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Abstract

In this paper, we produce an elementary approach to Thurston’s theory of measured laminations on
compact surfaces with non-empty boundary. We show that the theory can be derived from a simple
inequality for geometric intersection numbers between arcs inside an octagon.
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1. Introduction

1.1. Let us begin with a brief review of Dehn—Thurston’s theory of 1-dimensional
submanifolds in a surface ([2,7,10,11] and others). Given a compact connected surface
X with possibly non-empty boundary, @rve system on X is a proper 1-dimensional
submanifold so that each circle component of it is not null homotopic and not homotopic
into the boundary and each arc component is not relatively homotopic into the boundary.
The space of all isotopy classes of curve systemsXoiis denoted byCS(X). This
space was introduced by Max Dehn in 1938 [2] who called itatithmetic field of the
topological surface. Given two isotopy classesnd 8 of 1-dimensional submanifolds,
their geometric intersection number I (a, B) is defined to be mifla N b|: a € o, b € B}.
Thurston observed that, except for the annulus, the Mébius band and the 3-holed sphere, the
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pairing(,): CS(X) x CS(X) — Z behaves like a non-degenerate “bilinear” form in the
sense that (1) given anyin CS(X) there isg in CS(X) so that their intersection number

I(a, B) is non-zero, and (2] (kiay, koop) = kakoI (a1, 2) for ki € Zxo, o; € CS(XY)

where k;«; is the isotopy class of the collection &f parallel copies ofa; € ;. In

linear algebra, given a non-degenerate quadratic feron a latticeL of rank r, one

can form a completion ofL, w) by canonically embedding into R" so that the form

w extends continuously oR". Thurston’s construction is the exact analogy. C&(X)

be the subspace consisting of isotopy classes of curve systems whose components are
circles. Thurston’s space of (compactly supported) measured laminations on the surface
X, denoted byMLg(X), is defined to be the completion of the p&@%(X), I) in the
following sense. Giverw in CS(Y), let 7 (a) be the map sending to I(«, 8). This

gives an embedding : CS(X) — RE>) where the target has the product topology. The
spaceMLg(X) is define to be the closure §f.o x 7(CSH(X)) ={rr(x): r € Q=9, x €
CS(X)}. The basic results in theory, proved by using the notion of train-tracks, are that
the spacéMLg(X) is homeomorphic to a Euclidean space that the intersection pdi¢ing
extends to a continuous homogeneous map fklg(X') x MLg(X) to R. See [1,3,6-8,

11] and others for a proof of the first statement and [1] for a proof of the continuity of the
extension.

Our goal is to give an elementary proof of the basics results for compact surfaces
with non-empty boundary. The continuity of the extension of the intersection number
holds the key. It implies that the topology of the spadko(X) is homeomorphic to
a Euclidean space. By interpolation, we reduce the continuity of the extension of the
intersection number to a simple inequality for geometric intersection number of arcs inside
an octagon. Our approach rests on two parts. First, we produce a parametrization of the
set of isotopy classes of arcs in polygons. In order to interpolating, we extend the space
CS(X) to a larger spacES(Y) of isotopy classes of essential 1-dimensional submanifolds.
We produce a parametrization of the sp&S3¢X") and establish an inequality concerning
geometric intersection numbers between class&S{i¥'). This inequality is essentially a
result concerning arcs inside an octagon.

1.2. We give a brief sketch of our approach in this subsection. For simplicity, we
assume the surface is compact with non-empty boundary so that its Euler characteristic
is negative. A 1-dimensional proper submanifold in a compact surface is eatiedial
if each circle component is not null homotopic and each arc component is not hull
homotopic relative to the boundary. We denote the set of all isotopy classes of essential
1-dimensional submanifolds in a surfakeby ES(Y'). The spac&S(Y) containsCS(X)
as a subset and in general is not equaC& ) if the boundarys X is not empty (i.e.,
92X is an essential submanifold, but is not a curve system). The reason that we consider
ES(Y) instead ofCS(X) (or CS(X)) is thatES(X) satisfies a combinatorial convexity
property. To parametrizES(Y'), let us recall thatin ideal triangulation of a surfaceX
is a maximal collection of pairwise disjoint, pairwise non-isotopic essential arcs in
(see, for instance, [6]). Fix an ideal triangulatioe=t U U --- Uty of the surface,
and a clasqa] € ES(XY). We define ther-coordinate of [a] € ES(X) with respect to
the ideal triangulation to bex, ..., xy,x],...,x}) Wherex; = I ([a], [1;]) andx] is the
number of components afwhich are parallel te;. It can be shown (Lemma 3.1) that this
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parametrization sendsS(Y) injectively intoZ2V . (In the case 0€S(X), all coordinates
x/ = 0. This was considered in [6].)

Proposition 1.1. Supposet =1 U --- Uty isanideal triangulation of a compact surface.
Then for any three classes «, 8, y € ES(X) with ¢-coordinates (x1, ..., xn, X3, ..., X)),
(y1, ..., yy) and (z1, ..., z)), the following inequality holds:

[1(ct, B) = I(et, )| <4lel|B — | (1.1)
where oo = YN (v +x)) and B — y 1 = SN 1 (Iyi — 2l + 1y] — 2}

The key idea in the proof is the following. Given two clasges in ES(X) so that
|8 — y| = n, we produce a sequence of + 1) essential 1-dimensional submanifolds
Bi fori =0,1,...,n starting from B and ending at 2 so that|8; — B;+1] = 2. (This
cannot be achieved i@S(X) nor in C&(X).) Thus, by interpolation, we may assume
that|8 — y| = 1 or 2. This reduces inequality (1.1) to a question on intersections of arcs
in an octagon. We prove inequality (1.1) in this special case by analyzing the surgery
procedure relating andy within an octagon. We remark that with a little extra work, one
can improve the constant 4 in inequality (1.1) to 2 which is sharp.

We remark that a similar result thaf («, 8) — I(a, )| < K|a||g — y| for a, B €
CS(X) was obtained earlier by Rees [9] using train-tracks. The congtamher theorem
depends on the train-tracks. Also, in [4], Hamidi—-Tehrani proMed, 8) — I («, y)| <
la]|B — v| for a, B € CS(X) assuming the theory of measured laminations.

1.3. In this subsection, we give a quick derivation of the continuity @f) on the space
of compactly supported measured laminatidfiso(X) which is the closure of)>g x
m(CS(X)) using (1.1). One first extends the pairih@ ) to (Qxo x CS(X))? by linearity
I (kyay, koap) = kikaI (a1, a2) whereks, ko € Q0. Thus inequality (1.1) still holds faz,

g andy in Qo x CS(X). For simplicity, we will identify CS(X) with a subspace of
MLo(X") via the maps. Thus the intersection paringy(,) is also defined on the space
(Qx0 x 7(CS(X)))? by the formulal (x, y) = I (~1(x), 7~1(y)). Our goal is to show
that the newly defined parinfy(, ) extends continuously thiLo(X)2. Since the product
spaceRCS>) is metrizable, the continuity of the parinky,) on MLo(X) x MLo(X)
follows by showing that if (e, B,) € (Q=0 x CS(X))? converges, then (e, 1)
converges. Now since, and g, converge, both lim/ («,, [t;]) and lim,1(B,, [#;]) exist
for all ;. Thus, lim, y|en — | =0, lim, |8, — Bw| = 0 and both|g,| and|«,| are
bounded. (This is where we use the sp@&(Y) instead ofES(X).) By inequality (1.1),
we have|l (an, Bn) — 1 (@, Bm)| < | (tn, Bn) — I(ctn, Bu)| + [ (ctn, Brn) — I (s Brn)|
<oy llBn — Bl + 41 Bmllan — | Which convergesto 0 as andn tend to infinity.

As a consequence of the continuity, we see that inequality (1.1) still holds, fér
andy in MLo(X). Thus we deduce a result in [6] that each elemernih MLo(X) is
determined by theV-tuple of intersection numberg(x) = (I («, [t1]), ..., I (o, [tN])),
i.e.,T:MLo(X) — Rgo is injective and continuous. Furthermore inequality (1.1) implies
that the spacélLo(X) is locally compact and the map:MLo(X) — RY is proper.
Indeed, if a sequence, in MLg(X) is bounded undef, then for anyg € CS(X),
inequality (1.1) implies thaf (o, 8) < [T (an)||T(B)] is bounded im for each fixeds.
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Since there are at most countalsls, by the standard diagonalization argument, there is a
subsequence,, so thatl («,,, B) converges for alB. This simply says thaf, } contains

a convergent subsequence. To see Th& proper, we note that i’ («,,) converges to a

point in RY, thenT («,,) is bounded. Thus, contains a convergent subsequence. This
shows thatl" is proper andl’" : MLo(X) — R”" is an embedding whose image is a closed
subset. The image dfiLg(X) underT can be identified explicitly as a subspace defined

by a finite set of piecewise linear equations. It is shown in Section 4 that the subspace is
homeomorphic to a Euclidean space. This shows that the space of measured laminations is
homeomorphic to a Euclidean space.

1.4. One can also establish the same results for completioBES@F) using Proposi-
tion 1.1. LetES(X) be its completions inside the spaR&€S>) with respect to the same
procedure. Using Proposition 1.1, one can show that the intersection pagkignds con-
tinuously to £S(X) and thatéS(X) is homeomorphic taR—3X(X) where x (X) is the
Euler characteristic of the surface. These results are proved by showing the following sim-
ple fact about the-coordinategx1, .. .,xN,x’l, .. .,x;\,). Namely, for each, there is a
finite set of elements, ..., cx in ES(X) and a universal piecewise linear functighso
thatx/(e) = f(I(a,c1),..., (o, cr)) forall @ € ES(X). The details will be deferred in a
future work.

1.5. Notations and conventions

We useR >0, Q>0 andZxq to denote the sets of all non-negative real numbers, rational
numbers and integers, respectively. All surfaces are connected unless mentioned otherwise.
Isotopies of the surface leave the boundary invariant. Given a 1-submanifeldenote
the isotopy class of by [s] and a small regular neighborhoodsoby N (s). The interior
of a manifoldX will be denoted by intX). The geometric intersection numb&i{a], [b])
will also be denoted by (a, b) and I ([a], b). If X is a finite set, thennX| denotes the
number of elements iX.

1.6. We would like to thank Ying-Qing Wu for careful reading of the manuscript and
making nice suggestions on improving the exposition. Part of the work is supported by the
NSF. The related work for closed surface is in [5].

2. Arcsin polygons

We give a parametrization of the space of all isotopy classes of arc systems in a polygon
in this section.

2.1. Let P, be ann-sided polygon. Ararc in P, is a proper embedding of a closed
interval into P, —{vertices of P,}. An arc in P, is calledtrivial if its end points either lie
in one side ofP, or in two adjacent sides af,. An arc systemin P, is a finite disjoint
union of non-trivial arcs inP,. Let ES(P,) be the set of all isotopy classes of arc systems
in P, where isotopies leave each side invariant. Given two clagsasd 8 in ES(P,),
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Fig. 1.

we define their intersection number to b@r, 8) = min{laNb|: a € a, b € B}. We say a
non-trivial arcs in P, parallel to a side if one of the component 8f — s is a quadrilateral.

We first give a parametrization dS(Ps). Let the six sides of the hexagaPs be
A1, B3, A, B1, A3, B3 labeled cyclically. A parametrization dES(Ps) using the A-
sides is as follows. Take = [a] in ES(Ps). Let x; = I(a, A;) = |a N A;| and x! be
the number of components af which are parallel tad;. Evidently x;x; = 0. We call
(x1, x2, x3, X1, X5, x3) the r-coordinate of o with respect to thed-sides of the hexagon.
See Fig. 1.

Lemma 2.1. Let A = {(a1, az, a3) € Z'io: ai +aj > a, forall i # j #k #i}. The map
T :ES(Ps) — {(x1,x2,x3, X7, X, X3) € Zgo: xix] =0,if (x1, x2, x3) € Athenxy+x2+x3
is even} sending an element to its r-coordinate is a bijection and homogeneous, i.e.,
T (k[a]) = kT ([a]) for any k € Z>0.

Furthermore, if (x1, x2, x3, x7, x5, x3) isthez-coordinate of a class [a], then the number
of components of a isat most x1 + x2 + x3 4 x7 + x5 + x5.

Proof. Clearly T is well defined. To see that is onto, we construct the arc system
with a given vectox1, x2, x3, X1, X5, x3) as the coordinate according to the following five
cases:

(1) (x7.x5,x3) =(0,0,0), and(x1, x2, x3) € A;
(2) (x1,x5,x3) =(0,0,0) and(xy, x2, x3) ¢ A,
3) xf:x} =0,x;, > 0;

(4) x;=0 andx}x,’c >0, and

(5) x3x5x5 > 0.

The corresponding arc systems are listed in Fig. 1.
The arc systenu can be described as follows. Let (respectivelyb;) be an arc
parallel toA; (respectivelyB;) andc¢; be an arc joining4; to B;. We usekx to denote
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k parallel copies of an are. In the case (1) = [ J3_; (““24=)p,; in the case (2) say

Xp > x; +xj,thena =x;b; U x;b; U (xx — x; — xj)ck; in the case (3), say; > x;, then
a=xpa;Uxjb;jU(x; —xj)c;;inthe case (4) = )C;»Clj Uxar Ux;c; andin the last case (5)
a= Ule x/a;. Since two non-trivial arcs are isotopic if and only if their end points land
on the same set of sides on the polygon, the fapinjective.

The second part of the lemma follows from the definitiom

2.2. Remark

It can be shown that each isotopy class of arc systems in a hexagon is determined by
their six geometric intersection numbers with the six edges. It is also interesting to note that
if we switch theA-sides andB-sides, then the coordinate change is given by a piecewise
linear homogenous continuous function(in, xz, x3, x3, x5, x3).

2.3. To parameterize the arc systems on any polyggnof an even number of sides,
we use disjoint non-trivial arcs to decompaBg, into hexagons. Let thd-sides of the
hexagons correspond to the decomposing arcs. Then a parameteriz&8§Rg) is given
by taking thes-coordinates of the hexagons with respect toAhsides.

2.4. One of the key ingredients in the proof of Proposition 1.1 is to understand the
surgery procedure relating two elements BS(Ps) whose z-coordinates differ by a
basis vector. For simplicity, a clags in ES(Pg) is called even if all components of
its z-coordinates are even numbers. We shall describe the surgery procedure relating
two even arc systema and g so that theirz-coordinates(xy, x2, x3, x7, x5, x3) and
(Y1, 2, ¥2. V1, v5. y5) are related by(x1, x2, x3, X7, x5, x5) = (¥1. y2, Y2, ¥1. 5, ¥3) +
2,0,...,0).

Note thatx; = y;. Sincexy > 0, it follows thatx] = y; =0.

Take a standard representativéor «. To obtain a standard representativéor g, we
perform the following surgery operation an If a contains arc$, andbsz, we replace:
by (a — b2 U b3) U b to obtainb; if a contains an arc parallel tq, then sincex is even,

a contains two copies af;. We replace: by a — 2¢1 to obtainb. In the remaining case,

is disjoint from eithercs or c3, saya Nc2 = @. Sincex1 > 2, a contains at least 2 copies

of b3. In this case, replace by (a — 2b3) U 2c2 to obtainb. Note that the arcs created lie

in a small regular neighborhood of the boundary and the arcs deleted. See Fig. 2 for the
illustration.

To obtain a standard representativeaofrom b, we perform the following surgery
operation orb. If b contains some copies éf but noc, or c3, replaceb by (b — b1) U
bz U b3 to obtaina. If b contains nd1, c2 andcs, replaceb by b U 2¢1 to obtaina. If b
contains somey or c3, saycz C b, thenb contains even number of copies®@f Replace
b by (b — 2c2) U 2b3.

To summarize, we have the following,

Lemma 2.2. Suppose [a] and [b] are two even classes in ES(Ps) whose ¢-coordinates
differ by 2 in one entry. Then a is obtained from 5 by removing at most two components
and adding at most two new components.
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Fig. 2.

3. Geometric intersection numbers on surfaces with boundary
We prove Proposition 1.1 in this section.

3.1. We begin by giving a parameterization of the sp&® ) as follows. Fix a
maximal collectiorr =1 U --- Uty of pairwise disjoint, non-isotopic essential arcs (an
ideal triangulation) of the surfacE. Thus the components & — vazlint(N(t,-)) are
hexagons. Let thd-sides of the hexagons correspond;te. Givena in ES(XY), let ¢ («)
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be ther-coordinate of @ which is the collection of-coordinates ofx in each hexagon.
Namely, (@) = (x1,...,xn,%],...,xy) Wherex; = I (o, ;) andx! is the number of
components of equal to[7;]. Clearlyx;x] = 0.

Lemma 3.1 (See also [6])Fix an ideal triangulation ¢ of X. Thenthemap T :ES(Y) —
X ={(x1,...,xN, X}, ..., X)) € Zgo: xix{ =0, if 1;, t; and 1 form the A-sides of a
hexagon and (x;, x;, xx) € A, then x; + x; + x; is even} sending an element to its ¢-
coordinateis a bijection and homogeneous, i.e., T (k[a]) = kT ([a]) for k € Z 0.

Inparticular, let L = {(x1,...,xn, X}, ..., x}y) € (2Z>0)": xix =0} bethe set of all
even vectors. Then L is contained in the image of 7.

Proof. To see that the maff is onto, take an elemeriky, ..., xy, x,...,x)) in the
set X. Let H be a hexagonal component af — Uf\’:lint(N(t,-)) with three A-sides
parallel toy;, ¢; and# (it may occur that; =¢;). By Lemma 2.1, we construct an arc
system inH with the ['Coordinate(xl‘,Xj,Xk,X;,X;,X;(). Now glue these arc systems
acrossN(t;) = t; x [—1, 1] by adding parallel arcéps, ..., p,} x [—1, 1]. We obtain a
1-submanifold properly embedded i&r'. By the construction, there are no Whitney discs
ins Ut ands U dX. Thus the submanifolsl is essential and its-coordinate is the given
vector(xy, .. .,xN,x’l, .. .,x;\,). We calls a standard representative. To see that the map
T is injective, givernx in ES(Y'), choose a representatives o so that/ («,t) = |a Nt|.
Thusa N H is an arc system in each hexagonal componet ef(_ int(N(#;)). Since each
non-trivial arc in the quadrilater&¥ (z;) is parallel to a side, it follows that is isotopic to

a standard representative. It follows that the rifaig injective. O

3.2. Now we prove the following:

Proposition 1.1. Supposet =1 U --- Uty isanideal triangulation of a compact surface.
Then for any three classes «, 8, y € ES(X) with z-coordinates (x1, ..., Xy, X7, ..., X}),
(V1o os YN Y1s - yy) @nd (21, ..., Zw, 25, - - -, Z)y), the following inequality holds:

[1(ct, B) — I (e, )| < 4le||B — ¥ (1.1)

where o] = Y1 (v +x)) and |8 — y | = Y01 (1yi — zil + |y] — 2}D).

To begin the proof, first note that since the intersection paifiaQ is homogeneous, it
suffices to prove inequality (1.1) fow2 28 and 2/ in ES(X'). The¢-coordinate of 2 is
an even vector irl.. For simplicity, we call a clase € ES(Y) evenif T(x) € L. Thus it
suffices to prove Proposition 1.1 for even classes.

Given two even vectors = (u1,...,u2y) andv = (v1, ..., v2y) in L so that their
distance|lu — v| = Z?ﬁ'ﬂui — v;| is 2n, there is a sequence af+ 1 even vectors
wj, j=0,...,n so thatwo = u, w, = v and |w;y1 — w;| = 2. Thus given two even
classeg, y in ES(Y) so that| 8 — y | = 2n, by Lemma 3.1, there exists a sequence $f1
even classes starting frofnand ending ay so that the adjacent elements are of distance-2
apart. Thus it suffices to prove Proposition 1.1 for even clag8sesly sothatg —y| = 2.
Without loss of generality, we may assume thgy) = T7(8) +(0,...,0,2,0,...,0),i.e.,
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Fig. 3.

(21s 2N T 2) = Lo YN YL - V) £(0,...,0,2,0,...,0). We need to
consider two cases:

(1) z;=y;/*+2,and
(2) zi = y; =2 for somei.

In the first case that = y/ &+ 2, the clasg is obtained fromg by adding or removing
two copies of#;]. Thusi(«, ) = I («, y) + 2x;. The inequality follows.

Inthe second case, let us assume for simplicitytkat. Let H; andH» be the closures
of the hexagonal components af — (Uf"zzint(N(t)) U #1) lying on two sides of (it
may occur thatH; = H>»). See Fig. 3. IfH1 # Ho, thenH1 N Hp =11 and Hy U H> is an
octagon. In this case we assume thatU H> is a convex octagon. We will consider the
casesH1 # H, and H1 = H» separately.

3.3. Supposed; # H». By symmetry, to show (1.1) faB — y| = 2, it suffices to prove
I(a,y) <I(a,B) +8laf. (3.1)

Take a standard representativeand » of « and g8 so that|a N b| = I(a, 8) and
a N (H1U Hp) andb N (H1 U Hp) consist of straight line segments. Then by the assumption
on thez-coordinates ofs andy and Lemmas 3.1 and 2.2, a representatioé y can be
obtained fronmb by performing the following three surgeries inside the octage Ho.

Surgery 1. remove at most two componentsioff H1 and add at most two new arcs.

Surgery 2. remove at most two componentsiofy H, and add at most two new arcs.

Surgery 3. perform a switching operation inside the neighborhd&@; ) to join the arcs
created or deleted in surgeries 1 and 2. See Fig. 4.

By the surgery construction, we obtain a representatfee y so thaic C bUs; UsaUs3
wheresi, s2 andss are arcs created in the surgeries 1, 2, and 3.

Thus we havd (o, y) <laNc| <laNbl+|laNsi|+laNsa|+lans3|=1(x, B) +
la N s1| + |a N s2| + |a N s3]. We estimate the last three terms as follows. Note that if
is an arc system in a hexagon witttoordinate(vy, vz, vs, vy, v5, v3), thenu has at most
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lu| = v1 4 v2 +v3+ v} + v5 + v5 components. Now any two straight arcs inside a hexagon
intersect in at most one point. Thus for any diaside the hexagon, we havéd, u) < |u|.
Sinces; consists of at most two arcs components inside a hexagon, weshawve < 2|a.
Here the coefficient 2 occurs instead of 1 becauseAwsides of the hexagoH; may be
isotopic in the surface. Thua N s1| + |a N s2| < 4]al. On the other hand, by the surgery
3, we see thalu N s3] < 4|x1] < 4lal. This ends the proof of (3.1).

3.4. The second case thaif; = H> is an annulus is simple. We simply note that there
are three surgeries relatingto » as shown in Fig. 5. The three surgeries depend on the
numbern of components of arcs jointing to X in Hi. In the first caser > 4, in the
second case = 0 and in the last case= 2. In the first case > 4, we remove four such
arcs and replace them by four arcs going around the boundary comporgent & the
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second case, we add two parallel copies of the boundary components. In the last case of
n = 2, we remove these two arcs and replace them by a parallel copy of the boundary
component and an arc going around the boundary. In all cases, we see that (3.1) holds.

4. Topology of the space of measured laminations

In this section, we derive the known fact [6,11] that the spaces of all closed measured
laminationdMLq(X) is homeomorphic to a Euclidean space.

4.1. To see thatMLg(X) is a Euclidean space, we fix an ideal triangulatioa
n U-.- Uty of the surface. By Proposition 1.1 and Section 1.3, we see that the map
T: MLO(Z) — R >0 sending an elementto itsr-coordinate is an embedding into a closed
subset. It remains to find the i image of the nfapro this end, let us find the images under
T of the space of all closed curve syste@%)(X). Given ar-coordinater = (x1,...,xy)
subject to the condition that when ¢;, andt; form the A-sides of a hexagonal component
of ¥ —U,, tm, then(x;, xj, xx) € A, one constructs an essential submanifoldith x as
its t-coordinate by Lemma 3.2. This essential submanifoisl a closed curve system if
and only if the submanifold contains no loop parallel t8X. This is the same as saying
that at least one of the hexagons incidentdpE does not contain an arc parallel to the
B-side corresponding t& X, i.e., for each boundary componént,

min{x; + x — x} =0 (4.1)

where the minimum runs over all hexagoHsincident ond; ¥ and H is formed by the
arcst;, t;, andy; with ¢ opposite to aB-side ing; X'. Suppose is the number of boundary
components of the surfacE. There arer Eq. (4.1). Thus we see thatS(X) can be
described as a finite union of regions, each of which is described by integer coefficient
linear equations (coming from (4.1)) in the and triangle inequalities saying that certain
linear combinations of the; with integer coefficients are nonnegative. Thus the set of
rational solutions to these equations is dense in the set of real solutions. This shows that
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the imageT (MLo(X)) is equal to the subspaceof Rgo subject tor Eq. (4.1) and the
triangular inequalities:

Xj+xp =X (4.2)

wheret;, t, t; form the A-sides of a hexagonal componentsf— Uf’:ltr.

One may see the topological type of the space defined by Eqg. (4.1) and ineq@4l&jes
as follows. Let us make a change of variables by letting: (x; + xx — x;)/2 in (4.2).
Geometrically,y; is the number of copies of arcs parallel to theside of the hexagon
corresponding to a boundary componend af. Then(4.2) becomesys, ..., yu) € Rgo.
Eqg. (4.1) become

min{y; |i € Bj} =0, (4.3)

where the index seB; consists of indices so thaty; is around thejth boundary
component of the surface. Finally we have a new set of equation defined on each edge
of the form

Vit yi=Yyk+y (4.4)

for each edge, of the ideal triangulation so that, y;, yx, y; are adjacent tg,. These are
exactly the switching equations in the train-track dual to the ideal triangulati6yi1].
We claim that Eqs(4.3) and(4.4) define a spacé in RY homeomorphic to a Euclidean
space of dimension-3x(X) — r. To this end, consider the linear subspacef RY
spanned by the vectoEiij e; Wheree; is the vector withy; =1 and all othery; = 0.

Let W be the linear subspace defined by Eq. (4.4). PeRY — R /V be the quotient
map. We claim that the restriction maps: S — P(W) is a homeomorphism. Since

is closed and locally compact, it suffices to show that the restriction Rigpgs one-to-
one and onto. To see the map is onto, given a vegter(yi, ..., yu) in W, by adding
the vector— 3" _; ZieB/_ min{y; | i € Bj}e; to y, we see that the new vector is in the
spacesS. On the other hand, if andy’ are two vectors inS so thaty — y’ € V, then
by looking at the components around each boundady, we conclude thay = y’. This
shows that the spacg and henceMLq(X) is homeomorphic to a Euclidean space. To
find the dimension of the Euclidean space, we note that the two linear sub3pauesV
intersect transversely at 0 R . Assuming this, since the dimensionWfis —3y (X) and
the dimension o¥ is r, one finds the dimension of the quotient space te-Bg (X) — r.

It remains to show that the subspadgsandV intersect transversely at 0. This follows
from a little bit of combinatorics, a linear combination of equations of type (4.3) may be
regarded as a linear combination of the duals tatlfguitably directed). Suppose a sum of
these is a sum of equations of type (4.4). Then duals to consecuéiveund a boundary
component must get weights which differ by a constant. But since the boundary edges
cycle, this says that the duals to thencident to a particular boundary component all get
the same weight. Since every boundary component is joined in a connected graph by the
t;, we conclude that all duals get the same weight (up to sign for orientation). However
looking at a single hexagon shows that the orientations cannot be compatible unless all the
weights are zero and therefore all the weights are zero. Thus the only linear combination
which vanishes is the trivial one. This establishes the assertion.
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4.2. Finally, we remark that the same argument plus the following lemma shows that
the closures of)>q x 7 (ES(Y)) in RES2) s homeomorphic to a Euclidean space. The
image inR2V is given by{(x1,...,xn, y1,..., yn8) € R?N | x; >0, y; > 0 andx;y; =0
for all i} which can be seen easily to be a Euclidean space.

Lemmad4.l. Fixanideal triangulationt =1 U- - - Uty of a compact surface r-coordinates.
For each index i, there is a finite set of elements ¢, ..., ¢ in ES(Y) and a universal
piecewise linear function f so that x/(«) = f(I(a, c1), ..., I(a, ¢)) for all o € ES(X).

The details will be deferred in a future work.
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