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Conformal geometry is in the core of pure mathematics. It is more flexible than Riemaniann
metric but more rigid than topology. Conformal geometric methods have played important
roles in engineering fields.

This work introduces a theoretically rigorous and practically efficient method for comput-
ing Riemannian metrics with prescribed Gaussian curvatures on discrete surfaces – discrete
surface Ricci flow, whose continuous counter part has been used in the proof of Poincaré
conjecture. Continuous Ricci flow conformally deforms a Riemannian metric on a smooth
surface such that the Gaussian curvature evolves like a heat diffusion process. Eventually,
the Gaussian curvature becomes constant and the limiting Riemannian metric is conformal
to the original one.

In the discrete case, surfaces are represented as piecewise linear triangle meshes. Since
the Riemannian metric and the Gaussian curvature are discretized as the edge lengths and
the angle deficits, the discrete Ricci flow can be defined as the deformation of edge lengths
driven by the discrete curvature. We invented numerical algorithms to compute Riemannian
metrics with prescribed Gaussian curvatures using discrete Ricci flow.

We also showed broad applications using discrete Ricci flow in graphics, geometric mod-
eling, and medical imaging, such as surface parameterization, surface matching, manifold
splines, and construction of geometric structures on general surfaces.

Keywords: Conformal geometry, Discrete Ricci flow, Riemannian metric, Gaussian curvature, Global
conformal parametrization

1. Introduction

Conformal geometry offers rigorous and powerful theoretic tools for practical engineer-
ing applications. Ricci flow is a novel curvature flow method in computational conformal
geometry, which will play important roles in practice because of its universality and flexi-
bility.

1.1. Conformal Geometry

Conformal geometry is in the core of pure mathematics, which is the intersection of com-
plex analysis, algebraic topology, differential geometry, algebraic geometry, and many other
fields in mathematics.

With the development of 3D acquisition technologies and computational power, confor-
mal geometry plays more and more important roles in engineering fields. For example,
conformal geometry has been broadly applied in computer graphics, computer vision, geo-
metric modeling and medical imaging. The theoretic foundation for computational con-
formal geometry is developing rapidly and many practical algorithms converting classical
theories in conformal geometry have been invented.

So far, the computational methodologies in conformal geometry for general surfaces are
mainly in the following categories: harmonic maps, holomorphic differentials, and newly
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invented method in geometric analysis, Ricci flow. Ricci flow is very powerful and flexible,
which will cause great impact in engineering field. In this work, we mainly focus on the
introduction to the theories and algorithms of discrete surface Ricci flow.

1.2. Ricci Flow

Recently, the term of Ricci flow becomes popular, due to the fact that it has been applied
for the proof of the Poincaré conjecture on 3-manifolds [14–16]. Richard Hamilton intro-
duced the Ricci flow for Riemannian manifolds of any dimension in his seminal work [10]
in 1982. Intuitively, a surface Ricci flow is the process to deform the Riemannian metric of
the surface. The deformation is proportional to Gaussian curvatures, such that the curva-
ture evolves like the heat diffusion.

It has been considered as a powerful tool for computing the conformal Riemannian met-
rics with prescribed Gaussian curvatures. For many engineering applications, it is also
highly desirable to compute Riemannian metrics on surfaces with prescribed Gaussian cur-
vatures, such as parameterization in graphics, spline construction in geometric modeling,
conformal brain mapping in medical images, and so on.

Surface parameterization refers to the process of mapping a surface onto a planar domain.
If such a parameterization is known, any functions or signals (e.g., texture) on the flat para-
metric domain can be easily pulled back to the surface, such that complicated processing
on surfaces can be transferred to easy computing on the flat parametric domain. Therefore
it is a key ingredient for digital geometry processing, such as texturing [12], deformation
[2], and resampling [1]. The process for parameterizing surfaces is quadrivalent to finding
a special flat Riemannian metric, with zero Gaussian curvatures everywhere.

Constructing splines whose parametric domain is an arbitrarily topological manifold is
an important issue for computer-aided geometric modeling [5]. In order to define such
parameters and knots of the spline, a special atlas of the surface is required such that all
local coordinate transition maps are affine [6]. One way to construct such an atlas is to find
a flat metric of the surface first, then locate a collection of patches covering the whole sur-
face, and flatten each patch using the flat metric to form an atlas. Here again, the key step
is to obtain the flat metric of the given surface.

In medical imaging field, it is important to deform the human brain cortex surface to
the unit sphere in order to easily compare and register several different brain cortexes on a
canonical domain [7]. This is equivalent to find a Riemannian metric on the cortex surface,
such that the Gaussian curvature induced by the metric equals to one everywhere.

Comparing to existing methods, which can only handle a subproblem in the scope of
Euclidean parametrization, Ricci flow can handle arbitrary topologies and find arbitrary
conformal mappings, which include not just Euclidean, but also hyperbolic and spherical
parameterizations.

The discrete Ricci flow on piecewise linear surfaces was introduced in [4]. The existence
and convergence of the discrete Ricci flow for surfaces were established. However, the dis-
crete Ricci flow is not a very efficient algorithm for practical use due to the gradient nature
of the flow. Recently, we improve the gradient descent method by the Newton’s method and
drastically speed up the search for the limiting metric by the order of magnitudes. Further-
more, we generalize the results from constant discrete curvature to arbitrarily prescribed
discrete curvature, from the metric induced by the combinatorial structure of the mesh
to the induced Euclidean metric. We have developed an effective and complete system to
compute Riemannian metrics with prescribed Gaussian curvatures on generally topological
surfaces has been developed in this paper based on discrete Euclidean Ricci flow, discrete
hyperbolic Ricci flow, and discrete spherical Ricci flow.



February 6, 2004 6:33 RPS ch104

M. Jin, J. Kim, F. Luo and X. Gu 3

1.3. Outline

In Sec. 2, theoretic background in differential geometry and Riemannian surface are intro-
duced; in Sec. 3, the theories and algorithms of discrete surface Ricci flow are given; practi-
cal applications are presented in Sec. 4; in the conclusion Sec. 5, future directions are pointed
out.

2. Theoretical Background

In this section, we introduce several important concepts of differential geometry and Rie-
mannian surface, which are directly related with our algorithms.

2.1. Riemannian Metric

Suppose S is a C2 smooth surface embedded in R3 with local parameter S(u1, u2). Let
r(u1, u2) be a point on S and dr = r1du1 + r2du2 be the tangent vector defined at that point,
where r1, r2 are the partial derivatives of r with respect to u1 and u2, respectively. We call
the length of the tangent vector as the Riemannian metric, and it is calculated using the first
fundamental form as follows:

< dr, dr >=< ru, ru > du2 + 2 < ru, rv > dudv+ < rv, rv > dv2.

The first fundamental form is an intrinsic property since it is independent of the choice of
the surface parameterization as well as the rigid motion of the given surface S.

In this discrete setting, the edge lengths of a mesh Σ are sufficient to define the Rieman-
nian metric on Σ,

l : E → R
+,

as long as for any single face fijk, the edge lengths satisfy the triangle inequality: lij + ljk >

lki.

2.2. Gaussian Curvature

The Gaussian curvature K(p) of a point p on a surface S is defined as the ratio between
the infinitesimal area on the unit sphere and the infinitesimal area around p on S. The area
on the unit sphere is defined by the bunch of normals in the infinitesimal area around p.
It determines whether a surface is locally plane(when it is zero), locally convex (when it is
positive) or locally saddle (when it is negative). But from Gauss’s remarkable theorem [9],
Gaussian curvature is also an intrinsic property of the surface, meaning it does not depend
on the particular embedding of the surface, only depending on the Riemannian metric of
the surface.

The discrete Gaussian curvature on a mesh can be computed from the angle deficit [13],

Ki =

{

2π − ∑ fijk∈F θ
jk
i , interior vertex

π − ∑ fijk∈F θ
jk
i , boundary vertex

(1)

where θ
jk
i represents the inner angle of vertex vi in the face fijk.

2.3. Gauss-Bonnet Theorem

Gauss-Bonnet theorem [9] explains the connection between the total Gaussian curvatures
on a surface S (the integration of Gaussian curvatures over the surface) and the topology
of S.
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∫

S
KdA +

∫

∂S
kgds = 2πχ(S), (2)

where K, kg, and χ(S) are the Gaussian curvature on S, the geodesic curvature along
boundaries of S, and the Euler number of S, respectively.

In the discrete setting, the Gauss-Bonnet theorem (Eq. 2) still holds on meshes as follows.

∑
vi∈V

Ki + λ ∑
fi∈F

Ai = 2πχ(M),

where Ai denotes the area of face fi, and λ represents the constant curvature for the canon-
ical geometry; +1 for the sphere, 0 for the plane, and −1 for the hyperbolic space.

2.4. Conformal Deformation

Suppose a surface S is embedded in R3, then it has a Riemannian metric, induced from the
Euclidean metric of R3, denoted by g. Suppose u : S → R is a scalar function defined on
S It can be verified that e2ug is another Riemannian metric on S, denoted by ḡ. It can also
be proven that angles measured by g are equal to those measured by ḡ, which means ḡ is
conformal to g. It maps infinitesimal circles to infinitesimal circles and preserves the inter-
section angles among the circles, which calls conformal map. In Fig. 1, the bunny surface is
conformally mapped to plane, and its coordinates in plane is used as texture coordinates to
pull the plane textures(check-board and tangent circles) back to the surface. As we can see,
those right angles and tangency property of circles are well preserved by the mapping.

When the Riemannian metric is conformally deformed, curvatures will also be changed
accordingly. Suppose g is changed to ḡ = e2ug. Then the Gaussian curvature will become

K̄ = e−2u(−∆u + K), (3)

where ∆ is the Laplacian–Beltrami operator under the original metric g. The geodesic cur-
vature will become

k̄ = e−u(∂ru + k), (4)

where r is the tangent vector orthogonal to the boundary. According to Gauss-Bonnet theo-
rem, the total curvature is still:

∫

S
KdA +

∫

∂S
kds =

∫

S̄
K̄dĀ +

∫

∂S̄
k̄ds̄ = 2πχ(S), (5)

where χ(S) is the Euler characteristic number of S and ∂S is the boundary of S.

Fig. 1. The bunny surface is conformally mapped to plane, and its coordinates in plane is used as tex-
ture coordinates to pull the plane textures(check-board and tangent circles) back to the surface. Confor-
mal mapping preserves those right angles in the left one, also maps infinitesimal circles to infinitesimal
circles and keeps tangency in the right one.
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Fig. 2. Circle Packing Metric: (a) Flat circle packing metric (b) Circle packing metric on a triangle.

In order to approximate conformal deformation of metrics in discrete setting, the circle
packing metric is introduced in [17,18]. Let us denote Γ as a function which assigns a radius
γi to each vertex vi,

Γ : V → R
+.

Similarly, let a weight a function on the mesh,

Φ : E → [0,
π

2
],

an acute angle Φ(eij) to each edge eij. The pair of vertex radius and edge weight function on
a mesh Σ, (Γ, Φ), is called a circle packing metric of Σ. If all the intersection angles are acute,
then the edge lengths induced by a circle packing satisfy triangle inequality.

Fig 2. illustrates the circle packing metrics. Each vertex vi has a circle whose radius is γi.
For each edge eij, the intersection angle φij is defined by the two circles of vi and vj, which
either intersect or are tangent. Two circle packing metrics (Γ1, Φ1) and (Γ2, Φ2) on a same
mesh are conformally equivalent, if Φ1 ≡ Φ2. Therefore, a conformal deformation of a circle
packing metric only modifies the vertex radii.

3. Discrete Surface Ricci Flow

3.1. Smooth Surface Ricci Flow

Suppose S is a smooth surface with Riemannian metric g. The Ricci flow deforms the metric
g(t) according to its induced Gaussian curvature K(t), where t is the time parameter

dgij(t)
dt

= −2K(t)gij(t). (6)

Suppose T(t) is a temperature field on the surface. The heat diffusion equation is dT(t)
/dt = −∆T(t), where ∆ is the Laplace-Beltrami operator induced by the surface metric.
The temperature field becomes more and more uniform with the increase of t, and it will
become constant eventually.

In a physical sense, the curvature evolution induced by the Ricci flow is exactly the same
as heat diffusion on the surface, as follows:

dK(t)
dt

= −∆g(t)K(t), (7)

where ∆g(t) is the Laplace-Beltrami operator induced by the metric g(t). We can simplify
the Ricci flow in Eq. 6 with g(t) = e2u(t)g(0), then the Ricci flow is

du(t)
dt

= −2K(t). (8)

The Ricci flow defined in Eq. 6. is convergent and leads to a conformal metric [3,10].
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3.2. Theory of Discrete Surface Ricci Flow

Suppose Σ is a discrete surface with an initial circle packing metric. Let ui be

ui =







log γi E2

log tanh γi
2 H2

log tan γi
2 S2

(9)

then the discrete Ricci flow is defined as follows.
dui(t)

dt
= (K̄i − Ki) (10)

Similarly, in the discrete case, the circle packing metric determines the discrete Gaussian
curvature, and the discrete Ricci flow conformally deforms the circle packing metric with
respect to the Gaussian curvature (Eqs. 9 and 10).

Discrete Ricci flow can be formulated in the variational setting, since it is a negative
gradient flow of one special energy form. Let Σ a triangle mesh which admits spherical
(Euclidean or hyperbolic ) geometry. For arbitrary two vertices vi, vj, the following sym-
metric relation holds

∂Ki
∂uj

=
∂Kj

∂ui
.

Let ω = ∑
n
i=1 Kidui be a differential one-form [19]. The symmetric relation guarantees that

the one-form is closed (curl free) in the simply connected u domain.

dω = ∑
i,j

(
∂Ki
∂uj

−

∂Kj

∂ui
)dui ∧ duj = 0.

By Stokes theorem, the following integration is path independent,

f (u) =

∫ u

u0

n

∑
i=1

(K̄i − Ki)dui, (11)

where u0 is an arbitrary initial metric. Therefore, the above integration is well defined, and
called the Ricci energy. The discrete Ricci flow is the negative gradient flow of the discrete
Ricci energy. The discrete metric which induces K̄ is the minimizer of the energy.

Computing the desired metric with constant or user-defined curvature K̄ is equivalent
to minimizing the discrete Ricci energy. For the Euclidean (or hyperbolic) case, the discrete
Ricci energy is strictly convex (namely, its Hessian is positive definite). The global minimum
uniquely exists, corresponding to the metric ū, which induces k̄. The discrete Ricci flow
converges to this global minimum [4].

Theorem 1 (Chow & Luo: Euclidean Ricci Energy. The Euclidean Ricci energy f (u) on
the space of normalized metric ∑ ui = 0 is strictly convex.

Theorem 2 (Chow & Luo: Hyperbolic Ricci Energy). The hyperbolic Ricci energy is
strictly convex.

3.3. Discrete Euclidean Ricci Flow for Genus One Surface

Discrete Euclidean Ricci flow method computes special metrics of the surface conformal to
the original metric with prescribed target curvature. For genus one closed surfaces, we set
the target Gaussian curvature to be zero everywhere. The universal covering space of the
surface can be isometrically embedded on the plane. Fig. 3(b) shows one example. The
kitten surface is of genus one, the universal covering space is embedded on the plane.
The rectangle is a fundamental polygon.
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3.4. Discrete Hyperbolic Ricci Flow for High Genus Surface

For high genus surfaces, there exists a unique Riemannian metric, which is conformal to
the original Riemannian metric, and induces constant Gaussian curvature everywhere, the
constant is −1. Such kind of metric can be computed using discrete hyperbolic Ricci flow.
The universal covering space of the surface can be isometrically embedded on the hyper-
bolic space. Fig. (c) demonstrates the embedding of the universal covering space of a genus
two surface on the Poincaré model of hyperbolic space.

3.5. Discrete Spherical Ricci Flow for Genus Zero Surface

For genus zero surfaces, there exists a unique Riemannian metric, which is conformal to
the original Riemannian metric, and induces constant Gaussian curvature everywhere, the
constant is +1. Such kind of metric can be computed using discrete spherical Ricci flow.
The universal covering space of the surface is itself. Fig. 3(a) demonstrates the embedding
of the universal covering space of a genus zero surface on the unit sphere.

The conformal metrics and the curvatures of a surface are essentially of one-to-one cor-
respondence. The conformal metric can be computed using a prescribed curvature on the
surface using Euclidean Ricci flow method. Fig. 4 shows one example. The input surface
is a topological disk. It is mapped to the planar domains specified by curvature on the
boundaries. The curvature of interior points are zero everywhere. The conformal mapping
induced by the metric is fully controlled by the prescribed boundary curvatures.

(a) χ > 0 (b) χ = 0 (c) χ < 0

Fig. 3. (a) Spherical metric of a genus zero surface, computed using discrete Spherical Ricci flow.
(b) Conformal flat metric of a genus one surface, computed using discrete Euclidean Ricci flow. (c)
Hyperbolic metric of a genus two surface, computed using discrete hyperbolic Ricci flow.

Fig. 4. Conformal flat metrics are designed by the target curvature.
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Fig. 5. Surface matching using conformal mapping.

4. Applications of Discrete Ricci Flow

4.1. Surface Matching

Surface matching is a fundamental task for computer vision, graphics and medical imaging.
Fig.5 shows the basic idea of using conformal mappings to convert 3D matching problems
to 2D ones. Suppose S1 and S2 are two surfaces in R3. φ1 : S1 → D and φ2 : S2 → D are
conformal mappings to map surfaces to the canonical planar domain. f̄ : D → D is a a map
from D to itself, this is a 2D matching process. Then

f = φ−1
2 ◦ f̄ ◦ φ1, S1 → S2,

is the desired 3D matching.

4.2. Shape Space

Surfaces can be classified by conformal equivalence. For closed surfaces with one handle
(genus one), all conformal classes form a 2 dimensional space, namely, each conformal class
can be represented by 2 real parameters. For genus g > 1 closed surfaces, all the conformal
equivalent classes form a 6g − 6 dimensional space, which is called the Teichmüller space.
The Teichmüller Coordinates of a surface can be explicitly computed and as the fingerprint of
the shape, which can be applied to geometric database indexing and the shape comparison
purposes.

Given a pair of topological pants (a topological annulus with two holes ), we can com-
pute a unique hyperbolic metric and embed it in the hyperbolic space. The Teichmüller
coordinates of it are the geodesic lengths of three boundaries under the hyperbolic metric.
Fig. 6 shows three such kind of surfaces and their embedding in the hyperbolic space. If the
fundamental polygons are congruent in the hyperbolic space, the corresponding surfaces
are conformally equivalent. It is easy to see that every surface in the figure is not conformal
equivalent to any other one.

4.3. Manifold Splines

Manifold spline is introduced in [6], which generalizes planar splines to general surface
domains. The key idea is that most planar splines are based on polar forms, which are para-
metric affine invariant. That is, if we change the parameters by an affine transformation, and
rebuild the spline surface, then the shape of the spline surface doesn’t change. Therefore, if
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Fig. 6. The coordinates of topological annuli with 2 holes in the shape space are the lengths of their
boundaries under the hyperbolic metric. The shape of their fundamental polygon indicates the shape
space coordinates.

(a) Parametric (b) The central (c) Manifold (d) Spline (e) Control point
domain chart splines patchwork distribution.

Fig. 7. Examples of manifold triangular B-spline. The affine atlas are computed using discrete
Euclidean Ricci flow, and The transition function is a combination of translation and rotation.

we can cover a surface domain by a set of coordinate charts, such that the coordinate tran-
sition functions are affine, then we can construct splines defined on the surface domains.
Details can be found in [6].

It is very challenging to construct such kind of affine atlas. and a set of affine atlas can
be constructed only on closed genus one surfaces or open surfaces. Splines defined on
manifold domains with complicated topologies are plagued by the existence of topology-
dependent singularity points, where the surface is not continuous any more. The previous
method in [6] uses differential forms borrowed from [8] and [11] to construct affine atlas,
which has to produce 2g − 2 singularities for a genus g surface.

While using discrete Euclidean Ricci flow, all curvatures of a closed manifold with com-
plicated topology can be put to only one singular vertex, with the position of this singularity
controllable, which produces an everywhere flat metric of the manifold domain except at
one singular point. This metric induces an affine atlas covering the whole manifold except
for the one singular point, such that a high degree continuous manifold spline is constructed
over this affine atlas except this point filled out with minimal surface.

5. Future Works

Computational conformal geometry is an emerging field. There are a lot of challenging open
problems both in theory and in practice. Establishing the convergence of discrete conformal
mapping to the smooth solution and estimating the error bounds are widely open. Design-
ing algorithms to compute extremals quasi-conformal maps, designing data structures for
holomorphic quadratics are under investigation. Applying computation conformal geomet-
ric methods for broader applications and adapt them to real systems is also developing.
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