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Summary. Diffusion-generated motion by mean curvature is a simple algorithm for
producing motion by mean curvature of a surface, in which the motion is generated by
alternately diffusing and renormalizing a characteristic function. In this paper, we gen-
eralize diffusion-generated motion to a procedure that can be applied to the curvature
motion of filaments, i.e., curves inR3, that may initially consist of a complex configu-
ration of links. The method consists of applying diffusion to a complex-valued function
whose values wind around the filament, followed by normalization. We motivate this
approach by considering the essential features of the complex Ginzburg-Landau equa-
tion, which is a reaction-diffusion PDE that describes the formation and propagation
of filamentary structures. The new algorithm naturally captures topological merging
and breaking of filaments without fattening curves. We justify the new algorithm with
asymptotic analysis and numerical experiments.

Key words. Diffusion-generated motion, filament, curvature motion, complex Ginz-
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1. Introduction

Diffusion-generated motion by mean curvature is a particularly simple and robust algo-
rithm for producing motion by mean curvature of a surface [15], [16]. The major goal
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underlying this work is to generalize this algorithm from surfaces (dimensiond − 1
insideRd) to the motion by curvature of a curve—or “filament”—in three dimensions.

The motion of filaments is of particular interest because many physical and mathe-
matical systems exhibit the formation and propagation of filamentary structures. Notable
examples include magnetic flux tubes trapped in superconductors, vortex filaments in
inviscid fluids, the centers of scroll waves in excitable media, biological polymers such as
protein and DNA, and skeleton curves extracted from processing 3-D images in computer
vision.

Asymptotic models for these processes often yield equations of motion for a curve
moving with a velocity that is a function of its local geometry, i.e., a function of the local
normal and binormal direction, curvature, torsion, and higher space and time derivatives
of these quantities. For example, studies of models for superconductors and excitable
media predict that their vortex filaments evolve asymptotically with a speed proportional
to curvature [5], [26].

Given such models, it becomes important to consider algorithms which can realize ge-
ometric filament motions in simple, efficient and accurate ways, and which are amenable
to mathematical analysis. Designing suitable algorithms is complicated by the fact that in
many problems the filaments can merge or break up. It is particularly challenging to find
algorithms that retain their simplicity, yet are robust enough to capture these topological
transitions.

For surfaces (or, generally, codimension-one objects), the level set method of Osher
and Sethian [18] was introduced to compute (and define) arbitrary curvature-dependent
surface motions, including topological changes. This provides a PDE-based method for
motion by mean curvature, including the pinch-offs which can occur in three dimensions.
Standard numerical PDE methods apply to accurately discretize the equations of motion.
However, the original level set method does not directly apply to objects of higher
codimension, such as filaments. The level set method was ultimately extended to arbitrary
codimension [1], [3]. In the earlier approach [1], the object is represented by its squared
distance function, or any other similar smooth function. Unfortunately, the representation
is not robust: A perturbation of the level set functionϕ can inadvertently break up the
filament since its representation is given by{Ex: ϕ(Ex) < ε} for a small, positiveε and
ϕ ≥ 0. Also, the method has the undesirable property that filaments tend to develop
interiors whenever mergers occur. See [2] for a detailed discussion on this “fattening
phenomenon.” Alternatively, the filament can be (robustly) represented as the intersection
of two level set functions. See [3] for details on this recent method.

The curvature motion of filaments (or the mean curvature motion of surfaces) may also
be approximated using reaction-diffusion models such as the complex Ginzburg-Landau
equation. Briefly, these methods have the important advantage that they automatically
capture the curvature motion of filaments including topological change without fattening
curves. When used in computation, however, the spatial discretization must resolve a
thin reaction zone in order to accurately compute the motion. Since the width of the front
is O(ε), the only remedy is to use a mesh spacing that is much less thanε, which can be
impractical numerically [16].

In the case of surface motion, a simplified algorithm based on an idealization of
reaction-diffusion was presented in [15], [16]. This algorithm essentially consists of
moving a set boundary by alternately “diffusing” the set—i.e., applying the linear dif-
fusion evolution equation to the set’s characteristic function for a short time—and then
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recovering a new set via a “sharpening” step in which values of the diffused character-
istic function are renormalized to 0 or 1, whichever is closer. This “diffusion-generated
motion by mean curvature” algorithm automatically captures topological change and
has a direct extension to a variety of interesting anisotropic motions [9], [23], [10] as
well as the motion of triple point junctions [15], [14], [16], [21]. It naturally provides
the fine grid limit of an interesting variety of cellular automata models [24]. See also [7],
[6] for some related biological models. Diffusion-generated motion has the advantage
that it can be discretized efficiently and accurately since the highest frequency modes
never need to be approximated (they are eliminated by diffusion and do not interact
with other modes during the main diffusion step). Moreover, adaptive grid refinement
is straightforward because it is carried out as a quadrature using unequally spaced fast
Fourier transforms [22]. Unfortunately, the original method does not apply to objects
with higher codimension, such as filaments.

In this present work, we generalize the original diffusion generated motion algorithm
to filaments that are fibered links, via a natural idealization of the complex Ginzburg-
Landau model. This diffusion-generated filament motion naturally computes the (vec-
tor) mean curvature motion, including topological changes without curve fattening. The
method has the potential for a variety of extensions. Similar to the usual diffusion-
generated motion algorithm, the method may be discretized to give improved computa-
tional efficiency over reaction-diffusion models. While simple, our proposed algorithm
is still not practical for generating highly accurate solutions to curvature motion because
the local truncation error isO(1/| log(1t)|). (See Section 3.) To achieve higher accuracy,
the level set method for filaments may be used. See [3] for details.

The outline of the paper is as follows. Section 2 begins by reviewing the complex
Ginzburg-Landau equation. Using this phase field model as an inspiration and motiva-
tion, a diffusion-generated algorithm for the curvature-dependent motion of filaments is
derived. In Section 3, we give an asymptotic justification that diffusion-generated fila-
ment motion gives motion by curvature in the normal direction. Section 4 reports on a
variety of experiments validating our algorithm. Finally, in Section 5 we discuss other
possible variations on this approach.

2. Diffusion-Generated Motion of Filaments

In this section, we review the complex Ginzburg-Landau model for evolving filaments
with a normal velocity equal to the (vector) curvature. Then, we idealize this reaction-
diffusion model to obtain a diffusion-generated algorithm for the curvature-dependent
motion of filaments in three dimensions. Later sections will justify our proposed method
with asymptotics and numerical experiments, and also extend it to arbitrary dimensions
and codimensions.

2.1. The Complex Ginzburg-Landau Equation

The complex Ginzburg-Landau equation is

ut = 1u− 1

ε2
u(|u|2− 1), (1)
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whereu(x, t) is a complex scalar and 0< ε ¿ 1 is a basic model for understand-
ing the motion of phase defects (singularities). ForEx ∈ R3 the defects are generi-
cally supported on the one-dimensional curve (filament) where|uε | vanishes. Equa-
tion (1) is the magnetic field-free case of the time-dependent Ginzburg-Landau sys-
tem, which models the mixed states in type-II superconductors where magnetic flux
carrying normal filaments are embedded in a superconducting matrix [5]. The com-
plex scalaruε is an order parameter, representing normal phase if|uε | is close to
zero and super phase if close to one, andε ¿ 1 is the effective diameter of the
magnetic flux core. Equation (1) is also a generic amplitude equation describing in-
stabilities near bifurcation points in dissipative systems, known as the Landau-Stuart
equation, [12].

Asymptotic analysis can be used to extract theε → 0 limiting behavior of solutions.
For initial datau(x,0) vanishing on a filament00 and having winding number one around
it, formal asymptotic derivation [19] shows that solution evolves to leading order as a
complex scalar vanishing along the filament0t which is generated from00 as motion
by curvature along the normal. If the filaments are nearly parallel, rigorous results are
established in [13] on their dynamics on theO(log 1

ε ) time scale.
Numerically, smallε introduces small length and time scales into the dynamics.

Consequently, an accurate direct simulation of (1) has to resolve the core size and reaction
rate, an expensive task in three dimensions. However, it turns out we can capture the
desired limiting filament dynamics with a complex diffusion-generated motion algorithm
obtained by idealizing the effect of the strong reaction in (1).

2.2. Complex Diffusion-Generated Motion

Similar to the case of diffusion-generated motion, a formal splitting method can be
applied to the complex Ginzburg-Landau equation to obtain an algorithm for mo-
tion by mean curvature of filaments. In the reaction step, an initial complex-valued
χ(Ex, t0) is driven towards one of its stable equilibrium valuesei θ by the reaction
kinetics,

χ̄t = − 1

ε2
χ̄(|χ̄ |2− 1),

χ̄(Ex,0) = χ(Ex, t0),

for a time1t to obtain an intermediate resultχ̄(Ex,1t). This result is subsequently
diffused for a time1t ,

χt = ∇2χ,

χ(Ex, t) = χ̄(Ex,1t),

to obtain the desired updateχ(Ex, t0 + 1t). By replacing the reaction step by its for-
mal limit as ε → 0, it becomes the simple normalization to a unit complex
number

χ̄ = χ

|χ | ,
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and we obtain the following method for (hopefully) evolving filaments with a normal
velocity equal to curvature:

ALGORITHM CDGM
GIVEN: An initial filament.

BEGIN

(1) “Initialize”: Setχ so that its “center of winding” coincides with the filament. I.e., set
χ so that its winding number is nonzero around any closed curve that winds around
the filament. See next section.

(2) Repeat for all steps:
(a) “Normalize”:χ̄ = χ

|χ | .
(b) “Diffuse”: Starting fromχ̄ , evolveχ for a time1t according toχt = ∇2χ .

END

The location of the interface is given by the zero contour ofχ (or, equivalently, its center
of winding, though this is more difficult to locate in practice).

As we shall see in the analysis of Section 3, this simple splitting method captures
the leading order behavior of the complex Ginzburg-Landau equation: I.e., it produces
a normal velocity equal to the curvature of the filament without ever directly computing
curvature. Topological mergers are also captured with no special algorithmic procedures.
In particular, filaments do not develop interiors (unlike level set methods for filament
motion—see [2]) and a good agreement with optimal curve shortening is observed.

We now complete our description of the algorithm with a discussion on the initial-
ization ofχ .

2.3. Initialization of χ

To apply the ALGORITHMCDGM , an initial value ofχ is required.
If the filament is already defined implicitly as the zero of a functionu arising from

a complex Ginzburg-Landau equation, then we simply setχ = u to initialize. But, in
general, we need to construct aχ : R3→ C which implicitly captures the position of the
filament. We use the same representation as in the complex Ginzburg-Landau equation.
Specifically, we construct a complex-valuedχ so that the winding number ofχ(Ex) (with
respect to zero in the complex plane) is nonzero whenEx moves around any closed loop
that encircles the filament. Along other loops, however, the winding number must be
zero to avoid creating spurious filaments.

It is natural to ask whether an interesting variety of curves can be represented in
this manner. The answer to this question arises in the study of Ginzburg-Landau flow
[20]. Specifically, a large number of initial conditions are possible since this filament
representation corresponds to curves that are fibered links [20]. See [17] for a systematic
construction ofχ for a given fibered link.

In this paper, we define planes and reference axes through each point on the filament,
so that the planes fill outR3(see Figure 1a). The initialization on a particular plane
is then given byχ(Ex) = exp(i θ(Ex)) whereθ(Ex) is the angle function in that plane,



478 S. J. Ruuth, B. Merriman, J. Xin, and S. Osher

θ(P)
P

(a)

O =(1,0,0)
θ

P 1=(P P2 P ), , 3

e1

(P)

(b)

z= P3

Fig. 1. (a) In our examples, a plane and a reference axis are defined for each point on the filament.
The initialization for a particular plane is then given byχ(P) = exp(i θ(P)) whereθ(P) is an
angle function that winds around the filament. (b) Whenever the curve can be represented as a
function ofz in some coordinate system, this initialization step is particularly straightforward. For
each grid pointP = (P1, P2, P3), we restrict ourselves to the planez = P3 and setO equal to
the intersection of the plane with the curve. A consistent initialization is then obtained by setting
χ(P) = exp(i θ(P)) whereθ(P) is the angle betweenOP and the fixed vectore1 = (1,0,0).

measured relative to the reference axis in the plane. As shown in Figure 1b, this type of
initialization is particularly straightforward whenever the filament can be represented as
a function ofz in some coordinate system. Looping structures such as rings and linked
rings are also easily initialized in this manner. See Section 4. Alternatively, whenever two
surfaces can be found whose intersection gives the desired filament, a simple shape-based
initialization can be used. See [25] for details and examples for this alternative.

We now direct our attention to the convergence analysis of our proposed algorithm.

3. Analysis of Diffusion-Generated Motion

In this section, we present formal analyses which show that the diffusion-generated mo-
tion algorithm for filaments does produce a time-discrete approximation to motion by
vector mean curvature. We hope these nonrigorous arguments will encourage the devel-
opment of rigorous convergence proofs, as they did in the case of diffusion-generated
motion by mean curvature for surfaces.

We present two alternative approaches: heuristic analysis that uses a variety of short-
cuts to deduce the motion law, and a detailed asymptotic analysis that yields the motion
law.

3.1. Heuristic Analyses

Here we present a short, formal calculation which “shows” that diffusion generates
motion by vector mean curvature for a filament. These calculations allow us to quickly
extract the motion law generated by diffusion, without going through the full details of
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asymptotic analysis. This is particularly useful for exploring novel diffusion-generated
algorithms.

3.1.1. Filament Heuristics. In the case of filament motion, we have the curve initially
represented by a complex valued function of the form

χ(Ex) = ei θ(Ex),

whereθ(Ex) is a real angular coordinate onR3 that increases by 2πm around any loop
about the filament, wherem is the nonzero integer winding number ofχ . We identify
the filament as the place whereχ “vanishes,” which in general means the locus of points
in R3 thatχ winds around. We will deduce the effect that diffusion has on the location
of the zero ofχ by direct, formal evaluation of the diffusion equation

χt = ∇2χ.

In order to provide a clear intuition, we assume thatχ winds around the filament
uniformly.1 Specifically, letEy denote the closest point on a smooth filament to the point
Ex and assumeθ = mφ(Ex− Ey, t) whereφ(Ex− Ey, t) is the polar angle betweenEx− Ey and
the Frenet normal to the filament atEy. Detailed asymptotics for initializations based on
parallel planes (see Figure 1b) are given in Section 3.2.

Laplacian Heuristic We can simplify the analysis slightly by working with the ampli-
tude and phase ofχ , so we write,

χ(Ex, t) = A(Ex, t)ei θ(Ex,t),

where A = |χ |, and plug this form into the diffusion equation. The real part of this
equation yields the amplitude evolution equation

At = ∇2A− |∇θ |2A.

When viewed in this decomposition, we see there is a reaction term present that instan-
taneously drives the amplitudeA to 0 at the location of the singularity of|∇θ |, which
in turn occurs at the center of winding ofθ , i.e., at the filament location. (Note that the
presumed winding ofθ implies that|∇θ | blows up at the filament likem/d, whered is
the distance to the filament.) Thus, as expected, the amplitude vanishes at the filament.
This decomposition shows how this is enforced by the winding number.

All that remains is to write out the Laplacian in suitable geometric coordinates, and
show that it has a term corresponding to advection with a velocity that reduces toEv = κn̂
at the filament, whereκ is the curvature and̂n is the Frenet normal vector. Suitable
coordinates can be defined as follows: Letsbe the arclength coordinate along the filament.
At a givensvalue along the filament, there is a plane normal to the filament, and the Frenet
normal n̂ and binormalb̂ unit vectors in this plane define associated Cartesian planar

1 Heuristically, this assumption is reasonable because each diffusion step helps to enforce this type of symmetry
near the zero set ofχ .
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coordinatesp,q. Thus(s, p,q) define an orthogonal curvilinear coordinate system (at
least, near the filament). In this coordinate system, calculation (see [11] for partial details)
shows that the the Laplacian is given by

∇2A = H [H [ A]] − κ

1− κp
Ap + App+ Aqq,

whereκ(s) is the curvature of the filament, andH is the differential operator

H [ f ] = 1

1− κp
( fs − τ fφ),

whereτ(s) is the torsion along the filament, andφ is the polar angle coordinate in the
(p,q) plane. Thus the amplitude equation becomes

At + κ

1− κp
Ap = H2A+ App+ Aqq− |∇θ |2A. (2)

Consider the short time effects of the terms of this equation: The singular reaction
term drivesA to 0 at the filament, and the(p,q) diffusion smoothes this profile into a
cylindrically symmetric well. Because the resultingA is constant along the filament and
cylindrically symmetric, it has nos or φ dependence, and theH terms vanish. Thus,
none of these terms actually produces any initial motion of theA = 0 location. The
remaining terms in the equation, evaluated at the filament wherep = 0, reduce to

At + κAp = 0,

which convects the values ofA in the (p,q) plane, in thep direction, with speedκ.
Thus these terms move the zero ofA—and hence the filament—by the vector mean
curvature, initially. See the analysis related to (15) in Section 3.2 for further details on
the asymptotic properties of the reaction-diffusion equation (2).

3.2. Asymptotic Analysis of Diffusion-Generated Motion

We next present a detailed matched asymptotic analysis of the ALGORITHMCDGM
and show that the algorithm indeed captures the motion by curvature along filament nor-
mal direction. As a byproduct, we also obtain the local truncation error:O(1/| log(1t)|).
We find both the outer solution away from the filament core and the inner solution, tak-
ing account of the core structure before finally matching the two asymptotics. The inner
solution reveals how the zero amplitude is generated without the Ginzburg-Landau non-
linearity, a conspired effort of linear diffusion and imposed topological winding number.
The zero amplitude is what the numerical algorithm captures to follow the evolution of
the filament. We also compare the behavior of the filament core in the algorithm with that
of the complex Ginzburg-Landau equation (1). During the diffusive step, the filament
core size enlarges in time likeO(

√
1t), while the Ginzburg-Landau filament core size

remainsO(ε) for all time.
Let us consider the diffusion effect on a complex scalar function of the formχ0 =

exp{i20}, where20 is the phase function (counting the angle) about a space curve
(the filament)00. Initially, 20 is as described in Section 3.2; see also Figure 3(b). Let



Diffusion-Generated Motion for Filaments 481

us examine the effect of short time diffusion onχ0, especially its phase. Suppose the
filament is parameterized byz, that is00: (γ 1(z), γ 2(z), z), and denoteEx = (x1, x2, x3),Eξ = (ξ1, ξ2, ξ3). Introducing complex variables

x̃ = x1+ ix2, γ̃ = γ 1+ i γ 2, ξ̃ = ξ1+ i ξ2,

we write the initial condition as

χ0 = x̃ − γ̃ (x3)

|x̃ − γ̃ (x3)| ,

and the solution is

χ(t, Ex) = (4π t)−3/2
∫

R3
exp{−|Eξ − Ex|2/4t} ξ̃ − γ̃ (ξ3)

|ξ̃ − γ̃ (ξ3)|
dEξ .

Making the change of variablesEξ = Ex + τ Eξ ′ andτ = √t , we have (ignoring the
primes)

χ(t, Ex) = (4π)−3/2
∫

R3
exp{−|ξ |2/4} x̃ + τ ξ̃ − γ̃ (x3+ τξ3)

|x̃ + τ ξ̃ − γ̃ (x3+ τξ3)|
dEξ . (3)

For any two complex numbersζ andη, if |η||ζ | ¿ 1, then

ζ + η
|ζ + η| =

(
ζ

|ζ | +
η

|ζ |
)
((1+ Re(η/ζ ))2+ (Im(η/ζ ))2)−1/2

=
(
ζ

|ζ | +
η

|ζ |
)
(1− Re(η/ζ )+ O(|η/ζ |2))

= ζ

|ζ | +
(
η

|ζ | −
ζ

|ζ |Re(η/ζ )

)
+ O(|η/ζ |2). (4)

Let us now apply (4) with

ζ = x̃ − γ̃ (x3), η = τ ξ̃ + γ̃ (x3)− γ̃ (x3+ τξ3).

Noticing that

η = τ(ξ̃ − γ̃ ′(x3)ξ3)+ O(τ 2ξ2
3 ),

we have from (3) and (4) the expansion

χ(t, Ex) = χ(0, Ex)+ τ(4π)−3/2
∫

exp{−|ξ |2/4}L(ξ, x)dξ

+ τ 2(4π)−3/2
∫

exp{−|ξ |2/4}O(|ξ /ζ |2)dξ, (5)

provided |η| ¿ |ζ |. Here L is linear in ξ . Sinceη = O(τ ), (5) is valid if |ζ | =
|x̃ − γ̃ (x3)| À O(τ ) = O(t1/2). One can view (5) as a moment expansion with respect
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to unit Gaussian. The first moment term is equal to zero. So for smallt , if |x̃− γ̃ (x3)| ≥
O(δ1)À t1/2, δ1 ∈ (0,1) a fixed number, we have

χ(t, Ex) = χ(0, Ex)+ O(t), (6)

or

χ̄ = χ(t, Ex)/|χ(t, Ex)| = exp{i20+ O(t)}. (7)

The O(τ 2) = O(t) term (second moment) in (5) is not zero in general, so (7) is
optimal. It says that the effect of small time diffusion on the phase is to introduce an
O(t) correction at points away from the filament with a distance much larger thanO(t1/2).
This completes the outer expansion of the solution.

Next we look atχ(t, Ex) using Frenet coordinates attached on the filament and develop
the inner asymptotic expression for any point withinO(δ2) distance of filament,δ2 ∈
(δ1,1). Then we match the two expansions at a distance betweenδ1 andδ2.

Let us adopt the framework in [4] and define0: EX(s, t) = (X,Y, Z)(s, t), wheres
is the arclength of00 at t = 0. A space vectorEx = EX + r r̂ , wherer̂ = r̂ (θ, s, t), andr̂
is the radial unit vector on the Frenet plane spanned by(n̂, b̂), the normal and binormal
unit vectors. Let cos(ϕ) = r̂ · n̂, andθ0 = θ0(s, t) obeyθ0,s = −σT , whereσ = | EXs|,
andT = −σ−1b̂s · n̂, being the torsion of the filament. Letθ = ϕ − θ0, then(r, θ, s)
form orthogonal curvilinear coordinates, and

dEx = r̂dr + r θ̂dθ + h3τ̂ds,

whereτ̂ is the tangential unit vector,h3 = σ [1− κr cos(θ + θ0)], andκ = σ−1|τ̂s| the
filament curvature.

The heat equation in the(r, θ, s) coordinates is[
∂

∂t
− Ẋ · ∇r,θ,s − r

h3
(r̂ t · τ̂ ) ∂

∂s
− (r̂ t · θ̂ ) ∂

∂θ

]
χ

= (rh3)
−1

[
∂

∂r

(
rh3

∂

∂r

)
+ ∂

∂θ

(
h3r
−1 ∂

∂θ

)
+ ∂

∂s

(
rh−1

3

∂

∂s

)]
χ, (8)

where∇r,θ,s = ∂
∂r r̂ + r−1 ∂

∂θ
θ̂ + h−1

3
∂
∂s τ̂ . The right-hand side of (8) is equal to

[
∂2

∂r 2
+ r−1 ∂

∂r
− κ cosϕ

1− κr cosϕ

∂

∂r
+ r−2 ∂

2

∂θ2

+ κ sinϕ

1− κr cosϕ
r−1 ∂

∂θ
+ h−2

3

∂2

∂s2
− h3,s

h3

∂

∂s

]
χ.

We expandχ as

χ ∼ AeiS = (A0+ δA1+ · · ·)(η, τ, s, θ, t)ei (S0+δS1+···)(η,τ,s,θ,t), (9)
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whereη = r /δ, τ = t /δ2, andδ ∈ (0, δ2). The heat equation in(η, τ, s, θ) is[
δ−2 ∂

∂τ
− Ẋ · ∇ηδ,θ,s − δηh−1

3 (r̂ t · τ̂ ) ∂
∂s
− r̂s · θ̂ ∂

∂θ

]
χ

=
[
δ−2

(
∂2

∂η2
+ η−1 ∂

∂η

)
− δ−1 κ cosϕ

1− δηκ cosϕ

∂

∂η

+ δ−2η−2 ∂
2

∂θ2
+ δ−1 κ sinϕ

1− δηκ cosϕ
η−1∂θ + h−2

3

∂2

∂s2
− h3,s

h3
∂s

]
χ. (10)

Plugging (9) into (10) and keeping leading ordersO(δ−2) andO(δ−1), we find

δ−2(Aτ + i Sτ A)− δ−1Ẋ · ∇η,θ A = δ−2[1A+ 2i∇A · ∇S− |∇S|2A+ iA1S]

+ δ−1[−κn̂ · ∇A+ i Aκn̂ · ∇S]. (11)

Collecting imaginary and real parts, we have

Sτ −1S+ 2
∇A

A
· ∇S+ δ(κn̂− Ẋ) · ∇S = O(δ2), (12)

Aτ −1A+ δ(κn̂− Ẋ) · ∇A+ |∇S|2A = O(δ2), (13)

with initial data forA being 1, and forS the angle variableθ . Here we suppose that the
initialization can be expressed as local Frenet coordinates near the filament and that its
phase is equal toθ . Otherwise, there is an initial layer during which the phase adjusts
itself toθ . Notice that a small interval oft is magnified byδ−2 for τ , and so other phase
initialization may well have relaxed toθ . The topological constraint onS is that its
winding number about the origin is 1; also,∇S tends to zero atρ infinity, which helps
to ensure the limit ofA equal to one atρ infinity. In (12)–(13), the coupling term is
∇A
A · ∇S. To leading order, we have

S0,τ −1S0+ 2
∇A0

A0
· ∇S0 = 0,

A0,τ −1A0+ |∇S0|2A0 = 0, (14)

which has the solutionA0 = A0(|η|, τ ) = A0(ρ, τ ), andS0 = θ . The coupling term is
zero, and the reducedA0 equation becomes

A0,τ = A0,ρρ + 1

ρ
A0,ρ − 1

ρ2
A0, (15)

with A0(ρ,0) = 1. The dynamics of equation (15) is best understood in terms of its
self-similar solution,

A0(t, ρ) = A

(
ρ2

t

)
≡ A(z),
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satisfying the ODE,

Azz+
(

1

z
+ 1

4

)
Az− 1

4z2
A = 0, (16)

with the boundary conditions:A(z) is regular nearz∼ 0, A→ 1 asz→+∞.
ExpandingA for smallz, we find two linearly independent local solutions:

A1 = z1/2(c0+ c1z+ · · ·), c0 > 0, (17)

and

A2 = z−1/2(b0+ b1z+ · · ·)+ logz(b′0+ b′1z+ · · ·), b0 > 0,

with the latter removed due to the regularity condition atz= 0.
Hence we see from (17) that the desired solution is strictly increasing in a small

neighborhood of zero. By the maximum principle on positive solutions of equation (16),
such a solution cannot experience an interior maximum, and so must be nondecreasing
towardsz→∞. Finite time blowup cannot occur due to the boundedness of coefficients
for z away from zero.

It remains only to analyze what limitA approaches asz → ∞, a positive finite
number or infinity. Making the change of variables,

A = e−
1
2 logz−z/8B,

we have

Bzz− q(z)B = Bzz−
(

1

64
+ 1

8z

)
B = 0.

By a result of P. Hartman (p. 382, [8]), we have two linearly independent solutions:

B ∼ q−1/4 exp

{
±
∫ z√

q(s)ds

}
, z→∞,

where

q1/2(s) =
(

1

64
+ 1

8s

)1/2

∼ 1

8

(
1+ 4

s
− 8

s2
+ · · ·

)
,

and

q−1/4(s) =
(

1

64
+ 1

8s

)−1/4

∼ 1√
8

(
1− 2

s
+ 10

s2
+ · · ·

)
.

So the two linearly independent solutions are

B1,2 ∼
(

1− 2

z
+ 10

z2
+ · · ·

)
exp

{
±1

8

(
z+ 4 logz+ 8

z
+ · · ·

)}
.

Or in terms ofA,

A1 ∼
(

1− 2

z
+ · · ·

)
exp

{
1

z
+ · · ·

}
=
(

1− 2

z
+ · · ·

)(
1+ 1

z
+ · · ·

)
= (1− 1/z+ · · ·) = e−1/z(1+ α2z−2+ · · ·), (18)
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and

A2 ∼ e− logz−z/4

(
1− 2

z
+ · · ·

)
e

8
z = 1

z
e−z/4

(
1+ 6

z
+ · · ·

)
.

Hence, up to a multiplicative constant, the asymptotic behavior ofA is that A(z)
converges to a finite positive constant asz → ∞. We haveA′(z) ≥ 0, and in fact
A′(z) > 0 for any finitez. Lettingw = A′(z), we see thatw satisfies the differential
inequality,

wzz+ (1/z+ 1/4)wz−
(

1

z2
+ 1

4z2

)
w = − 1

2z3
A < 0,

implying via maximum principle that the nonnegative functionw cannot achieve an
interior minimum 0; thusw > 0.

We normalizeA so thatA(+∞) = 1. By maximum principle, such a solutionA
(A(0) = 0, A′(z) > 0, A(+∞) = 1) is the unique classical solution. This normalized
self-similar solution is selected with initial condition 1 for equation (15).

With the orderO(δ) terms turned on, the system (12)–(13) is coupled; however, the
coupling tends to zero asρ →∞ since∇A→ 0 andA→ 1. Forτ ∈ [0, τ0], with τ0 a
fixed positive number, asρ →∞, theSapproaches its steady state inτ denoted byS∞
obeying the equation

−1S∞ + δ(κn̂− Ẋ) · ∇S∞ = O(δ2), (19)

subject to the constraint that its winding number is one and also∇S∞ = o(1) asρ →∞.
The solution of (19) toO(δ) is

S∞ = η
∫ θ

0
[Gη + δ(κn̂− Ẋ) · (cosθ, sinθ)G] dθ, (20)

where

G = −exp

{
δ

2
(κn̂− Ẋ) · (η cosθ, η sinθ)

}
K0(δη|κn̂− Ẋ|/2), (21)

with K0(x) = − log x
2 − const.+ · · ·, for smallx, K0 the zeroth-order modified Bessel

function; see [19].
Combining (20)–(21), we calculate

S∞ = θ + (−3/2)δ(κn̂− Ẋ)(η sinθ, η(1− cosθ))K0(δη|κn̂− Ẋ|/2)
+ O(δ|κn̂− Ẋ|),

= θ + (−3/2)r (κn̂− Ẋ)(sinθ, (1− cosθ))K0(|κn̂− Ẋ|r /2)

+ O(r |κn̂− Ẋ|). (22)

Consequently, forr ∈ (δ1, δ2), the phase corrections from outer and inner expansions,
(7) and (22), match to give the relation

|κn̂− Ẋ|K0(|κn̂− Ẋ|/2)+ O(|κn̂− Ẋ|) = O(t), (23)
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implying

Ẋ − κn̂ = O

(
t

log(t−1)

)
, (24)

for smallt . We have shown that after the first diffusing step of the algorithm, the filament
motion is motion along the normal direction by curvature to the leading order.

At the subsequent normalizing step,χ̄ = ei2, with 2 = θ + O(δt), δt the time
step of the algorithm, locally in the Frenet coordinate near the filament0. This follows
from the inner solution structure as shown in (22). As commented before, a similar outer
solution calculation again infers that the phase correction at the following diffusing
step isO(δt) to leading order. Iterating this argument, we see that the ALGORITHM
CDGM of Section 3.2 captures the leading filament motion law of the Ginzburg-Landau
equation, that is, motion by curvature along the normal [19]. Moreover, it follows from
(24) that inn steps of time marching,nδt = O(1), the cumulative error is of the order
O(1/| log(δt)|), which is observed in our numerical experiments; see data in Table 1 of
subsection 5.1.

3.3. Comparison with Ginzburg-Landau Filaments

The algorithm in Section 3.2 mimics the action of the complex Ginzburg-Landau (CGL)
nonlinearity (which is stiff numerically) by repeated normalizing steps (2a). The diffusing
steps (2b) recover the quantityκn̂ − Ẋ; however, the inner solution, especially the
amplitude, is time dependent; and the core size increases in time. In contrast, the inner
solution of the CGL is quasi-steady (only depending onr /δ), and the filament core size
remainsO(ε) all the time.

The diffusive aspect of the algorithm and that of the CGL do share some common
features. The CGL phase obeys the linear diffusion equation away from the filament core
region ([19], [13]), which makes the phase change byO(t) for small time, similar to the
algorithm.

The phase singularity (zero amplitude) in the algorithm is generated by the imposed
phase winding number and the linear diffusion. In CGL, the stiff nonlinearity is a major
source of zero amplitude. It remains to find out how to extend the approach to model a
phase singularity in the Schroedinger filaments (motion by curvature along binormal).
A straightforward use of the linear equationiut = 1u only produces oscillation near
the core region.

4. Numerical Experiments

In this section, we report on various experiments using our algorithm. For simplicity, all
results are derived using a pseudospectral spatial discretization (see, e.g., [24]). More ac-
curate spatial discretizations may be obtained using adaptive resolution with fast Fourier
transform techniques. See [22] for a detailed discussion on these methods for the standard
diffusion-generated motion by mean curvature algorithm. While it would be interesting
to consider the application of these algorithms to the case of filament motion, we have not
done so here: It is less crucial to consider highly accurate spatial discretizations because
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Fig. 2. (a) Initialization of χ for a ring. For each grid pointP, the nearest point
O to the ring is determined. A consistent initialization is then obtained by setting
χ(P) = exp(i θ(P)) whereθ(P) is the angle betweenOP and the outward normal at
O. (b) Numerical result at various timest using a time step size of1t = 0.0001 and
a mesh spacing of1x = 1/128. In this, and all subsequent results, we plot the known
initial contour att = 0 and the zero contour of the diffusedχ variable at other time
values.

the time-stepping error for filament motion is larger and because the sharpenedχ still
varies according to the phase. Note that in practice this second effect makes the filament
less susceptible to “freezing” in place (cf. [16], [22]) when the time step is small.

4.1. A Ring

To begin, consider the curvature motion of a circular ring with an initial radius of 0.35. By
symmetry, the curve remains circular throughout its evolution and collapses according
to the ordinary differential equation,ṙ = −2π /r .

The ALGORITHMCDGM is easily initialized for this simple curve (see Figure 2a).
At each grid pointP in the domain, the nearest pointO to the ring is determined. The
initial value ofχ is naturally given by exp(i θ(P)), whereθ(P) is the angle betweenOP
and the outward normal atO.

Evolving this initialχ according to the algorithm gives a close agreement with the
exact evolution. See Table 1 below. It is also noteworthy that these results agree with the
O(1/| log(1t)|) truncation error derived in Section 3.

4.2. A Spiral

For our second example, consider the curvature motion of a periodic spiral,

x = 0.5+ 0.3 cos(2πs),

y = 0.5+ 0.3 sin(2πs),

z = s.

Here, it is easily shown that the exact solution is also a spiral, but with a radius that
shrinks according to the ordinary differential equation,ṙ = −r /(r 2+ 1

4π2 ).
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Fig. 3.A periodic spiral (initial radius of 0.3) evolved with a normal velocity equal to curvature.

Since this spiral is naturally represented as a function ofz, it is straightforward to
initialize χ according to the method described in Figure 1b. Using this initialization,
the location of the spiral filament was approximated over a timet = 0.05 using a time
step size of1t = 0.000025 and a mesh spacing of1x = 1/128. As in the case of a
shrinking ring, the result using the ALGORITHMCDGM (Figure 3b) gives a very close
agreement with the exact solution (Figure 3a). Here the exact solution is easily obtained
using the fact that the radius of the spiral obeys the ordinary differential equation,ṙ =
−r /(r 2+ 1

4π2 ).

4.3. Connected Rings

For our next example, consider the curvature motion of two interlinked rings. Here, the
rings shrink and eventually merge to form a closed loop, as shown in Figure 5. In this
example, we take our “exact solution” to be a front tracking calculation with 200 nodes
along the curve. The change of topology was chosen to agree with the optimal curve
shortening solution and was verified with a simulation of the complex Ginzburg-Landau
equation.

Table 1. Errors for a collapsing ring, measured as the maximum distance from the exact
solution. Calculations forh = 1/64, h = 1/128, andh = 1/256 required 0.8, 9, and 74
seconds of CPU time per step on a 667Mhz Compaq XP1000, respectively. Note that the
entries are well resolved spatially and do not change significantly with further grid refinement.

Error

1t 1x = 1/64 1x = 1/128 1x = 1/256

0.05 0.0639 0.0637 0.0636
0.025 0.0405 0.0404 0.0403
0.0125 0.0299 0.0300 0.0299
0.00625 0.0233 0.0231 0.0231
0.003125 0.0182 0.0182 0.0180
0.0015625 0.0145 0.0149 0.0146
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Fig. 4. Initialization ofχ for connected rings. Similar to the case of
a single ring, the nearest pointO to the closest filament is determined
for each grid pointP. The value ofθ(P) is then given by the angle
betweenOP and the outward normal atO (denotedn̂O). Letting
Q be the nearest point on the distal ring andn̂Q be the outward
normal atQ, a consistent initialization is obtained by settingχ(P) =
exp(i θ(P)+ iα(P)), whereα(P) is the angle between̂nO andn̂Q.

To initializeχ , we determine the nearest ring and assign a phase angleθ exactly as
in the case of a single ring. This phase angle is then shifted by an amountα according
to the relative position of the distal ring. See Figure 4. Using this initialization, the
location of the filament was approximated over a timet = 0.02 using a time step size
of 1t = 0.00002 and a mesh spacing of1x = 1/256. As shown in Figure 6, the
ALGORITHM CDGM gives a very good agreement with the exact solution.2 Notice, in
particular, that the method automatically selects the correct topological change and that
(unlike the level set formulation [1]) the filaments do not develop interiors.

4.4. A Large System

In our final example, we simulate a large system of randomly generated filaments.
To initialize the system, a random phase angleθ ∈ [0,2π) was assigned to blocks of

size 0.2× 0.2× 0.2. Using this initialization (i.e., withχ = exp(i θ)), the motion of the
filaments was approximated over a timet = 0.02 using a time step size of1t = 0.0001
and a mesh spacing of1x = 1/128. As shown in Figure 7, the ALGORITHMCDGM
produces a smoothing and shortening of filaments as time progresses. Note also that
topological shape changes are automatically captured and that the filaments do not
develop interiors.

2 By comparing Figures 5 and 6, we see that the rings interact just before they touch. A strong interaction will
occur when the distance separating the rings is less than the effective width of the kernel,O(

√
1t).
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Fig. 5.Two connected rings moving by curvature motion (exact solution).
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Fig. 6.The diffusion-generated motion of two (initially) connected rings.
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Fig. 7. The diffusion-generated motion of a system of filaments. Here, zero flux boundary
conditions are assumed.

5. Summary and Topics for Future Research

In this work, we have presented a diffusion-generated approach for the curvature motion
of filaments that automatically captures topological mergers with no special algorith-
mic procedures. We have also provided formal arguments for the convergence for our
proposed method and validated our results with numerical experiments that include
topological change.

A variety of interesting computational aspects related to our algorithm are still un-
explored. Note, in particular, that we utilized a pseudospectral spatial discretization for
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the numerical experiments presented in Section 4. Although simple, this approach is
inefficient because it does not provide for subgrid resolution or local refinement. For the
codimension-one case, efficient discretizations based on adaptive resolution with fast
Fourier transforms have been developed that eliminate these problems [22]. We expect
that these same methods can be applied to filaments by replacing the exact integration
used in [22] with appropriate quadrature steps. These fast methods are the subject of
ongoing research.

We presented heuristic and formal derivations of the diffusion-generated motion law
for filaments in Section 3. A rigorous proof of convergence—both for the special case of a
filament inR3 and for the case of filaments of arbitrary codimension described in [25]—
would be of great interest. Further, numerical experiments suggest that in the presence
of filament mergers, diffusion-generated motion gives the “optimal curve shortening”
filament evolution. A proof of this observation is desirable as well.

We give generalizations to arbitrary convolution-generated filament motion in [25].
In particular, it would be interesting to give specific realizations (convolution kernelK
and normalization thresholdλ) for filament motions of interest, such as constant normal
motion, constant binormal motion, motion by the vector torsion, length-preserving mo-
tion by mean curvature, etc. It would also be quite interesting to classify what filament
velocity laws are attainable with a fixed kernel and threshold.

Finally, we noted that the method of alternately diffusing and normalizing can be mo-
tivated by a formal operator splitting of the Ginzburg-Landau equations. Yet phase-field
models cannot always be reduced in this way—i.e., the associated diffusion-generated
motion does not always produce a convergent discrete time approximation to theε → 0
singular limit of the PDEs. For example, we found that the filament motion derived using a
complex diffusion coefficient in the ALGORITHMCDGM does not agree with the solu-
tion to the corresponding Ginzburg-Landau equation (which is a nonlinear Schroedinger
equation). A particularly interesting metaproblem is to determine in general when a phase
field model has the same singular limiting behavior as its diffusion-generated motion
analog.
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