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On the Incompressible Fluid Limit andthe Vortex Motion Law of theNonlinear Schr�odinger EquationF-H Lin � and J. X. Xin yAbstractThe nonlinear Schr�odinger equation (NLS) has been a fundamental model for un-derstanding vortex motion in superuids. The vortex motion law has been formallyderived on various physical grounds and has been around for almost half a century.We study the nonlinear Schr�odinger equation in the incompressible uid limit on abounded domain with Dirichlet or Neumann boundary condition. The initial condi-tion contains any �nite number of degree �1 vortices. We prove that the NLS linearmomentum weakly converges to a solution of incompressible Euler equation awayfrom the vortices. If the initial NLS energy is almost minimizing, we show that thevortex motion obeys the classical Kirchho� law for uid point vortices. Similar resultshold for the entire plane and periodic cases, and a related complex Ginzburg-Landauequation. We treat as well the semi-classical (WKB) limit of NLS in the presence ofvortices. In this limit, sound waves propagate through steady vortices.
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1 IntroductionWe study the two dimensional nonlinear Schr�odinger (NLS) equation:iu�;t = �xu� + ��2(1� ju�j2)u�; x 2 
; (1.1)where u� = u�(t; x) is a complex valued function de�ned for each t > 0; � a small positiveparameter; x = (x1; x2) 2 
, a simply connected bounded domain with smooth boundaryin R2; � = @x1x1 + @x2x2 denotes the two-dimensional Laplacian. The NLS (1.1) hasbeen proposed and studied as the fundamental equation for understanding superuids, seeGinzburg and Pitaevskii [14], Landau and Lifschitz [19], Donnelly [9], Frisch, Pomeau andRica [13], Josserand and Pomeau [18], and many others.We shall consider (1.1) with the prescribed Dirichlet boundary condition:uj@
 = g(x); jgj = 1; deg(g; @
) = �n; (1.2)where n is a given positive integer, and the zero Neumann boundary condition:u�j@
 = 0; (1.3)� the normal direction. Our method is general enough that we can handle the entire planecase (
 = R2) and periodic case too.We will see that as � # 0, the Dirichlet boundary condition corresponds to applying atangential force at the boundary so that the tangential uid velocity is g ^ g� , � tangentialunit direction. The Neumann boundary condition corresponds to zero normal uid velocity(no uid penetration) at the boundary. For ease of presentation, we shall work with theDirichlet case �rst, then comment on all necessary modi�cations in the proof to reach asimilar conclusion for the Neumann case. Subsequently, we also remark on the entire planeand periodic cases.The NLS (1.1) preserves the total energy:E�(u�) = Z
 e�(u�) � Z
 12 jru�j2 + (1 � ju�j2)24�2 ; (1.4)and admits vortices in solutions, which are points where ju�j becomes zero and the phaseof u� or u�ju�j has singularities. These points are the locations of regular uids, which aresurrounded by superuids. If there are n degree one point vortices in the solution, theenergy E�(u�) has the asymptotic expression:E�(u�)(t) = E�(u�)(0) = n� log 1� +O(1): (1.5)1



So we shall consider initial data u�(0; x) = u0�(x) with n degree one vortices, and belongingto H2(
) for each � > 0 so that (1.5) holds. With initial and boundary data (1.5) and (1.2),it is well-known [3] that the defocusing NLS (1.1) is globally well-posed in C(R+;H2) \C1(R+; L2) for each � > 0. Our goal is to analyze the limiting behavior of solutions as� # 0.The systematic matched asymptotic derivation of the limiting vortex motion law wascarried out by Neu [28] for 
 = R2. The motion law is the classical Kirchho� law foruid point vortices [1], and was known to Onsager [30] in 1949. The connection be-tween Schr�odinger equations and the classical uid mechanics was already noted in 1927by Madelung [26], which applies to NLS (1.1) as well. Along this line, there have been overthe years many formal derivations of Kirchho� law based on Madelung's uid mechanicalformulation, see Creswick and Morrison [7], Ercolani and Montgomery [11], among others.Madelung's idea was to identify juj2 as the uid density �, and r� = r arg u, as the uidvelocity v. Then he de�ned the linear momentum p = �r�. In the new variables (�; v),the NLS (1.1) becomes:�t � 2r � p = 0; (1.6)pt � 2r � (�v 
 v) = �rP (�)� 12r � (�Hess(log �)); (1.7)where P = 12�2 (1� �2) is the pressure, and Hess denotes the Hessian. Madelung's formula-tion of course relies on the assumption that the amplitude of u is not zero and the phase� is not singular, otherwise the transform is not well-de�ned and (1.6)-(1.7) gets singulareven though NLS itself is still regular. When we are studying solutions with vortices, thissingular case is however just what we have to deal with, and so an alternative intepretationof the uid formalism related to but di�erent from Madelung's transform must be usedinstead. In view of the energy functional (1.4), � is close to one almost everywhere as � # 0,and (1.6) implies formally that r�v = 0, provided v converges. Hence the limiting problemwe are considering is an incompressible uid limit involving vortices. We also see that theNeumann boundary condition (1.3) says that �� = v � � = 0, if we write u = �1=2ei� andassume that vortices are away from the boundary (so � � 1). Hence (1.3) reduces to thezero normal velocity boundary condition for ideal classical uids.Let us mention that a modi�ed Madelung's transform has been utilized in the study ofsemi-classical limit (WKB limit) of NLS:iu�t = ��xu� + ��1ju�j2u�; (1.8)2



with initial data: u(0; x) = a0(x)eiS0(x)=�. Grenier [15] showed in particular that for a0 andS0 in Hs(Rd), s > 2+d=2, solutions u� exists on a small time interval [0; T ], T independentof �. Moreover, u� = a(t; x; �)eiS(t;x;�)=�, with a and S in L1([0; T ];Hs) uniformly in �, and(�;rS) converge to solution (�; v) of the isentropic compressible Euler equation:�t +r � (�v) = 0;vt +r( jvj22 + �) = 0: (1.9)In one space dimension, using integrable machinery, Jin, Levermore and McLaughlin [17]obtained the above convergence results globally in time. These works on the compressibleuid limit treated only the regime of smooth phase functions, and there are no vorticesinvolved.Since the formation of vortices, their motion, and the resulting drag force are of tremen-dous physical signi�cance in superuids, [13], [18], it has been a longstanding fundamentalproblem to understand how to rigorously pass to the classical uid limit in the presence ofvortices.Our approach begins with writing the conservation laws of NLS in the form of uiddynamic representation. However, in contrast to all earlier applications of Madelung trans-form, we avoid making explicit use of the phase variable � and do not work with (1.6)-(1.7).The conservation laws of NLS are put into the form:� Conservation of mass: @tju�j2 = 2r � p(u�); (1.10)where in vector notation p(u�) = u� ^ru�, the linear momentum.� Conservation of linear momentum:@tp(u�) = 2div (ru� 
ru�)�rP�; (1.11)where: P� = jru�j2 + u� ��u� � ju�j4 � 12�2 ; (1.12)is the pressure.� Conservation of energy: @te�(u�) = div (u�;tru�): (1.13)Then we study convergence of various terms in (1.10)-(1.11) using the above threeconservation laws (in particular the projection of (1.11) onto divergence free �elds), and3



perform various circulation calculations involving the linear momentum p and its �rstmoments. We show that vortices do not move on slower time scale t � O(��), �� ! 0 as� ! 0, and they move continuously on the scale t � O(1). With precise characterizationof weak limits of linear momentum p, we are able to show that p converges locally inspace to v, the solution of the two-dimensional incompressible Euler equation away fromthe n continuously moving point vortices, and moreover, v is curl-free. That v is curl-freeaway from vortices agrees with the physical picture that superuids are potential ows[19]. Finally, the motion law of point vortices (the Kirchho� law) follows from the limitinglinear momentum equation. Our main results are:Theorem 1.1 (Weak Convergence and Fluid Limit) Let us consider NLS (1.1) withDirichlet boundary condition (1.2), and initial energy (1.5) with n degree nj = �1 vortices.Then as � # 0, the energy density e�(u�) concentrates as Radon measures in M(
) for any�xed time t � 0: e(u�)dx�n log 1� * nXj=1 �aj(t);and vortices of u� converge to aj(t) moving continuously in time of t � O(1) (or t 2 [0; T ],T any �xed constant) as � # 0. Vortices of u� do not move on any slower time scalet � O(��) = o(1) (or t = ��� , � 2 [0; T ], T any �xed positive constant, and �� ! 0) as� # 0. Moreover on the time scale t � O(1), the linear momentum p(u�) converges weaklyin L1([0; T ];L1loc(
a)) to a solution v of the incompressible Euler equation:vt = 2v � rv � 2rP; div v = 0; x 2 
a � f
n(a1(t); � � � ; an(t))gwith boundary condition: v � � = g ^ g� , � the unit tangential vector on @
. The functionv is precisely characterized as: v = r(�a + ha);where: �a = nXj=1 arg� x� aj(t)jx� aj(t)j�nj ;and ha is harmonic on 
 satisfying the boundary condition: ha;� = ��a;� + g ^ g� , on @
.So h is unique up to an additive constant. The total pressure 2P is a single-valued functionon 
, and is smooth on 
a. The quadratic tensor product weakly converges as:ru� 
ru� * v 
 v + �; M(
a); (1.14)4



where � is a symmetric tensorial Radon defect measure of �nite mass over 
; and div(�) =rP� on 
a, where P� is a well-de�ned distribution function on 
a.Theorem 1.2 (Vortex Motion Law) Consider the same assumptions as in Theorem1.1, and in addition assume that the initial NLS energy is almost minimizing, namely:E�(u�)(0) = n� log 1� + �W (a(0)) + o(1);as � goes to zero. Let Hj = Hj(a), a = (a1; � � � ; an), denote the smooth part of �a+ha neareach vortex, and de�ne the renormalized energy function as:rajW (a) = 2nj ��@Hj@x2 (aj); @Hj@x1 (aj)� ;j = 1; � � � ; n. The vortex motion obeys the classical Kirchho� law:a0j(t) = njJrajW (a) = �2rHj(a);j = 1; � � � ; n, where: J = � 0 �11 0 � ;and: W (a) = �Xl6=j nlnj log jal � ajj+ boundary contributions:We remark that the total initial NLS energy E�(u�) in (1.5) can be decomposed intoa sum of three parts: the vortex self-energy n� log 1� , the Kirchho� energy �W (a(0)), andthe remaining in general O(1) excessive energy. The Kirchho� energy facilitates the vortexmotion. The remaining energy creates the defect measure �. The total pressure consistsof the contribution from the original NLS pressure and the contribution from the defectmeasure (the defect pressure). If the excessive energy is absent, or in other words the initialenergy satis�es: E�(u�)(0) = n� log 1� + �W (a(0)) + o(1); (1.15)which also means that u� is almost energy minimizing for the given vortex locations, thelinear momentum p(u�) converges strongly in L1([0; T ];L1loc(
a)) and the defect measure� = 0. In general, with O(1) excessive energy, to prove the same motion law requiresfurther information on �; either that the divergence of defect measure � is a gradient of adistribution on the entire domain 
 (i.e. is globally curl-free as a distribution) or that the5



support of � is restricted to the union of vortex locations and the physical boundary. Theexcessive energy physically is carried by sound waves (time dependent phase waves), see thediscussion of WKB limit in section 7. It is conceivable that vortices still move according toKirchho� law when sound waves have propagated away from them, either absorbed by thevortex cores or the physical boundary. Otherwise, sound waves may modify the motion ofvortices by creating oscillations, [13]. It is very interesting to understand the vortex soundinteraction (Nore et al. [29]) in terms of the structure of the defect measure � based onour results here.Due to the local nature of our method, we are able to prove the same theorems forthe zero Neumann case (1.3), with the modi�cation that the boundary condition is insteadv � � = 0, and ha;� = ��a;�. Similar results are established for the entire plane and theperiodic cases, as long as the sum of vortex degrees is zero and the total energy obeys(1.5). Our results on the Dirichlet and Neumann cases easily extend to the situation wherethere are 2k + n vortices in a bounded domain, n+ k being of degree +1, and k of degree�1. Due to the possibility of �nite time vortex collisions in Kirchho� law in case of signedvortices [27], the results are meant for any time before any two vortices come together.It is remarkable that NLS vortices obey the Kirchho� law in the incompressible uidlimit, considering that the �1 vortices are only known to be dynamically marginally stablein the spectral sense, see Weinstein and Xin [32]. For this reason, it seems impossibleto prove the validity of the motion law for the above mentioned initial and boundaryconditions by attempting to justify the matched asymptotic derivation of Neu [28] whichrelied on linearization about vortices. The uid dynamic approach developed here hasbeen extended by the authors [25] to establish the vortex motion laws of the analogousnonlinear wave (NLW) equation, and the nonlinear heat (NLH) equation. In NLW andNLH, Euler-like equations also appear and lead to the motion laws. Under similar energyalmost minimizing assumption (1.15), the NLW vortex motion law is: a00j = �njrajW , onthe time scale t � O(log 1� ).During the preparation of this paper, we learned of Colliander and Jerrard [5] on theperiodic case of NLS. They showed the motion law under the energy almost minimizingassumption, however, did not study defect measure and the general uid limit.The rest of the paper is organized as follows. In section 2, we state and prove energyconcentration, and show its direct consequences on convergence of linear momentum awayfrom vortices and basic energy type bounds. In section 3, we study mobility and continuityof vortex locations based on linear momentum equation and subsequently re�ne the form6



of weak limit of solutions based on conservation of mass. We also prove a key energyestimate which is used later to control the defect measure. In section 4, we show usingall results in previous sections that the NLS linear momentum converges to a solutionof the two dimensional incompressible Euler equation away from vortices. The Kirchho�law then follows from the limiting linear momentum equation under the energy minimizingassumption. In section 5, we comment on all necessary modi�cations to establish the similarresults for the zero Neumann case, as well as the entire plane and periodic cases. In section6, we apply our method to show the vortex motion law for a related complex Ginzburg-Landau (CGL) equation. Besides the interest of CGL vortices in its own right, this resultprovides another proof of NLS vortex motion law by passing the CGL to NLS limit. Insection 7, we study the semi-classical (WKB) limit of NLS. Due to the slow time scaleO(�), vortices do not move, and the regular part of the phase function of solution satis�esthe linear wave equation, indicating the propagation of sound waves through vortices.2 Energy Concentration and Basic Weak LimitsIn this section, we present weak convergence results on two basic physical quantities: theenergy e(u�) and the linear momentum p(u�). Consequently, we deduce the weak conver-gence of the curl of p(u�). The one half curl of p(u�) is equal to the Jacobian of the mapu�, hence will be denoted by Jac(u�), and it is also known as vorticity. All the results followfrom energy concentration and energy comparisons, and are independent of dynamics.Lemma 2.1 Suppose u�k is a sequence of H1-maps from 
 into C (the complex plane)satisfying the Dirichlet boundary condition u�k j@
 = g. Suppose also that for a positive �kindependent constant C0 the energy satis�es:E�k(u�k) = Z
 e�k(u�k) � Z
 12 jru�k j2 + (1 � ju�k j2)24�2k � �n log 1�k + C0:Then taking a subsequence in �k if necessary, we have as � = �k # 0 that:e�(u�)dx�n log 1� * nXj=1 �aj ; (2.1)as Radon measures. Moreover,minfjal � ajj; dist(al; @
); l; j = 1; � � � ; n; l 6= jg � �0(g;
; C0) > 0:7



Proof: This lemma is same as Proposition 1 of Lin [23], where the earlier structure theoremof Lin [20] (Theorem 2.4) is extended to show that there are small positive numbers �0 and�0 such that for �k 2 (0; �0), there are n distinct balls Bj's with radii ��jk , �j 2 [�0; 1=2],which contain vortices of degrees �1. In other words, vortex locations are known up to anerror of O(��jk ).Lemma 2.2 Under the assumptions of Lemma 2.1, we have up to a subsequence if neces-sary: u� * nYj=1� x� ajjx� ajj�nj eiha(x) � ua; (2.2)nj = �1, weakly in H1loc(
nfa1; � � � ; ang) � H1loc(
a) for some ha 2 H1(
). Moreover,Z
 jrhaj2 � C1; (2.3)Z
 (1 � ju�j2)2�2 � C1; (2.4)Z
 jrju�jj2 � C1; (2.5)for a positive constant C1, uniformly in �.Proof: These results follow from energy comparisons. For the weak convergence (2.2)and inequality (2.3), see the general convergence theorem of [20] and also Proposition 2of [23]. The inequality (2.4) is shown in Lecture 1 of [21]. For (2.5), we use the factthat rju�j = 0; a:e: on the set fx 2 
 : ju�j = 0g, and write u� = ju�jeiH� wheneverju�j 6= 0. Substituting this expression into the total energy, which is uniformly boundedaway from the set fx 2 
 : ju�j = 0g, gives (2.5). Intuitively, the singular part of energythat contributes to n� log 1� comes from the singular part of the phase of u� (the sum ofvortex phases). The above three inequalities are valid since they either involve only theamplitude ju�j or the regular part of the phase ha.Remark 2.1 Under the same assumptions as in Lemma 2.1, the renormalized energy isde�ned as ( a universal constant):W =W (a1; � � � ; an) = limr#0 " 12� Z
nSnj=1Br(aj) jruaj2 � n log 1=r# + n; (2.6)see Bethuel, Brezis and H�elein [2]. Here ua is a harmonic map of the form (2.2). The Wfunction has the properties that: W ! +1 if some aj reaches the boundary @
 or aj = al8



for some j 6= l; otherwise, it is locally analytic in a. Due to n, W (a) is also local energyminimizing.Lemma 2.3 Under the same assumptions as Lemma 2.1, the linear momentum p(u�) isuniformly bounded in L1loc(
a), and up to a subsequence if necessary:p(u�)* v = r�a +rha; (2.7)in L1loc(
a), where: �a = nXj=1 arg� x� ajjx� ajj�nj : (2.8)Moreover, 2Jac(u�) dx = curl (p(u�)) dx * 0; (2.9)in the sense of bounded measures M(
a).Proof: We see from Lemmas 2.1 and 2.2 that p(u�) is uniformly bounded in L1 away fromvortices fa1; � � � ; ang. Since ru� is weakly compact in H1(
a), and u� compact in L2(
a),we have: p(u�) = u� ^ru� * v = r�a +rha;in L1loc(
a). Noticing that v is a gradient of an H1 function, we have by taking curl of p(u�)and the weak continuity of Jacobians with respect to H1 weak convergence that:2Jac(u�) dx = curlp(u�) dx * 0; (2.10)inM(
a). Note that Jac(u�) 2 L1loc(
a). The proof is complete.Lemma 2.4 The linear momentum p(u�) 2 L1(
) uniformly in �. Let ' 2 C10 (
), ' =x1 for x 2 BR=2(aj), ' = 0, for x 62 BR(aj), where R 2 (0; �0). Then we have withaj = (�j ; �j): ZBR(aj) r?'p(u�)! 2��j: (2.11)A similar convergence holds with x2 in place of x1, �j in place of �j .Proof: The integral in (2.11) is the projection of the linear momentum onto divergence free�eld. We have from Lemma 2.2 that ju�j 2 H1(
), uniformly in �. Hence ju�j 2 Lq(
),uniformly in �, for any q < 1 by Gagliardo-Nirenberg inequality. We shall establish that9



ru� 2 Lp0(
), uniformly in �, for p0 2 [1; 2). Given this fact, p(u�) = u� ^ ru� 2 Lr(
),uniformly in � for any r 2 [1; 2). This and Lemma 2.3 imply that:ZBRr?' � p(u�) ! ZBRr?' � (r�a + ha)= ZBRr?' � r�j= ZB�0(aj)r?' � r�j + Z@B�0 x1@��j;where B�0 is a small ball of radius �0 about aj, and @� is the tangential derivative. The�rst integral clearly goes to zero as �0 ! 0, and the second integral goes to 2��j by a directcalculation. The convergence (2.11) follows.Now we show that ru� 2 Lp0(
), uniformly in �, for p0 2 [1; 2), by an energy argument.It is su�cient to consider a �nite neighborhood of a single say plus one vortex. Withoutloss of generality, we can assume that the essential zero of u� is inside B(0; ��), for some� 2 (1=4; 1=2), and that B(0; 1) is inside 
 and contains the essential zero. We have thenfrom Lin [20]: E�(u�;B(0; 1)) � � log 1� + C1;�� Z@B(0;��) e�(u�) � C2(�;C1);deg(u�=ju�j; @B(0; ��)) = 1: (2.12)It follows from (2.12) that there exists a �� 2 (1=4; 1=2), and a constant �0(C1) such thatif � � �0(C1): ZB(0;1)nB(0;��) e�(u�) � � log 1�� � C0�: (2.13)In fact, there exists �� 2 (1=4; 1=2) such that u� * ei(�+h), in H1loc(B(0; 1)n0); u� * ei(�+h)in H1(@B(0; ��)); �� R@B(0;��) e�(u�) � C(C1). So RB(0;1)nB(0;��) e�(u�) � C. Now as inLin [20], replace u� by the minimizer ~u� of the energy RB(0;1)nB(0;��) e�(u�) subject to theDirichlet boundary condition ~u� = u�, on @B(0; ��), and zero Neumann on @B(0; 1). Sucha minimizer satis�es j~u�j � 1=2 on B(0; 1)nB(0; ��) and that:ZB(0;1)nB(0;��) e�(~u�) � � log 1�� � C0�; (2.14)proving (2.13). 10



Combining (2.13) and (2.12), we have:ZB(0;��) e�(u�) � � log ��� + C1 + C0�: (2.15)Now we iterate (2.15) to a sequence of balls B(0; r(n)� ), r(n)� = �(1)� � � � �(n�1)� , �(1)� = ��, and�(j)� 's 2 (1=4; 1=2), n = 1; 2; � � � ; N , where N is such that r(N)� � 2��. At each n, the lowerenergy bound on the annuli becomes:ZB(0;r(n)� )nB(0;r(n+1)� ) e�(u�) � � log 1�(n+1)� � C0 �r(n)� ; (2.16)and the upper bound is:ZB(0;r(n)� ) e�(u�) � � log r(n)�� + C1 + �C0(1 + nXj=1 1=r(j)� ): (2.17)The sum of the second term in (2.17) is bounded by a geometric sum from above since�(j)� 2 (1=4; 1=2), and its upper bound is const. ���. Hence the energy upper bound �nallyis: ZB(0;r) e�(u�) � � log r� + C1 + C3�1�� � � log r� + C1 + 2C0; (2.18)for small �, and r 2 (2��; 1).With a similar argument via energy minimizer, we also have:ZB(0;r0) e�(u�) � � log r0� � C4; (2.19)for any r0 2 (2��; 1). Combining (2.18) and (2.19), we infer that for r � 2��:ZB(0;2r)nB(0;r) e�(u�) � C5: (2.20)Now we bound for any p0 2 [1; 2) (2N+1�� 2 (1=2; 2=3)) using H�older inequality:ZB(0;1=2) jru�jp0 � ZB(0;2��) jru�jp0 + NXj=1 ZB(0;2j+1��)nB(0;2j��)) jru�jp0� �2ZB(0;2��) e�(u�)�p0=2 cp0�(2�p0)�+ NXj=1 c(p0; C5)(jB(0; 2j+1��)nB(0; 2j��)j)(2�p0)=2� o(1) + c(p0; C5)(3�)(2�p0)=2 NXj=1(2j��)2�p0 � C6(p0; C5): (2.21)11



The proof is complete.3 Mobility and Continuity of Vortex MotionIn the previous section, we obtained in Lemma 2.2 the weak limit of solutions based on theenergy consideration. Due to conservation of energy, Lemma 2.2 applies to each time sliceof evolution, and so Lemma 2.2 holds with aj = aj(t), and ha = ha(t; x). In this section,we shall utilize the conservation of linear momentum to show the mobility and continuityof vortex motion. With the additional help of conservation of mass, we also re�ne the weaklimit of solution u� in that we �nd out how the function h depends on vortex locations a0js,and that it is harmonic in space. Subsequently, we also prove a key energy estimate for thelater analysis of defect measure.Proposition 3.1 The vortices in u� do not move in any slower time scale t � o(1), as�! 0. On the time scale t � O(1), the vortex locations a�;j(t)'s are uniformly continuousin t as �! 0.Proof: By Lemma 2.1: u�(0; x)* nYj=1 x� a0jjx� a0j jeih0(x);in H1loc(
a0) with kh0kH1(
) � C0. Let R > 0 be a small number, R� 14R0, where:R0 = minfjal � ajj; dist(al; @
); l; j = 1; � � � ; n; l 6= jg:Due to energy conservation, the number R0 remains positive for all time. Let t� be suchthat 8t 2 [0; t�), u�(t; x) has vortices inside [nl=1BR=4(a0l ), and t� is the maximum timewith this property. In other words, for some j, a�;j(t�) 2 @BR=4(a0j ). By the H1 continuityof u� in time for each � > 0, such t� > 0 exists. We prove that lim inf�!0+ t� > 0.Suppose otherwise, at least for a subsequence of �, still denoted the same, t�! 0. Writev�(t; x) = u�(x; t�t), then the NLS for v� becomes:iv�;t = t��v� + t��2 (1 � jv�j2)v�;and the linear momentum equation:@tp(v�) = 2t� div (rv� 
rv�)�r(t�P�): (3.1)12



The vortices of v� lie in [nl=1BR=4(a0l ) for all t 2 [0; 1), and at t = 1, one of the vortices, saya�;j(1) reaches [nl=1@BR=4(a0l ). The vortex locations are well-de�ned up to a small error ofO(��0). With no loss of generality, let us assume that a�;j(0) = 0. Let ' 2 C10 (BR0=2),and ' = x1 for x 2 BR0=4. Multiplying r?' to both sides of (3.1) and integrating overBR0=2 � [0; 1], we obtain with integration by parts:Z@BR0=2 r?' � p(u�)j10 = �2t� Z 10 dt Z@BR0=2 (ru� 
ru�) : rr? ': (3.2)The right side integral is in fact overBR0=2nBR0=4, hence is uniformly bounded by a constantC independent of �. Passing � # 0, by Lemma 2.4, the left hand side converges to 2�(�j(1)��j(0)). Since t� ! 0, �j(1) = �j(0). Similarly, �j(1) = �j(0), contradicting the assumptionthat aj travels a distance R=4 at t = 1.Hence t� is bounded away from zero uniformly in �. Since R can be any small number,we have proved that vortices a�;l(t), l = 1; � � � ; n are uniformly continuous in t, or thelimiting locations al(t) are continuous in t. As a byproduct, we have also shown thatvortices in u� do not move on any slow time scale t � o(1) as �! 0.Replacing t� by t = O(1) in the above proof, we in fact have shown that:Corollary 3.1 On the time scale t � O(1), the limiting vortex locations al(t), are Lipschitzcontinuous, where l = 1; � � � ; n.Now let us characterize the function ha = ha(t; x) in:Proposition 3.2 The function ha(t; x) in the weak limit (2.2) of Lemma 2.1 satis�es:�ha = 0; x 2 
;ha;� = ��a;� + g ^ g� ; x 2 @
; (3.3)where �a is given in (2.8). So ha is unique up to an additive constant, and depends ontime via vortex locations aj(t)'s.Proof: By Lemma 2.3 and dominated convergence, for any function  1(x) 2 C10 (
a) and'(t) 2 C10 ((0; T )), we have:lim�!0Z T0 '(t)Z
a p(u�) 1(x) = Z T0 '(t)Z
a r(�a + ha) 1(x): (3.4)13



In addition, using the mass conservation law (1.10), we also have:Z T0 '(t)Z
a p(u�) � r 1(x) = 12 Z T0 't(t)Z
a ju�j2 1(x)! 12 Z
a  1(x)Z T0 't(t) = 0; (3.5)where the convergence is due to (2.4) of Lemma 2.2. It follows that the weak limit of p(u�)is divergence free. It follows that ha is a harmonic function on 
a and is also H1(
) byLemma 2.2. Thus ha can have at worst removable singularities and is a harmonic functionon the whole domain 
. The function ha then has well-de�ned boundary value, which weidentify next.Let  =  (t; x) be a compactly supported function in a small region 
0 near theboundary @
; for each t, suppf g\@
 contains a �nite curve;  is also compactly supportedinside the time interval [0; T ], T > 0. Note that near the boundary, there are no vortices,hence �a is a single valued function. Let us calculate:Z@
0  p(ua) � �ds = I@
0  p(ua) � d~l = Z
0 curl ( p(ua)) = Z
0 r ^ p(ua)= lim�#0 Z
0 r ^ p(u�) = lim�#0 [Z
0 curl ( p(u�))� Z
0  curlp(u�)]= lim�#0 I@
0  p(u�) � d~l = Z@
0  (g ^ g� )ds; (3.6)implying that: p(ua) = @�(�a + ha) = g ^ g� , on the boundary @
 for all t � 0. Hence theharmonic function ha is uniquely determined up to an additive constant, due to integratingtangential derivative once along the boundary to recover the related Dirichlet boundarydata. Prescribing the boundary map g with certain degree for NLS implies a boundaryforce along the tangential direction for the limiting uid motion. We complete the proof.Proposition 3.3 Let t > 0 and u� = u�(t; x) be as in Lemma 2.1, with vortex locations(a1; a2; � � � ; an). If for some !0 > 0:lim sup�!0 �E�(u�)� �n log 1�� � �W (a) + !0;then for any r > 0, there is a constant C independent of � and r such that for any t > 0:lim sup�!0 p�(u�)ju�j � v2L2(
nUnj=1Br(aj)) � C!0; (3.7)lim sup�!0 krju�j k2L2(
nUnj=1Br(aj)) � C!0: (3.8)14



Proof: We �rst let �k ! 0 such that:lim sup�!0 krju�j k2L2(
nUnj=1Br(aj)) = lim sup�k!0 krju�k j k2L2(
nUnj=1Br(aj)):By Lemma 2.2, we can assume without loss of generality that:u�k H1loc(
a)* ei(�a+h);for some h 2 H1(
). Here ei�a =Qnj=1 x�ajjx�ajj . Hence:p�k (u�k)ju�k j L2loc(
a)* r(�a + h):For any � > 0, then:E�k(u�k ;
nUnj=1B�(aj)) � 12 Z
nUnj=1B�(aj) "jrju�k j j2 + ����p�k (u�k)ju�k j ����2 + 12�2k (1� ju�k j2)2#� 12 Z
nUnj=1B�(aj) jrju�k j j2 + ����p�k(u�k)ju�k j � r(�a + h)����2+ 12 Z
nUnj=1B�(aj) jr(�a + h)j2 dx+ o�k(1); (3.9)here o�k(1) ! 0 as k ! 1. Next, we let u�k(h; �) be such that u�k (h; �) = ei(�a+h) on
nUnj=1B�(aj); and on each B�(aj), u�k(h; �) is a minimizer of E�k on each B�(aj) withboundary value ei(�a+h). We choose � 2 ( r2 ; r) so that u�k j@B� * e(�a+h) in H1(@B�(aj))for j = 1; � � � ; n, by taking subsequence of �k is needed. Then it is easy to see by a simplecomparison that for j = 1; � � � ; n:E�k(u�k ; B�(aj)) � E(u�k(h; �); B�(aj)) + o(�; �k);here o(�; �k)! 0 as k !1. Therefore:�W (a) + o�k (1) � E�k (u�k(h; �))� �n log 1�k� E�k (u�k)� n� log 1�k + o(�; �k)� 12 Z
nUnj=1B�(aj) jrju�k j j2dx� 12 Z
nUnj=1B�(aj) ����p�k(u�k )ju�k j �r(�a + h)����2 dx: (3.10)15



Since E�(u�k)� �n log 1�k � �W (a) + w0, we thus conclude that:lim�k!0Z
nUnj=1Br(aj) jrju�k j j2 � 2w0; (3.11)which implies (3.8) and that:lim sup�k!0 Z
nUnj=1Br(aj) ����p�k(u�k)ju�k j � r(�a + h)����2 � 2w0: (3.12)We observe now if �k ! 0 is so that:lim�k!0Z
nUnj=1Br(aj) ����p�k(u�k)ju�k j � v����2 dx;is the left hand side of (3.7), then by (3.12):lim sup�!0 Z
nUnj=1Br(aj) ����p�(u�)ju�j � v����2 dx � 4w0 + 2Z
nUnj=1Br(aj) jrh�rhaj2: (3.13)Here v = r(�a + ha).Now we show that: Z
nUnj=1Br(aj) jrh�rhaj2 � w0:To do this, we observe that for a � > 0 with:Z@B� jrhj2 � 2� ZB2�nB�=2 jrhj2dx � C� ;we have: E�(u�(h; �); Unj=1B�(aj)) � �n log �� + n+ o(�; �):This follows from an easy energy estimate, see [22]. Here o(�; �) ! 0 as � ! 0+. Thisimplies in turn that:E�(u�(h; �);
nUnj=1B�(aj)) = 12 Z
nUnj=1B�(aj) jr(�a + h)j2� �W (a)� n+ w0 + o(�; �) + n� log 1�: (3.14)On the other hand, we have:12 Z
nUnj=1B�(aj) jr(�a + ha)j2 = n� log 1� + �W (a)� n+ o(�); (3.15)16



where o(�)! 0+, as �! 0. We also note for any h 2 H1(
):Z
nUnj=1B�(aj) jr(�a + h)j2dx = Z
nUnj=1B�(aj) jr�aj2 + jrhj2+ 2Z@
 @�a@� � h � 2 nXj=1 Z@B�(aj)(h� �h)@�a@n ; (3.16)where the last term is bounded by const. Pnj=1 � R@B� jrhj, which goes to zero as � ! 0.By sending �! 0, then �! 0, we therefore obain by combining (3.14), (3.15), and (3.16)that: Z
 jrhj2 � Z
 jrhaj2 + w0: (3.17)Inequality (3.17), along with the fact that ha is harmonic, and hj@
 = haj@
, yields R
 jr(h�ha)j2 � w0. The proof is complete.We end this section with an interesting conjugation property of the regular part of thevortex phase in terms of the renormalized energy function W . Near each vortex aj, writethe weak limit as eiarg(x�aj)+iHj , where Hj is harmonic. Then:Lemma 3.1 rajW (a) = 2nj ��@Hj@x2 (aj); @Hj@x1 (aj)� : (3.18)For a proof, see [2] (Theorem 8.3).4 Convergence to Incompressible Euler Equation andVortex Motion LawIn this section, we use continuity of vortices, the weak convergence and the precise formof weak limit discussed in the previous sections to pass the linear momentum equation(1.11) to the incompressible limit on the punctured domain 
a, and show that the limitingequation is the two dimensional Euler equation. We show properties of defect measures andtotal pressure P to �nish proving Theorem 1.1. We then establish Kirchho� law for vortexmotion based on the limiting projected linear momentum equation. Finally, we showstrong convergence of the linear momentum under the initial energy almost minimizingassumption.Let us write the linear momentum equation in component form:pm(u�)t = 2(u�;xm � u�;xj)xj � Pxm; m = 1; 2: (4.1)17



Direct calculation shows that if ju�j > 0 then:u�;xm = pm(u�)ju�j iu�ju�j + ju�jxm u�ju�j : (4.2)Note that jru�j = 0; a:e, on the set fju�j = 0g. Hence, we only need to consider the setfju�j > 0g. It follows from (4.2) that:u�;xm � u�;xj = pm(u�) � pj(u�)ju�j2 + ju�jxmju�jxj= �pm(u�)ju�j � vm��pj(u�)ju�j � vj�+ ju�jxmju�jxj+ vmpj(u�)ju�j + vj pm(u�)ju�j � vmvj: (4.3)Note that kju�j�1p(u�)kL2loc(
a) � C, for a positive constant independent of �, and t 2 [0; T ].Hence ju�j�1p(u�) is weakly compact in L2(
a � [0; T ]). Since ju�j ! 1 in L2(
a � [0; T ]),the weak L1(
a � [0; T ]) limit of p(u�) equal to v = r(�a + ha) coincides with the weakL2(
a � [0; T ]) limit of ju�j�1p(u�). It follows thatvmpj(u�)ju�j * vmvj; vj pm(u�)ju�j * vjvm (4.4)in L2(
a � [0; T ]).The product terms:�pm(u�)ju�j � vm��pj(u�)ju�j � vj�+ ju�jxmju�jxj * �m;j ; (4.5)as measures to a symmetric tensorial measure �m;j 2 M(
a). We prove:Proposition 4.1 The defect measure � = (�m;j) is a �nite mass Radon measure on thedomain 
. Its divergence div(�m;j) is curl free in the sense of distribution, and can bewritten into rP� on 
a, where P� is a distribution function well-de�ned on the entiredomain 
a. The weak limit v is a solution of the incompressible Euler equation:vt = 2v � rv � 2rP; div v = 0; 8x 2 
a;where the total pressure 2P is a single-valued function, and smooth in 
a.Proof: That the defect measure � � 0 is a �nite mass Radon measure on the entire domain
 follows from Proposition 3.3. Let us take  2 (C10 (
a � [0; T )))2, div = 0, form inner18



product of  with both sides of linear momentum equation (1.11), and integrate by partsto get: Z  (0; x)p(u0�) + Z Z  t � p(u�)� 2(ru� 
ru�) : r = 0:Passing to the limit, we get:Z  (0; x)v0 + Z Z  tv � 2(v 
 v + �) : r = 0: (4.6)In particular, we choose  to be of the form: = �(t)(�'x2; 'x1) = �(t)r?'; (4.7)where ' 2 C10 (
a), �(0) = 0. Then due to v being curl free on 
a, (4.6) reduces to:Z Z �(t)� : rr?' = 0; (4.8)which means that the weak divergence of the measure � is a weak gradient away fromvortices, hence can be written locally into a gradient of another distribution, by an approx-imation argument. We denote div � = rP�, P� is a local distribution for now. It followsthat (4.6) reduces to: Z  (0; x)v0+ Z Z  tv � 2(v 
 v) : r = 0: (4.9)Since v is harmonic in x and Lipschitz continuous in time, it is easy to bootstrap on (4.9)to show that v is smooth in (x; t) 2 
a � (0; T ). We can now write (4.9) into the strongform of Euler equation:vt = 2v � rv � 2rP; x 2 
a; div v = 0; v(0; x) = v0(x) (4.10)for some function 2P locally de�ned on 
a � (0; T ). Taking divergence of (4.10) gives�P = div(v � rv). That v is harmonic in 
a then implies that P is smooth in 
a.Using (4.10), we see that the integral around each vortex:�Z@BR(aj) @P@� = 12 I@BR(aj) vt � d~l � I@BR(aj) v � rv � d~l:By the form of weak limit v, the circulation of vt is zero. The circulation of the v �rv termis also zero by a direct calculation with v = r(�a+ ha). First we note that curl (v � rv) =v � r curlv = 0, x 2 
a. Hence it is enough to calculate the circulation on a very small19



circle around aj and show that it goes to zero as the radius of circle goes to zero. Letaj = (�j ; �j), and x = (�; �). Let us write H = �a + ha = arg x�ajjx�ajj +Hj and so:H� = (Hj)� + �(� � �j)(� � �j)2 + (� � �j)2 ;H� = (Hj)� + (� � �j)(� � �j)2 + (� � �j)2 ; (4.11)and below we denote rHj = (I; II). Noticing that I� + II� = �Hj = 0, we have:I@BR(aj) v � rv � d~l = Z 2�0 R[v � rv1(� sin �) + v � rv2 cos �]d�= Z 2�0 R[(I �R�1 sin �)(I� + 2R�2 sin � cos �)(� sin �)+(II +R�1 cos �)(I� �R�2 cos 2�)(� sin �)]+ Z 2�0 R[(I �R�1 sin �)(II� �R�2 cos 2�) cos �+(II +R�1 cos �)(II� �R�2 sin 2�) cos �]d�= Z 2�0 [I� sin2 � + II� cos2 �]d� +O(R)= �(I�(aj) + II�(aj)) +O(R) = O(R)! 0: (4.12)Thus the total pressure 2P is a well-de�ned single-valued function over the whole domain
. It consists of the defect pressure from � and the contribution from the original NLSpressure.Finally, we show that the defect pressure P� is a well-de�ned distribution on 
. For =  (r), supported in the annulus BR(aj(s))nBR=2(aj(s)) = BRnBR=2, it follows from thelinear momentum equation for t near s that:ddt ZBRnBR=2 p(u�)( � ) = �2ZBRnBR=2ru� 
ru� : r( � );where the NLS pressure has zero circulation and is removed. Passing � # 0 and using thefact that v � rv has zero circulation as proved above, we have:0 = ZBRnBR=2(� + v 
 v) : r( � ) = �ZBRnBR=2(div � + v � rv) � ( � )= �Z RR=2 dr '(r) Z@Br @P�@� ; 20



implying that R@Br @P�@� = 0 for any r > 0, hence P� is a well-de�ned distribution on 
a.The proof of proposition and also that of Theorem 1.1 is complete.Proof of Theorem 1.2: Let us consider the time interval [t; t + k], with k small, andthe ball BR = BR(aj(t)) inside the annulus BR0=2 as in the proof of Proposition 3.1. Thenumber R is much smaller than R0 and is large enough to contain aj(s), s 2 [t; t+ k]. Forexample, R = Ck, for a suitable constant C depending on the Lipschitz constant of aj.Proceeding as in Proposition 3.1, with ' = x1 in BR(aj(t)) and supported inside BR0=2, we�nd: ZBR0=2 r? 'p(u�)jt+kt= �2Z t+kt ds ZBR0=2nBR(ru� 
ru�) : rr? '! 2Z t+kt ds ZBR0=2nBR�(� + v 
 v) : rr? ': (4.13)Here � 2 M(
) and v 
 v 62 L1(
). As in Proposition 3.1, the left hand side of (4.13)converges to 2�(�j(t+ k)� �j(t)).For the right hand side, we calculate the second term in (4.13):Z s+ks ds ZBR0=2(aj(s))nBR(aj(s))�(v 
 v) : rr?'= Z s+ks ds ZBR0=2(aj(s))nBR(aj(s)) v � rv � r?'� Z s+ks ds Z@BR(aj(s))(v 
 v) : (� 
 n?)= Z s+ks ds Z@BR(aj(s)) (v � rv � �?)(n � x)+ Z s+ks ds Z@BR(aj(s))�(v 
 v) : (� 
 n?); (4.14)where n = (1; 0) and � is the normal direction at @BR(aj(s)).Let us calculate the inner part of the �rst integral of the right hand side of (4.14) asfollows: Z 2�0 (�j(t)R+R2 cos �)[v � rv1(� sin �) + v � rv2 cos �]d�21



= Z 2�0 (�j(t)R+R2 cos �)[(I �R�1 sin �)(I� + 2R�2 sin � cos �)(� sin �)+(II +R�1 cos �)(I� �R�2 cos 2�)(� sin �)] d�+ Z 2�0 (�j(t)R+R2 cos �)[(I �R�1 sin �)(II� �R�2 cos 2�) cos �+(II +R�1 cos �)(II� �R�2 sin 2�) cos �]d�= �I Z 2�0 2(sin � cos �)2d� � I Z 2�0 cos2 � cos 2�d� +O(R)= �I Z 2�0 cos2 � = ��I: (4.15)Similarly, the inner part of the second integral of the right hand side of (4.14) also con-tributes ��I. Therefore dividing by k and letting k! 0, we have from (4.13)-(4.15) that:�0j = �2Hj;� + fj;1(�): With a similar equation for �j, we conclude that:a0j = �2rHj + fj(�); (4.16)where fj(�) is a possible correction due to defect measure �. Using the conjugation of Hjwith the renormalized energy, we rewrite (4.16) into:a0j = njJrajW (a) + fj(�); (4.17)where: J = � 0 �11 0 � ;and: W (a) = �Xl6=j nlnj log jal � ajj+ boundary contributions:The Kirchho� law follows if fj(�) = 0, which we show below under the energy almostminimizing assumption.Since the Kirchho� law may encounter �nite time collapse for signed vortices, the va-lidity established here applies also to any time prior to the collapse in the signed vortexsituation.Proposition 4.2 Under the almost minimizing initial energy assumption, we have:p(u�)ju�j � v! 0; rju�j ! 0;in L2(
a), and the defect measure � = 0. The Kirchho� law holds.22



Proof: For simplicity, let us consider vortices of the same sign plus one. Let ~aj;t =Jr~ajW (~a), ~a(0) = a(0); and de�ne:m(t) = nXj=1 jaj(t)� ~aj(t)j:Take a small time interval t 2 [0; t�] so that jm(t)j � �, with � a small number to beselected. Lipschitz continuity of m implies that it is di�erentiable a.e. in t. We have:m0(t) � nXj=1 ja0j(t)� ~a0j(t)j� nXj=1 ja0j(t)� JrajW (a)j+ nXj=1 jJrajW (a)� Jr~ajW (~a)j� nXj=1 ja0j(t)� JrajW (a)j+ Cm(t): (4.18)As before, consider the time interval [t; t+ k], with k small, and the ball BR = BR(aj(t))inside BR0=2. Proceeding as before, we �nd:LHS = ZBR0=2 r? 'p(u�)jt+kt= �2Z t+kt ds ZBR0=2nBR(ru� 
ru�) : rr?'= �2Z t+kt ds ZBR0=2nBR v 
 p(u�)ju�j + �v 
 p(u�)ju�j �T � v 
 v! : rr?'+ (�2)Z t+kt ds ZBR0=2nBR[�p(u�)ju�j � v�
�p(u�)ju�j � v�+rju�j 
 rju�j] : rr?'= RHS1 +RHS2: (4.19)Now the almost minimizing energy assumption gives:E(u�) = n� log 1� +W (a(0)) + o(1)= n� log 1� +W (~a(t)) + o(1)� n� log 1� +W (a(t)) + Cm(t) + o(1): (4.20)23



Selecting �C � !0 2 (0; 1), we infer from Proposition 3.3 that for all t 2 (0; t�):lim sup�!0 kp(u�)ju�j � vkL2(BR0=2nBR) � C1m(t);and lim sup�!0 krju�jkL2(BR0=2nBR) � C1m(t): (4.21)Passing �! 0 in (4.19), then dividing and sending k # 0, we get (a = (�; �)):LHS ! 2��0j(t); RHS1 ! 2�JW�j(a(t)):In view of (4.21), we have from (4.19) that j�0j(t) � JW�j(a)j � C2m(t). With a similarestimate on �j(t), we get ja0j(t) � JrajW (a)j � C2m(t). It follows that m0(t) � Cm(t),with m(0) = 0, hence m(t) = 0 for all t 2 [0; t�]. Induction in time shows a(t) � ~a for allt � 0. Hence Kirchho� law holds with strong convergence of p� and rju�j. The proof iscomplete.5 Zero Neumann and other Boundary ConditionsIn this section, we comment on all necessary modi�cations in the proofs of previous sectionsto establish similar results for the zero Neumann case, the entire space case, and the periodiccase.For the Neumann boundary case, the ha in the weak limit is harmonic and satis�es theboundary condition: ha;� = ��a;�. The resulting renormalized energy W goes to �1 ifone of the vortices goes near @
. To establish uniform bound on W , we proceed by �rstshowing vortex continuous motion in time, then using the dynamical law to deduce thatthe renormalized energy is conserved. Thus the vortices never come close to each other orto the boundary @
 since initially W is �nite. The energy arguments can be modi�ed asin Lin [22] and [23]. What remains is the treatment of the boundary value of ha.Let us derive the Neumann boundary condition on ha. First, near the boundary @
,there are no vortices by induction in time. So we can write u� = ��eiH�, where both ��and H� are real functions. Direct calculation shows:p(u�) = (��)2rH�;p(u�) � � = (��)2H�� ; x 2 @
: (5.1)24



Similarly: u�� = (��� + iH�� )eiH�;and so zero Neumann boundary condition (1.3) says:��� = 0; H�� = 0; @
; (5.2)implying in view of (5.1): p(u�) � � = 0; @
; 8 � > 0: (5.3)Let  =  (t; x) be a compactly supported function in a small region near the boundary;for each t, supp f g \ @
 contains a �nite curve;  is also compactly supported inside thetime interval [0; T ], T > 0.Due to div p(ua) = 0 on 
a, we have using (5.3) and mass conservation:Z@
  p(ua) � � = Z
a p(ua) � r = lim�!0Z
a p(u�) � r = � lim�!0Z
a div p(u�) = �12 lim�!0Z
a ju�j2t ; (5.4)which upon integration over [0; T ] and integration by parts gives:Z T0 Z@
  p(ua) � � = 12 lim�!0Z T0 Z
a ju�j2 t = 0: (5.5)It follows from arbitrariness of  and smoothness of p(ua) that p(ua) �� = 0 on @
, which isjust the desired boundary condition ha;� = ��a;�. Physically, ha plays the role of correcting�a on the boundary so that there is no ow into the wall.Let us turn to the entire space R2 case and the periodic case. For these two cases, weassume that the sum of degrees Pnj=1 nj = 0 (zero sum condition). Under this conditionand that u�(0; x) converges to a constant ei�0 at x = 1 su�ciently fast, the total energyE� on R2 remains the same asymptotic expression n� log 1� +O(1). Otherwise, the energyis in�nite, and one has to look at energy distribution over �nite domains to locate vor-tices. The analogous problem on R2 with in�nite initial energy has been solved recentlyfor the Ginzburg-Landau equation in Lin and Xin [24]. When the sum of vortex degreesis zero, the harmonic function ha having �nite L2 gradient over R2 is a constant. Therenormalized energy simpli�es to WR2 = �Pl6=j nlnj log jal � ajj, free of boundary contri-butions. The zero sum condition is needed in the periodic case in order to maintain theboundary condition for solutions containing vortices. The renormalized energy is similar:Wper = �Pl6=j nlnjG(al � aj), with G the periodic Green's function for the Laplacian onthe two dimensional torus (�G = 2�(�0 � 1)).25



6 Vortex Motion Law of a CGLIn this section, we apply our method to establish the vortex motion law of a related complexGinzburg-Landau (CGL) equation:�log 1� u�;t + iu�;t = �u� + ��2(1 � ju�j2)u�; (6.1)where � > 0 is a �xed positive number. We shall only consider Dirichlet boundary condition(1.2), with extensions to other boundary conditions same as remarked in the last section.The energy conservation is:ddt Z
 e�(u�)(t; x) dx = � �log 1� Z
 ju�;tj2; (6.2)which implies via Lemma 2.1: Z T0 Z
 �u2�;tlog 1� dx � C0; (6.3)and energy concentration:��(t; x) = e�(u�)(t; x) dx� log 1� * �(t; x) = nXj=1 �aj(t): (6.4)It follows from (6.3) that aj(t) are Lipschitz continuous in t for any � > 0, see [20], [22] fordetails.The conservation of mass is now:@tju�j2 = 2divp(u�)� 2�log 1� u� ^ u�;t; (6.5)and the conservation of linear momentum is:@tp(u�) = 2div (ru� 
ru�)�rP� � 2�log 1� u�;t � ru�; (6.6)with the pressure: P� = jru�j2 + u� ��u� � ju�j4 � 12�2 � �log 1� u� � u�;t: (6.7)We observe that: �log 1� u� ^ u�;t ! 0; L1([0; T ];L1(
));26



by (6.3), and similarly: �log 1� u�;t � ru�! 0; L1([0; T ];L1(
a)):Using the same arguments as before for NLS, we deduce that p(u�) * v satisfying theEuler equation on 
a; moreover, the vortices aj(t)'s obey the same Kirchho� law as inTheorem 1.2. Since the results are independent of �, we have as a byproduct another proofof continuity and dynamical law for NLS vortices sending � # 0.7 Semiclassical Limit of NLSIn this section, we consider the semiclassical (WKB) limit of NLS:�iv�;t = �2�v� + (1� jv�j2)v�; (7.1)with Dirichlet boundary condition (1.2) and initial data satisfying (1.5). The case whenthere are no vortices in solutions (uniformly bounded energy as � # 0), has been studied inColin and Soyeur [4]. Here we are concerned with the case when there are vortices. Weshow:Theorem 7.1 Suppose that the initial data:v�(0; x)* nYj=1 x� ajjx� ajjeih(x);weakly in H1(
a), h(x) 2 H1(
), and that jv�(0;x)j�1� ! 0 in L2(
0), for any compact subset
0 of 
a. Then there is no vortex motion at later time and:v�(t; x)* nYj=1 x� ajjx� ajjeih(t;x); (7.2)where the phase function h(t; x) 2 H1(
) and is the weak solution of �nite energy of thefollowing initial-boundary value problem of the linear wave equation:htt � 2�h = 0; x 2 
;h(t; x) = h(x); x 2 @
;h(0; x) = h(x); ht(0; x) = 0: (7.3)27



Proof: By Proposition 3.1 (t� = �), we know that vortices do not move on this slow WKBtime scale. By Lemma 2.1 and Lemma 2.2:v�(t; x)* nYj=1 x� ajjx� ajjeih(t;x); (7.4)where h(t; x) 2 H1(
) for each time t. The conservation of mass is now:�1� jv�j2� �t + 2div(p(v�)) = 0; (7.5)and the conservation of energy implies:Z
0 jrv�j2 + Z
 (1� jv�j2)22�2 � C0; (7.6)where 
0 is a compact subset of 
a, C0 a positive constant independent of �. It follows thatv� is bounded in L1([0; T ];H1(
0)); v�;t bounded in L1([0; T ];H�1(
0)) in view of (7.6) and(7.1); and (1�jv�j2)� bounded in L1([0; T ]; L2). So v� is strongly compact in C([0; T ]; L2(
0))and weakly compact in L1([0; T ];H1(
0)). Up to subsequence if necessary: v�! v stronglyin L1([0; T ];L2(
0)) and weakly in L1([0; T ];H1(
0)). Meantime, (7.5) gives:1� jv�j2� = �2Z t0 div p(v�)(t0) dt0 + 1 � jv�(0; x)j2� * �2Z t0 div p(v)(t0) dt0; (7.7)in the sense of distribution on 
0. This then allows us to pass � # 0 in (7.1) and obtain:ivt = �2v Z t0 div p(v)(t0) dt0;in the distribution sense on 
0. Also jvj = 1, limt#0+ v(t; x) = h(x) in L2(
0), andlimt#0+ vt(t; x) = 0, in H�1(
0). Writing v = eiH shows:Ht � 2Z t0 �H(t0)dt0 = 0; x 2 
0and further letting H = �a + h(t; x), with �a harmonic on 
0, yields:ht � 2Z t0 �h(t0)dt0 = 0; x 2 
0; (7.8)or by arbitrariness of 
0: htt � 2�h = 0; D0(
a � [0; T ]): (7.9)28



It follows that h is a distribution solution of the linear wave equation on 
a. The boundarydata h(t; x) = h(x), x 2 @
, follows from v� ! v in Hs, s 2 (1=2; 1), near the boundaryand standard trace imbedding. Finally, h(t; x) 2 H1(
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