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Abstract

In this paper, we produce an elementary approach to Thurston’s theory of measured lamina
compact surfaces with non-empty boundary. We show that the theory can be derived from a
inequality for geometric intersection numbers between arcs inside an octagon.
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1. Introduction

1.1. Let us begin with a brief review of Dehn–Thurston’s theory of 1-dimensio
submanifolds in a surface ([2,7,10,11] and others). Given a compact connected s
Σ with possibly non-empty boundary, acurve system on Σ is a proper 1-dimensiona
submanifold so that each circle component of it is not null homotopic and not homo
into the boundary and each arc component is not relatively homotopic into the bou
The space of all isotopy classes of curve systems onΣ is denoted byCS(Σ). This
space was introduced by Max Dehn in 1938 [2] who called it thearithmetic field of the
topological surface. Given two isotopy classesα andβ of 1-dimensional submanifolds
their geometric intersection number I (α,β) is defined to be min{|a ∩ b|: a ∈ α, b ∈ β}.
Thurston observed that, except for the annulus, the Möbius band and the 3-holed sph
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sense that (1) given anyα in CS(Σ) there isβ in CS(Σ) so that their intersection numb
I (α,β) is non-zero, and (2)I (k1α1, k2α2) = k1k2I (α1, α2) for ki ∈ Z�0, αi ∈ CS(Σ)

where kiαi is the isotopy class of the collection ofki parallel copies ofai ∈ αi . In
linear algebra, given a non-degenerate quadratic formω on a latticeL of rank r, one
can form a completion of(L,ω) by canonically embeddingL into Rr so that the form
w extends continuously onRr . Thurston’s construction is the exact analogy. LetCS0(Σ)

be the subspace consisting of isotopy classes of curve systems whose compon
circles. Thurston’s space of (compactly supported) measured laminations on the s
Σ , denoted byML0(Σ), is defined to be the completion of the pair(CS0(Σ), I) in the
following sense. Givenα in CS(Σ), let π(α) be the map sendingβ to I (α,β). This
gives an embeddingπ : CS0(Σ) → RCS(Σ) where the target has the product topology. T
spaceML0(Σ) is define to be the closure ofQ>0 × π(CS0(Σ)) = {rπ(x): r ∈ Q>0, x ∈
CS0(Σ)}. The basic results in theory, proved by using the notion of train-tracks, are
the spaceML0(Σ) is homeomorphic to a Euclidean space that the intersection pairingI (, )

extends to a continuous homogeneous map fromML0(Σ) × ML0(Σ) to R. See [1,3,6–8
11] and others for a proof of the first statement and [1] for a proof of the continuity o
extension.

Our goal is to give an elementary proof of the basics results for compact su
with non-empty boundary. The continuity of the extension of the intersection nu
holds the key. It implies that the topology of the spaceML0(Σ) is homeomorphic to
a Euclidean space. By interpolation, we reduce the continuity of the extension
intersection number to a simple inequality for geometric intersection number of arcs
an octagon. Our approach rests on two parts. First, we produce a parametrization
set of isotopy classes of arcs in polygons. In order to interpolating, we extend the
CS(Σ) to a larger spaceES(Σ) of isotopy classes of essential 1-dimensional submanifo
We produce a parametrization of the spaceES(Σ) and establish an inequality concerni
geometric intersection numbers between classes inES(Σ). This inequality is essentially
result concerning arcs inside an octagon.

1.2. We give a brief sketch of our approach in this subsection. For simplicity
assume the surface is compact with non-empty boundary so that its Euler charac
is negative. A 1-dimensional proper submanifold in a compact surface is calledessential
if each circle component is not null homotopic and each arc component is no
homotopic relative to the boundary. We denote the set of all isotopy classes of es
1-dimensional submanifolds in a surfaceΣ by ES(Σ). The spaceES(Σ) containsCS(Σ)

as a subset and in general is not equal toCS(Σ) if the boundary∂Σ is not empty (i.e.,
∂Σ is an essential submanifold, but is not a curve system). The reason that we co
ES(Σ) instead ofCS(Σ) (or CS0(Σ)) is thatES(Σ) satisfies a combinatorial convexi
property. To parametrizeES(Σ), let us recall thatan ideal triangulation of a surfaceΣ
is a maximal collection of pairwise disjoint, pairwise non-isotopic essential arcsΣ
(see, for instance, [6]). Fix an ideal triangulationt = t1 ∪ t2 ∪ · · · ∪ tN of the surface
and a class[a] ∈ ES(Σ). We define thet-coordinate of [a] ∈ ES(Σ) with respect to
the ideal triangulation to be(x, . . . , xN, x ′

1, . . . , x
′
N) wherexi = I ([a], [ti]) andx ′

i is the
number of components ofa which are parallel toti . It can be shown (Lemma 3.1) that th



F. Luo, R. Stong / Topology and its Applications 136 (2004) 205–217 207

parametrization sendsES(Σ) injectively intoZ2N . (In the case ofCS0(Σ), all coordinates
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i = 0. This was considered in [6].)

Proposition 1.1. Suppose t = t1 ∪ · · · ∪ tN is an ideal triangulation of a compact surface.
Then for any three classes α,β, γ ∈ ES(Σ) with t-coordinates (x1, . . . , xN, x ′

1, . . . , x
′
N),

(y1, . . . , y
′
N) and (z1, . . . , z

′
N), the following inequality holds:

∣
∣I (α,β) − I (α, γ )

∣
∣ � 4|α||β − γ | (1.1)

where |α| = ∑N
i=1(xi + x ′

i ) and |β − γ | = ∑N
i=1(|yi − zi | + |y ′

i − z′
i |).

The key idea in the proof is the following. Given two classesβ , γ in ES(Σ) so that
|β − γ | = n, we produce a sequence of(n + 1) essential 1-dimensional submanifol
βi for i = 0,1, . . . , n starting from 2β and ending at 2γ so that|βi − βi+1| = 2. (This
cannot be achieved inCS(Σ) nor in CS0(Σ).) Thus, by interpolation, we may assum
that |β − γ | = 1 or 2. This reduces inequality (1.1) to a question on intersections of
in an octagon. We prove inequality (1.1) in this special case by analyzing the su
procedure relatingβ andγ within an octagon. We remark that with a little extra work, o
can improve the constant 4 in inequality (1.1) to 2 which is sharp.

We remark that a similar result that|I (α,β) − I (α, γ )| � K|α||β − γ | for α,β ∈
CS0(Σ) was obtained earlier by Rees [9] using train-tracks. The constantK in her theorem
depends on the train-tracks. Also, in [4], Hamidi–Tehrani proved|I (α,β) − I (α, γ )| �
|α||β − γ | for α,β ∈ CS0(Σ) assuming the theory of measured laminations.

1.3. In this subsection, we give a quick derivation of the continuity ofI (, ) on the space
of compactly supported measured laminationsML0(Σ) which is the closure ofQ�0 ×
π(CS0(Σ)) using (1.1). One first extends the pairingI (, ) to (Q�0×CS0(Σ))2 by linearity
I (k1α1, k2α2) = k1k2I (α1, α2) wherek1, k2 ∈ Q�0. Thus inequality (1.1) still holds forα,
β andγ in Q�0 × CS0(Σ). For simplicity, we will identifyCS0(Σ) with a subspace o
ML0(Σ) via the mapπ . Thus the intersection paringI (, ) is also defined on the spac
(Q�0 × π(CS0(Σ)))2 by the formulaI (x, y) = I (π−1(x),π−1(y)). Our goal is to show
that the newly defined paringI (, ) extends continuously toML0(Σ)2. Since the produc
spaceRCS(Σ) is metrizable, the continuity of the paringI (, ) on ML0(Σ) × ML0(Σ)

follows by showing that if(αn,βn) ∈ (Q�0 × CS0(Σ))2 converges, thenI (αn,βn)

converges. Now sinceαn andβn converge, both limnI (αn, [ti]) and limnI (βn, [ti]) exist
for all ti . Thus, limn,m|αn − αm| = 0, limn,m|βn − βm| = 0 and both|βn| and |αn| are
bounded. (This is where we use the spaceCS0(Σ) instead ofES(Σ).) By inequality (1.1),
we have|I (αn,βn) − I (αm,βm)| � |I (αn,βn) − I (αn,βm)| + |I (αn,βm) − I (αm,βm)|
� 4|αn||βn − βm| + 4|βm||αn − αm| which converges to 0 asm andn tend to infinity.

As a consequence of the continuity, we see that inequality (1.1) still holds forα, β

and γ in ML0(Σ). Thus we deduce a result in [6] that each elementα in ML0(Σ) is
determined by theN -tuple of intersection numbersT (α) = (I (α, [t1]), . . . , I (α, [tN ])),
i.e.,T : ML0(Σ) → RN

�0 is injective and continuous. Furthermore inequality (1.1) imp

that the spaceML0(Σ) is locally compact and the mapT : ML0(Σ) → RN is proper.
Indeed, if a sequenceαn in ML0(Σ) is bounded underT , then for anyβ ∈ CS(Σ),
inequality (1.1) implies thatI (αn,β) � |T (αn)||T (β)| is bounded inn for each fixedβ .
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subsequenceαni so thatI (αni , β) converges for allβ . This simply says that{αn} contains
a convergent subsequence. To see thatT is proper, we note that ifT (αn) converges to a
point in RN , thenT (αn) is bounded. Thusαn contains a convergent subsequence. T
shows thatT is proper andT : ML0(Σ) → RN is an embedding whose image is a clos
subset. The image ofML0(Σ) underT can be identified explicitly as a subspace defin
by a finite set of piecewise linear equations. It is shown in Section 4 that the subsp
homeomorphic to a Euclidean space. This shows that the space of measured lamina
homeomorphic to a Euclidean space.

1.4. One can also establish the same results for completions ofES(Σ) using Proposi-
tion 1.1. LetES(Σ) be its completions inside the spaceRCS(Σ) with respect to the sam
procedure. Using Proposition 1.1, one can show that the intersection paringI extends con-
tinuously toES(Σ) and thatES(Σ) is homeomorphic toR−3χ(Σ) whereχ(Σ) is the
Euler characteristic of the surface. These results are proved by showing the followin
ple fact about thet-coordinates(x1, . . . , xN, x ′

1, . . . , x
′
N). Namely, for eachi, there is a

finite set of elementsc, . . . , ck in ES(Σ) and a universal piecewise linear functionf so
thatx ′

i (α) = f (I (α, c1), . . . , I (α, ck)) for all α ∈ ES(Σ). The details will be deferred in
future work.

1.5. Notations and conventions

We useR�0, Q�0 andZ�0 to denote the sets of all non-negative real numbers, rati
numbers and integers, respectively. All surfaces are connected unless mentioned oth
Isotopies of the surface leave the boundary invariant. Given a 1-submanifolds, we denote
the isotopy class ofs by [s] and a small regular neighborhood ofs by N(s). The interior
of a manifoldX will be denoted by int(X). The geometric intersection numberI ([a], [b])
will also be denoted byI (a, b) and I ([a], b). If X is a finite set, then|X| denotes the
number of elements inX.

1.6. We would like to thank Ying-Qing Wu for careful reading of the manuscript
making nice suggestions on improving the exposition. Part of the work is supported
NSF. The related work for closed surface is in [5].

2. Arcs in polygons

We give a parametrization of the space of all isotopy classes of arc systems in a p
in this section.

2.1. Let Pn be ann-sided polygon. Anarc in Pn is a proper embedding of a close
interval intoPn−{vertices ofPn}. An arc in Pn is calledtrivial if its end points either lie
in one side ofPn or in two adjacent sides ofPn. An arc system in Pn is a finite disjoint
union of non-trivial arcs inPn. Let ES(Pn) be the set of all isotopy classes of arc syste
in Pn where isotopies leave each side invariant. Given two classesα andβ in ES(Pn),
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we define their intersection number to beI (α,β) = min{|a ∩ b|: a ∈ α, b ∈ β}. We say a
non-trivial arcs in Pn parallel to a side if one of the component ofPn − s is a quadrilateral

We first give a parametrization ofES(P6). Let the six sides of the hexagonP6 be
A1,B3,A2,B1,A3,B3 labeled cyclically. A parametrization ofES(P6) using theA-
sides is as follows. Takeα = [a] in ES(P6). Let xi = I (α,Ai) = |a ∩ Ai | and x ′

i be
the number of components ofa which are parallel toAi . Evidently xix

′
i = 0. We call

(x1, x2, x3, x
′
1, x

′
2, x

′
3) the t-coordinate of α with respect to theA-sides of the hexagon

See Fig. 1.

Lemma 2.1. Let ∆ = {(a1, a2, a3) ∈ Z3
�0: ai + aj � ak, for all i �= j �= k �= i}. The map

T : ES(P6) → {(x1, x2, x3, x
′
1, x

′
2, x

′
3) ∈ Z6

�0: xix ′
i = 0, if (x1, x2, x3) ∈ ∆ then x1+x2+x3

is even} sending an element to its t-coordinate is a bijection and homogeneous, i.e.,
T (k[a])= kT ([a]) for any k ∈ Z�0.

Furthermore, if (x1, x2, x3, x
′
1, x

′
2, x

′
3) is the t-coordinate of a class [a], then the number

of components of a is at most x1 + x2 + x3 + x ′
1 + x ′

2 + x ′
3.

Proof. Clearly T is well defined. To see thatT is onto, we construct the arc systema
with a given vector(x1, x2, x3, x

′
1, x

′
2, x

′
3) as the coordinate according to the following fi

cases:

(1) (x ′
1, x

′
2, x

′
3) = (0,0,0), and(x1, x2, x3) ∈ ∆;

(2) (x ′
1, x

′
2, x

′
3) = (0,0,0) and(x1, x2, x3) /∈ ∆;

(3) x ′
i = x ′

j = 0, x ′
k > 0;

(4) x ′
i = 0 andx ′

jx
′
k > 0, and

(5) x ′
1x

′
2x

′
3 > 0.

The corresponding arc systems are listed in Fig. 1.
The arc systema can be described as follows. Letai (respectivelybi ) be an arc

parallel toAi (respectivelyBi ) andci be an arc joiningAi to Bi . We usekx to denote
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xk > xi + xj , thena = xibi ∪ xjbj ∪ (xk − xi − xj )ck; in the case (3), sayxi � xj , then
a = x ′

kak ∪xjbj ∪ (xi −xj )ci ; in the case (4)a = x ′
j aj ∪x ′

kak ∪xici and in the last case (5

a = ⋃3
i=1x

′
iai . Since two non-trivial arcs are isotopic if and only if their end points l

on the same set of sides on the polygon, the mapT is injective.
The second part of the lemma follows from the definition.✷

2.2. Remark

It can be shown that each isotopy class of arc systems in a hexagon is determi
their six geometric intersection numbers with the six edges. It is also interesting to no
if we switch theA-sides andB-sides, then the coordinate change is given by a piece
linear homogenous continuous function in(x1, x2, x3, x

′
1, x

′
2, x

′
3).

2.3. To parameterize the arc systems on any polygonP2n of an even number of side
we use disjoint non-trivial arcs to decomposeP2n into hexagons. Let theA-sides of the
hexagons correspond to the decomposing arcs. Then a parameterization ofES(P2n) is given
by taking thet-coordinates of the hexagons with respect to theA-sides.

2.4. One of the key ingredients in the proof of Proposition 1.1 is to understan
surgery procedure relating two elements inES(P6) whose t-coordinates differ by a
basis vector. For simplicity, a classα in ES(P6) is called even if all components of
its t-coordinates are even numbers. We shall describe the surgery procedure r
two even arc systemsα and β so that theirt-coordinates(x1, x2, x3, x

′
1, x

′
2, x

′
3) and

(y1, y2, y2, y
′
1, y

′
2, y

′
3) are related by(x1, x2, x3, x

′
1, x

′
2, x

′
3) = (y1, y2, y2, y

′
1, y

′
2, y

′
3) +

(2,0, . . . ,0).
Note thatx ′

1 = y ′
1. Sincex1 > 0, it follows thatx ′

1 = y ′
1 = 0.

Take a standard representativea for α. To obtain a standard representativeb for β , we
perform the following surgery operation ona. If a contains arcsb2 andb3, we replacea
by (a − b2 ∪ b3) ∪ b1 to obtainb; if a contains an arc parallel toc1, then sinceα is even,
a contains two copies ofc1. We replacea by a − 2c1 to obtainb. In the remaining case,a
is disjoint from eitherc2 or c3, saya ∩ c2 = ∅. Sincex1 � 2, a contains at least 2 copie
of b3. In this case, replacea by (a − 2b3) ∪ 2c2 to obtainb. Note that the arcs created l
in a small regular neighborhood of the boundary and the arcs deleted. See Fig. 2
illustration.

To obtain a standard representative ofa from b, we perform the following surger
operation onb. If b contains some copies ofb1 but noc2 or c3, replaceb by (b − b1) ∪
b2 ∪ b3 to obtaina. If b contains nob1, c2 andc3, replaceb by b ∪ 2c1 to obtaina. If b

contains somec2 or c3, sayc2 ⊂ b, thenb contains even number of copies ofc2. Replace
b by (b − 2c2)∪ 2b3.

To summarize, we have the following,

Lemma 2.2. Suppose [a] and [b] are two even classes in ES(P6) whose t-coordinates
differ by 2 in one entry. Then a is obtained from b by removing at most two components
and adding at most two new components.
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3. Geometric intersection numbers on surfaces with boundary

We prove Proposition 1.1 in this section.

3.1. We begin by giving a parameterization of the spaceES(Σ) as follows. Fix a
maximal collectiont = t1 ∪ · · · ∪ tN of pairwise disjoint, non-isotopic essential arcs
ideal triangulation) of the surfaceΣ . Thus the components ofΣ − ⋃N

i=1 int(N(ti )) are
hexagons. Let theA-sides of the hexagons correspond toti ’s. Givenα in ES(Σ), let t (α)
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be thet-coordinate of α which is the collection oft-coordinates ofα in each hexagon.

rc
s

cs
n
p

it

e-2
Namely, t (α) = (x1, . . . , xN , x ′
1, . . . , x

′
N) where xi = I (α, ti ) and x ′

i is the number of
components ofα equal to[ti]. Clearlyxix ′

i = 0.

Lemma 3.1 (See also [6]).Fix an ideal triangulation t of Σ . Then the map T : ES(Σ) →
X = {(x1, . . . , xN, x ′

1, . . . , x
′
N) ∈ ZN

�0: xix
′
i = 0, if ti , tj and tk form the A-sides of a

hexagon and (xi, xj , xk) ∈ ∆, then xi + xj + xk is even} sending an element to its t-
coordinate is a bijection and homogeneous, i.e., T (k[a])= kT ([a]) for k ∈ Z�0.

In particular, let L = {(x1, . . . , xN, x ′
1, . . . , x

′
N) ∈ (2Z�0)

N : xix
′
i = 0} be the set of all

even vectors. Then L is contained in the image of T .

Proof. To see that the mapT is onto, take an element(x1, . . . , xN, x ′
1, . . . , x

′
N) in the

set X. Let H be a hexagonal component ofΣ − ⋃N
i=1 int(N(ti )) with threeA-sides

parallel to ti , tj and tk (it may occur thatti = tj ). By Lemma 2.1, we construct an a
system inH with the t-coordinate(xi, xj , xk, x ′

i , x
′
j , x

′
k). Now glue these arc system

acrossN(ti) = ti × [−1,1] by adding parallel arcs{p1, . . . , pn} × [−1,1]. We obtain a
1-submanifolds properly embedded inΣ . By the construction, there are no Whitney dis
in s ∪ t ands ∪ ∂Σ . Thus the submanifolds is essential and itst-coordinate is the give
vector(x1, . . . , xN, x ′

1, . . . , x
′
N). We calls a standard representative. To see that the ma

T is injective, givenα in ES(Σ), choose a representativea ∈ α so thatI (α, t) = |a ∩ t|.
Thusa∩H is an arc system in each hexagonal component ofΣ −⋃

int(N(ti )). Since each
non-trivial arc in the quadrilateralN(ti) is parallel to a side, it follows thata is isotopic to
a standard representative. It follows that the mapT is injective. ✷

3.2. Now we prove the following:

Proposition 1.1. Suppose t = t1 ∪ · · · ∪ tN is an ideal triangulation of a compact surface.
Then for any three classes α,β, γ ∈ ES(Σ) with t-coordinates (x1, . . . , xN, x ′

1, . . . , x
′
N),

(y1, . . . , yN , y ′
1, . . . , y

′
N) and (z1, . . . , zN , z′

1, . . . , z
′
N), the following inequality holds:

∣
∣I (α,β) − I (α, γ )

∣
∣ � 4|α||β − γ | (1.1)

where |α| = ∑N
i=1(xi + x ′

i ) and |β − γ | = ∑N
i=1(|yi − zi | + |y ′

i − z′
i |).

To begin the proof, first note that since the intersection pairingI (, ) is homogeneous,
suffices to prove inequality (1.1) for 2α, 2β and 2γ in ES(Σ). The t-coordinate of 2α is
an even vector inL. For simplicity, we call a classα ∈ ES(Σ) even if T (α) ∈ L. Thus it
suffices to prove Proposition 1.1 for even classes.

Given two even vectorsu = (u1, . . . , u2N) and v = (v1, . . . , v2N) in L so that their
distance|u − v| = ∑2N

i=1 |ui − vi | is 2n, there is a sequence ofn + 1 even vectors
wj , j = 0, . . . , n so thatw0 = u, wn = v and |wi+1 − wi | = 2. Thus given two even
classesβ , γ in ES(Σ) so that|β −γ | = 2n, by Lemma 3.1, there exists a sequence ofn+1
even classes starting fromβ and ending atγ so that the adjacent elements are of distanc
apart. Thus it suffices to prove Proposition 1.1 for even classesβ andγ so that|β −γ | = 2.
Without loss of generality, we may assume thatT (γ ) = T (β)± (0, . . . ,0,2,0, . . . ,0), i.e.,
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(z1, . . . , zN , z′
1, . . . , z

′
N) = (y1, . . . , yN, y ′

1, . . . , y
′
N) ± (0, . . . ,0,2,0, . . . ,0). We need to

consider two cases:

(1) z′
i = y ′

i ± 2, and
(2) zi = yi ± 2 for somei.

In the first case thatz′
i = y ′

i ± 2, the classγ is obtained fromβ by adding or removing
two copies of[ti]. ThusI (α,β) = I (α, γ ) ± 2xi . The inequality follows.

In the second case, let us assume for simplicity thati = 1. LetH1 andH2 be the closures
of the hexagonal components ofΣ − (

⋃N
i=2 int(N(t)) ∪ t1) lying on two sides oft1 (it

may occur thatH1 = H2). See Fig. 3. IfH1 �= H2, thenH1 ∩ H2 = t1 andH1 ∪ H2 is an
octagon. In this case we assume thatH1 ∪ H2 is a convex octagon. We will consider th
casesH1 �= H2 andH1 = H2 separately.

3.3. SupposeH1 �= H2. By symmetry, to show (1.1) for|β − γ | = 2, it suffices to prove

I (α, γ ) � I (α,β) + 8|α|. (3.1)

Take a standard representativea and b of α and β so that |a ∩ b| = I (α,β) and
a∩ (H1 ∪H2) andb∩ (H1 ∪H2) consist of straight line segments. Then by the assump
on thet-coordinates ofβ andγ and Lemmas 3.1 and 2.2, a representativec of γ can be
obtained fromb by performing the following three surgeries inside the octagonH1 ∪ H2.

Surgery 1. remove at most two components ofb ∩ H1 and add at most two new arcs.
Surgery 2. remove at most two components ofb ∩ H2 and add at most two new arcs.
Surgery 3. perform a switching operation inside the neighborhoodN(t1) to join the arcs

created or deleted in surgeries 1 and 2. See Fig. 4.

By the surgery construction, we obtain a representativec for γ so thatc ⊂ b∪s1∪s2∪s3
wheres1, s2 ands3 are arcs created in the surgeries 1, 2, and 3.

Thus we haveI (α, γ ) � |a ∩ c| � |a ∩ b| + |a ∩ s1| + |a ∩ s2| + |a ∩ s3| = I (α,β) +
|a ∩ s1| + |a ∩ s2| + |a ∩ s3|. We estimate the last three terms as follows. Note thatu
is an arc system in a hexagon witht-coordinate(v1, v2, v3, v

′
1, v

′
2, v

′
3), thenu has at mos



214 F. Luo, R. Stong / Topology and its Applications 136 (2004) 205–217

gon

ry

ere
the

h

Fig. 4.

|u| = v1 + v2 + v3 + v′
1 + v′

2 + v′
3 components. Now any two straight arcs inside a hexa

intersect in at most one point. Thus for any arcd inside the hexagon, we haveI (d,u) � |u|.
Sincesi consists of at most two arcs components inside a hexagon, we have|si ∩a| � 2|a|.
Here the coefficient 2 occurs instead of 1 because twoA-sides of the hexagonHi may be
isotopic in the surface. Thus|a ∩ s1| + |a ∩ s2| � 4|a|. On the other hand, by the surge
3, we see that|a ∩ s3| � 4|x1| � 4|a|. This ends the proof of (3.1).

3.4. The second case thatH1 = H2 is an annulus is simple. We simply note that th
are three surgeries relatingc to b as shown in Fig. 5. The three surgeries depend on
numbern of components of arcs jointingt2 to ∂Σ in H1. In the first case,n � 4, in the
second casen = 0 and in the last casen = 2. In the first casen � 4, we remove four suc
arcs and replace them by four arcs going around the boundary component of∂Σ . In the
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second case, we add two parallel copies of the boundary components. In the last
n = 2, we remove these two arcs and replace them by a parallel copy of the bou
component and an arc going around the boundary. In all cases, we see that (3.1) ho

4. Topology of the space of measured laminations

In this section, we derive the known fact [6,11] that the spaces of all closed mea
laminationsML0(Σ) is homeomorphic to a Euclidean space.

4.1. To see thatML0(Σ) is a Euclidean space, we fix an ideal triangulationt =
t1 ∪ · · · ∪ tN of the surface. By Proposition 1.1 and Section 1.3, we see that the
T : ML0(Σ) → RN

�0 sending an elementα to its t-coordinate is an embedding into a clos
subset. It remains to find the image of the mapT . To this end, let us find the images und
T of the space of all closed curve systemsCS0(Σ). Given at-coordinatex = (x1, . . . , xN)

subject to the condition that whenti , tj , andtj form theA-sides of a hexagonal compone
of Σ − ⋃

m tm, then(xi, xj , xk) ∈ ∆, one constructs an essential submanifolds with x as
its t-coordinate by Lemma 3.2. This essential submanifolds is a closed curve system
and only if the submanifolds contains no loop parallel to∂Σ . This is the same as sayin
that at least one of the hexagons incident on∂iΣ does not contain an arc parallel to t
B-side corresponding to∂iΣ , i.e., for each boundary component∂iΣ ,

min
H

{xj + xk − xl} = 0 (4.1)

where the minimum runs over all hexagonsH incident on∂iΣ andH is formed by the
arcstj , tk , andtl with tl opposite to aB-side in∂iΣ . Supposer is the number of boundar
components of the surfaceΣ . There arer Eq. (4.1). Thus we see thatCS0(Σ) can be
described as a finite union of regions, each of which is described by integer coef
linear equations (coming from (4.1)) in thexi and triangle inequalities saying that certa
linear combinations of thexi with integer coefficients are nonnegative. Thus the se
rational solutions to these equations is dense in the set of real solutions. This sho
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the imageT (ML0(Σ)) is equal to the subspaceS of RN subject tor Eq. (4.1) and the
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triangular inequalities:

xj + xk � xl (4.2)

wheretj , tk, tl form theA-sides of a hexagonal component ofΣ − ⋃N
r=1 tr .

One may see the topological type of the space defined by Eq. (4.1) and inequalitie(4.2)
as follows. Let us make a change of variables by lettingyi = (xj + xk − xl)/2 in (4.2).
Geometrically,yi is the number of copies of arcs parallel to theB-side of the hexago
corresponding to a boundary component of∂Σ . Then(4.2) becomes(y1, . . . , yM) ∈ RM

�0.
Eq. (4.1) become

min{yi | i ∈ Bj } = 0, (4.3)

where the index setBj consists of indicesi so thatyi is around thej th boundary
component of the surface. Finally we have a new set of equation defined on eac
of the form

yi + yj = yk + yl (4.4)

for each edgetn of the ideal triangulation so thatyi, yj , yk, yl are adjacent totn. These are
exactly the switching equations in the train-track dual to the ideal triangulationt [6,11].
We claim that Eqs.(4.3) and(4.4) define a spaceS in RM homeomorphic to a Euclidea
space of dimension−3χ(Σ) − r. To this end, consider the linear subspaceV of RM

spanned by the vectors
∑

i∈Bj
ei whereei is the vector withyi = 1 and all otheryj = 0.

Let W be the linear subspace defined by Eq. (4.4). LetP :RM → RM/V be the quotien
map. We claim that the restriction mapP |S :S → P(W) is a homeomorphism. SinceS
is closed and locally compact, it suffices to show that the restriction mapP |S is one-to-
one and onto. To see the map is onto, given a vectory = (y1, . . . , yM) in W , by adding
the vector−∑r

j=1
∑

i∈Bj
min{yi | i ∈ Bj }ei to y, we see that the new vector is in t

spaceS. On the other hand, ify and y ′ are two vectors inS so thaty − y ′ ∈ V , then
by looking at the components around each boundary∂jΣ , we conclude thaty = y ′. This
shows that the spaceS and henceML0(Σ) is homeomorphic to a Euclidean space.
find the dimension of the Euclidean space, we note that the two linear subspacesW andV
intersect transversely at 0 inRM . Assuming this, since the dimension ofW is −3χ(Σ) and
the dimension ofV is r, one finds the dimension of the quotient space to be−3χ(Σ)− r.

It remains to show that the subspacesW andV intersect transversely at 0. This follow
from a little bit of combinatorics, a linear combination of equations of type (4.3) ma
regarded as a linear combination of the duals to theti (suitably directed). Suppose a sum
these is a sum of equations of type (4.4). Then duals to consecutiveti around a boundar
component must get weights which differ by a constant. But since the boundary
cycle, this says that the duals to theti incident to a particular boundary component all
the same weight. Since every boundary component is joined in a connected graph
ti , we conclude that all duals get the same weight (up to sign for orientation). How
looking at a single hexagon shows that the orientations cannot be compatible unless
weights are zero and therefore all the weights are zero. Thus the only linear comb
which vanishes is the trivial one. This establishes the assertion.
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4.2. Finally, we remark that the same argument plus the following lemma shows that
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the closures ofQ�0 × π(ES(Σ)) in RCS(Σ) is homeomorphic to a Euclidean space. T
image inR2N is given by{(x1, . . . , xN , y1, . . . , yN) ∈ R2N | xi � 0, yi � 0 andxiyi = 0
for all i} which can be seen easily to be a Euclidean space.

Lemma 4.1. Fix an ideal triangulation t = t1∪· · ·∪ tN of a compact surface t-coordinates.
For each index i , there is a finite set of elements c, . . . , ck in ES(Σ) and a universal
piecewise linear function f so that x ′

i(α) = f (I (α, c1), . . . , I (α, ck)) for all α ∈ ES(Σ).

The details will be deferred in a future work.
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