside a model.
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Proof of Theorem 1’.We have now assembled all the pieces we need to prove
Theorem 1’. As above take a horizontal leaf and letU0 be the union of allv-
leaves intersecting that horizontal leaf. ThenU0 is a twice foliated disc whose
vertical leaf space inR. Fix an embedding ofU0 in the plane as guaranteed
by Lemma 2 and extend it to an embedding ofU0 as discussed above. View

U0 as a spine to which the rest of̊D
2

is to be attached. Let{Li } be the set of
all the branch leaves in the frontier ofU0. Let {xi } be theirx-coordinates and
choose neighborhoods{Ai } of the xi in R in such a way that diam(Ai ) → 0

as i → ∞. For L1, let V1, be the component of̊D
2 − U0 containingL1. The

first of the two types of rescalings defined above alters the embedding only in
A1×R and gives room to attach the model region ofV1 to L1. (Since the second
cosmetic rescaling is not used the model region cannot be assumed to be standard
but this is unimportant.) By Lemma 4 this procedure can be carried out for all
the Li without producing an overlap with only one proviso. Since there may be
countably many of theLi we must be careful that the rescalings are locally finite.

This would clearly hold if the sets{Ai } were locally finite but this condition
is too strict. Consider any pointp = (x, y) in the image ofU0 and choose a
rectangular neighborhood ofp in U0. The rescaling inAi ×R consists of finding
vertical rays disjoint fromU0 and rescaling the strips between them. If any point
in the rectangular neighborhood ofp is affected by this rescaling the strip it lies
in (and henceAi ) must be at least as wide as the rectangle. Therefore, since
diam(Ai ) → 0 only finitely many of theAi can affectp. Thus we may alter the
embedding ofU0.

Now we haveŪ0 and the appropriate model regions about the boundary

arcsLj of Ū0 embedded inR. For eachLj let Vj be the component of̊D
2 − U0

containingLj . Let i : [0,∞) → pv(Vj ) ⊂ Mv be an embedding such thati (0) = Lj

andfv ◦ i is a translation. Then (Uj = p−1
v (i ((0,∞))) is a twice foliated open disc

in Vj ⊂ D̊
2
. As aboveUj can be embedded as a bounded set in the plane and

this embedding extends to an embedding of its closure inVj with model regions
attached to the boundary arcs of the closure in the plane.

Denote this union byWj . By Proposition 1Wj reembeds inside a standard
(hence any model) region. Hence we can embed theWj inside the model regions
which we created on the embedding ofU0. Iterating this construction and ex-

haustingMv by rays produces an embedding of all ofD̊
2

in the plane as desired.
ut

4. Nonembeddable examples

Theorem 1’ and Lemma 3 above answer a large piece of the embedding question.
One need only decide what should be done about good-bad short leaves. Consider

a single shorth-leaf in (D̊
2
; Fh, Fv) with the upper side bad and the lower side

good. Recall that we assign parameters to a shorth-leaf L as follows. Embed
a neighborhoodV of L in the plane so that its imageV ′ contains the open
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Fig. 7. a A good bad leafL which if extended creates a bad side toK . b A nonembeddable twice
foliated disc built from the construction ina

square (−1, 1)× (−1, 1) with the line segment{(x, 0) : 1 > x ≥ 0} removed,
V ′ is contained in (−2, 2)× (−2, 2) andL is sent to{(x, 0) : −a < x < 0} for
somea. Let H+ be the open upper half plane. Letx+ be the smallest positive
number such that (x+, 0) is a limit point of (V ′)c ∩ H+. There may be vertical
lines in V ′ which have lower endpoint (x, 0) for somex > 0 and for which

the correspondingv-leaf L of (D̊
2
; Fh, Fv) would extend below the x-axis. If so

let w+ be the infimum of all suchx-coordinates. Also recall thatx− is defined
similarly (andw− = ∞ since the lower side is good.) Then we can extend (and
hence eliminate) the short leaf as follows. Choose some value ofx′ < w+. By
rescalingV ′ below the x-axis we may assume thatx− = x′. Then V ′ may be

enlarged to include{(x, 0) : 0 ≤ x < x′}. Gluing this enlarged region to̊D
2

alongV produces a new twice foliated disc with this short leaf extended. (That
is, sincex− was maximal the lower side of the new leaf is no longer short.)

Unfortunately removing a good-bad short leaf in this fashion may turn a
previously good side of a short leaf into a bad side. This will occur if the foliation
contains a subset homeomorphic to the one shown in Fig. 7a. If the good-bad
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short leafL is extended then the left hand side of the short leafK goes from
being good to being bad. Note that if a twice-foliated disc embeds in the plane
then that embedding specifies a way of extending all good-bad short leaves. Thus
one gets nonembeddable examples as shown in Fig. 7b from this observation as

well. We also get a slight strengthening of Theorem 1’. Suppose (D̊
2
; Fh, Fv)

contains only good-good and good-bad short leaves and only finitely many good-

bad short leaves. Then unless (D̊
2
; Fh, Fv) contains a subset homeomorphic to

one of the examples indicated in Fig. 7b, we may extend all the good-bad short

leaves. This produces an embedding of (D̊
2
; Fh, Fv) into a twice foliated disc

with only good-good short leaves (this takes easy but nontrivial checking) and

hence by Theorem 1’ an embedding of (D̊
2
; Fh, Fv) into the plane.

Unfortunately if there are infinitely many good-bad short leaves then the
classification of nonembeddable examples becomes intractable. The following
construction produces a number of fundamental examples. Every example of a
nonembeddable twice foliated disc of which the authors are aware contains one
of these as a subset but it is not clear whether they are the only fundamental
examples. We get two basic nonembeddable examples from the short leaves
which Lemma 3 says cannot be embedded, bad-bad and very bad-good. We
omit the nonembeddable very bad-bad and very bad-very bad since either of
these contains a subset homeomorphic to a very bad-good short leaf. Taking
the sides to be prototypical gives the example shown in Fig. 2 and the example
shown in Fig. 8. If a twice foliated disc with some good-bad short leaves can be
embedded in the plane then scalings coming from the embedding gives a method
of extending all the short leaves. Therefore any example which must produce
something containing one of these examples when short leaves are extended
must also be nonembeddable. One such construction is to cut into each tooth
(but at most finitely often) as shown in Fig. 7. When the resulting short leaves
are extended the tooth will be restored. An example of such a side is given in
Fig. 7b. This is basically the only example which requires only finitely many
cuts. One may also build examples with infinitely many cuts. There are several
possible ways of doing this. Suppose for definitivoness that we start with a
horizontal short leaf. A second operation is to cut it up with horizontal cuts as
shown in Fig. 9a. When the short leaves in this example are extended a good side
will be created. Therefore we may perform this construction on any good side
to produce another nonembeddable example. A third operation is to use vertical
cuts as shown in Fig. 9b. When the short leaves in this example are extended a
bad side is produced if the vertical cuts limit to some point to the right of the
end of the short leaf and a very bad side will be created if they limit to the end.
Therefore we may perform this construction on a bad or very bad side to produce
another nonembeddable example. Finally as a fourth operation we may replace
any side by a worse one, good by bad or bad by very bad.

We close by giving the following conjecture.
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Fig. 8. The other basic nonembeddable example

Fig. 9a,b.Two of the four operations that produce new nonembeddable examples.a Horizontal cuts
on a horizontal short leaf.b Vertical cuts on a horizontal short leaf

Conjecture. A twice foliated disc (̊D
2
; Fh, Fv) embeds in the plane if and only if

it has no subdomain U⊂ D̊
2

such that(U ; Fh|U ,Fv|U ) is isomorphic to one of
the examples described above.
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