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Abstract

The nonlinear Schrédinger equation (NLS) has been a fundamental model for un-
derstanding vortex motion in superfluids. The vortex motion law has been formally
derived on various physical grounds and has been around for almost half a century.
We study the nonlinear Schrédinger equation in the incompressible fluid limit on a
bounded domain with Dirichlet or Neumann boundary condition. The initial condi-
tion contains any finite number of degree 1 vortices. We prove that the NLS linear
momentum weakly converges to a solution of incompressible Euler equation away
from the vortices. If the initial NLS energy is almost minimizing, we show that the
vortex motion obeys the classical Kirchhoff law for fluid point vortices. Similar results
hold for the entire plane and periodic cases, and a related complex Ginzburg-Landau
equation. We treat as well the semi-classical (WKB) limit of NLS in the presence of
vortices. In this limit, sound waves propagate through steady vortices.
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1 Introduction

We study the two dimensional nonlinear Schrodinger (NLS) equation:
iues = Npue + €21 — |ue[*ue, = €9, (1.1)

where ue = ue(t, z) is a complex valued function defined for each ¢t > 0; € a small positive
parameter; @ = (21, x2) € €, a simply connected bounded domain with smooth boundary
in R* A = 04,2, + Os,u, denotes the two-dimensional Laplacian. The NLS (1.1) has
been proposed and studied as the fundamental equation for understanding superfluids, see
Ginzburg and Pitaevskii [14], Landau and Lifschitz [19], Donnelly [9], Frisch, Pomeau and
Rica [13], Josserand and Pomeau [18], and many others.

We shall consider (1.1) with the prescribed Dirichlet boundary condition:
ulag = g(2), |g| =1, deg(g, 02) = £n, (1.2)
where n is a given positive integer, and the zero Neumann boundary condition:
uylaq =0, (1.3)

v the normal direction. Our method is general enough that we can handle the entire plane
case (2 = R?) and periodic case too.

We will see that as € | 0, the Dirichlet boundary condition corresponds to applying a
tangential force at the boundary so that the tangential fluid velocity is g A g, 7 tangential
unit direction. The Neumann boundary condition corresponds to zero normal fluid velocity
(no fluid penetration) at the boundary. For ease of presentation, we shall work with the
Dirichlet case first, then comment on all necessary modifications in the proof to reach a
similar conclusion for the Neumann case. Subsequently, we also remark on the entire plane
and periodic cases.

The NLS (1.1) preserves the total energy:
(1 — Juel?)?

Ee(ue):/Qee(ue)z/géwuduT, (1.4)

and admits vortices in solutions, which are points where |u¢| becomes zero and the phase
of ue or % has singularities. These points are the locations of regular fluids, which are
surrounded by superfluids. If there are n degree one point vortices in the solution, the

energy Fe(ue) has the asymptotic expression:

Fe(ue)(t) = Fe(ue)(0) = nmlog % + O(1). (1.5)
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So we shall consider initial data ue(0,2) = ul(x) with n degree one vortices, and belonging

to H%(Q) for each € > 0 so that (1.5) holds. With initial and boundary data (1.5) and (1.2),
it is well-known [3] that the defocusing NLS (1.1) is globally well-posed in C'(R*, H*) N
CY(R*,L?) for each ¢ > 0. Our goal is to analyze the limiting behavior of solutions as
el 0.

The systematic matched asymptotic derivation of the limiting vortex motion law was
carried out by Neu [28] for © = R? The motion law is the classical Kirchhoff law for
fluid point vortices [1], and was known to Onsager [30] in 1949. The connection be-
tween Schrodinger equations and the classical fluid mechanics was already noted in 1927
by Madelung [26], which applies to NLS (1.1) as well. Along this line, there have been over
the years many formal derivations of Kirchhoff law based on Madelung’s fluid mechanical
formulation, see Creswick and Morrison [7], Ercolani and Montgomery [11], among others.
Madelung’s idea was to identify |u|* as the fluid density p, and VO = Varg u, as the fluid

velocity v. Then he defined the linear momentum p = pV#é. In the new variables (p,v),
the NLS (1.1) becomes:
pe—2V-p=0, (1.6)
1
Pe =2V - (pr @ v) = =V P(p) = 5V - (pHess(log p)), (1.7)
1

2¢2
tion of course relies on the assumption that the amplitude of u is not zero and the phase

where P = = (1 — p?) is the pressure, and Hess denotes the Hessian. Madelung’s formula-
6 is not singular, otherwise the transform is not well-defined and (1.6)-(1.7) gets singular
even though NLS itself is still regular. When we are studying solutions with vortices, this
singular case is however just what we have to deal with, and so an alternative intepretation
of the fluid formalism related to but different from Madelung’s transform must be used
instead. In view of the energy functional (1.4), p is close to one almost everywhere as € | 0,
and (1.6) implies formally that V-v = 0, provided v converges. Hence the limiting problem
we are considering is an incompressible fluid limit involving vortices. We also see that the
Neumann boundary condition (1.3) says that 6, = v -v = 0, if we write u = p'/2¢ and
assume that vortices are away from the boundary (so p ~ 1). Hence (1.3) reduces to the
zero normal velocity boundary condition for ideal classical fluids.

Let us mention that a modified Madelung’s transform has been utilized in the study of

semi-classical limit (WKB limit) of NLS:
iul = eAyu® + ¢ HuPub, (1.8)
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with initial data: «(0,2) = ao(x)e**®/€. Grenier [15] showed in particular that for ag and
Soin H*(R%), s > 2+ d/2, solutions u® exists on a small time interval [0, 7], T independent
of €. Moreover, u¢ = a(t, x, ¢)e™t9/€ with ¢ and S in L>=([0, T]; H?) uniformly in ¢, and

(p, V.S) converge to solution (p,v) of the isentropic compressible Euler equation:

pt—l—v(pv):()v

2
Ut—I—V(%—I—p) = 0. (1.9)
In one space dimension, using integrable machinery, Jin, Levermore and McLaughlin [17]
obtained the above convergence results globally in time. These works on the compressible
fluid limit treated only the regime of smooth phase functions, and there are no vortices
involved.

Since the formation of vortices, their motion, and the resulting drag force are of tremen-
dous physical significance in superfluids, [13], [18], it has been a longstanding fundamental
problem to understand how to rigorously pass to the classical fluid limit in the presence of
vortices.

Our approach begins with writing the conservation laws of NLS in the form of fluid
dynamic representation. However, in contrast to all earlier applications of Madelung trans-
form, we avoid making explicit use of the phase variable § and do not work with (1.6)-(1.7).
The conservation laws of NLS are put into the form:

e Conservation of mass:

OiJu]? = 2V - p(ue), (1.10)

where in vector notation p(u¢) = ue A Vue, the linear momentum.

e Conservation of linear momentum:

Op(ue) = 2div (Vue @ Vue) — VP, (1.11)
where:
Pe = |Vuel* 4+ ue - Aue — |u€|47—17 (1.12)
2¢?
is the pressure.
e Conservation of energy:
Oree(ue) = div (ue s Vue). (1.13)

Then we study convergence of various terms in (1.10)-(1.11) using the above three

conservation laws (in particular the projection of (1.11) onto divergence free fields), and
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perform various circulation calculations involving the linear momentum p and its first
moments. We show that vortices do not move on slower time scale t ~ O(A¢), A¢ — 0 as
¢ — 0, and they move continuously on the scale t ~ O(1). With precise characterization
of weak limits of linear momentum p, we are able to show that p converges locally in
space to v, the solution of the two-dimensional incompressible Euler equation away from
the n continuously moving point vortices, and moreover, v is curl-free. That v is curl-free
away from vortices agrees with the physical picture that superfluids are potential flows
[19]. Finally, the motion law of point vortices (the Kirchhoff law) follows from the limiting

linear momentum equation. Our main results are:

Theorem 1.1 (Weak Convergence and Fluid Limit) Let us consider NLS (1.1) with
Dirichlet boundary condition (1.2), and initial energy (1.5) with n degree n; = +1 vortices.
Then as €] 0, the energy density ec(uce) concentrates as Radon measures in M(Q) for any
fized time t > 0:

e(ue)dx -
— =Y by,
7=1

mn log ¢

and vortices of ue converge to a;(t) moving continuously in time of t ~ O(1) (ort € [0,T],
T any fired constant) as € | 0. Vortices of ue do not move on any slower time scale
t ~O(Ae) =0(1) (ort =AXer, 7 €[0,T], T any fized positive constant, and Ae — 0) as
€ } 0. Moreover on the time scale t ~ O(1), the linear momentum p(ue) converges weakly

in L'([0,T); L}

Le(£24)) to a solution v of the incompressible Euler equation:

vy =2v-Vo—=2VP, dive=0, z€Q,={WN(ar(t),---,an(t))}

with boundary condition: v-7 = g A g,, T the unit tangential vector on 9. The function

v is precisely characterized as:

v=V(0,+ h,),
where: A
T —a ’
- Zg (=)
and h, s harmonic on  satisfying the boundary condition: h, . = =0, + g A g-, on OS.

So h is unique up to an additive constant. The total pressure 2P is a single-valued function

on 2, and is smooth on Q,. The quadratic tensor product weakly converges as:
Vue @ Vue = v @ v+ p, M(Q,), (1.14)
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where p is a symmetric tensorial Radon defect measure of finite mass over ; and div(y) =
VP, on Q,, where P, is a well-defined distribution function on §1,.

Theorem 1.2 (Vortex Motion Law) Consider the same assumptions as in Theorem

1.1, and in addition assume that the initial NLS energy is almost minimizing, namely:
1
Fe(ue)(0) = nmlog - + 7W(a(0)) + o(1),

as € goes to zero. Let H; = Hj(a), a = (a1, -+, a,), denote the smooth part of ©,+ h, near

each vortex, and define the renormalized enerqy function as:
0H; 0H;
V(@) =20 (-5, 5w )

73 =1,---,n. The vortex motion obeys the classical Kirchhoff law:

ai(t) =n;JV,,W(a) = —2VH;(a),

J
0 —1
=(17),

Wia) = — Z nin;log|a; — a;| + boundary contributions.
I#;

j=1,---,n, where:

and:

We remark that the total initial NLS energy FEe(ue) in (1.5) can be decomposed into
a sum of three parts: the vortex self-energy nrlog ¢, the Kirchhoff energy mW (a(0)), and
the remaining in general O(1) excessive energy. The Kirchhoff energy facilitates the vortex
motion. The remaining energy creates the defect measure . The total pressure consists
of the contribution from the original NLS pressure and the contribution from the defect
measure (the defect pressure). If the excessive energy is absent, or in other words the initial

energy satisfies:
1
Fe(ue)(0) = nmlog - + 7W(a(0)) + o(1), (1.15)

which also means that we is almost energy minimizing for the given vortex locations, the
linear momentum p(u¢) converges strongly in L'([0,7]; L}, .(€,)) and the defect measure
p = 0. In general, with O(1) excessive energy, to prove the same motion law requires
further information on y; either that the divergence of defect measure p is a gradient of a

distribution on the entire domain €2 (i.e. is globally curl-free as a distribution) or that the
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support of u is restricted to the union of vortex locations and the physical boundary. The
excessive energy physically is carried by sound waves (time dependent phase waves), see the
discussion of WKB limit in section 7. It is conceivable that vortices still move according to
Kirchhoff law when sound waves have propagated away from them, either absorbed by the
vortex cores or the physical boundary. Otherwise, sound waves may modify the motion of
vortices by creating oscillations, [13]. It is very interesting to understand the vortex sound
interaction (Nore et al. [29]) in terms of the structure of the defect measure p based on
our results here.

Due to the local nature of our method, we are able to prove the same theorems for
the zero Neumann case (1.3), with the modification that the boundary condition is instead
v-v =0, and h,, = —0,,. Similar results are established for the entire plane and the
periodic cases, as long as the sum of vortex degrees is zero and the total energy obeys
(1.5). Our results on the Dirichlet and Neumann cases easily extend to the situation where
there are 2k + n vortices in a bounded domain, n + k& being of degree +1, and k of degree
—1. Due to the possibility of finite time vortex collisions in Kirchhoff law in case of signed
vortices [27], the results are meant for any time before any two vortices come together.

It is remarkable that NLS vortices obey the Kirchhoff law in the incompressible fluid
limit, considering that the +1 vortices are only known to be dynamically marginally stable
in the spectral sense, see Weinstein and Xin [32]. For this reason, it seems impossible
to prove the validity of the motion law for the above mentioned initial and boundary
conditions by attempting to justify the matched asymptotic derivation of Neu [28] which
relied on linearization about vortices. The fluid dynamic approach developed here has
been extended by the authors [25] to establish the vortex motion laws of the analogous
nonlinear wave (NLW) equation, and the nonlinear heat (NLH) equation. In NLW and
NLH, Euler-like equations also appear and lead to the motion laws. Under similar energy
almost minimizing assumption (1.15), the NLW vortex motion law is: @/ = —n;V, W, on
the time scale ¢ ~ O(log 1).

During the preparation of this paper, we learned of Colliander and Jerrard [5] on the
periodic case of NLS. They showed the motion law under the energy almost minimizing
assumption, however, did not study defect measure and the general fluid limit.

The rest of the paper is organized as follows. In section 2, we state and prove energy
concentration, and show its direct consequences on convergence of linear momentum away
from vortices and basic energy type bounds. In section 3, we study mobility and continuity

of vortex locations based on linear momentum equation and subsequently refine the form



of weak limit of solutions based on conservation of mass. We also prove a key energy
estimate which is used later to control the defect measure. In section 4, we show using
all results in previous sections that the NLS linear momentum converges to a solution
of the two dimensional incompressible Euler equation away from vortices. The Kirchhoff
law then follows from the limiting linear momentum equation under the energy minimizing
assumption. In section 5, we comment on all necessary modifications to establish the similar
results for the zero Neumann case, as well as the entire plane and periodic cases. In section
6, we apply our method to show the vortex motion law for a related complex Ginzburg-
Landau (CGL) equation. Besides the interest of CGL vortices in its own right, this result
provides another proof of NLS vortex motion law by passing the CGL to NLS limit. In
section 7, we study the semi-classical (WKB) limit of NLS. Due to the slow time scale
O(e), vortices do not move, and the regular part of the phase function of solution satisfies

the linear wave equation, indicating the propagation of sound waves through vortices.

2 Energy Concentration and Basic Weak Limits

In this section, we present weak convergence results on two basic physical quantities: the
energy e(u¢) and the linear momentum p(ue). Consequently, we deduce the weak conver-
gence of the curl of p(uc¢). The one half curl of p(uc) is equal to the Jacobian of the map
ue, hence will be denoted by J,.(u¢), and it is also known as vorticity. All the results follow

from energy concentration and energy comparisons, and are independent of dynamics.

Lemma 2.1 Suppose ue, is a sequence of H'-maps from Q into C (the complex plane)
satisfying the Dirichlet boundary condition ue,|aq = g. Suppose also that for a positive €,

independent constant Cy the energy satisfies:

1 1_ U 232 1
Eék(uék):/eck(uck)z/§|VU6;€|2—|-M < mnlog — + Ch.
Q Q

Then taking a subsequence in € if necessary, we have as € = ¢ | 0 that:

ee(uc)de 25%, (2.1)

™m log c
as Radon measures. Moreover,

min{|a; — a; |, dist(a;,0Q), l,7=1,---,n, { # 5} > do(g,2,Co) >0



Proof: This lemma is same as Proposition 1 of Lin [23], where the earlier structure theorem
of Lin [20] (Theorem 2.4) is extended to show that there are small positive numbers ¢ and
ag such that for € € (0, ¢), there are n distinct balls B;’s with radii ekaj, a; € [ag,1/2],
which contain vortices of degrees £1. In other words, vortex locations are known up to an

error of O(ekaj ).

Lemma 2.2 Under the assumptions of Lemma 2.1, we have up to a subsequence if neces-

N r—a; \"” iha(z) — 29
H<x_a]|> o 22

n; = £1, weakly in H: (WN\{ay, -, a,}) = HL (D) for some h, € H'(Q). Moreover,

sary:

/ |Vh,|* < C, (2.3)
Q

1 — 2\2
/Q UoldD” <o, (2.4)
[ ISl < ca (2.5)

for a positive constant Cy, uniformly in e.

Proof: These results follow from energy comparisons. For the weak convergence (2.2)
and inequality (2.3), see the general convergence theorem of [20] and also Proposition 2
of [23]. The inequality (2.4) is shown in Lecture 1 of [21]. For (2.5), we use the fact
that V|ue| = 0, a.c. on the set {x € Q : |ue| = 0}, and write ue = |ue|e¥’€ whenever
lue| # 0. Substituting this expression into the total energy, which is uniformly bounded
away from the set {x € Q : |u¢| = 0}, gives (2.5). Intuitively, the singular part of energy
that contributes to nm log% comes from the singular part of the phase of u® (the sum of
vortex phases). The above three inequalities are valid since they either involve only the

amplitude |u®| or the regular part of the phase h,.

Remark 2.1 Under the same assumptions as in Lemma 2.1, the renormalized energy is

defined as (v a universal constant):

1
W =W(ay, --,a,) =1lim / |Vu,|> —nlog1/r| + n, (2.6)
27 Jo\ Uz, Bfe)

rl0

see Bethuel, Brezis and Hélein [2]. Here u, is a harmonic map of the form (2.2). The W
function has the properties that: W — +o0o if some a; reaches the boundary 92 or a; = a;
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for some j # [; otherwise, it is locally analytic in a. Due to yn, W(a) is also local energy

minimizing.

Lemma 2.3 Under the same assumptions as Lemma 2.1, the linear momentum p(ue) is

uniformly bounded in L},.(Q,), and up to a subsequence if necessary:
plue) = v=V0,+ Vh,, (2.7)

1
in L.

(Q,), where:

T — a; "
arg . (2.8)
o= Yo (=)
Moreover,

2Jac(ue) dx = curl (p(ue)) de — 0, (2.9)

in the sense of bounded measures M(£),).

Proof: We see from Lemmas 2.1 and 2.2 that p(ue) is uniformly bounded in L' away from
vortices {ay, -+, a,}. Since Vue is weakly compact in H'(,), and ue compact in L*(£),),
we have:

plue) = ue AN Vue = v =V0, + Vh,,

1
in L.

(€2,). Noticing that v is a gradient of an H' function, we have by taking curl of p(u¢)

and the weak continuity of Jacobians with respect to H' weak convergence that:
2Jc(ue)de = curl p(ue)dx — 0, (2.10)
in M(9Q,). Note that J,.(ue) € L}, (). The proof is complete.

Lemma 2.4 The linear momentum p(ue) € LY(Q) uniformly in e. Let p € C5°(Q), ¢ =
xy for ¥ € Bpjlaj), ¢ = 0, for x & Br(a;), where R € (0,80). Then we have with

a; = (&,m5):
/ V™o pluc) — 27¢;. (2.11)
BR(“J)

A similar convergence holds with x4 in place of x1, n; in place of ;.

Proof: The integral in (2.11) is the projection of the linear momentum onto divergence free
field. We have from Lemma 2.2 that |u¢| € H'(Q), uniformly in e¢. Hence |ue| € LY(f),
uniformly in €, for any ¢ < oo by Gagliardo-Nirenberg inequality. We shall establish that



Vut € LY (Q), uniformly in ¢, for p’ € [1,2). Given this fact, p(ue) = ue A Vue € L(Q),
uniformly in € for any r € [1,2). This and Lemma 2.3 imply that:

V7 plue) — V7 - (VO, + h,)

Br Br

where B¢ is a small ball of radius € about a;, and 0, is the tangential derivative. The
first integral clearly goes to zero as € — 0, and the second integral goes to 27¢; by a direct
calculation. The convergence (2.11) follows.

Now we show that Vu¢ € LP' (), uniformly in ¢, for p’ € [1,2), by an energy argument.
It is sufficient to consider a finite neighborhood of a single say plus one vortex. Without
loss of generality, we can assume that the essential zero of u® is inside B(0,¢%), for some
a € (1/4,1/2), and that B(0,1) is inside  and contains the essential zero. We have then
from Lin [20]:

1
EG(UG, B(O, 1)) S 7T10g -4+ Cl,
€

e eelue) < Cola, Cy),

5B(0,6%)

deg(uc/|uel,0B(0,€e)) = 1. (2.12)

It follows from (2.12) that there exists a 8¢ € (1/4,1/2), and a constant €,(C4) such that
if € < eo(Ch):

1
/ ec(ue) > mlog — — Cye. (2.13)
B(0,1)\B(0,8¢) 0

€

In fact, there exists f¢ € (1/4,1/2) such that ue — € ©) in H! (B(0,1)\0); ue — €(©+
in H'(0B(0,0¢)); b¢ faB(o,ee) ec(ue) < C(Cy). So fB(0,1)\B(0,96) ec(ue) < C. Now as in

Lin [20], replace ue by the minimizer @¢ of the energy fB( )ee(ue) subject to the

0,1\ B(0,6¢
Dirichlet boundary condition @¢ = ue, on dB(0,60¢), and zero Neumann on dB(0,1). Such

a minimizer satisfies |t¢| > 1/2 on B(0,1)\B(0,0¢) and that:
1
/ ec(tic) > mlog — — Coe, (2.14)
B(0,1)\B(0,0¢) Oe
proving (2.13).
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Combining (2.13) and (2.12), we have:

0
/ ec(uc) < mlog 40+ Cpe. (2.15)
B(0,6¢) ¢

Now we iterate (2.15) to a sequence of balls B(0, r(én)), r(en) = (9(61) e 0(:—1)7 (9(61) = B¢, and
Q(Gj)’s €(1/4,1/2), n =1,2,---, N, where N is such that r( ) > 2¢7. At each n, the lower

energy bound on the annuli becomes:

1
/ ec(ue) > mlog o Co P (2.16)
BOsgN\BOr ) o' e
and the upper bound is:
(n) n ,
/ cclue) < mlog "o 4 Oy + eCol1 + 3 1/, (2.17)
B(0,-) € o

The sum of the second term in (2.17) is bounded by a geometric sum from above since
G(Gj) € (1/4,1/2), and its upper bound is const. ¢~*. Hence the energy upper bound finally
is:

/ ec(uc) < mlog r + Oy + Cs™ < 7log r + Oy + 2C,, (2.18)
B(0,r) ¢ ¢

for small €, and r € (2%, 1).

With a similar argument via energy minimizer, we also have:

!
/ ec(ue) > mlog L Cly, (2.19)
B(0,r") €
for any " € (2¢*,1). Combining (2.18) and (2.19), we infer that for r > 2¢:
/ GG(UG) S 05. (220)
B(0,2r)\B(0,r)

Now we bound for any p’ € [1,2) (2VT1e™ € (1/2,2/3)) using Holder inequality:

/ |Vu€|p/ S |Vu€|p —|—Z/ |Vu6|p/
B(0,1/2)

B(0,27+1€2)\ B(0,27€2))
<

S

B(0,2€2)

p'/2 )
2/ 66(u6)> Cp/6(2_p Jo
B(0,2€%)

TN

WE

+ > elp, Cs)(IB(0,27F e )\ B(0, 27 ) 7772
j=1
N .
< o) ey, Co)(3m)ETE Y (21T < Golp!, Cs). (221)
j=1
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The proof is complete.

3 Mobility and Continuity of Vortex Motion

In the previous section, we obtained in Lemma 2.2 the weak limit of solutions based on the
energy consideration. Due to conservation of energy, Lemma 2.2 applies to each time slice
of evolution, and so Lemma 2.2 holds with a; = a;(t), and h, = h,(t,2). In this section,
we shall utilize the conservation of linear momentum to show the mobility and continuity
of vortex motion. With the additional help of conservation of mass, we also refine the weak
limit of solution ue in that we find out how the function & depends on vortex locations a’s,
and that it is harmonic in space. Subsequently, we also prove a key energy estimate for the

later analysis of defect measure.

Proposition 3.1 The vortices in ue do not move in any slower time scale t ~ o(1), as
€ = 0. On the time scale t ~ O(1), the vortex locations ac j(t)’s are uniformly continuous

mtasec— 0.

Proof: By Lemma 2.1:

n
T

0
u6(07 x) AN H 7‘6621’1‘0(1’)7
=1 4]

|z —

. 1
in Hy,.

(Qa) with ||Aol[1(@) < Co. Let R > 0 be a small number, R < iRO, where:
Ro = min{|a; — ], dist(a;,0Q), l,j=1,---,n, [ # j}.

Due to energy conservation, the number Ry remains positive for all time. Let ¢¢ be such
that Vt € [0,%¢), ue(t,2) has vortices inside U, Brsa(a7), and t¢ is the maximum time
with this property. In other words, for some j, ae;(te) € 9Bpj4(a?). By the H' continuity
of ue in time for each ¢ > 0, such t¢ > 0 exists. We prove that liminfe_o+ te > 0.

Suppose otherwise, at least for a subsequence of ¢, still denoted the same, t¢ — 0. Write

ve(t,x) = ue(x,tet), then the NLS for ve becomes:
. tﬁ 2
e = teAve + 6—2(1 — |vel?)ve,
and the linear momentum equation:
atp(ve) = Qte le (Vve ® Vve) - V(tepe) (31)
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The vortices of ve lie in Ul_; Bry4(a?) for all ¢ € [0,1), and at ¢ = 1, one of the vortices, say
ae,j(1) reaches Uj_;0Bg/a(a}). The vortex locations are well-defined up to a small error of
O(e??). With no loss of generality, let us assume that ae;(0) = 0. Let ¢ € C§°(Bpy2),
and ¢ = 1 for v € Bpy/4. Multiplying V~¢ to both sides of (3.1) and integrating over
Bpryj2 x [0, 1], we obtain with integration by parts:

1
/ V7 - p(u6)|(1J = —2l¢ / dt / (Vue @ Vue) : VV ™ . (3.2)
8BR0/2 0 8BR0/2

The right side integral is in fact over Bp, 2\ B, /4, hence is uniformly bounded by a constant
C independent of e. Passing € | 0, by Lemma 2.4, the left hand side converges to 27 (&;(1)—
£;(0)). Since te — 0, (1) = &;(0). Similarly, n;(1) = n;(0), contradicting the assumption
that a; travels a distance R/4 at t = 1.

Hence t¢ is bounded away from zero uniformly in e. Since R can be any small number,
we have proved that vortices a¢(t), [ = 1,---,n are uniformly continuous in ¢, or the
limiting locations «;(t) are continuous in ¢t. As a byproduct, we have also shown that
vortices in u¢ do not move on any slow time scale ¢ ~ o(1) as € — 0.

Replacing te by t = O(1) in the above proof, we in fact have shown that:

Corollary 3.1 On the time scale t ~ O(1), the limiting vortex locations a;(t), are Lipschitz

continuous, where [ =1,--- . n.
Now let us characterize the function h, = hy(t, ) in:

Proposition 3.2 The function h,(t,x) in the weak limit (2.2) of Lemma 2.1 satisfies:

Ah, = 0, z€Q,
hoy, = —0Our+9gANgr, €00, (3.3)

where O, is given in (2.8). So h, is unique up to an additive constant, and depends on

time via vortex locations a;(t)’s.

Proof: By Lemma 2.3 and dominated convergence, for any function ¢4 (x) € C5°(£2,) and
(1) € C5°((0,T)), we have:
T

fim [ ott) [ ptuctinte) = [t [ 90,4 i) (3.4

€—0 0
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In addition, using the mass conservation law (1.10), we also have:
T 1 /7
Lo [ o) o) = 5 [ i) [ fuente)
0 o 0 Q
1 T
5 5 [ et [Can=o, 3.5)
Q 0

where the convergence is due to (2.4) of Lemma 2.2. It follows that the weak limit of p(u¢)
is divergence free. It follows that h, is a harmonic function on €, and is also H'(Q) by
Lemma 2.2. Thus h, can have at worst removable singularities and is a harmonic function
on the whole domain €. The function A, then has well-defined boundary value, which we
identify next.

Let ¢ = ¢(t,x) be a compactly supported function in a small region €' near the
boundary 0€2; for each ¢, supp{}NOQ contains a finite curve; ¢ is also compactly supported
inside the time interval [0,7], T" > 0. Note that near the boundary, there are no vortices,
hence ©, is a single valued function. Let us calculate:

—

dpt) s = vptu)dl = [ el (upu)) = [ ToApw)

aq aq o
= 1551 N Vi A plue) = 161%1[// curl (¢p(ue)) — N eurl p(ue)]
= lim ¢ dp(ue)-dl= | (g Ag-)ds, (3.6)
O Joqr o

implying that: p(u,) = 0:(0, + hy) = g A g-, on the boundary 9 for all ¢ > 0. Hence the
harmonic function h, is uniquely determined up to an additive constant, due to integrating
tangential derivative once along the boundary to recover the related Dirichlet boundary
data. Prescribing the boundary map ¢ with certain degree for NLS implies a boundary

force along the tangential direction for the limiting fluid motion. We complete the proof.

Proposition 3.3 Let t > 0 and ue = uc(t,x) be as in Lemma 2.1, with vortex locations
(a1, ag, -, an). If for some wy > 0:
1
lim sup (Ee(ue) — mnlog —) <7 W(a)+ wo,
€—0 €

then for any r > 0, there is a constant C independent of € and r such that for any t > 0:

2
lim sup‘ Pelue) — < Cwy, (3.7)
€—=0 |U6| L2(Q\UJ":1BT((1J))
lim sup H V|u6| "%2(Q\U"=1Br(a])) S CCUO. (38)
€—0 ’
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Proof: We first let ¢, — 0 such that:

hf?_%lp | Vuel H%?(Q\anler(aJ)) = limsup || V]ue, | "%2(Q\U]"=1Br(a]))‘

€p—0

By Lemma 2.2, we can assume without loss of generality that:

H! (Q, .
ZOA )ez(G)a—I—h)

uék Y

for some h € H'(Q). Here ¢'®a — [T, =—==. Hence:

For any p > 0, then:

Eﬁk(u€k7Q\Uf:1BP(aj)) =

AV

_|_

here o¢, (1) — 0 as k — oo.

I=1 Je—a,]”

Pe,, (uﬁk ) L?oiga)

|u€k|

/ [|V|uek| o
Q\U]nleP(aJ)

V(O, + h).

Pe, (uﬁk) ’

|u€k|

[N

1 2\2
+E(1—|U6k| )]
2

1

‘/ Ve, | P + |Pele) _ vo, 1 h)

2 Q\U]nleP(aJ) |u6k|

1

! / V(0. + W) de + oc, (1), (3.9)
2 Q\UT_, Bp(ay)

Next, we let ue, (h,p) be such that ue, (h,p) = et (©®ath) op

U™, B,(a;); and on each B,(a;), ue,(h,p) is a minimizer of E¢, on each B,(a;) with
boundary value ¢/®«t")  We choose p € (5,7) so that we,[s5, — e(@ath) ip HY(0B,(a;))

for y = 1,---,n, by taking subsequence of ¢ is needed. Then it is easy to see by a simple

comparison that for j =1, -+, n:

Eﬁk(uﬁw Bp(a])) > E(uﬁk(hvp)v Bp(a])) + 0(107 6k)?

here o(p, ex) — 0 as k — oco. Therefore:

1
m W(a) + Oﬁk(l) < Eek (uek(h7p)) —Tn 10g -

€k

1 1
< Folua) —nrlos tolpe) —5 [Vl P

),
2 Q\U]"lep(a])

2
2

}M —V(O, + h)| du. (3.10)

|u€k|
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Since Ee(ue, ) — mnlog é <7 W(a)+ wy, we thus conclude that:
lim Ve, | I* < 2w, (3.11)
€x—0 Q\anleT(aJ)

which implies (3.8) and that:

2

pﬁk(uﬁk) . V(G)a + h)

lim sup/ < 2wyp. (3.12)
€x—0  JO\U™, Br(ay) |ue, |
We observe now if ¢, — 0 is so that:
2
lim Pei(Ue,) de,
€p—0 Q\U]nler(a]) |uek|
is the left hand side of (3.7), then by (3.12):
pc(uc) ?
limsup/ —v| dr < 4w0—|—2/ |Vh — Vh,|*. (3.13)
€=0  JO\UL, By(ay) |U6| Q\UIL, By (ay)

Here v = V(0O, + h,).
Now we show that:

|Vh — Vha|2 S wo.
Q\anleT(aJ)

To do this, we observe that for a p > 0 with:

2
[ownp<d [ e < S
9B, P B2p\Bp/2 P

we have:
Be(uc(h.p). Ui By(a;)) = 7nlog & + yn 4 o(p. ).

This follows from an easy energy estimate, see [22]. Here o(p,¢) — 0 as ¢ — 0%. This

implies in turn that:

" 1
Eeluellop): UL Byfa) = 5 [ V(0. + )P
Q\U]nleP(aJ)
1
< aW(a)—yn + wo + o(p, €) + nwlog —. (3.14)
p
On the other hand, we have:
1 1
—/ IV(©, + h,)|* = nrlog — + 7 W(a) —yn + o(p), (3.15)
2 Q\U™_, By(a;) P
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where o(p) — 0%, as p — 0. We also note for any h € H'(Q):

/ IV(0, + h)|2dx = / VO + |Vh]?
Q\U™_, B,(a;) Q\UT, Bp(ay)
00 - ~. 00
+ 2 Lh—2 / h—h : 3.16
sn OV ; aBp(aJ)( ) on ( )

where the last term is bounded by const. 2?21 ,ofaBp |Vh|, which goes to zero as p — 0.
By sending € — 0, then p — 0, we therefore obain by combining (3.14), (3.15), and (3.16)
that:

/|Vh|2§/|Vha|2—|—w0. (3.17)
Q Q

Inequality (3.17), along with the fact that %, is harmonic, and hlsq = hqlsq, yields [, [V(h—
ho)|? < wo. The proof is complete.

We end this section with an interesting conjugation property of the regular part of the
vortex phase in terms of the renormalized energy function W. Near each vortex a;, write

the weak limit as e'*#(@=9)+# where H; is harmonic. Then:

Lemma 3.1 9H 9H
—op. (_OHi, o O
V(@) =20 (-5, 5w ) 3.15)

For a proof, see [2] (Theorem 8.3).

4 Convergence to Incompressible Euler Equation and
Vortex Motion Law

In this section, we use continuity of vortices, the weak convergence and the precise form
of weak limit discussed in the previous sections to pass the linear momentum equation
(1.11) to the incompressible limit on the punctured domain 2,, and show that the limiting
equation is the two dimensional Euler equation. We show properties of defect measures and
total pressure P to finish proving Theorem 1.1. We then establish Kirchhoff law for vortex
motion based on the limiting projected linear momentum equation. Finally, we show
strong convergence of the linear momentum under the initial energy almost minimizing
assumption.

Let us write the linear momentum equation in component form:
P (te)t = 2(Uep,, “Uew,)e; — Pryn  m=1,2. (4.1)
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Direct calculation shows that if |ue| > 0 then:

U

|U6|'

I ue] el

Note that |Vue| = 0,a.e, on the set {|u¢| = 0}. Hence, we only need to consider the set
{|uf| > 0}. It follows from (4.2) that:

U . A
tew, ey, = PmlU Pt Ly

(220, ) (B ) el
[uc] e

— VU v;. (4.3)

+ v

Note that |[fue|~'p(uc) 2.
Hence |ue| ' p(ue) is weakly compact in L*(Q, x [0,T7]). Since |ue| — 1 in L*(Q, x [0,T]),
the weak L'(€, x [0,7]) limit of p(ue) equal to v = V(O, + h,) coincides with the weak

L*(Q, x [0,T7]) limit of |ue| *p(ue). It follows that

(@.) < O, for a positive constant independent of ¢, and ¢ € [0, 7.

pilue) o Ujpm(ue)
|uel |uel

— VU, (4.4)

m

in L*(Q, x [0,7T]).
The product terms:

(pm(ue) _ Um) (p;(ué) _ v]> 1 el lttels, = s, (45)

|u6| |u6|

as measures to a symmetric tensorial measure i, ; € M(,). We prove:

Proposition 4.1 The defect measure p = (fi,5) s a finite mass Radon measure on the
domain Q. [ts divergence div(pm,, ;) s curl free in the sense of distribution, and can be
written into VP, on Q,, where P, is a distribution function well-defined on the entire

domain Q,. The weak limit v is a solution of the incompressible Fuler equation:
vy =2v-Vo—=2VP, dive =0, Va € Q,,
where the total pressure 2P is a single-valued function, and smooth in £,.

Proof: That the defect measure g > 0 is a finite mass Radon measure on the entire domain

Q follows from Proposition 3.3. Let us take ¢ € (C5°(Q, x [0,7)))?, divey = 0, form inner
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product of ¢ with both sides of linear momentum equation (1.11), and integrate by parts

o /;/;(0, z)p(ue) + / / Vo plue) = 2(Vue @ Vue) : Vi = 0.

Passing to the limit, we get:

/;/)(O,x)vo + //W —2(v@v+4p): Vi =0. (4.6)

In particular, we choose ¥ to be of the form:

b =a(t)(=p,,. 0,,) = () Ve, (4.7)

where ¢ € C5°(2,), a(0) = 0. Then due to v being curl free on ,, (4.6) reduces to:

[ [ attnves =0 (43)

which means that the weak divergence of the measure p is a weak gradient away from
vortices, hence can be written locally into a gradient of another distribution, by an approx-
imation argument. We denote divy = VP, P, is a local distribution for now. It follows
that (4.6) reduces to:

/;z)(o, z)v° + / / Vv —2(v @v): Vip = 0. (4.9)

Since v is harmonic in & and Lipschitz continuous in time, it is easy to bootstrap on (4.9)
to show that v is smooth in (x,t) € Q, x (0,7). We can now write (4.9) into the strong

form of Euler equation:
v, =2v-Vo—2VP z€Q, dive=0, v0,z)=12%x) (4.10)

for some function 2P locally defined on 2, x (0,7). Taking divergence of (4.10) gives
AP = div(v - Vo). That v is harmonic in €, then implies that P is smooth in .

Using (4.10), we see that the integral around each vortex:

P o1 - e
_/ a—:—% Ut'dl—% vadl
8Bg(a;) o 2 9Bg(a;) 9BR(a;)

By the form of weak limit v, the circulation of v; is zero. The circulation of the v- Vv term
is also zero by a direct calculation with v = V(0,4 h,). First we note that curl (v-Vov) =

v-Veurlv =0, ¢ € Q,. Hence it is enough to calculate the circulation on a very small
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circle around «; and show that it goes to zero as the radius of circle goes to zero. Let

a; = (&,n;), and « = (£,n). Let us write H = 0, + h, = arg é:aﬂ + H; and so:

aj

. —(n —n;)

Hg = (Hj)f + (5 _ &)2 + (77 - 77]‘)27
(€—&)

(€ =&)2+ (n—n)*

and below we denote VH; = (I, II). Noticing that I + II, = AH; = 0, we have:

Hn = (Hj)n + (4-11)

2T
% v Vo-dl = / R[v - Vo (—sin8) + v - Vg cos §]db
8BR(a]) 0

2
= / R[(I — R sin0)(I¢ + 2R sin § cos )(— sin )
0
+(I1T+ R~ cos (I, — R™? cos 20)(—sin §)]

2

R[(I — R sin0) (11 — R™* cos 20) cos 0

_|_
S~

+(I1T+ R~ cos O (11, — R~ ?sin 20) cos 0]d6
27

[1¢ sin? 9 + 11, cos? 0]do + O(R)

Il
S~

= W([g(a]‘) + [[n(a]‘)) + O(R) = O(R) — 0. (4.12)

Thus the total pressure 2P is a well-defined single-valued function over the whole domain
Q. It consists of the defect pressure from g and the contribution from the original NLS
pressure.

Finally, we show that the defect pressure P, is a well-defined distribution on ). For
» = 9(r), supported in the annulus Br(a;(s))\Br/2(a;(s)) = Br\Bgy2, it follows from the

linear momentum equation for ¢ near s that:

d

di Br\BRr/2

plue)(vr) = —2/ Vue @ Vue : V(r),

Br\Bg/2

where the NLS pressure has zero circulation and is removed. Passing € | 0 and using the

fact that v - Vo has zero circulation as proved above, we have:

= v®v): V(r) = — div v-Vou)- (YT
0 /BR\BR/2(/~L‘|‘ 5 ) V() [BR\BR/2< V0 (0r)
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implying that faB ap“ = 0 for any r > 0, hence P, is a well-defined distribution on €2,.
The proof of pr0p081t10n and also that of Theorem 1.1 is complete.

Proof of Theorem 1.2: Let us consider the time interval [t,¢ 4+ k], with & small, and
the ball Br = Br(a;(t)) inside the annulus Bpg, /s as in the proof of Proposition 3.1. The
number R is much smaller than Ry and is large enough to contain «a;(s), s € [t,t+ k]. For
example, B = Ck, for a suitable constant C' depending on the Lipschitz constant of «;.
Proceeding as in Proposition 3.1, with ¢ = x; in Bgr(a;(t)) and supported inside Bp, /2, we
find:

/ V™ opluc) it
Bry /2

= —2/ ds / (Vue @ Vue) : VV™ @
t Br, 2\Br

— 2/ ds / —(p+ov®0v): VV . (4.13)
t Br,2\Br
Here € M(Q) and v @ v ¢ L'(©2). As in Proposition 3.1, the left hand side of (4.13)

converges to 2m(&;(t + k) — & (1)).
For the right hand side, we calculate the second term in (4.13):

/ ds / —(v@v): VV
5 Bry2(a;(s)\Br(a;(s))
= / / v-Vou-Vp
s BRO/2 a;(s))\Br(a;(s))
/ / v®v c(r@n)
9Br(a
/ / -NVv-v7)(n-x)
9B r(a
+ / / (v@v): (ren), (4.14)
dBr(a;(s)

where n = (1,0) and v is the normal direction at dBgr(a;(s)).
Let us calculate the inner part of the first integral of the right hand side of (4.14) as

follows:

2
/ (& ()R A+ R? cos 0)[v - Vo (—sin ) + v - Vv, cos 0]do
0
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= /%(gj(t)l% + R*cos )[(I — R sin0)(I + 2R sin  cos §)(— sin 0)
—I-O(H + R™'cos 0)(I, — R™% cos 20)(—sin )] df

+ /%(gj(t)l% + R*cos)[(I — R sin@)(IIs — R™% cos 20) cos #
—I-O(H + R cos 0)(11, — R™%sin 26) cos 0]db

27 27
= —[/ 2(sin 6 cos 0)2d0 — ]/ cos? 0 cos 20d0 + O(R)
0 0

27
= —[/ cos’l = —rl. (4.15)
0

Similarly, the inner part of the second integral of the right hand side of (4.14) also con-
tributes —mw . Therefore dividing by k and letting k& — 0, we have from (4.13)-(4.15) that:
§i = —2H;¢ + fi1(p). With a similar equation for 7;, we conclude that:

ay = =2V H; + fi(n). (4.16)

where f;(p) is a possible correction due to defect measure p. Using the conjugation of H;

with the renormalized energy, we rewrite (4.16) into:

) = V., W(a) + [0, (4.17)

0 —1
=(1 %)

Wia) = — Z nin;log|a; — a;| + boundary contributions.
I#;
The Kirchhoff law follows if f;(x) = 0, which we show below under the energy almost

where:

and:

minimizing assumption.
Since the Kirchhoff law may encounter finite time collapse for signed vortices, the va-
lidity established here applies also to any time prior to the collapse in the signed vortex

situation.

Proposition 4.2 Under the almost minimizing initial energy assumption, we have:

plue)

|u6|

—v =0, Vl|ue| =0,
in L*(Qy), and the defect measure i = 0. The Kirchhoff law holds.
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Proof: For simplicity, let us consider vortices of the same sign plus one. Let a;, =

JVz,W(a), a(0) = a(0); and define:

n

m(t) =Y laj(t) = a;(1)].

i=1

Take a small time interval ¢ € [0,%5] so that |m(¢)| < 4, with § a small number to be

selected. Lipschitz continuity of m implies that it is differentiable a.e. in ¢t. We have:

m'(1) < Zla;<t>—~
< 3| (t) - IV Wia) |+Z|Jv W(a) = IV, W(a)

< Z (1) — IV, W (a)| + Cm(1). (4.18)

As before, consider the time interval [¢,¢ 4 k], with k& small, and the ball Bgr = Bgr(a;(1))

inside Bpg, /5. Proceeding as before, we find:

LHS = / V™ o plue) [
BRry /2

= —2/ ds / (Vue @ Vue) : VV 7
t Bry2\Br
" o Plue) (ud)]”
_ _2/ / 6+{v®p—6] —v@v|:VV o
t Bry/2\Br |u6| |uel
+ (—2)/ / ( v) ® (p(ue) — v) + V]ue| @ V]ue|] : VV 7
t Bry/2\Br |ucl |uel

Now the almost minimizing energy assumption gives:
1
E(ue¢) = nmlog - + W(a(0)) 4+ o(1)
1
= nrlog— 4+ Wi(a(t)) + o(1)
€

< nrlog % + Wi(a(t))+ Cm(t) + o(1). (4.20)
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Selecting §C < wp € (0, 1), we infer from Proposition 3.3 that for all t € (0,%5):

plue)

lim sup || — UHL2(BRO/2\BR) < Cymf(t),
€—=0 |U6|
and
lim sup [[V]uell 2 (54, 2\8) < Crm(t). (4.21)
%

Passing € — 0 in (4.19), then dividing and sending k | 0, we get (a« = (£,7)):
LHS —27¢(t), RHS, — 2nJW,(a(t)).

In view of (4.21), we have from (4.19) that [£(t) — JW,(a)| < Com(t). With a similar
estimate on n;(t), we get |a’(t) — JV,,W(a)| < Com(t). It follows that m'(t) < CU'm(t),
with m(0) = 0, hence m(t) = 0 for all t € [0,#5]. Induction in time shows a(t) = a for all
t > 0. Hence Kirchhoff law holds with strong convergence of pc and V|u¢|. The proof is

complete.

5 Zero Neumann and other Boundary Conditions

In this section, we comment on all necessary modifications in the proofs of previous sections
to establish similar results for the zero Neumann case, the entire space case, and the periodic
case.

For the Neumann boundary case, the h, in the weak limit is harmonic and satisfies the
boundary condition: h,, = —0,,. The resulting renormalized energy W goes to —oo if
one of the vortices goes near 9. To establish uniform bound on W, we proceed by first
showing vortex continuous motion in time, then using the dynamical law to deduce that
the renormalized energy is conserved. Thus the vortices never come close to each other or
to the boundary 9 since initially W is finite. The energy arguments can be modified as
in Lin [22] and [23]. What remains is the treatment of the boundary value of h,.

Let us derive the Neumann boundary condition on h,. First, near the boundary 0f,
there are no vortices by induction in time. So we can write u¢ = peeiHG, where both p¢

and HE¢ are real functions. Direct calculation shows:

paS) = (P,
p(u) v = (p9)’HE, x € 0N (5.1)
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Similarly:
= (pC+iHE)e M,
and so zero Neumann boundary condition (1.3) says:

ps =0, HE =0, 09, (5.2)
implying in view of (5.1):
p(u)-vr=0, 90 Ve>0. (5.3)
Let ¢ = ¥(t,x) be a compactly supported function in a small region near the boundary;
for each ¢, supp {¥} N I contains a finite curve; ¢ is also compactly supported inside the
time interval [0,T], T > 0.
Due to divp(u,) = 0 on §2,, we have using (5.3) and mass conservation:

Yplug)-v = / plug) - Vi = lim plue) - Vb

a0 €—0 Qa

1
_ 1 . EVoly — _ T 1 €2
= —lim . divp(u™) = -5 ygé/g "3, (5.4)

which upon integration over [0, 7] and integration by parts gives:

/OT mw(ua zﬁg%/ /a|u|¢t—0 (5.5)

It follows from arbitrariness of ¢ and smoothness of p(u,) that p(u,)-v = 0 on 99, which is
just the desired boundary condition A, , = —0, ,. Physically, h, plays the role of correcting
0O, on the boundary so that there is no flow into the wall.

Let us turn to the entire space R? case and the periodic case. For these two cases, we
assume that the sum of degrees 2?21 n; = 0 (zero sum condition). Under this condition
and that wu¢(0,x) converges to a constant e at & = oo sufficiently fast, the total energy
Fe¢ on R? remains the same asymptotic expression nm log % + O(1). Otherwise, the energy
is infinite, and one has to look at energy distribution over finite domains to locate vor-
tices. The analogous problem on R? with infinite initial energy has been solved recently
for the Ginzburg-Landau equation in Lin and Xin [24]. When the sum of vortex degrees
is zero, the harmonic function h, having finite L? gradient over R? is a constant. The
renormalized energy simplifies to Wr2 = — El# nin;log|a; — a;jl, free of boundary contri-
butions. The zero sum condition is needed in the periodic case in order to maintain the
boundary condition for solutions containing vortices. The renormalized energy is similar:

Woer = El;é nin;G(a; — a;), with G the periodic Green’s function for the Laplacian on
the two dimensional torus (AG = 27(dp — 1)).
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6 Vortex Motion Law of a CGL

In this section, we apply our method to establish the vortex motion law of a related complex

Ginzburg-Landau (CGL) equation:

5
log %

Uer + e = Aue + ¢ 31 — |uel*)ue, (6.1)

where § > 0 is a fixed positive number. We shall only consider Dirichlet boundary condition
(1.2), with extensions to other boundary conditions same as remarked in the last section.

The energy conservation is:

d )
p ec(ue)(t,x)de = / lues]?, (6.2)
L Ja Q

_log%

T 5“%,7:
— dz < O, (6.3)
o Jalog €

which implies via Lemma 2.1:

= ———" = —~y(ta) = Z Oaj(t)- (6.4)

It follows from (6.3) that a;(¢) are Lipschitz continuous in ¢ for any ¢ > 0, see [20], [22] for
details.

The conservation of mass is now:

20

Or|ue)? = 2divp(ue) — —te N Ue g, (6.5)
10 €
and the conservation of linear momentum is:
26
Op(ue) = 2div (Vue @ Vue) — VP — 1—1u67t - Ve, (6.6)
og €
with the pressure:
11 0
Pe == |Vu6|2—|—u6-Au6— |u6| 3 — lue-uat. (67)
2e log ¢

We observe that:

rue Aues — 0, L'([0,7T]; L'(Q)),
log €
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by (6.3), and similarly:

)
— ey Vue — 0, LY[0,T]; L'(Q)).
log E

Using the same arguments as before for NLS, we deduce that p(u¢) — v satisfying the
Euler equation on €,; moreover, the vortices a;(¢)’s obey the same Kirchhoff law as in
Theorem 1.2. Since the results are independent of 4, we have as a byproduct another proof

of continuity and dynamical law for NLS vortices sending ¢ | 0.

7 Semiclassical Limit of NLS
In this section, we consider the semiclassical (WKB) limit of NLS:
cives = € Ave + (1 — |ve|*)ve, (7.1)

with Dirichlet boundary condition (1.2) and initial data satisfying (1.5). The case when
there are no vortices in solutions (uniformly bounded energy as € | 0), has been studied in
Colin and Soyeur [4]. Here we are concerned with the case when there are vortices. We

show:

Theorem 7.1 Suppose that the initial data:
r—a; .
c(0,2) = L gth
H |z — a]| 7

weakly in H'(Q,), h(z) € H'(Q), and that % — 0 in L*(QY'), for any compact subset

Q of Q.. Then there is no vortex motion at later time and:

e(t,z) = H |“' —%i_gih(te) (7.2)

:z:—a]|

where the phase function h(t,x) € H'(Q) and is the weak solution of finite energy of the
following initial-boundary value problem of the linear wave equation:

htt—QAhZO, wEQ,

h(t,z)=h(z), =« €09,

h(0,2) = h(x), h(0,2)=0. (7.3)
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Proof: By Proposition 3.1 (t¢ = ¢), we know that vortices do not move on this slow WKB

time scale. By Lemma 2.1 and Lemma 2.2:

t:z;AHx_a] ), (7.4)

|x—a]|

where h(t,z) € H'(Q) for each time ¢. The conservation of mass is now:

(Ml + 2div(p(ve)) = 0, (7.5)

€

and the conservation of energy implies:

(1 — |vel?)?
/Q/ Vel + /Q T; < O, (7.6)

where ' is a compact subset of ,, Cy a positive constant independent of e. It follows that
ve is bounded in L= ([0, T]; H(')); ve bounded in L>([0,T]; H~*(Q')) in view of (7.6) and
(7.1); and e |U6| ) bounded in L>([0,T1], L?). So ve is strongly compact in C'([0,T], L*(Q'))
and weakly Compact in L=([0,T], H'(£')). Up to subsequence if necessary: ve — v strongly
in L=([0,T]; L*(Q)) and weakly in L>=([0,T]; H'(€')). Meantime, (7.5) gives:

1 — |ve|?

€

L—Joe(0.2)]*

€

_ _2/; div plv) (1) dit' + —z/ot divp(o)(t) ', (7.7)

in the sense of distribution on €. This then allows us to pass € | 0 in (7.1) and obtain:
t
1y = —21)/ div p(v)(t') dt’,
0

in the distribution sense on €. Also |v] = 1, limyg+ v(t,2z) = h(z) in L*(Y), and
limy o+ ve(¢,2) = 0, in H=1(Q). Writing v = e'# shows:

H, — z/t AHYdt' =0, zef
0
and further letting H = ©, 4+ h(¢, x), with ©, harmonic on ', yields:
hy — z/tAh(t’)dt’ =0, z€Q, (7.8)
0
or by arbitrariness of €)'
hy —2AR =0, D'(Q, x[0,7T]). (7.9)
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It follows that h is a distribution solution of the linear wave equation on €),. The boundary
data h(t,2) = h(x), © € 99, follows from ve — v in H®, s € (1/2,1), near the boundary
and standard trace imbedding. Finally, h(¢,z) € H'(2) implies that & is the unique weak
solution of (7.3) with finite total energy. The proof is complete.
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