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We consider a one-dimensional model biodegradation system consisting of two
reaction–advection equations for nutrient and pollutant concentrations and a rate
equation for biomass. The hydrodynamic dispersion is ignored. Under an explicit
condition on the decay and growth rates of biomass, the system can be approximated
by two component models by setting biomass kinetics to equilibrium. We derive
closed form solutions for constant speed traveling fronts for the reduced two
component models and compare their profiles in homogeneous media. For a spatially
random velocity field, we introduce travel time and study statistics of degradation
fronts via representations in terms of the travel time probability density function (pdf)
and the traveling front profiles. The travel timepdf does not vary with the nutrient and
pollutant concentrations and only depends on the random water velocity. The traveling
front profiles are expressed analytically or semi-analytically as functions of the travel
time. The problem of nonlinear transport by a random velocity reduces to two
subproblems: one being nonlinear transport by a known (unit) velocity, and the other
being linear (advective) transport by a random velocity. The approach is illustrated
through some examples where the randomness in velocity stems from the spatial
variability of porosity.q 1998 Elsevier Science Limited. All rights reserved
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1 INTRODUCTION

Groundwater contamination due to surface spills or subsur-
face leakage of organic solvents, hydrocarbon fuels, and
other organic liquids has recently become a problem of
growing concern over the resulting health and environmen-
tal problems. Bioremediation is becoming a promising tech-
nology for restoring groundwater and soil contaminated with
organic pollutants due to its advantage of low cost andin situ
flexibility. A remedial procedure typically involves the injec-
tion of limiting nutrient (electron acceptor, e.g. oxygen and
nitrate) into aquifers with pollutants serving as substrate (elec-
tron donor) to generate a biologically active zone where indi-
genous bacteria significantly grow to consume the pollutants.

In recent years, biodegradation has been studied by many
researchers through numerical models1–14, analytical meth-
ods12,15,16, and experiments3,6,7,17. More recently, stochas-
tic approaches have been used to study the impact of

medium heterogeneity on biodegradation. Ginnet al. 5

developed a stochastic–convective reaction model for bior-
eaction of a single solute by a single class of microorgan-
isms coupled with dynamic microbial growth. The flow
system was represented as an ensemble of purely convective
bioreactive stream tubes, each with randomized but spa-
tially constant velocity. Along each stream tube, the trans-
port was governed by two coupled equations, one for
substrate and the other for biomass. Then the ensemble
averaged solution of the substrate was obtained with the
aid of travel time probability density function and the solu-
tion for each stream tube. The latter was solved by both
numerical and approximate analytical approaches. They
found that the method captured the ensemble average
large-scale effects of the nonlinear reactions more accu-
rately than in the classical reactive convection–dispersion
equation with appropriate scale-dependent dispersion coef-
ficient. Miralles-Wilhelm et al. 18 studied the effects of
chemical and microbiological variabilities on biodegrada-
tion in heterogeneous media. Their analysis was based on a
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system of two coupled equations, one for substrate and the
other for nutrient (e.g. oxygen), with time-invariant micro-
bial population.

In the present study, we analyze two reduced two com-
ponent models which approximate a three component bio-
degradation system. While the original three equations
consist of two reaction–advection equations for substrate
and nutrient and one rate equation for biomass, the reduced
models consist of two equations for substrate and nutrient.
The approximation is valid under an explicit condition on
the growth and decay rates of biomass [see eqn (6)]. We
discuss closed form traveling fronts in the two component
models and compare their profiles in homogeneous media.
Then in the case of a spatially random velocity field, we
introduce travel time and study the first two statistical
moments (ensemble mean and variance) of degradation
fronts. These random fronts are written explicitly in terms
of the travel time and the closed form homogeneous travel-
ing front profiles. The explicit analytical forms of solutions
allow us to examine the effects of randomness on the ensem-
ble averaged front profiles, and to evaluate various physical
quantities such as the concentration profiles, the total mass
removal and the removal rate. Our study is closely related to
the reactive stochastic stream tube approach of Ginnet al.5

in that only advection is considered in both studies. How-
ever, our study differs from the latter in the following
aspects: (1) the reduced model equations are different; (2)
the traveling wave solutions are given analytically or semi-
analytically in our study; and (3) not only the expected
values of the concentration profiles but also the associated
uncertainties are computed in our study.

1.1 The basic model

Let us consider the three equation model system of biore-
mediation as in MacQuarrieet al.9, Odencrantzet al.11, and
Oya and Valocchi12:

Rf St ¼ DSxx ¹ vSx ¹
kmAS

(KA þ A)(KSþ S)
, (1)

At ¼ DAxx ¹ vAx ¹ g
kmAS

(KA þ A)(KSþ S)
, (2)

mt ¼ ¹ b(m¹ m0) þ Y
kmAS

(KA þ A)(KSþ S)
, (3)

where S ¼ the substrate concentration [MS/L
3]; A ¼ the

nutrient (i.e. electron acceptor) concentration [MA/L
3]; m ¼

the microbial biomass concentration [Mm/L3] on a pore volume
basis;Rf . 1 ¼ the retardation factor;D ¼ the hydrodynamic
dispersion coefficient [L2/T]; v ¼ the pore water velocity [L/T];
k ¼ the maximum rate of substrate utilization[MSM ¹ 1

m T ¹ 1];
KA andKS ¼ the half-saturation constants of nutrientA [MA/
L3] and substrateS½MS=L

3ÿ; b and Y ¼ the decay [T¹1] and
yield [Mm/MS] constants of biomassm; m0 ¼ the natural bio-
mass population;g ¼ the stoichiometric constant for nutrient
consumption by substrate [MA/MS].

The product form of nonlinearity in eqns (1)–(3) is called
Monod kinetics. There are a few important simplifying
assumptions in the model. (1) The substrate is assumed to
undergo linear equilibrium sorption and desorption via the
retardation factorRf, implying that the sorbed pollutants are
not directly available as substrate for microbial degradation;
(2) the electron acceptor is assumed to be nonsorbing, and
this is an appropriate assumption for oxygen and nitrate which
are involved in many realistic situations; and (3) all microor-
ganisms responsible for biodegradation are assumed to be
attached to the solid phase. From now on, we shall setk ¼ 1.

We are interested in the initial value problem
with bounded nonnegative initial data such
that: ðS;A;mÞð0; xÞ→ðSþ ; 0;m0Þ; x → þ `, and
ðS;A;mÞð0; xÞ→ð0;A¹ ;m0Þ; x → ¹ `, representing the
input of nutrient concentrationA¹ from the upstream
boundary into a medium with pollutant concentrationSþ

and biomassm0.
Although the linear part of eqns (1)–(3) is hyperbolic

with three distinct speeds, the three components evolve
together as fronts moving from upstream to downstream
due to the reaction terms as long asRf . 1. Murray and
Xin proved15 that if Rf . 1 andD $ 0, the system of eqns
(1)–(3) always admits a traveling wave solution
ðSðx¹ c0tÞ;Aðx¹ c0tÞ, m(x ¹ c0t), c0) (wherec0 is the tra-
veling wave velocity), satisfying the above boundary con-
ditions at spatial infinities. Moreover, the pollutant profile is
decreasing inx, the nutrient profile is increasing inx, and the
biomass profile has the pulse shape. The front speed is
explicit:

c0 ¼
v(A¹ þ Sþ )
A¹ þ Rf Sþ

, (4)

and the biomass profile has an explicit upper bound:

m0 þ Y
(Rf ¹ 1)A¹ Sþ

A¹ þ Sþ
: (5)

In general, however, front solutions can be moving at con-
stant speeds or time dependent speeds (oscillatory), depend-
ing on the parameter regimes. The role of dispersionD is quite
standard. It helps stabilize the fronts and also widens the front
width. Because of this, we shall ignore dispersionD in this
paper. The other reason is that closed form formulae are hard
to come by for fronts with nonzeroD. So our results in this
paper deal only with pure advection.

Xin and Hyman16 showed that if:

Y
b

, 1þ
KA

A¹

� �
1þ

KS

Sþ

� �
, (6)

the long time behavior of the three component system of
eqns (1)–(3) can be approximated by that of the two equa-
tion system obtained by setting the biomass kinetics to
equilibrium. It is seen from eqn (6) that the condition
may be satisfied if the substrate and nutrient concentrations
A¹ and Sþ are low compared to the half-saturation con-
stantsKA andKS, e.g. in a relatively dilute system, and/or
if the yield constantkY is smaller than the decay constantb
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(note k ¼ 1 in this study). The reduced two component
system is:

Rf St ¼ ¹ vSx ¹ R, (7)

At ¼ ¹ vAx ¹ gR, (8)

with m expressed as:

m¼ bm0 b¹
YAS

(KA þ A)(KSþ S)

� �¹ 1

, (9)

and

R ¼
m0AS

KAKSþ KASþ KSAþ (1¹ b¹ 1Y)AS
: (10)

In other words, the reduction is obtained by setting the right
hand side of eqn (3) to zero, asm will eventually approach
the relaxed equilibrium state given by eqn (9).

In the nutrient-deficient regime (KA and KS being large
compared with (A,S)), we further simplify eqns (7) and (8)
to:

Rf St þ vSx ¼ ¹
m0

KAKS
AS, (11)

At þ vAx ¼ ¹
gm0

KAKS
AS: (12)

In the nutrient-sufficient regime, R tends to
m09 ¼ m0(1¹ b¹ 1Y)¹ 1 times the Heaviside function
H(AS), whereH ¼ 1 if AS . 0, H ¼ 0 if AS ¼ 0. The
system becomes:

Rf St ¼ ¹ vSx ¹ m09H(AS), (13)

At ¼ ¹ vAx ¹ m09H(AS), (14)

which has been integrated explicitly in Ref.12 to find oscil-
latory traveling front solutions of the form (S,A) ¼ (S,A)(x
¹ c0t,t), periodic in t.

1.2 The stochastic model

Now let us extend the basic model to the context of stochas-
tic water velocity situation:

Rf St ¼ ¹ v(x)Sx ¹
kmAS

(KA þ A)(KSþ S)
(15)

At ¼ ¹ v(x)Ax ¹
kmAS

(KA þ A)(KSþ S)
(16)

mt ¼ ¹ b(m¹ m0) þ Y
kmAS

(KA þ A)(KSþ S)
(17)

wherev(x) ¼ q/n(x) is the water seepage velocity,n(x) ¼

n(x,q) is the random porosity function (defined over scale
q), andq is the water flux. Here we consider divergence-
free flow, qx ¼ 0 such thatq is spatially constant in one
dimension. However,q can be a random constant (e.g. due
to a random boundary condition). Again, we assume the
initial biomassm0 to be constant as in Ginnet al. 5 and
let k ¼ 1.

With the travel time:

T ¼ T(x,x0) ¼

∫x

x0

dx=v(x), (18)

we put eqns (15)–(17) into a constant coefficient system:

Rf St þ ST ¼ ¹
mAS

(KA þ A)(KSþ S)
, (19)

At þ AT ¼ ¹ g
mAS

(KA þ A)(KSþ S)
, (20)

mt ¼ ¹ b(m¹ m0) þ Y
mAS

(KA þ A)(KSþ S)
: (21)

In the rest of this paper, we will perform statistical studies
of these random fronts for the nutrient-deficient model and
the general two component model.

2 RANDOM TRAVELING FRONTS

2.1 The nutrient-deficient model

The condition of eqn (6):Y=b , ð1þ KA=A¹ Þ(1 þ KS/S
þ),

which can be achieved whenKA andKS are large compared
with (A¹,Sþ), results in the following simplified system of
equations:

Rf St þ ST ¼ ¹
m0

KAKS
AS, (22)

At þ AT ¼ ¹
gm0

KAKS
AS, (23)

which is the system under study in this section. In this case,
over long timem ¼ m0. Consider the change of variables
for eqns (22) and (23):

u¼ gRf S¹ A, w¼ gS¹ A, (24)

or:

A¼ (Rf ¹ 1)¹ 1(u¹ Rf w), S¼g¹ 1(Rf ¹ 1)¹ 1(u¹ w):
(25)

hen (u,w) satisfies the system in conservation form:

ut þ wx ¼ 0, (26)

wt þ ((1þ R¹ 1
f )w¹ R¹ 1

f u)x ¼ g̃(u¹ w)(u¹ Rf w),
(27)

whereg̃ ¼ R¹ 1
f (Rf ¹ 1)¹ 1m0(KAKS)¹ 1. The explicit travel-

ing front solutions of the formðu0;w0ÞðyÞ, y ¼ T ¹ c0t, are
[see Appendix A]:

c0 ¼
gSþ þ A¹

gRf S
þ þ A¹

, (28)

u0 ¼
1
c0

w0 þ ¹ 1þ
1
c0

� �
A¹ , (29)
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w0 ¼
gSþ ¹ A¹

2
þ

gSþ þ A¹

2
tanh

3
1
2
Rf (gRf S

þ þ A¹ )g̃y

� �
: ð30Þ

Such solutions are unique up to a constant translate iny. In
the original variables (S,A), we have, in view of eqn (25),
the explicit expression of random traveling fronts:

A(T, t) ¼
A¹

2
1¹ tanh

m0

KAKS

A¹ þ gRf S
þ

2(Rf ¹ 1)
(T ¹ c0t)

� �� �
,

(31)
and

S(T, t) ¼
Sþ

2
1þ tanh

m0

KAKS

A¹ þ gRf S
þ

2(Rf ¹ 1)
(T ¹ c0t)

� �� �
,

(32)

wherec0 is given in eqn (28) and the random travel timeT
in eqn (18).

2.2 The general two component model

Let us consider the more general model without restrictive
assumptions aboutKA andKS but still under biomass equili-
brium conditions:

Rf St þ ST ¼ ¹
m0

KAKS
AS=F(A,S), (33)

At þ AT ¼ ¹ g
m0

KAKS
AS=F(A,S), (34)

m¼ bm0 b¹
YAS

(KA þ A)(KSþ S)

� �¹ 1

, (35)

where:

F(A,S) ¼ 1þ S=KSþ A=KA þ (1¹ b¹ 1Y)AS=(KAKS):
(36)

Making the same change of variables to (u,w) as in eqns
(24) and (25), and following the same procedure as before,
we have the same expressions as eqns (28) and (29). The
only change is that eqn (30) is modified to:

dw0

dy
¼ ¹

g̃Rf (gRf S
þ þ A¹ )

(gSþ þ A¹ )
(w0 ¹ Sþ )(w0 þ A¹ )=G(w0),

(37)
whereG ¼ G(w) is simply F(A,S) with A andS written as
functions ofw using eqns (25) and (29).G(w) is a positive
quadratic function ofw, and is equal to:

G(w) ¼ 1þ (gKS(Rf ¹ 1))¹ 1(c¹ 1
0 ¹ 1)(wþ A¹ )

þ (Rf ¹ 1)¹ 1K ¹ 1
A (c¹ 1

0 ¹ Rf ) wþ
1¹ c0

1¹ Rf c0
A¹

� �

þ (1¹ b¹ 1Y)
(c¹ 1

0 ¹ 1)(c¹ 1
0 ¹ Rf )

KAKSg(Rf ¹ 1)2 (wþ A¹ )

3 wþ
1¹ c0

1¹ Rf c0
A¹

� �

which simplifies using the wave speed formula forc0 to:

G(w) ¼ 1þ
Sþ (wþ A¹ )

KS(gSþ þ A¹ )
¹

A¹ (w¹ gSþ )
KA(gSþ þ A¹ )

¹ (1¹ b¹ 1Y)
Sþ A¹ (wþ A¹ )(w¹ gSþ )

KSKA(gSþ þ A¹ )2 : ð38Þ

The solutions ofA and S are given by eqn (25) asw0 is
solved from eqn (37), see Appendix B.

3 STATISTICAL ANALYSIS OF RANDOM FRONTS

3.1 General formalism

BecauseT is a random variable, so are nutrient concentra-
tion A(x,t), substrate concentrationS(x,t) and biomass con-
centration m(x,t). They may be estimated with their
ensemble means (expected values):

〈A(x, t)〉 ¼
∫`

0
A(T, t)f (T; x,x0) dT, (39)

〈S(x, t)〉 ¼
∫`

0
S(T, t)f (T; x, x0) dT (40)

〈m(x, t)〉 ¼
∫`

0
m(T, t)f (T; x, x0) dT (41)

where A(T,t), S(T,t) and mðT; tÞ are given earlier, and
f ðT; x; x0Þ is the probability density function (pdf) of the
travel timeT(x,x0) of a particle fromx0 to x. Note that after
averaging, the dependence on (x,t) in eqns (39), (40) and (31)
is not of the formx ¹ ct. Hence strictly speaking,〈A〉, 〈S〉, and
〈m〉 are not traveling waves. However, they do behave like
traveling waves in the sense that they move at constant
speeds to leading order in time. The evaluation of the expected
concentrations reduces to that of travel timepdf, which only
depends on the water velocity and does not vary with the
nutrient or substrate wave front speed. The uncertainty asso-
ciated with the estimation can be evaluated with the variances:

j2
A(x, t) ¼ 〈A2(x, t)〉 ¹ 〈A(x, t)〉2 ¼

∫`

0
A2(T, t)f (T; x,x0)

3 dT ¹ 〈A(x, t)〉2, ð42Þ

j2
S(x, t) ¼

∫`

0
S2(T, t)f (T; x, x0) dT ¹ 〈S(x, t)〉2, (43)

j2
m(x, t) ¼

∫`

0
m2(T, t)f (T; x,x0) dT ¹ 〈m(x, t)〉2: (44)

As mentioned earlier, the randomness inv(x) may stem
from q and/or n(x). In the case of one-dimensional,
steady-state flow,q can be either a deterministic or random
constant. The latter represents the ensemble of 1-D
columns of differentq or a single column with random
boundary conditions. In this case the travel time moments
can, however, only be given via approximation. In this
study, we consider the case thatq ; q0 is a specified
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constant such that the spatial variability in porosity is the
only source of randomness in the velocityv(x) ¼ q0/n(x).
The porosity is assumed to be stationary such that its mean
〈n〉 is constant and its covarianceCn(x,x1) only depends on
the relative distancer ¼ x ¹ x9. The covariance functionCn

is taken to be exponential:

Cn(r) ¼ j2
n exp ¹

lr l
ln

� �
(45)

wherej2
n andln are the variance and correlation scale of

porosity, respectively.
In this case, the travel time can be rewritten as:

T(x,x0) ¼

∫x

x0

n(x9)
q0

dx9: (46)

Hence, its moments are given exactly as:

〈T(x, x0)〉 ¼ 〈n〉
q0

(x¹ x0), (47)

j2
T(x) ¼

1
q2

0

∫x

x0

∫x

x0

Cn(x9 ¹ x0) dx9 dx0 (48)

¼
2
q2

0

∫x

x0

(x¹ x9)Cn(x9 ¹ x0) dx9

¼
2j2

n

q2
0

ln(x¹ x0) ¹ l2
n 1¹ exp ¹

x¹ x0

ln

� �� �� �
:

It is seen that the travel time variance increases sublinearly
with (x ¹ x0).

If the travel time obeys a lognormal distribution, itspdf
can be described with the first two moments:

f (T; x, x0) ¼
1

(2p)1=2Tjln(T)
exp ¹

{ln (T) ¹ 〈ln(T)〉} 2

2j2
ln(T)

( )
,

(49)
where 〈ln(T)〉 ¼ ¹ 0:5 ln[〈T〉2 þ j2

T] þ 2 ln(〈T〉) and
j2

ln(T) ¼ ln[〈T〉2 þ j2
T] ¹ 2 ln(〈T〉). Although other forms of

travel timepdfs are possible, it is found by Zhang and Tche-
lepi 19 for a similar problem of random Buckley-Leverett
displacement that the impact of distributional forms may be
neglected. With eqn (49) the means and variances of concen-
trations in eqns (39)–(44) can be evaluated by numerical
integrations, say via Simpson’s rule.

Another quantity of interest is the substrate removal in the
domain segment fromx0 to x1:

R(t; x1, x0) ¼

∫x1

x0

Rf n(x)[Sþ ¹ S(x, t)] dx, (50)

which can be estimated with its expected value:

〈R(t; x1,x0)〉 ¼
∫x1

x0

Rf [〈n〉Sþ ¹ 〈n(x)S(x, t)〉] dx

¼

∫x1

x0

Rf 〈n〉Sþ ¹

∫1

0

∫`

0
n(x)S(T, t)f [n(x);

"

T(x, x0)] dn dT

�
dx: ð51Þ

Here f[n(x);T(x,x0)] is the joint pdf of the porosity n
at x and the travel time fromx0 to x. It can easily be shown
that the cross covariance betweenn(x) andT(x,x0) is given
as:

〈n9(x)T9(x,x0)〉 ¼ lnj
2
n

q0
1¹ exp ¹

x¹ x0

ln

� �� �
, (52)

where the superscript9 indicates deviation from the mean.
With this and eqn (48), we obtain immediately that the
correlation function between n(x) and T(x,x0),
rnT(x¹ x0) ¼ 〈n9(x)T9(x,x0)〉=[jnjT(x)] → 0 asx¹ x0 → `.
That is to say,n(x) andT(x,x0) become uncorrelated when
the distancex ¹ x0 is large (relative toln). Physically
speaking, this is so because the influence ofn(x) on
T(x,x0) becomes smaller and smaller as the distancex ¹

x0 increases.
Below we evaluate the statistical moments for two spe-

cific models.

3.2 The nutrient-deficient model

In the case ofY=b , ð1þ KA=A
¹ Þ(1 þ KS/S

þ) with (KA,KS)
being large compared with (A,S), m is equal tom0 over long
time. It is seen from eqns (31) and (32) that:

A(x, t)
A¹

þ
S(x, t)
Sþ

¼ 1: (53)

With this, we have:

〈A(x, t)〉
A¹

þ
〈S(x, t)〉

Sþ
¼ 1, (54)

j2
A(x, t)
A2

¹

¼
j2

S(x, t)
Sþ 2 : (55)

Hence, it suffices to compute the mean and variance for
eitherA or S.

We consider the case of semi-infinite domain where the
nutrient concentration is kept constant asA¹ at x0 ¼ 0 and
the substrate concentration remains to beSþ at x ¼ `. This
represents the situation of continuous injection of nutrient
from the upstream into a large column with pollutant
concentrationSþ and biomass concentrationm0. In the
following examples,A¹ ¼ 1.0, Sþ ¼ 1.0, Rf ¼ 1.5, g ¼

2.0, KAKS ¼ 10.0 andq0 ¼ 0.3 unless stated otherwise.
Only porosity is assumed to vary spatially with〈n〉 ¼ 0.3,
j2

n ¼ 0:09 andln ¼ 1.0 (unless stated otherwise). All these
parameters are given in a set of arbitrary but consistent units.

Fig. 1 shows the expected (mean) concentrations of nutrient
and substrate and the concentration standard deviation at two
times and for different variabilities in porosity. The mean con-
centrations are normalized as〈A〉/A¹ and 〈S〉/Sþ, and the con-
centration standard deviation asjA/A¹ ¼ jS/S

þ. It is seen that at
t ¼ 50, the nutrient concentration drops from unity rapidly near
x ¼ 0 even in the homogeneous case ofj2

n ¼ 0 while this
sudden drop in concentration disappears att ¼ 150. The
rapid decrease nearx ¼ 0 at early time is due to the approx-
imation of continuous injection boundary condition atx ¼ 0 in
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our example while the analytical solution of eqns (31) and (32)
is derived by assuming the boundary to be atx ¼ ¹ `. The
effect of this approximation disappears at later time (at least, att
¼ 150). Then, the nutrient concentration becomes one at the left
side of the domain and decreases gradually toward zero while
the substrate concentration is zero at the left side and increases
gradually to one. It can be seen from eqns (31) and (32) withT
¼ (x ¹ x0)/v (v being a deterministic velocity) that the nutrient
and substrate concentration profiles (fronts) retain the same
shape through time but travel at the speedc0v in the homoge-
neous case after the boundary effect disappears. The reason for
the invariant concentration profiles is that local dispersionD is
neglected. In the presence of spatial variability in porosity,
dispersion is induced, resulting in less steep fronts for the
expected nutrient and substrate concentrations (Fig. 1(a,b)). In
addition, the heterogeneity induced dispersion increases with
time. However, it seems that the expected fronts also travel at
the constant speedc0〈v〉, where〈v〉 ¼ q0/〈n〉. The concentration
standard deviation (uncertainty) is largest at or near the center
of the front and moves at the same speed as the expected front,
and its peak value increases with time. It is also seen that both

the effective dispersion and the concentration uncertainty
increase with the variance of porosity. Here the value of
j2

n ¼ 0:25 may be too large for most real situations and is
assumed only for the purpose of illustration.

Fig. 2 investigates the impact of the correlation scale of
porosity on the concentration moments. In this case,
j2

n ¼ 0:25. It is seen that both the magnitude of dispersion
and the concentration standard deviation (uncertainty)
increase with the correlation scale.

Figs 3 and 4 look at the sensitivities of various geochem-
ical and biological parameters. In these cases,〈n〉 ¼ 0.3,
j2

n ¼ 0:09 andln ¼ 1.0. It is seen that the results are quite
sensitive to these parameters. A smaller retardation factor
not only makes the concentration fronts move faster but also
increases the peak concentration standard deviation (Fig.
3(a,c)). An increase in the stoichiometric constant for nutri-
ent consumption (fromg ¼ 2 to 3) renders the expected
fronts slightly retarded and enhances the peak standard
deviation (Fig. 3(b,d)). A larger initial biomass concentra-
tion m0 gives a steeper expected concentration front and
larger uncertainty in estimating the fronts (Fig. 4(a,c)).

Fig. 1. Expected values and standard deviations of nutrient and substrate concentrations for different porosity variances (j2
n ¼ 0, 0.09 and

0.25): (a) and (c)t ¼ 50; (b) and (d)t ¼ 150. (The nutrient-deficient model.)
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Comparing the two curves forS/Sþ in Fig. 4(a), the left
side is much cleaner (with smaller concentration) withm0

¼ 0.5 than with m0 ¼ 0.1. This is so because more
bacteria are available there in the former case. The
larger the product ofKA andKS (half-saturation constants
of nutrient and substrate, respectively), the less steep are
the concentration fronts and the lower is the peak of
concentration standard deviation (Fig. 4(b,d)). Note that
m0 and KA(KS) do not affect the traveling speed of the
mean profiles. Since these biological and geochemical
parameters significantly impact the concentration
prediction and the associated uncertainty, the uncertainty
and/or spatial variability in these parameters, if any,
should be investigated in future studies.

Now, let us look at the expected substrate removal. It is
seen from Fig. 1(b,d) that at timet ¼ 150,〈S〉 < 0 andjS< 0
for smallx ¹ x0 (with x0 ¼ 0). That is, for small distancex, S
is primarily controlled by the boundary condition at the left
side and is essentially independent ofn(x) at large time. As
discussed in the previous section, for large distance it is
always true that n(x) and T(x,x0) are uncorrelated.

Therefore, at large time we may approximate the expected
substrate removal eqn (51) as:

〈R(t; x1, x0)〉 ¼ Rf 〈n〉Sþ
∫x1

x0

1¹
〈S(x, t)〉

Sþ

� �
dx (56)

¼ Rf 〈n〉Sþ
∫x1

x0

〈A(x, t)〉
A¹

dx,

which is achieved by letting〈nðxÞSðx; tÞ〉 < 〈n(x)〉〈S(x,t)〉.
Fig. 5(a,c) shows the expected substrate removal and its

rate as a function of time for one homogeneous and two
heterogeneous cases. Here we choose a very largex1 to
mimic the situation of from 0 tò . For the homogeneous
case(j2

n ¼ 0), the total removal increases almost linearly
at large times. This is clear by looking at the removal rate,
which increases with time for short times and approaches
a constant quickly (Fig. 5(c)). The time varying removal
rate at early time is due to the effect of boundary condi-
tion as discussed earlier for the expected concentration
profiles. With eqns (31) and (56), it can be shown for the
homogeneous case thatd〈R〉=dt¼ Sþ 〈n〉Rf c0〈v〉. In this case
d〈R〉/dt ¼ 0.3375. It is also seen that the removal rates

Fig. 2. Expected values and standard deviations of nutrient and substrate concentrations for different integral scales of porosity (ln ¼ 1.0
and 2.0): (a) and (c)t ¼ 50; (b) and (d)t ¼ 150. (The nutrient-deficient model.)
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converge to the same value in the heterogeneous cases
(Fig. 5(c)). The transient portion of the removal rates are
an artifact of the assumption that traveling waves form
instantaneously att ¼ 0. This, in turn, implies that the
observation from Fig. 5(a) that the total substrate removal
increases slightly with the magnitude of heterogeneity
may also be an artifact due to this assumption. The total
substrate removal cannot be assessed accurately with the
present (analytical) model because the model behaviors at
early travel time before forming traveling waves are not
available. However, it may be concluded that medium
heterogeneity has no impact on the overall substrate
removal rate at later times.

Fig. 5(b,d) shows the effects of biological and geochem-
ical parameters on the substrate removal. In the base case,
j2

n ¼ 0:09,ln ¼ 1.0,Rf ¼ 1.5,g ¼ 2,A¹ ¼ 1.0,Sþ ¼ 1.0 and
m0 ¼ 0.1. In each case, only one parameter is varied as
specified in the legend. It is seen that the removal rate
decreases significantly as the retardation factorRf is
reduced from 1.5 to 1.1. This is seemingly counter-intui-
tive. Based on Fig. 3(a), the clean area with low substrate

concentration is larger whenRf ¼ 1.1 than whenRf ¼ 1.5,
thus the removed substrate mass seems to be larger in the
former. However, this only considers aqueous phase mass
removal. The sorbed substrate is not directly available for
biodegradation. But due to the equilibrium assumption
for substrate adsorption, the substrate concentration in
the sorbed phase decreases proportionally as the aqueous
phase concentration is reduced. The proportionality isRf

¹ 1. When the substrate does not sorb onto the solid phase
such thatRf ¼ 1, the removal rate is minimum and is
entirely due to clean water flushing. The removal rate is
reduced when the stoichiometric constant for nutrient
consumption by substrate increases from 2 to 3. This is
so because to remove the same amount of substrate more
nutrient is needed wheng is larger. In the model that
nutrient is a limiting factor, the larger isg, the smaller
is the substrate removal rate. In this nutrient-deficient
model, the biomass does not affect the total removal
and the removal rate at late times although it impacts
the nutrient and substrate concentration profiles (Fig.
4(a,c)). From eqn (31), it is apparent that increasing

Fig. 3.Expected values and standard deviations of nutrient and substrate concentrations att ¼ 150 for different geochemical and biological
parameters: (a) and (c)Rf ¼ 1.5 and 1.1; (b) and (d)g ¼ 2.0 and 3.0. (The nutrient-deficient model.)
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KAKS by a factor would have had the same effects as
reducingm0 by the same factor.

In the above, the substrate removal is produced by both
biodegradation and clean water flushing from upstream
to downstream. The contribution from the latter mechan-
ism is Sþ〈n〉〈v〉t. Hence at large time the biodegradation
rate is:

d〈Rb〉
dt

¼ Sþ 〈n〉〈v〉(Rf c0 ¹ 1) ¼ Sþ A¹ 〈n〉〈v〉 Rf ¹ 1

gRf Sþ þ A¹

:

(57)

The homogeneous counterpart of eqn (57) has been
obtained recently by Oya and Valocchi12. It is seen
from eqn (57) that the biodegradation rate increases
with the mean flux〈n〉〈v〉, the retardation factorRf, the
initial substrate concentrationSþ and the nutrient concen-
trationA¹, and decreases with the stoichiometric constant
g. It is also seen that the biodegradation rate does not
depend on the initial biomass concentration and the
microbial kinetic parameters.

3.3 The general two component model

The nutrient and substrate concentrationsA andSare given as:

A(T, t) ¼ (Rf ¹ 1)¹ 1(u0 ¹ Rf w0), (58)

S(T, t) ¼ g¹ 1(Rf ¹ 1)¹ 1(u0 ¹ w0), (59)

where (c0,u0) is given by eqns (28) and (29), andw0 is
governed by eqn (37). One may solve forw0 based on
either eqn (37) or eqn (B4) given in Appendix B. We do
the former by the method of Runge–Kutta combined with
Adams–Bashforth multi-step. The biomassm(T,t) is given
by eqn (35) as a function ofA andS.

As for the nutrient-deficient model, we consider the case
of semi-infinite domain where the nutrient concentration is
kept constant asA¹ at x0 ¼ 0, the substrate concentration
remains to beSþ at x ¼ ` and the initial biomass concen-
tration ism0 for the whole domain. In the following exam-
ples,A¹ ¼ 1:0;Sþ ¼ 1:0;Rf ¼ 1:5;g ¼ 2:0, m0 ¼ 0.2, b ¼

0.5, Y ¼ 0.5, andq0 ¼ 0.3 unless stated otherwise. As
before,〈n〉 ¼ 0.3,j2

n ¼ 0:09 andln ¼ 1.0.

Fig. 4.Expected values and standard deviations of nutrient and substrate concentrations att ¼ 150 for different geochemical and biological
parameters: (a) and (c)m0 ¼ 0.1 and 0.5; (b) and (d)KAKS ¼ 10 and 20. (The nutrient-deficient model.)
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Fig. 6 compares the general two component model with
the nutrient deficient model for the case of homogeneous
media(j2

n ¼ 0). The objective is to investigate under what
conditions the nutrient-deficient model gives a good
approximation compared to the more general two
component model. Fig. 6(a,b) shows the nutrient and
substrate concentration profiles as functions ofx ¹ c0vt
for the cases ofKA ¼ KS ¼ 1 andKA ¼ KS¼ 2, respec-
tively. Fig. 6(c,d) show the corresponding biomass
profiles. It is seen that the profiles ofA and S are less
steep (more dispersive) when predicted with the general
two component model than with the nutrient-deficient
model, and that the relative difference between these
two models decreases with the increase ofKA and KS.
The latter observation is consistent with our expectation
that the general two component model reduces to the
nutrient-deficient model when (KA,KS) are large com-
pared to (A¹,Sþ). The biomass concentration has a
lower peak value and covers a larger area for larger
(KA,KS). It tends to the nutrient-deficient limit of constant
biomass as (KA,KS) increases.

Fig. 7 shows the expected values of nutrient, substrate and
biomass concentrations and their standard deviations for
the case of random porosity(j2

n ¼ 0:09). In this example,
KA ¼ KS¼ 2.0. For reference, the quantities for the homo-
geneous case are also presented. As in the nutrient-defi-
cient model, the effect of heterogeneity on nutrient and
substrate concentrations is to induce dispersive behaviors
on their fronts (Fig. 7(a)), and the uncertainty as reflected
in the standard deviation peaks at the center of the fronts
(Fig. 7(c)). The heterogeneity also renders the biomass
concentration a dispersive behavior, i.e. having a lower
peak and covering a larger area compared to the homo-
geneous case (Fig. 7(b)). The standard deviation of bio-
mass is largest at the center of the concentration profile
(Fig. 7(d)). Though not shown, the dispersive behaviors
become more apparent as the variance and correlation
scale of porosity increase, as in the nutrient-deficient
model.

Fig. 8 compares the total substrate removal and its rate for
the nutrient-deficient model and the general two compo-
nent model. The comparison is for the same case as in Fig.

Fig. 5.Expected total substrate removal and its rate as functions of time: (a) and (c) for one homogeneous and two heterogeneous cases; (b)
and (d) for various biological and geochemical parameters. (The nutrient-deficient model.)
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7 wherej2
n ¼ 0:09 andKA ¼ KS ¼ 2.0. It is seen that the

substrate removal and its rate for the general two compo-
nent model are almost identical to their counterparts
predicted by the nutrient-deficient model. Therefore, the
degradation rate can also be expressed by eqn (57). The
effects of heterogeneity and other factors such as mean
flux, biological and geochemical parameters on the
degradation rate are the same as discussed earlier for
the nutrient-deficient model.

4 SUMMARY

In this study, we have considered a biodegradation system
of three coupled equations: two reaction–advection
equations for nutrient and pollutant concentrations and
one rate equation for biomass. The system is approxi-
mated by two two component models in the case that
the decay rate of biomass is larger than the growth rate.
Based on analytical or semi-analytical solutions derived
for homogeneous cases, we have discussed constant

speed traveling fronts in these two models and compared
their profiles.

For a spatially random water velocity field, we have
introduced travel time and study statistics of degradation
fronts via representations in terms of the travel time prob-
ability density function (pdf) and the traveling front pro-
files. The travel timepdf does not vary with the nutrient
and pollutant concentrations but only depends on the pore
water velocity. The traveling front profiles are given ana-
lytically or semi-analytically as functions of the travel
time. Hence, the problem of nonlinear transport by a ran-
dom velocity is reduced to two subproblems: one being
nonlinear transport by a known (unit) velocity, and the
other being linear (advective) transport by a random
velocity.

In the examples of one-dimensional, steady-state flow,
the flux q is a deterministic constant because the recharge
at the boundary is assumed to be known. Then the only
source of randomness or spatial variability is porosity.
In this case, the statistical moments of travel time are
given exactly in terms of those of porosity. With the

Fig. 6.Comparison of the general two component model and the nutrient-deficient model in homogeneous media: (a) and (c) for the case of
KA ¼ KS ¼ 1.0; (b) and (d) for the case ofKA ¼ KS¼ 2:0:
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Fig. 7.Expected values and standard deviations of nutrient, substrate and biomass concentrations att ¼ 150 for different porosity variances
(j2

n ¼ 0 and 0.09): (a) expected concentrations of nutrient and substrate; (b) expected biomass concentration; (c) standard deviation of
nutrient and substrate concentrations (jA/A¹ ¼ jS/S

þ); and (d) standard deviation of biomass. (The general two component model.)

Fig. 8. Total substrate removal and its rate as functions of time for the case ofj2
n ¼ 0:09 andKA ¼ KS ¼ 2. (The general two component

model.)

114 J. Xin, D. Zhang

Adva



assumption that the travel time is lognormally distributed,
the expected values and standard deviations of substrate,
nutrient and biomass concentrations are evaluated by
numerical integrations. The expected values of total sub-
strate removal and its rate are evaluated similarly. It is
found from these one-dimensional examples that medium
heterogeneity induces dispersion and its effect generally
increases with time and with the magnitude of spatial
variability in porosity (as reflected in its variance and
integral scale). The uncertainty in predicting the concen-
tration profiles is largest at the center of the profiles and
increases with the variability in porosity. It is found that
the total substrate removal rate at late time is not affected
by the presence of heterogeneity for the present model
system.

The geochemical and biological parameters significantly
impact the concentration prediction, the associated uncer-
tainty, and the predicted biodegradation rate. The uncer-
tainty and/or spatial variability in these parameters should
be investigated in future studies.
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APPENDIX A THE NUTRIENT-DEFICIENT MODEL

To derive the formulas eqns (28)–(30), we substitute the
form of traveling fronts in eqns (26) and (27) to get:

¹ c0
du0

dy
þ

dw0

dy
¼ 0, (A1)

¹ c0
dw0

dy
þ ¹ R¹ 1

f
du0

dy
þ (1þ R¹ 1

f )
dw0

dy

� �
¼ g̃(u0 ¹ w0)(u0 ¹ Rf w0): ðA2Þ

Integrating eqn (A1) iny and applying the boundary con-
ditions at infinity yields eqns (28) and (29). Plugging eqn
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(29) into eqn (A2), we get:

¹ c0
dw0

dy
þ (1þ R¹ 1

f )
dw0

dy
¹

1
Rf

c¹ 1
0

dw0

dy

¼ g̃
1
c0

¹ 1

� �
w0 þ

1¹ c0

c0

� �
A¹

� �
1
c0

¹ Rf

� �
w0

�
þ

1¹ c0

c0

� �
A¹ Þ,

or:

¹ c0 þ (1þ R¹ 1
f ) ¹

1
Rf

c¹ 1
0

� �
dw0

dy
¼ g̃

1
c0

¹ 1

� �
3

1
c0

¹ Rf

� �
(w0 þ A¹ ) w0 þ

1¹ c0

1¹ Rf c0
A¹

� �
:

Using eqn (28), the above equality becomes:

dw0

dy
¼ ¹

g̃Rf (gRf S
þ þ A¹ )

(gSþ þ A¹ )
(w0 ¹ gSþ )(w0 þ A¹ ):

(A3)
Recall that the ODE (a . 0, a1 , a2):

dw
dy

¼ ¹ a(w¹ a1)(w¹ a2)

under the boundary conditionsw( ¹ `) ¼ a1, w( þ `) ¼ a2

has unique solution:

w¼
1
2
(a1 ¹ a2) tanh

a

2
(a1 ¹ a2)y

� �
þ

a1 þ a2

2
up to a constant translate iny. The formula eqn (30) follows.

We observe that the wave profiles are strictly increasing iny:
du0

dy
. 0,

dw0

dy
. 0, ; y: (A4)

In view of eqns (24) and (29), we have from eqn (A4):
dA0

dy
, 0,

dS0

dy
. 0, ; y: (A5)

APPENDIX B THE GENERAL TWO COMPONENT
MODEL

Thus eqn (37) givesw0 ¼ w0ðyÞ with w0ð0Þ¼ ðgSþ ¹ A¹ Þ=2
as: ∫w0

(gSþ ¹ A¹ )=2

G(w)
(w¹ gSþ )(wþ A¹ )

dw¼

¹
g̃Rf (Rf S

þ þ A¹ )
(gSþ þ A¹ )

y: ðB1Þ

With eqn (B1) in place of eqn (30), we have found the
traveling front formula in general.

The integral in eqn (B1) is available in closed form. Con-
sider the integral:∫

ax2 þ bxþ g9

(x¹ a)(x¹ b9)
dx,

which is equal to:

axþ

∫ cxþ d
(x¹ a)(x¹ b9)

dx, (B2)

where:

c¼ a(aþ b9) þ b, d¼ g9 ¹ aab9: (B3)

The second term of eqn (B2) is equal to:

(a¹ b0)¹ 1[(acþ d) loglx¹ al¹ (b9cþ d) loglx¹ b9l]:

Combining the above, we have the formula for the profile
of w0:

:aw0 þ (a¹ b9)¹ 1[(acþ d) loglw0 ¹ al

¹ (b9cþ d) loglw0 ¹ b9l] ¼ aw

þ (a¹ b9)¹ 1[(acþ d) loglw¹ al¹ (b9cþ d)

3 loglw¹ b9l]

�����
w¼ (gSþ ¹ A¹ )=2

¹
g̃Rf (gRþ

fS þ A¹ )
(gSþ þ A¹ )

y,

ðB4Þ

wherea ¼ gSþ, b9 ¼ ¹ A¹, and:

a ¼ ¹ (1¹ b¹ 1Y)
Sþ A¹

KAKS(gSþ þ A¹ )2, (B5)

b¼
Sþ

KS(Sþ þ A¹ )
¹

A¹

KA(Sþ þ A¹ )

¹ (1¹ b¹ 1Y)
Sþ A¹ (A¹ ¹ Sþ )
KSKA(Sþ þ A¹ )2 , ðB6Þ

g9 ¼ 1þ (K ¹ 1
S þgK ¹ 1

A )
Sþ A¹

(gSþ þ A¹ )

þ g(1¹ b¹ 1Y)
(Sþ A¹ )2

KSKA(gSþ þ A¹ )2: ðB7Þ
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