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Abstract Motivated by the nuclear magnetic resonance (NMR) spectroscopy of biofluids
(urine and blood serum), we present a recursive blind source separation (rBSS) method for
nonnegative and correlated data. BSS problem arises when one attempts to recover a set of
source signals from a set of mixture signals without knowing the mixing process. Various
approaches have been developed to solve BSS problems relying on the assumption of sta-
tistical independence of the source signals. However, signal independence is not guaranteed
in many real-world data like the NMR spectra of chemical compounds. The rBSS method
introduced in this paper deals with the nonnegative and correlated signals arising in NMR
spectroscopy of biofluids. The statistical independence requirement is replaced by a con-
straint which requires dominant interval(s) from each source signal over some of the other
source signals in a hierarchical manner. This condition is applicable for many real-world sig-
nals such as NMR spectra of urine and blood serum for metabolic fingerprinting and disease
diagnosis. Exploiting the hierarchically dominant intervals from the source signals, the rBSS
method reduces the BSS problem into a series of sub-BSS problems by a combination of
data clustering, linear programming, and successive elimination of variables. Then in each
sub-BSS problem, an �1 minimization problem is formulated for recovering the source sig-
nals in a sparse transformed domain. The method is substantiated by examples from NMR
spectroscopy data and is promising towards separation and detection in complex chemical
spectra without the expensive multi-dimensional NMR data.

Keywords Nonnegative and correlated sources · Blind source separation · Recursive
method · Data clustering · �1 minimization

1 Introduction

Blind source separation (BSS) is a major area of research in signal and image processing.
It aims at recovering source signals from their mixtures without detailed knowledge of the
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mixing process. Applications of BSS include signal analysis and processing of speech, im-
age, and biomedical signals, especially, signal extraction, enhancement, denoising, model
reduction and classification problems [6]. Recently nonnegative BSS has received a wide
attention in various fields such as computer tomography, biomedical image processing, ana-
lytical chemistry [2, 3, 11, 14, 15, 20, 22–28, 30] where nonnegative constraints are imposed
for the mixing process and/or estimated source signals. The nonnegative BSS problem is de-
fined by the following matrix model

X = AS, with Aij ≥ 0, Sij ≥ 0, (1.1)

where X ∈ R
m×p is the mixture matrix containing known mixture signals as its rows,

S ∈ R
n×p is the unknown source matrix, A ∈ R

m×n is the unknown mixing matrix. The
dimensions of the matrices are expressed in terms of three numbers: (1) p is the number
of available samples, (2) m is the number of mixture signals, and (3) n is the number of
source signals. Both X and S are sampled functions of an acquisition variable which may
be time, frequency, position, or wavenumber depending on the measurement device. The
mathematical problem is to estimate nonnegative A and S from X. The problem is also
known as nonnegative matrix factorization (NMF [15]). Similar to factorizing a composite
number (48 = 6 ∗ 8 = 8 ∗ 6 = 4 ∗ 12 = 12 ∗ 4 = 2 ∗ 24 = 24 ∗ 2 = 3 ∗ 16 = 16 ∗ 3), there are
permutation and scaling ambiguities in solutions to BSS. For any permutation matrix P and
invertible diagonal matrix �, (AP�, �−1P −1S) is another pair equivalent to the solution
(A,S), since

X = AS = (AP�)(�−1P −1S). (1.2)

Various approaches, methods, and techniques to BSS problems have been developed rely-
ing on a priori knowledge of source signals such as spatio-temporal decorrelation, statistical
independence, sparseness, nonnegativity, etc., [5, 6, 9, 13, 16–18, 22, 27, 28]. For instance,
independent component analysis (ICA) [7, 8] recovers statistically independent source sig-
nals and mixing matrix A. Recently there have been several studies of nonnegative ICA
and its applications. For example, [24, 25] offer theoretical and algorithmic studies of non-
negative ICA. The statistical independence requires uncorrelated source signals, and this
condition however does not always hold in real-world problems. For example, the statistical
independence should not be assumed on the NMR spectra of many chemical compounds,
because they are known to be correlated when molecules responsible for each source share
common structural features. Besides, the properly phased absorption-mode NMR spectral
signals from a single-pulse experiment are positive [10]. Recently, there appear considerable
activities to nonnegative BSS in NMR spectroscopy with the applications in identification
of organic compounds, metabolic fingerprinting, and disease diagnosis [1, 14, 22, 25, 26,
28, 29, 31, 32]. For example, Naanaa and Nuzillard (NN) proposed a nonnegative BSS
method in [22] based on a strict local sparseness assumption of the source signals. The NN
assumption (NNA) requires the source signals to be strictly non-overlapping at some lo-
cations of acquisition variable (e.g., frequency). In other words, each source signal must
have a stand-alone peak where other sources are strictly zero there. Such a strict sparseness
condition leads to a dramatic mathematical simplification of a general nonnegative matrix
factorization problem (1.1) which is non-convex. Geometrically speaking, the problem of
finding the mixing matrix A reduces to the identification of a minimal cone containing the
columns of mixture matrix X. The latter can be done by linear programming. In fact, NN’s
sparseness assumption and the geometric construction of columns of A were known in the
1990’s [2, 30] in the problem of blind hyper-spectral unmixing, where the same mathemati-
cal model (1.1) is used. The analogue of NN’s assumption is called pixel purity assumption



J Sci Comput (2012) 51:733–753 735

[4]. The resulting geometric (cone) method is the so called N-findr [30], and is now a bench-
mark in hyperspectral unmixing. NN’s method can be viewed as an application of N-findr to
NMR data. It is possible that measured NMR data may not strictly satisfy NN’s sparseness
conditions, which introduces spurious peaks in the results. Postprocessing methods will be
developed to address the resulting errors. Such a study has been performed recently in case
of (over)-determined mixtures [27] where it is found that larger peaks in the signals are more
reliable and can be used to minimize errors due to lack of strict sparseness. However, the
geometric cone method (NN method, N-findr method) and its postprocessing would fail if
the measured data do not satisfy NN assumption. Therefore, there is a need for new BSS
methods which can separate non-NNA source signals. The following two examples show
that a different condition on source signals is called for in this regard.

Example 1 Consider the NMR spectra of two chemical compounds β-sitosterol and menthol
in Fig. 1. As shown in the figure, β-sitosterol (blue) has stand-alone peaks however menthol
(red) does not have such a peak. Hence NNA does not hold. Instead, β-sitosterol overlaps
with menthol over the acquisition region and has dominant intervals over menthol in their
NMR spectra.

Example 2 The data in Fig. 2 are from NMR spectroscopy of urine and blood serum. The
complicated NMR spectra contain both wide-peak source signals and narrow-peak source
signals. For example, the blood serum has constituents with wide spectral peaks which over-
lap others almost over the whole acquisition region. Similar signal peaks are observed in
urine NMR spectrum. NN’s method and its postprocessing would not work for this type of
data.

The above two examples indicate that new BSS methods should be developed for these
non-NNA signals. For the urine type NMR data, the method needs to be able to separate
signals of wide spectral peaks from narrow peak signals. The method also should handle the
signals with dominant intervals over one another, such as the data in Example 1: though there
are no wide peak signals, one source dominates the other over the region. In this paper, we
shall develop a new BSS method to separate these two types of non-NNA data. This work is
mainly motivated by NMR spectroscopy of urine and blood serum. Analysis of NMR spectra
of biofluids such as urine and blood serum can provide extremely important information for
metabolic fingerprinting and disease diagnosis (see [1, 29, 31, 32] and references therein).
Identification and assignments of constituents in urine samples depends heavily on 2D NMR
spectra. However, the complexity of urinary composition makes the complete assignments of
the urinary spectra difficult, which is mainly due to the lack of reference spectra for unknown
metabolites. Consequently, as of now, only about one-third of detectable urinary metabolites
have been assigned unambiguously [32]. Similar situation exists in the NMR spectroscopy
of blood serum. Our method can be used to separate and detect the unknown sources in
the residuals of a regular spectra fitting with reference spectra data. In this context, it is
unnecessary to separate all the source signals from urine and serum type data in a complete
blind fashion. Our hope is to offer an assistive computational tool to produce a short list of
possible unknown sources for a knowledged chemist to pursue further analysis.

The main challenge of the non-NNA problem we face is that the complicated NMR
spectra contains both wide-peak source signals and narrow-peak source signals (in urine
and serum NMR spectra). As a result, the mixing matrix A cannot be recovered from data
matrix X independently of S as in [22], and so A and S are much more coupled. This
paper uses divide and conquer strategy to retrieve A and S in a recursive way. The proposed
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Fig. 1 (Color online) NMR spectra of two chemical compounds. In the circled region, β-sitosterol (blue)
has a stand-alone peak. Clearly, menthol (red) does not have such region

Fig. 2 Examples of standard NMR spectra of serum and urine, showing representative structural complexity
produced by multiple metabolite signals (plot from [1])

method splits the source separation process into two major steps. The first step is a backward
procedure where clustering and linear programming techniques are employed to recursively
identify columns of the mixing matrix while simultaneously eliminating source variables.
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The first step also serves to convexify the original non-convex matrix factorization problem.
Half of the unknowns are estimated. The second step is a forward step to solve a sequence
of �1 regularized convex optimization problems to recover the source signals. It should be
pointed that although the method is motivated by the NMR spectroscopy of biofluids, the
underlying ideas certainly can be generalized to other source separation applications.

The paper is outlined as follows. In Sect. 2, we propose a new condition on the source
signals motivated by NMR spectroscopy data of biofluids. In Sect. 3, we introduce our re-
cursive BSS method. In Sect. 4, we further illustrate our method with numerical examples
including the processing of an experimental NMR data set. Section 5 is the conclusion. We
shall use the following notations throughout the paper. The notation Aj stands for the j -th
column of matrix A, Sj for the j -th column of matrix S, Xj the j -th column of matrix X.
While Sj and Xj are the j -th rows of matrix S and X, or the j -th source and mixture,
respectively.

This work was partially supported by NSF-ADT grant DMS-0911277 and NSF grant
DMS-0712881. The authors thank Professor A.J. Shaka and Dr. Hasan Celik for helpful
discussions and their experimental NMR data.

2 Assumption on Source Signals

Let us consider the determined case (m = n). The results can be easily extended to over-
determined case (m > n). Consider the linear model (1.1) where each column in X repre-
sents data collected at a particular value of the acquisition variable, and each row represents
a mixture sprectrum.

Recently the authors have developed a postprocessing approach on how to improve NN
results with abundance of mixture data, and how to improve mixing matrix estimation with
major peak based corrections [27]. The work in [27] actually considered a relaxed NNA
(rNNA) condition

Assumption (rNNA) For each i ∈ {1,2, . . . , n} there exists an ji ∈ {1,2, . . . , p} such that
si,ji > 0 and sk,ji = εk (k = 1, . . . , i − 1, i + 1, . . . , n), where εk � si,ji .

Simply said, each source signal has a dominant peak at acquisition position where the
other sources are allowed to be nonzero. NNA results if all εk = 0. The rNNA is more
realistic and robust than the ideal NNA for real-world NMR data [22].

Motivated by the NMR spectra of urine and blood serum, we propose here a more general
and relaxed condition on the source signals. Note that the rows S1, S2, . . . , Sn of S are the
source signals, and they are required to satisfy the following condition: For i = 2,3, . . . , n,
source signal Si is allowed to have dominant interval(s) over Si−1, . . . , S2, S1, while other
part of Si may overlap with Si−1, . . . , S2, S1. More formally, this condition implies that
source matrix S satisfies the following condition

Assumption For each k ∈ {2,3, . . . , n}, there is a set Ik ⊂ {1,2, . . . , p} such that for each
l ∈ Ik sil � sjl, i = k, k + 1, . . . , n, j = 1,2, . . . , k − 1.

We shall call this dominant interval condition, or DI condition. In simple terms, the condi-
tion DI requires dominant interval(s) from each source signal over some of the other source
signals in a hierarchical manner. Figure 3 is an idealized example of three DI source sig-
nals. For the application of NMR spectroscopy of urine and serum that motivated us, the DI
source conditions hold well.
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Fig. 3 Left plot is the three DI source signals, notice that S3 has two dominant regions R1 and R2 over S2
and S1, while S2 dominates S1 in region R3. Recognizing each of column vectors of the mixture matrix X

as a point in 3D space, we show the geometry of X in the second plot, the convex hull of X consists of eight
points, the one attracting a cluster is recognized as A3

Fig. 4 (Color online) Left is the two mixtures after eliminating the third source, their geometric plot is on
the right. From the picture, the mixing coefficients of the second source in the mixtures attracts a cluster of
points (red circle)

3 The Method

In this section, we introduce a recursive BSS method to separate the DI source signals. For
the purpose of illustration, we shall use the simulated data (Figs. 3–16) for which we did not
specify units. But the unit of the x-axis can be understood as number of pixels. A real NMR
spectrum usually has ppm (parts per million) as its unit (see the real data in Figs. 17–19).
The method consists of two main steps: forward step and backward step. It starts with the
backward step where the BSS problem is reduced to a series of sub-BSS problems.
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Fig. 5 NMR signal (dashdot line) is a convolution of a sparse signal (solid line) with a Lorentzian kernel of
width = 4

Fig. 6 A second order Butterworth low pass filter is designed to estimate the peak width of wide peak
signal. The solid curve is the mixture signal, the dashed curve is the filtered wide peak signal from which an
estimation of peak width can be read off

3.1 Backward Step: Model Reduction

Consider to separate n DI sources from n mixtures. Condition DI implies that there is region
where source Sn dominates others. More precisely, there are columns of X such that

Xk = sn,kA
n +

n−1∑

i=1

oi,kA
i, (3.1)
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where sn,k dominate oi,k (i = 1, . . . , n − 1), i.e., sn,k � oi,k . The identification of An is
equivalent to finding a cluster formed by these Xk’s in R

n. As illustrated in Fig. 3, source
signal S3 has two dominant peak regions R1,R2 which satisfy (3.1), hence a cluster is formed
in Fig. 3. Next we shall discuss how to locate the cluster (thus An). All X’s column vectors
form a set of points P = {X1,X2, . . . ,Xp} in n dimensional space. The convex hull of P is
a polytope, A in R

n. The frame F of these points is the set of extreme points of the convex
hull. To determine if the element Xk of the set P constitutes an element of F , the following
constrained problem is suggested

p∑

j=1,j �=k

Xjλj = Xk, λj ≥ 0, k = 1, . . . , p. (3.2)

Xk belongs to F if it cannot be written as a linear combination of other points of P . Linear
programming can be used to solve (3.2). Apparently, F contains a vector which is approxi-
mately parallel to An, this can be seen from (3.1). Among the elements of F , An is the one
attracting a cluster. To identify An, an ε-ball is created with center at each element of F .
The center of the ball that contains most of data points is recognized as An.

After An is obtained, we reduce the model by eliminating Sn from X. Denoting the n

mixtures as row vectors X1, . . . ,Xn, let us write (1.1) as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X1 = [∑n−1
j=1 A1j Sj1 + A1nSn1,

∑n−1
j=1 A1j Sj2 + A1nSn2, . . . ,

∑n−1
j=1 A1j Sjp + A1nSnp

]

X2 = [∑n−1
j=1 A2j Sj1 + A2nSn1,

∑n−1
j=1 A2j Sj2 + A2nSn2, . . . ,

∑n−1
j=1 A2j Sjp + A2nSnp

]

...

Xn = [∑n−1
j=1 AnjSj1 + AnnSn1,

∑n−1
j=1 AnjSj2 + AnnSn2, . . . ,

∑n−1
j=1 AnjSjp + AnnSnp

]

(3.3)
where An = [A1n,A2n, . . . ,Ann]T is already retrieved from the data clustering. Using the last
equation of (3.3), we eliminate Sn by the transformation Xi → Xi − Ain

Ann
Xn, i = 1,2, . . . , n−

1. Then a new mixture matrix is formed as

X(1,2,...,n−1) =

⎛

⎜⎜⎜⎜⎝

X1 − A1n

Ann
Xn

X2 − A2n

Ann
Xn

...

Xn−1 − An−1,n

Ann
Xn

⎞

⎟⎟⎟⎟⎠
∈ R

(n−1)×p (3.4)

which contains n − 1 mixtures from source signals S1, . . . , Sn−1. In fact, we formulate a
reduced BSS model

X(1,2,...,n−1) = Ã(1,2,...,n−1) S(1,2,...,n−1),

where Ã(1,2,...,n−1) is the mixing matrix of the source S1, . . . , Sn−1 in the reduced mixtures
X(1,2,...,n−1). In the new mixtures X(1,2,...,n−1), source Sn−1 has dominant regions over other
sources. Therefore, the data clustering and linear programming can be used to recover
the mixing coefficients of Sn−1 from X(1,2,...,n−1). Then we reduce the mixtures further to
X(1,2,...,n−2) containing S1, . . . , Sn−2. For example, Fig. 4 shows the two resulting mixtures
after eliminating S3 from the three mixtures in Fig. 3.

For k ≤ n − 1, data clustering, linear programming combined with mixtures reduction
will be recursively employed until source S1 is obtained. The following intermediate reduced
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Fig. 7 Three mixtures (left column), and the sources (right column)

mixtures are produced during the recursive process

X(1,2,...,k) = Ã(1,2,...,k) S(1,2,...,k) for k = 1,2 . . . , n − 1, (3.5)

where Ã(1,2,...,k) is the mixing matrix of the source S1, . . . , Sk in the reduced mixtures
X(1,2,...,k). In summary, the backward step not only extracts source signal S1, but also gen-
erates a series of reduced mixtures X(1,2),X(1,2,3), . . . ,X(1,2,...,k), . . . ,X(1,2,...,n−1). It should
be noted that although the original BSS model (1.1) contains nonnegative A,S and X, the
reduced mixtures and mixing matrices may have negative entries from the variable elimi-
nations, meaning that the intermediate mixtures allows general linear combinations of the
nonnegative source signals. The geometric cone method is still able to identify the minimal
cone which contains the columns of X(1,2,...,k), k = 2, . . . , n − 1, only that the cone may not
lie in the sector consisting of nonnegative vectors.

3.2 Forward Step: Recovery of the Sources

With S1 being recovered, we shall discuss how to separate the source signals S2, . . . , Sn.
It can be verified in that the solution of Sk, k = 2, . . . , n is not unique given its mixing
coefficients in mixture X(1,2,...,k) and S1, S2, . . . , Sk−1. In fact, if we consider to solve for S2,
then we write X1,2 = Ã(1,2)S1,2 in terms of components

(
x11 x12 · · · x1p

x21 x22 · · · x2p

)
=

(
a11 a12

a21 a22

)
·
(

s11 s12 · · · s1p

s21 s22 · · · s2p

)
,

where the known components are denoted in color black, while the unknown variables are
in color red. To solve the unknown aij ’s (there are 2 in this case), we select the first two
columns of X to set up the following four equations:

⎧
⎪⎪⎨

⎪⎪⎩

x11 = a11s11 + a12s21

x12 = a11s12 + a12s22

x21 = a21s11 + a22s21

x22 = a21s12 + a22s22
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Fig. 8 Results by PGD approach (top-left), and linearized Bregman iteration (top-right), and the convergence
of the methods (bottom column)

and they can be written in matrix form Q Y = b with

Q =

⎛

⎜⎜⎝

s11 0 a12 0
s12 0 0 a12

0 s11 a22 0
0 s12 0 a22

⎞

⎟⎟⎠ ,

Y = (a11, a21, s21, s22)
T, b = (x11, x12, x21, x22)

T.

In fact, performing column addition operations on Q by a12 to eliminate s11 and s12 in
the top left corner, we obtain

⎛

⎜⎜⎝

0 0 a12 0
0 0 0 a12

− a22
a12

s11 s11 a22 0
− a22

a12
s12 s12 0 a22

⎞

⎟⎟⎠ ,

then the first column can be eliminated by the second column.
Therefore matrix Q is singular, which implies that S2 does not have unique solutions

even up to scaling. It can be deduced that S3, . . . , Sn are non-unique by similar arguments. It
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appears that solving the equation exactly for S2, . . . , Sn is hopeless However a meaningful
solution is possible if the actual source signals are structurally compressible, meaning that
they essentially depend on a low number of degrees of freedom. For instance, if our source
signal is sparse in some transformed domain, then the problem is readily simplified, and
the search for solutions becomes feasible. According to analytical chemistry [10], an NMR
spectrum is represented as a sum of symmetrical, positive valued, Lorentzian-shaped peaks.
Therefore, the NMR spectrum can be thought as a linear convolution of Lorentzian kernel
with some sparse function consisting of few sharp peaks, or more precisely,

S = Ŝ ∗ L(x,w),

where L(x,w) = 1
π

1
2 w

x2+( 1
2 w)2 , w specifies its width (full width at half maximum), and Ŝ is a

sparse function. In Fig. 5, the NMR signal (dashdot line) is a convolution of a sparse (solid
line) with Lorentzian kernel of width = 4. The sparsity under the Lorentzian kernel suggests
that an �1 minimization problem can be formulated to recover the source signals.

For example, consider the recovery of S2. Recall that source S1 is recovered and the
reduced mixture matrix X(1,2) is generated in the backward step. The fact that source S1 is
sparse under the Lorentzian kernel and that mixture signals may in general contain noise
suggest solving the following optimization problem:

min
A(1)∈R2×1,

Ŝ∈R2×p, Ŝ≥0

μ‖Ŝ‖1 + 1

2
‖X(1,2) − A(1) S1 − Ŝ ∗ L(w2)‖2

2, (3.6)

where X(1,2) ∈ R
2×p is a mixture matrix containing source S1 and S2, p is the number of

available samples. A(1) is a column vector containing the mixing coefficients of source S1

in X(1,2). Each row of Ŝ stands for a sparse function with few sharp peaks, and the rows of
Ŝ ∗ L(w2) are the multiples of source S2 in X(1,2). The linear convolution Ŝ ∗ L is approxi-
mated by a matrix multiplication Ŝ L in the computation, here L ∈ R

p×p is the discretized
Lorentzian kernel. w2 is the peak width of S2, the estimation of this parameter will be dis-
cussed later.

In general, to recover Sk for k = 2, . . . , n − 1, the following �1 minimization problem is
proposed:

min
A(1,2...,k−1)∈Rk×(k−1),

Ŝ∈Rk×p, Ŝ≥0

μ‖Ŝ‖1 + 1

2
‖X(1,2,...,k) − A(1,2...,k−1) S(1,2,...,k−1) − Ŝ ∗ L(wk)‖2

2, (3.7)

where X(1,2,...,k) ∈ R
k×p is the mixture matrix which contains sources S1, . . . , Sk , the

columns of A(1,2...,k−1) ∈ R
k×(k−1) correspond to the mixing coefficients of source S1, . . . ,

Sk−1 in X(1,2,...,k), respectively. The rows of Ŝ ∗ L(wk) represent multiples od source
Sk in X(1,2,...,k), wk is the peak width of Sk . Because (3.7) allows the constraint
A(1,2...,k−1) S(1,2,...,k−1) + Ŝ ∗ L(wk) = X(1,2,...,k) to be relaxed, it is applicable when the mix-
tures are contaminated by measurement errors such as instrument noise. The l2 norm in (3.7)
is to model the unknown measurement error or noise as Gaussian. When there is minimal
measurement error, one must assign a tiny value to μ to heavily weigh the fidelity term
‖X(1,2,...,k) − A(1,2...,k−1) S(1,2,...,k−1) − Ŝ ∗ L(wk)‖2

2 in order for A(1,2...,k−1) S(1,2,...,k−1) + Ŝ ∗
L(wk) = X(1,2,...,k) to be nearly satisfied. In this case, one could also formulate an optimiza-
tion problem as:

min ‖Ŝ‖1, s.t. A(1,2...,k−1) S(1,2,...,k−1) + Ŝ ∗ L(wk) = X(1,2,...,k), Ŝ ≥ 0, (3.8)
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Fig. 9 (Color online) Backward step 1. On the left: the three mixtures; on the right: the geometry of the
mixture and the recovery of A3 (the one in the blue circle). From the plots of the mixtures, there is dominant
region containing a spectral peak (in the red rectangle), hence an estimation w3 = 130 for the peak width of
source S3 can be read off

Fig. 10 Backward step 2. Model reduction via eliminating S3. The plots are the two mixtures and their
geometry. It can be seen from the plot the mixing coefficients of source S2 in X(1,2) attracts a cluster of
points. An estimation of w2 = 60 (peak width of S2) is read off from peaks in the rectangular region

for which Bregman iterative method [12, 33] with a proper projection onto non-negative
convex subset can be used to obtain a solution. The equality constraint of (3.8) contains
k × p number of equations and k × (k − 1 + p) variables, which implies that it is under-
determined. When measurement noise is minimal, the region defined by the equality and
inequality constraints is non-empty.

For simplicity, we solve (3.7) by the projected gradient descent (PGD) approach. The
following multiplicative update rules preserve the nonnegativity constraints for nonnegative
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Fig. 11 Backward step 3. The recovery of S1 by eliminating S2 from the reduced mixture X(1,2)

Fig. 12 Forward step. Left is the recovered sources by �1 minimization. Right is the reference spectra

initial data for Ŝ:

aij ← aij

[X ST
(1,2,...,k−1) − Ŝ LST

(1,2,...,k−1)]ij
[A(1,2,...,k−1) S(1,2,...,k−1) S

T
(1,2,...,k−1)]ij

, (3.9)

ŝjk ← ŝjk

[[X L − A(1,2,...,k−1) S(1,2,...,k−1) L]jk − μ]+
[Ŝ LL]jk

, (3.10)

where the nonlinear operator [x]+ = max{0, x}, aij = (A(1,2,...,k−1))ij , ŝjk = (Ŝ)jk . For the
convex objective (3.7), the iterations in (3.9)-(3.10) converge to a global minimum.

At this point, we have retrieved S1, . . . , Sn−1. Next, we separate the last source signal Sn

from the original mixtures matrix X. We consider to solve the following �1 minimization
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Fig. 13 Spectra of two mixture samples of menthol and β-sitosterol

problem,

min
0≤A(1,...,n−1)∈Rn×(n−1),

Ŝ∈Rn×p, Ŝ≥0

μ‖Ŝ‖1 + 1

2
‖X − A(1,...,n−1) S(1,...,n−1) − Ŝ ∗ L(wn)‖2

2, (3.11)

Where rows of X ∈ R
n×p represent the n mixture signals, the columns of A(1,...,n−1) corre-

spond to the mixing coefficients of S1, . . . , Sn−1 in X. The rows of Ŝ ∗ L(wn) are the mul-
tiples of Sn in X. Again, we use gradient descent approach to solve (3.11). The following
multiplicative update rules are applied

aij ← aij

[[X ST
(1,2,...,n−1) − Ŝ LST

(1,2,...,n−1)]ij ]+
[A(1,2,...,n−1) S(1,2,...,n−1) S

T
(1,2,...,k−1)]ij

,

ŝjk ← ŝjk

[[X L − A(1,2,...,k−1) S(1,2,...,k−1) L]jk − μ]+
[Ŝ LL]jk

,

where aij = (A(1,2,...,n−1))ij , ŝjk = (Ŝ)jk . This problem is similar to (3.7). The difference is
that, in (3.7) the nonnegativity constraint is only imposed to the source signals, while in
(3.11) both the mixing matrix and sources are required to be nonnegative. As explained in
Sect. 3.1, the intermediate mixtures X(1,2), . . . ,X(1,2,...,n−1) could have negative entries from
the variables elimination, meaning that subtractive combinations of nonnegative sources
could exist in these mixtures.

For the peak width parameter used in the �1 computations, estimate of an upper bound
suffices. A straightforward way is to read off approximate value from mixture signals if
the dominant interval(s) happen to contain a peak. For more complicated mixture signals,
a low pass filter could be designed to extract more accurate estimation (see Fig. 6). In the
practice of NMR, the expertise of an analytical chemist may also be helpful to estimate this
parameter.

The PGD approach is sufficient for examples we studied here, however Bregman method
might be more suitable for solving larger size problems due to its efficiency. We shall make a
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Fig. 14 Reference spectra of β-sitosterol and menthol

comparison between the Bregman iterative method and the PGD approach used in the paper
in terms of time cost and convergence. We use the linearized Bregman method [12, 33]
to solve (3.8). We consider to solve the related unconstrained minimization problem (3.7).
Rewrite the problem with new notations as follows

min
M∈Rk×(k−1),

Ŝ∈Rk×p, Ŝ≥0

μ‖Ŝ‖1 + 1

2
‖f T − M W − Ŝ L‖2

2, (3.12)

where M = A(1,2...,k−1) ∈ R
k×(k−1), f = XT

(1,2,...,k) ∈ R
p×k , W = S(1,2,...,k−1) ∈ R

(k−1)×p . Let

us introduce u = [
MT

ŜT

] ∈ R
(k−1+p)×k , B = [

W T,L
] ∈ R

p×(k−1+p), then (3.12) reads

minμ‖P u‖1 + 1

2
‖Bu − f ‖2

2, (3.13)
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Fig. 15 Computed source spectrum of menthol

where P = [ O(k−1)×k

Ip×k

]
. The linearized Bregman method can be written iteratively by intro-

ducing an auxiliary variable vj :

⎧
⎪⎨

⎪⎩

vj+1 = vj − BT(B uj − f ),

u
j+1
i = v

j+1
i , for i = 1, . . . , k − 1,

u
j+1
i = δ · shrink+(v

j+1
i ,μ), for i = k, . . . , k − 1 + p,

(3.14)

where u0 = v0 = O , δ > 0 is the step size, and shrink+ is for computing nonnegative solu-
tions,

shrink+(v,μ
) =

{
v − μ, if v > μ,

0, if v < μ.
(3.15)

Note that the first k − 1 rows from vj are assigned to MT which is (A(1,2,...,k))T, and the rest
rows are given to ŜT.

The synthetic data used for testing the two methods is three mixtures from three sources
shown in Fig. 7. Suppose source 1 and 2 have been recovered, source 3 will be solved by
(3.7) using (3.9)–(3.10) and linearized Bregman iteration. Computation is performed on a
Dell laptop with 6G RAM and 1.6 GHz i7 CPU. The results are shown in Fig. 8. The cpu
time for the top-left plot (PGD approach) is 7.98 seconds, and it is 3.92 seconds for the
top-right plot (linearized Bregman). It can be seen that Bregman iteration converges faster
than the PGD approach.

We remark that although our recursive BSS framework is motivated by the NMR spec-
troscopy of biofluids, the idea can be applied to separating other NMR data. In practice, we
might only need to perform the backward and forward steps once instead of recursively. In
the next section, we shall process an experimental data set. We shall use clustering to retrieve
all the columns of the mixing matrix, then retrieve the sources by solving a nonnegative �1

optimization problem. The elimination of variables (model reduction) is unnecessary for this
example.
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Fig. 16 Computed source spectrum of β-sitosterol by �1 minimization using different μ values. Top: μ = 0.
Bottom: μ = 0.09. The �1 penalty provides a sparser solution in the bottom panel

4 Numerical Computations

In this section, we report the numerical examples solved by the method. We compute three
examples. The data of the first two examples are synthetic. In the first example, three sources
are to be separated from three mixtures, one source is supposed to have narrow peaks, one
has relatively wide peaks, and the last one has very wide peaks. The results are presented in
a series of plots. Figures 9, 10 and 11 illustrate the backward step, and Fig. 12 presents the
recovered source signals by �1 minimization in the forward step. In the step of recovering
the source signal S2 and S3 via �1 minimization, the peak widths w2 = 60,w3 = 130 are
read off from the mixture signals. Compared to ground truth, the separation results by our
method are accurate. In the second example, we used true NMR spectra of menthol and
β-sitosterol (see their reference spectra in Fig. 14) as sources. The mixtures are created
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Fig. 17 (Color online) Three columns of A are identified as the three center points in blue circles attracting
most points in scatter plots of the columns of X (left), and the three rows of X (right)

Fig. 18 The recovered source signals by nonnegative �1 (left) and the ground truth (right)

following model (1.1). We also added gaussian noise to the data to test the robustness of the
method. The two mixtures are plotted in Fig. 13. The computed results by the method are
shown in Figs. 15 and 16. Comparing the two calculated spectra of β-sitosterol in Fig. 16,
�1 minimization generates a sparser solution and proves to be robust to noise.

For the third example, we provide a set of real data to test our method. The data is pro-
duced by diffusion ordered spectroscopy (DOSY) which is an NMR spectroscopy technique
used by chemists for mixture separation [19]. However, the three compounds used in the
experiment (quinine, geraniol, and camphor) have similar chemical functional groups (i.e.
there is overlap in their NMR spectra) [21], for which DOSY fails to separate them. Though
our working hypothesis is not satisfied completely, it is known that each of the three sources
has dominant interval(s) over others in its NMR spectrum. This can also be verified from
the three isolated clusters formed in their mixed NMR spectra (see the geometry of their
mixtures in Fig. 18). Here we separate three sources from three mixtures. Figure 18 plots
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Fig. 19 The recovered source signals using NN method (left) and the ground truth (right)

the mixtures (rows of X) and their geometry (columns of X) where three clusters of points
can be spotted. Then the columns of A are identified as the center points of three clusters.
Note that elimination of variables is not necessary since all A’s columns have been obtained
by one time clustering (K-means). The three isolated clusters imply that the source matrix
S possesses column sparsity, therefore we consider to solve the following nonnegative �1

optimization (for each column Si of S):

min‖Si‖1 subject to ASi = Xi, for i = 1, . . . , p (4.1)

for the recovery of the sources S. Problem (4.1) is a linear program because Si is non-
negative, also solvable by PGD approach and Bregman iterative method. The solutions
are presented in Fig. 18, the results are satisfactory comparing with the ground truth.
As a comparison, the source signals recovered by NN [22] is shown in Fig. 19 where
S = inverse(A)X, here the inverse is Moore-Penrose (least square sense) pseudo-inverse
which produces some negative (erroneous) peaks in S.

5 Conclusion

This paper presented a novel BSS method for nonnegative and correlated data. The moti-
vation lies in the NMR spectroscopy of urine and serum for metabolic fingerprinting and
disease diagnosis. Inspired by the NMR structure of urine type data, we propose a working
hypothesis which requires dominant interval(s) from each source signal over some of the
other source signals in a hierarchical manner. The hierarchy form of the dominant inter-
val(s) enables the development of a novel BSS method which recursively breaks the BSS
problem down into a series of sub-BSS problems by a combination of data clustering, lin-
ear programming, and variables elimination. From the intermediate sub-BSS problems, the
source signals are retrieved by repeatedly solving an �1 minimization problem in a sparse
transformed domain. Numerical results on NMR spectra data show satisfactory performance
of our method and offer promise towards understanding and detecting complex chemical
spectra for health sciences.
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