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Abstract

Let Y be the zero loci of a regular section of a convex vector bundle E
over X . We provide a new proof of a conjecture of Cox, Katz and Lee
for the virtual class of the moduli space of genus zero stable maps to Y .
This in turn yields the expected relationship between Gromov-Witten
theories of Y and X which together with Mirror Theorems allows for
the calculation of enumerative invariants of Y inside of X .

1 Introduction

Let X be a smooth, projective variety over C. A vector bundle

E → X

is called convex if H1(f∗(E)) = 0 for any morphism f : P1 → X. Let
Y = Z(s) ⊂ X be the zero locus of a regular section s of a convex vector
bundle E and let i denote the embedding of Y in X. It is the relationship
between the Gromov-Witten theories of Y and X that we study here.
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2 Virtual class of zero loci and mirror theorems

1.1 Virtual class of the zero loci

Let M0,n(X, d) be the Q-scheme that represents coarsely genus zero, n-
pointed stable maps

(C, x1, x2, ..., xn, f : C → X)

of class d ∈ H2(X,Z). Since E is convex the vector spaces H0(f∗(E)) fit into
a Q-vector bundle Ed on M0,n(X, d). The section s of E induces a section s̃
of Ed over M0,0(X, d) via s̃((C, f)) = s ◦ f . If i∗(β) = d, the map i : Y →֒ X
yields an inclusion iβ : M0,0(Y, β) → M0,0(X, d). Clearly

Z(s̃) =
∐

i∗(β)=d

M 0,0(Y, β).

The map i∗ : H2(Y,Z) → (H2(X,Z) is not injective in general, hence the
zero locus Z(s̃) may have more then one connected component. An example
is the quadric surface in P3.

The Q-normal bundle of Z(s̃) in M0,0(X, d) is Ed|Z(s̃). Let ctop denote
the top chern operator. In Section 2.1 of this paper we prove the following
theorem

Theorem 1.1.1. For any d ∈ H2(X,Z),

∑

i∗β=d

(iβ)∗[M0,0(Y, β)]
vir = ctop(Ed) ∩ [M0,0(X, d)]vir.

Remark 1.1.1. Theorem 0.1.1 was conjectured in [5] for any n-pointed mod-
uli stack. But one of the functorial properties of the virtual class is that

π∗
n([M0,n−1(Y, β)]

virt) = [M0,n(Y, β)]
virt.

It is also true that π∗
n+1(Ed) = Ed (see Lemma 3.4 in [6].) It suffices then

to prove the theorem for 0-pointed stable maps.

Remark 1.1.2. The first proof of this theorem appeared in [11]. It is done
in the category of stacks and uses the Behrend-Fantechi construction of the
virtual fundamental class. The version of this theorem where the virtual
classes are those of Li-Tian essentially follows from Proposition 3.9 of [15].
Our approach is a mixture of the two: we use an extension of the Li-Tian
construction of the virtual fundamental class in the category of Q-schemes as
well as intersection-theoretic features of a Q-scheme coming from its stack
nature.
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1.2 Mirror Theorems

Theorem 0.1.1 together with the Mirror Theorem provide a complete answer
to the relationship between the enumerative invariants of Y and those of X.

Let {T0 = 1, T1, ..., Tr , ..., Tm} be a basis of H∗(Y,Q) such that

Span{T1, ..., Tr} = H2(Y,Q).

Let t1, ..., tr be formal variables and tT =
∑r

i=1 tiTi. We denote by c the
cotangent line class on M0,1(Y, β), i.e. the first chern class of the line bundle
whose fiber over moduli point (C, x1, f) is T∨

C,x1
. Let e be the evaluation

map on M0,1(Y, β). Let ~ be a formal parameter. Then the quantum D-
module structure of the pure quantum cohomology of Y is determined by
the following formal function (see subsection 6 of section 1 in [8]):

JY := e
tT
~ ∩



1 +
∑

06=β∈H2(Y,Z)

qβe∗

(

[M0,1(Y, β)]
vir

~(~− c)

)



 . (1)

Note that e
tT
~ acts via its power series expansion (which is finite). For

our purposes JY will be viewed as an element of the Novikov completion
H∗Y [[t1, ..., tr, ~

−1]][[qβ ]] of the ringH∗Y [[t1, ..., tr, ~
−1]] along the semigroup

of rational curves β in Y . This generator encodes Gromov-Witten invariants
and the gravitational descendants of Y .

For each stable map (C, x1, f) ∈ M 0,1(X, d), the sections of f∗(E) that
vanish at x1 form a bundle E′

d that fits into an exact sequence:

0 → E′
d → Ed → e∗(E) → 0 (2)

The quantum D-module structure of the E-twisted quantum cohomology
of X [6][8] is determined by the following formal function:

JE := e
tT ′

~ ctop(E) ∩



1 +
∑

06=d∈H2(X,Z)

qde∗

(

ctop(E
′
d) ∩ [M0,1(X, d)]vir

~(~− c)

)





where tT ′ and c denote similar expressions to those in JY . The Mirror
Theorem states that for a large class of smooth varieties X, the generator
JE is computable via hypergeometric series (for proofs of this theorem and
its variations see [2],[6],[8],[13]). While important in itself, this fact is rele-
vant with respect to the Gromov-Witten theory of Y only if one can show
that JE is intrinsically related to Y . The basic example is when X is a
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projective bundle and E is a direct sum of positive line bundles. It has
been shown in [4] that in this case i∗(JY ) = JE . Coupled with the fact
that JE is computable this allows for the calculation of (at least some of)
the gravitational descendants of Y . This is, for example, one way to com-
pute the enumerative invariants of the quintic threefold. In section 2.2 we
use Theorem 0.1.1 to prove the following generalization: Assume that the
map i∗ : H2(Y ) → H2(X) is surjective. Complete a basis {T ′

1, T
′
2, ..., T

′
r}

of H2X into a basis {T1 = i∗(T ′
1), ..., Tr = i∗(T ′

r), ..., Tm} of H2Y . We
extend the map i∗ : H∗Y → H∗X to a homomorphism of completions
i∗ : H∗Y [[t1, ..., tm, ~−1]][[qβ ]] → H∗X[[t1, ..., tr, ~

−1]][[qd]] via i∗(tk) = 0 for
k > r and i∗(q

β) = qi∗(β).

Theorem 1.2.1. Assume that i∗ : H2(Y ) → H2(X) is surjective. Then
i∗(JY ) = JE.

Acknowledgements. The author would like to acknowledge helpful dis-
cussions with Barbara Fantechi, Tom Graber, and Ravi Vakil. We would
also like to thank the referee for providing corrections and many helpful
suggestions.

2 Background

2.1 Stable maps and Gromov-Witten invariants

Let g, n be non-negative numbers and d ∈ H2(X,Z). A stable map of genus
g with n-markings consists of a nodal curve C, an n-tuple (x1, x2, ..., xn)
of smooth points of C and a map f : C → X that has a finite group
of automorphisms. A stable map (C, x1, ..., xn, f) is said to represent the
curve class d if f∗[C] = d. The moduli functor that parameterizes such
stable maps is a proper Deligne-Mumford stack Mg,n(X, d) and is coarsely
represented by a Q-scheme denoted by Mg,n(X, d) (see section 1.3 for a
discussion on the category of Q-schemes). The expected dimension of this
moduli stack is (dimX−3)(1− g)+n−KX ·β. Let xk be one of the marked
points. The evaluation morphism ek : Mg,n(X, d) → X sends a closed point
(C, x1, ..., xn, f) to f(xk). The contangent bundle at xk is denoted by Lk. Its
fiber over the closed point (C, x1, ..., xn, f) is T

∨
C,xk

. The forgetful morphism

πk : M g,n+1(X, d) → M g,n(X, d) forgets the k-th marking and stabilizes the
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source curve. The universal stable map over Mg,n(X, d) is

Mg,n+1(X, d)
en+1

−−−→ X




y

πn+1

Mg,n(X, d).

The bundle Ed from the introduction may be precisely defined as Ed :=
πn+1∗e

∗
n+1(E).

2.2 The category of Q-schemes

Stable maps have nontrivial automorphisms hence the moduli functor of sta-
ble maps is only locally representable, that is the universal family exists only
étale locally. It follows that, in dealing with virtual fundamental class and
Gromov-Witten invariants, one should work in a category that “remembers”
the automorphisms. Stacks and, as we will see shortly, Q-schemes are two
obvious choices.

The key to proving Theorem 0.1.1 is the functoriality of the virtual fun-
damental class as stated in Proposition 1.3.1. The construction of the virtual
class in the category of stacks has been done in [1]. Due to the lack of a good
intersection theory for Artin stacks at the time, the authors of that paper
were forced to impose a technical hypothesis to carry out that construction.
As a result, they were able to prove a stack version of the Proposition 1.3.1
that had a limited scope of applicability (see Proposition 5.10 in [1]). For
example, that version could not be used to study the problem we consider
here. Since this technical hypothesis was later removed in [10], one obvious
approach was to try to prove the functoriality of the Behrend-Fantechi vir-
tual class construction in more generality following the standard framework
of the functoriality of the Gysin map (see section 6.5 in [7]). However, we
found the technicalities of the normal cone construction and the deformation
to the normal cone (see section 5.1 in [7]) in the category of stacks hard to
overcome. This functoriality and the subsequent proof of the Cox-Katz-Lee
conjecture in the category of stacks were completed later in [11].

The Li-Tian (LT) virtual class construction of [10] is free of any restric-
tions. Because of this, the authors of that paper were able to prove the
functoriality of their construction in a more general form, suitable for our
problem.

We found the category of Q-schemes to be the perfect setting where one
can combine the advantages of the LT virtual class construction and the
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well established intersection-theoretic constructions of stacks. The precise
definition of Q-schemes is due to Lian-Tian (see definition 5.3 in [15]). It
is a straightforward generalization of the notion of Q-varieties and Q-stacks
introduced by Mumford in [16].

Definition 2.2.1. A Q-scheme is a scheme V together with the following
data:

• A finite collection (Vα, Gα, qα) where Vα is a quasi-projective scheme,
Gα is a finite group acting faithfully on Vα and qα : Vα/Gα → V is an
étale map such that V = ∪Im(qα).

• For each pair of indices (α, β) there is similarly

(V(α,β), G(α,β) = Gα ×Gβ , q(α,β) : V(α,β) → V )

together with with equivariant finite étale maps

pα : V(α,β) → Vα, pβ : V(α,β) → Vβ

such that Imq(α,β) = Imqα ∩ Imqβ and the map q(α,β) factors through
both qα and qβ via the above maps.

• For any triple (α, β, γ) there exists (V(α,β,γ), G(α,β,γ), q(α,β,γ)) such that
G(α,β,γ) = Gα ×Gβ ×Gγ , together with equivariant, finite, étale maps
from V(α,β,γ) to V(α,β), V(α,γ), V(β,γ) which commute with the maps in-
troduced in the second condition and such that

Imq(α,β,γ) = Imqα ∩ Imqβ ∩ Imqγ .

The motivation for using such a category comes from these considera-
tions:

1. Any DM stack is generically a quotient of a scheme by a finite group
(see for example Thm. (6.1) of [12]).

2. The LT construction of the virtual fundamental class can be done in
the category of Q-schemes.

If the Q-scheme V represents a moduli functor, then a point x ∈ Vα,β

should be thought of as an automorphism between objects corresponding
to pα(x) and pβ(x). In fact it is easy to see that the data of a Q-scheme
determines a stack. Namely, let R =

∐

Vα,β and U =
∐

Vα. The morphisms
pα , pβ induce two étale morphisms p1, p2 : R → U and we get an étale
groupoid scheme

R
p1

//

p2
// U



Artur Elezi 7

and in turn a Deligne-Mumford stack with atlas U (see the Appendix of [17]).
It is obvious that this stack has generic trivial stabilizers. The underlying
space of V does not determine its Q-scheme structure. For example, in the
case of orbifolds (i.e. Vα is smooth for all α), one has to rule out complex
reflections.

The definitions of Q-sheaves and Q-complexes on a Q-scheme V follow
naturally. A Q-sheaf is the collection of Gα-equivariant sheaves Gα on Vα

together with isomorphisms Gα⊗OVα
OVαα′

≃ Gα′⊗OV
α′

OVαα′
that satisfy the

usual cocycle condition in triple intersections. The intersection-theoretic ma-
chinery that is available for stacks may be used for Q-schemes. Of particular
importance to us is the localized top chern class of a section s of a Q-vector
bundle E on V (see section 14.1 of [7]). Its existence and construction in
the category of Q-schemes follows routinely from the similar construction in
the category of stacks (see for example (ix) of [10]). The local description is
easily obtained by unwinding the definitions. If s is given locally by sα then
the zero locus Z(s) is a closed Q-subscheme of V with charts Z(sα) ∩ Vα.
Let F be a pure n-dimensional subscheme of V . The group Gα acts on the
normal cone to Z(sα) ∩ q−1

α (F ) in q−1
α (F ). The quotients can be patched

together to a Q-cone CZ(s)/F inside of the restriction to Z(s) of the Q-bundle
E . Let i be the zero section of this cone. Then the action of the localized
top chern class of (E, s) on F is i![CZ(s)/F ].

2.3 The virtual fundamental class and the associativity of

the refined Gysin maps

The moduli spaces of stable maps may behave badly in families and they may
have components whose dimension is bigger than the expected dimension.
There is, however, a cycle of the expected dimension which is deformation
invariant. It is this cycle which is used as the true fundamental class for inter-
section theory purposes. In this section we review the Li-Tian construction
of the virtual fundamental class and a key lemma about the associativity of
the refined Gysin maps.

The virtual fundamental class of a moduli functor is constructed using
solely a choice of a tangent-obstruction complex. Our interest here is the
moduli functor Fd

X of 0-pointed, genus zero, degree d stable maps to X. We
describe the natural tangent-obstruction complex of Fd

X . Let η ∈ Fd
X(S) be
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represented by the following diagram

X
f

−−−→ X




y

π

S

The deformations and obstructions of η are described respectively by the
global sections of the sheaves T 1Fd

X(η) := Ext1
X/S([f

∗(ΩX) → ΩX/S ],OX )

and T 2Fd
X(η) := Ext2

X/S([f
∗(ΩX) → ΩX/S ],OX ). The natural tangent

obstruction-complex for this moduli problem is T •
η := [T 1FX(η) → T 2FX(η)]

with the zero arrow. This complex is perfect in the sense that locally, there
is a 2-term complex of locally free sheaves E•

η := [Eη,1 → Eη,2] whose sheaf
cohomology yields the tangent-obstruction complex H•E•

η = T •
η .

The virtual fundamental class of T •
η is denoted here by [M g,n(X, d)]vir.

It is a Chow class in the Chow group of the coarse moduli space M g,n(X, d).
If Mg,n(X, d) is an orbifold, its virtual fundamental class corresponds to
1 ∈ H∗(M g,n(X, d)) under Poincaré duality .

The key to the proof of Theorem 0.1.1 is a lemma about the associativity
of the refined Gysin maps. Let us first formulate it for representable functors.
Consider a fibre diagram

W0
δ0−−−→ W





y

α0





y

α

T0
δ

−−−→ T

(3)

where δ is a regular embedding. Let N be the normal bundle of T0 in T .
Assume that W and W0 admit perfect tangent obstruction-complexes T •

W

and T •
W0

. They are said to be compatible relative to the fibre diagram (3) if
for each affine scheme S and for any morphism η : S → W0 ⊂ W there is an
exact sequence

0 → T 1
W0

(η) → T 1
W (η) → (α0 ◦ η)

∗N → T 2
W0

(η) → T 2
W (η) → 0. (4)

Assume that this compatibility satisfies a technical condition. Namely,
there exists a short exact sequence of 2-term complexes

0 → [0 → α∗
0N ] → Ẽ•

η → E•
η → 0 (5)

such that
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• Its long exact sequence of cohomologies is precisely the exact sequence
of the compatibility.

• The cohomologies of Ẽ•
η and E•

η yield the tangent-obstruction complex
of W0.

Proposition 2.3.1. (Proposition 3.9 of [15]) Assume that T •
W and T •

W0
are

compatible and the technical condition (5) is satisfied. Then

δ![W ]vir = [W0]
vir

where the virtual cycles are with respect to T •
W and T •

W0
.

The case of interest for us is the localized top chern class [7] of (E, s),
where E → Z is a vector bundle and s is a section of E. We use diagram
(3) with T0 = W = Z and T the total space of E. Let δ = sE be the zero
section of E and α = s. It follows that W0 = Z(s) is the zero locus of s.

Corollary 2.3.1. With the assumptions of the previous proposition

α0∗[Z(s)]vir = ctop(E) ∩ [Z]vir (6)

3 The Proofs

3.1 The associativity of the refined Gysin maps in the cate-

gory of Q-schemes.

Let (Vα, Gα) be a Q-scheme with a perfect tangent-obstruction Q-complex
T • which is the cohomology of the Q-complex E•. It has been pointed out
in [15] that the virtual fundamental class in the category of Q-schemes can
be constructed as follows: First, one constructs a local virtual cone CE•

α

using the tangent-obstruction complex H•E•
α = T •

α on Vα. This local virtual
cone sits inside the vector bundle Spec Sym•(E∗

2,α). The key here is that
the local virtual cones do not depend on E• but only on T • (Lemma 3.2 of
[15]). Obviously the restrictions of E•

α and E•
β to Vα,β yield the same tangent-

obstruction complex T •
α,β. It follows that the pull backs of CE•

α and CE•

β to
Vα,β are equivariantly isomorphic. The Gα-quotients patch together into the
virtual Q-cone CE•

inside the Q-vector bundle Spec Sym•(E2). Finally the
virtual fundamental class is the pull back via the zero section of [CE•

].

It is known that M0,0(X, d) has a Q-scheme structure so that the functors
Hom(−,M 0,0(X, d)) and Fd

X are equivalent. Here is a brief sketch. Let
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(C, f) ∈ M0,0(X, d) be a stable map. Choose divisorsH1,H2, ...,Hr so that f
intersects each Hi transversally at yi1, ..., yidi (where di := d·Hi) and (C̃, yij)
has no automorphisms. Now Aut(f) acts on (C̃, f) ∈ M0,dr(X, d) ∩ e∗ij(Hi)
by permuting the markings. Choose a quasiprojective Aut(f)-equivariant
neighborhood

Uf ⊂ M0,dr(X, d) ∩ e∗ij(Hi)

of (C̃, f) such that all the stable maps in Uf have no automorphisms and
the map that forgets the markings does not change the source curve. There
is an action of Aut(f) on the universal stable map ηf := (Cf , Ff ) over Uf .
The classifying map Uf/Aut(f) → M0,0(X, d) is étale. The neighborhoods
Uf satisfy the conditions of a Q-scheme.

Now, let E → X be a convex vector bundle. Recall that the vector
spaces H0(f∗(E)) fit into a Q-vector bundle Ed on M0,0(X, d). The section
s of E induces a section s̃ of Ed over M 0,0(X, d) via s̃((C, f)) = s ◦ f .
Let (C, f) ∈ Z(s̃). By shrinking Uf if necessary, the group Autf acts on
the restriction of the universal family (Cf , Ff ) over U

s
f := Z(s̃)∩Uf and the

classifying map U s
f/Aut(f) → Z(s̃) is again étale. Just as in the construction

of the virtual class of a Q-scheme, the local Gysin diagrams (3) patch to
a global Gysin diagram and that, with the definitions of the section 1.2,
Corollary 2.3.1 holds in the category of Q-schemes. The technical assumption
is the same; the only difference is that the complexes become Q-complexes.

3.2 Virtual class of the zero loci

The proof of theorem 0.1.1 uses corollary 2.3.1. We need to check that the
technical condition is satisfied. Let η be a 0-pointed, genus zero stable map
of class d over an affine scheme S represented by the following diagram

X
f

−−−→ Y ⊂ X




y

π

S

The deformations and obstructions of η are described respectively by the
global sections of the sheaves T 1Fd

X(η) := Ext1
X/S([f

∗(ΩX) → ΩX/S ],OX )

and T 2Fd
X(η) := Ext2

X/S([f
∗(ΩX) → ΩX/S ],OX ). Since the normal bundle

of Y in X is E|Y the conormal exact sequence writes

0 → f∗(E∗|Y ) → f∗(ΩX |Y ) → f∗(ΩY ) → 0 (7)
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Recall from [15] that there is a short exact sequence of OX -sheaves

0 → W2 → W1 → f∗ΩX → 0 (8)

such that:

• Exti
X/S([W1 → ΩX/S ],OX ) and Exti([W2 → 0],OX ) vanish for i 6= 1.

• Both Eη,1 = Ext1
X/S([W1 → ΩX/S ],OX ) and Eη,2 = Ext1([W2 →

0],OX ) are locally free.

• The sheaf cohomology of the complex E•
η = [Eη,1 → Eη,2] is the tangent-

obstruction complex of the stable map η, i.e. there is an exact sequence

0 → T 1Fd
X(η) → Eη,1 → Eη,2 → T 2Fd

X(η) → 0.

We pull back (8) exact sequence via (7) and obtain the following diagram

0

��

0

��

0

��

0 // W2

��

// A

��

// f∗(E∗)

��

// 0

0 // W2

��

// W1

��

// f∗(ΩX |Y )

��

// 0

0 // 0

��

// f∗(ΩY )

��

// f∗(ΩY )

��

// 0

0 0 0

Let Ẽη,2 := Ext1
X/S([A → 0],OX ). We apply the long exact sequence

for Ext to various exact sequences obtained from the above diagram. The
middle vertical sequence yields a short exact sequence

0 → [A → 0] → [W1 → ΩX/S ] → [f∗(ΩY ) → ΩX/S ] → 0.

Its long exact sequence for Ext yields

0 → T 1Fβ
Y (η) → Eη,1 → Ẽη,2 → T 2Fβ

Y (η) → 0.

Let Ẽ•
η := [Eη,1 → Ẽη,2]. The last exact sequence says that the cohomology

of Ẽ•
η is the tangent obstruction complex of η. Next, we apply the long
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exact sequence for Ext to the top horizontal row of the diagram and use the
conditions for Wi’s. We obtain

0 → Ext1X/S([f
∗(E∗) → 0],OX ) → Ẽη,2 →

Eη,2 → Ext2X/S([f
∗(E∗) → 0],OX ).

But one easily sees that

Ext2X/S([f
∗(E∗) → 0],OX ) ≃ Ext1(f∗(E∗),OX ) = 0

and

Ext1X/S([f
∗(E∗) → 0],OX ) ≃ π∗f

∗(E)

as OS-sheaves. It follows that there is an exact sequence

0 → [0 → π∗(f
∗(E))] → Ẽ•

η → E•
η → 0. (9)

Its long exact sequence of sheaf cohomologies is easily seen to be

0 → T 1Fβ
Y (η) → T 1Fd

X(η) → π∗f
∗E → T 2Fβ

Y (η) → T 2Fd
X(η) → 0. (10)

The technical condition is satisfied.

3.3 Mirror Theorems

We recall the setup. Let i denote the embedding of Y in X. Assume that
the map i∗ : H2(Y ) → H2(X) is surjective. Complete a basis {T ′

1, T
′
2, ..., T

′
r}

of H2X to a basis {T1 := i∗(T ′
1), ..., Tr := i∗(T ′

r), Tr+1, ..., Tm} of H2Y . Let
tT =

∑m
i=1 tiTi and tT ′ =

∑r
i=1 tiT

′
i where t1, ..., tn are variables. The map

i∗ : H∗Y → H∗X extends to a homomorphism of completions

i∗ : H∗Y [[t1, ..., tm, ~−1]][[qβ ]] → H∗X[[t1, ..., tr , ~
−1]][[qd]]

via i∗(tk) = 0 for k > r and i∗(q
β) = qi∗(β).

Theorem 3.3.1. Assume that i∗ : H2(Y ) → H2(X) is surjective. Then
i∗(JY ) = JE.

Proof. Recall that

JY := e
tT
~ ∩



1 +
∑

β 6=0

qβe∗

(

[M0,1(Y, β)]
vir

~(~− c)

)




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By the definition of i∗ and the projection formula we obtain

i∗(JY ) = e
tT ′

~ ∩



e∗(1) +
∑

β 6=0

qβi∗

(

e∗

(

[M0,1(Y, β)]
vir

~(~− c)

))





As we have said before any β ∈ H2(Y,Z) such that i∗(β) = d induces a mor-
phism iβ : M0,0(Y, β) → M0,0(X, d). Consider the following commutative
diagram:

M0,1(Y, β)
iβ

−−−→ M 0,1(X, d)




y

e





y

e

Y
i

−−−→ X

The line bundle L1 on M0,1(Y, β) is the pullback via iβ of the bundle on
M0,1(X, d). By the projection formula and Theorem 2.0.1:

i∗





∑

i∗(β)=d

e∗

(

[M 0,1(Y, β)]
vir

~(~− c)

)



 = e∗

(

∑

i∗β=d(iβ)∗[M 0,0(Y, β)]
vir

~(~− c)

)

= e∗

(

ctop(Ed) ∩ [M0,0(X, d)]vir

~(~− c)

)

(11)

The exact sequence (2) implies

ctop(Ed) = ctop(E
′
d)e

∗(ctop(E)) (12)

hence by the projection formula

i∗





∑

i∗(β)=d

e∗

(

[M0,1(Y, β)]
vir

~(~− c)

)





= ctop(E) ∩ e∗

(

ctop(E
′
d) ∩ [M0,0(X, d)]vir

~(~− c)

)

Note also that i∗(1) = i∗([Y ]) = ctop(E) ∩ [X]. Now the theorem follows
readily.
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