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ABSTRACT 

In this thesis, we study traveling wave solutions to Richards equation in dif

fusive form which describes wetting fronts in vertical infiltration of water into 

one-dimensional periodically layered soils. We prove the existence and uniqueness 

of traveling waves solutions under prescribed flux boundary conditions and cer

tain constitutive conditions on the diffusivity and conductivity functions in the 

equation. Furthermore, we show the long time stability of these traveling wave so

lutions under these condit.ions. The traveling waves are connections between two 

steady states that form near the ground surface and deep in the soil. We derive 

an analytical formula for the speed of these traveling waves which depends on the 

prescribed boundary fluxes and the steady states. Both analytical and numerical 

examples are found which show that the wave speed in a periodically layered soil 

may be slower, the same, or faster than the speed in a homogeneous soil. In these 

examples. if the phases of the diffusivity and conductivity functions are the same, 

the periodic soils slow down the waves. If the phases differ by half a period, the 

periodic soils speed up the waves. \Ve also present numerical solutions to Richards 

equation using a finite difference method to address cases where our constitutive 

conditions do not hold. Similar stable wetting fronts are observed even in these 

cases. 
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1 Introd uction 

Infiltration and, in particular, the study of wet.ting and drying fronts is a major 

focus of hydrology and soil science (see [11], [25], [37], [40], and [53]). These fronts 

are important since they are the most clear indication of water movement in a 

soil. By studying the wetting and drying fronts, hydrologist.s and soil scientist.s 

can determine the speed and direction of groundwater movement in soils. They 

can also use this information to help trace the progress of dissolved solutes and 

contaminants in a soil since the solute fronts are dictated by water flow ([6] and 

[52]). This solute front. information is critical in determining the viability and 

safety of various land uses such as irrigated agriculture, waste disposal, and min

ing. These land uses and others may put the water supply of large regions at risk 

if their ability to introduce solutes and contaminants to the regions' groundwater 

is underestimated or misunderstood. 

The primary equation used by soil scientists and hydrologists to describe infil

tration of water, under the influence of gravity, into a soil is Richards' equation 

(see [2], [29], [34], and [52]). The water content-based form of this equation in one 

dimension is 

Ut = [D(u"r)uJ, - K(u,;r)].r: (1.1 ) 

where u(x, t) is the soil water content, ;1: E [0,00) is the depth below the surface, 

t 2: 0 is time, 1\ (u, x) is the hydraulic conductivity of the soil, and D( u, x) is the 

soil water diffusivity. The choice of the hydraulic functions, K(u,x) and D(u,x), 

proves to be quite important both in the physical relevancy of the equation's so

lutions (see [50]) and in determining these solutions. In this thesis, we will only 

examine wetting fronts and will therefore neglect any hysterisis or drying effects 

between water content and hydraulic head, the importance of which is addressed 
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by Serrano [42]. 

Equation (1.1) was derived by flux balancing using Darcy's Law, 

Jw = -D(u,x)ux + [((u.x), ( 1.2) 

where Jw is the soil water flux, the volume of flO\\' passing a unit area per unit 

time. In general, D( u, x) and K (u, x) are dependent not only on u but also on x 

and are highly nonlinear in both variables. It is these functions' nonlinearity in 

u and overall dependence on x which makes Richards' equation challenging and 

interesting to solve in analytical forms. 

l'Vlost of the past analytical results have been found by ignoring the x depen

dence of D and K. Physically, this amounts to assuming that the soil is homoge

nc~ous. Philip in [34] wrote down a solution to the liIH!arized Richards' equation 

(1.3) 

where D,1{ > 0 are constants. He applied the initial and boundary conditions 

1l(0, t) = llwell u( 00, i) = Udry, 1l(a:,0) = Udry (1.4 ) 

where H Ule /) Udry E [0.1] are constants. His solution was 

UU'et - Udry x - [(t ]{ x x + Kt 
ll(X,t) = lldry + ( 2 )[erfc( 2Vi5i) + e;cp( D )erfc( 2.Jl5i)] (1.5) 

where erfc(x) is the complementary error function. More recently, others have 

analytically solved specific cases of equation (1.1) by a careful selection of D and 

l\. For example, Srivastava and Yeh [44] took 

K(h) = Ksexp[ah], U = U r + (us - u7.)~xp[Qh] (1.6) 

in the mixed head-water content form of Richards' equation 

Ut = [K(h)(hx + l)]x (1.7) 
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to produce an analytical solution. Ks is the saturated conductivity, Us is the satu

rated water content, U r is the residual water content, h is the hydraulic head, and 

Q is a paramet.er. By using (1.6), they effectively linearized Richards' equation 

and were able to solve for J«h) by using a Laplace transform. This result was also 

extended to the case of two layer soils by a matching argument along the soils' 

common boundary. Other analytic work for the two-phase problem in a homoge

nE'otls soil has been done by Mc\Vhorter and Sunada [25] who were able to write 

dO\m an integral solution to Richards' equation which showed the position of the 

region where saturation by an infiltrating fluid had been attained. 

Mathematically, wetting fronts in soils are represented by traveling wave so

lutions to Richards' equation (see [11], [17], [30], [50], and [60]). The existence 

and uniqueness of traveling wave solutions to the general nonlinear problem (1.1), 

neglecting the ;r dependence, has been shown by Khushnytdinova [17] for the fixed 

boundary conditions 

u(O,t) = Ul, u(oo,t) = U2 

and by Noren [30] for prescribed fluxes fdt) and h(t) at the boundaries 

D(u)ux - K(u) Ix=o= - fl(t), 

D(u)ux - K(lt) Ix=oo= - f2(t). 

(1.8) 

(1.9) 

Of these two types of boundary conditions, the prescribed flux is more physically 

relevant, since the soil surface (x = 0) is rarely held at a fixed water content while 

a prescribed flux can be related to rainfall or irrigation. Warrick et al. [50] were 

able to write down an equation for the position of the wetting front as a function 

of time for the fixed boundary conditions in homogeneous soils when using Brooks 

and Corey or van Genuchten hydraulic functions. III addition, many numerical 

methods for computing solutions to the infiltration problem in homogeneous soils 
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have been devised (see [4], [8], [11], [22], and [39]). The major concern in the 

methods is mass conservation. The numerical solutions presented in these works 

are consistent with the theory found in [17] and [30] as they show existence and 

stability of traveling wave solutions denoting wetting fronts. 

\Vhile solutions without x dependence produce some useful results, experiments 

and practical usage of soils show that soils are very heterogeneous and that this 

spatial variability has a marked effect on infiltratioIl in the soils (see [12]). There

fore. much attention has been paid recently towards how to incorporate spatial 

variability of soils into infiltration models and equations. This incorporation re

quires that the x dependence of D and ]( be included. Ongoing work generating 

numerical solutions with many kinds of spatial variability, especially those with 

random ;1' dependence, is currently being pursued (see [9], [10], [27], [40], [47], and 

[.57]). Harter and Yeh [10] and Neuman [27] carry out numerical work by taking 

the [{ (u. x) coefficient in Richard's equation to be realizations from random fields. 

The form of Richards' equation they use is the head based form 

C(h)h t = [K(h"'Z')(h,r -1)],r (1.10) 

where the conductivity function takes t.he form 

J«h,x) = /{s(:r)e.7:p[a(x)h] (1.11) 

with/{ s (x) and a( x) realizations of three-dimensional. stationary stochastic fields. 

Unlu et al [47] use a Monte Carlo technique with solutions obtained from many of 

these realizations to make their models. In contrast, Jury et al [9], [40] and White 

[57] are not concerned with actual solutions to Richards' equation. Instead, they 

use transfer functions to determine the flow out of a soil region, given information 

on the rate and amount of the water added to that region. To this point, analytical 

results deal mostly with steady state infiltration around localized impermeable ob

structions, such as rocks, buried in a homogeneous soil. Philip et a1 [35] find their 
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solutions by solving the steady state form of Richards' equation with the hydraulic 

functions given by (1.6). The obstructions are introduced by imposing a no flow 

boundary condition on the surface of the obstruction. Warrick and Fennemore [51] 

employ the same equation and hydraulic functions but create their obstructions 

through the use of source/sink combinations which are analogous to the classical 

Rankine bodies seen in fluid dynamics. 

Since the mathematical work of Khushnytdillova [17] and Noren [30] on wet

ting fronts in homogeneous soils in the 1960's and 1970:s, studies using Richards' 

equation to model infiltation in heterogeneous soils are mostly found in the soil 

science and hydrology literature and appear to be either numerical simulations or 

special cases where closed form analytical solutions are available. In this thesis, we 

obtain qualitative analytical results on dynamics of wetting fronts in periodically 

layered soils for a class of heterogeneolls conductivity and diffusivity functions in 

Richards' equation (1.1). Our approach is to establish existence, uniqueness, and 

long time asymptotic stability of traveling wave solut ions. These traveling waves 

have spatially periodic structures and have been recently studied for other nonlin

ear parabolic equations (see Xin [60]). 

The periodic layering of the soils is manifested in the periodic spatial depen

dence of D and ]{ in x. These periodically layered soils have been considered in 

soil science literature by Philip [36] and Hills et al [11]. Hills et al perform a one

dimensional infiltration experiment on a periodically layered soil and then match 

a numerical model to their results. They observe many of the phenomena that 

we discuss in this thesis such as wetting fronts and periodic steady states at the 

boundaries of their apparatus. While assuming that soils act like periodic media 

is not completely accurate for all soils, it is useful in modeling many laboratory 
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experiments and is more appropriate than assuming that soils are homogeneous. 

In fact, some numerical models, which use random .1: dependence for D and ]( 

to more accurately model actual soils. assume that these random functions come 

from a periodic mean function (see [29] p. 160). 

The rest of the thesis is organized as follows. Chapter 2 discusses the existence 

and uniqueness of steady state solutions to Richards' equation with periodic co

efficients. Chapters 3 through 6 show the existence and uniqueness of a traveling 

wave solution to Richards' equation under the following constitutive assumptions 

on the hydraulic functions: 

D(u,x) = D(u)a(x), (AI) 

J( ( u, x) = ]( ( II ) b(.r ), (A2) 

D(u) = f{'(u), (A3) 

]{(u), f{'(u), f{1I(ll), > 0, (A4) 

D(u), D'(u) > O. (A5) 

where a(:r.) and b(;l') are positive, one periodic, and twice continuously differen

tiable. The following constant prescribed flux boundary conditions will be im

posed: 

D(u,x)ur - ]«(u,:z:) Ix=o= -CI, 

D(u,x)ur - ]«(u,x) Ir=co= -Cr' (1.12) 

Chapter 7 shows that time-dependent solutions of Richards' equation (1.1) with 

front-like initial data (under the assumptions (A1)-(A5)) converge to a traveling 

wave solution as t -+ 00. Chapter 8 discusses the effects of heterogeneity on the 

speed of the wetting fronts. Chapter 9 shows some numerical solutions which illus

trate points discussed in the previous chapters such as the movement of the wetting 
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fronts, the effect of heterogeneity on wave speed, and the significance of (A3) to 

the solutions. Chapter 10 discusses generalizations, in particular, the possibilities 

and consequences of relaxing assumptions (A 1 )- (A5 ). 

\Vhile (Al)-(A5) are not general mathematically, they are reasonable assump

tions used by the soil science community. (AI) and (A2) are used by Philip (see 

[36] Equ. 12). Assumption (A3) can be found in Parlange [32] and [33], in Equa

tion 43 of Lockington [24], in Philip [34], Equation 9 of [37] and is even natural for 

certain selections of D and J( such as the Gardner and Russo hydraulic functions 

(see [50]). Moreover, in cases where diffusivity is m1lch smaller than conductiv

ity, the role of diffusivity is of secondary importance in the solution and assuming 

(A3) has little bearing (see chapter 9, Example 2). Assumptions (A4) and (A5) 

are physically justifyable and are used by Neuman [29] and \Varrick [52]. 

The main theoretical results of this thesis are found in Theorem 4.1 (unique

ness), Theorem 6.1 (existence), and Theorem 7.2 (asymptotic stability). These 

results are briefly stated here: 

Theorem 1.1 (Er1!istence and Uniqueness) Suppose the hydraulic functions 

satisfy (.41) - (AS) and the prescribedfiu:us, c/,c" satisfymaxxE[O,lj]{(O,:r) < cr < 

c/ < minxE[O,ljK(I,x). Then Richards' equation (1.1) admits a classical trave/i7lg 

wave solution of the form u(x,t) = u'(x - ct,:J.') = u'(s,y) where s = x - ct and 

y = x" c is the wave speedj the function u'(s,y) satisfies the traveling wave equation 

- cu~ = (Oy + os)(D(u',y)(u~ + u~) - J«(u',y)), (1.13 ) 

u'(-oo,y) = u/(y),u'(+oo,y) = ur(y), and u'(s,·) is I-periodic in y. The wave 

speed, c, is givfn by the formula 

(1.14) 
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where u/{y) and ur{y) are solutions to the steady statr. equation: 

(1.15) 

and range strictly between zero and one. Furthermore, suppose that (u, c) and 

(1I', c') are classical solutions of this traveling wave equation and Us and u~ decay 

to ze1'O as S -. ±oo uniformly in y. Then u'( s, y) = u( s - So, y) for some So E 

R.c = c', and u~ < 0 for any (s,y). 

Theorem 1.2 (Asymptotic Stability) Let us consider the initial boundary value 

problem for Richards' equation (1.1) with flux boundary conditions (1.12) and ini

tial data u(x,O) = uo(:Z:), x 2:: O. Suppose uo(x) E Cl (R~); ur(x) ~ uo(x) ~ 

lid.r), luo.xl ~ !l1 < 00 for a positive constant JVJ; Uo - U r E Ll(R~), then a global 

in lime, classical solution u(x, t) exists and satisfies 

lim lu(x, t) - u.'(x - ct - So, x)1 = 0 
1-00 

(1.16) 

l/niformly for :r 2:: O. Here So E R is a constant boanslate depending on the initial 

data. 

Two other topics to note in this thesis are the deri\'ations of an entropy con

dition (chapter :3 for assumptions (Al)-(A.::» and chapter 10 for the general case) 

and the affects of heterogeneity on wave speed (chapter 8). The entropy condition 

is similar to the shock condition found in the theory of conservation laws. This 

condition is a sufficient condition for the existence of traveling waves. Under (Al)

(A.::», we show in Theorem 3.1 that the entropy condition is always valid. The 

periodic heterogeneity of the soils can affect the wave speed by either speeding it 

up or slowing it down. When the spatial dependences of K(u,x) and D(u,.7:) are 

"in phase", the waves are slowed down. \\'hen th€-! spatial dependences vary by 

half a period, the waves are sped up. 
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Details in many chapters (especially 5 and 6) may be skipped by the reader 

without loss of understanding. The more important details are found in chapter 2 

(steady states), chapter 3 (entropy condition), and chapter 7 (stability). Chapter 

8 (heterogeneity and wave speed) and chapter 9 (numerics when (A1)-(A5) fail) 

are generally lighter reading than the rest of the thesis and discuss this work's 

application to phenomena of interest to soil scientists and hydrologists. 
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2 Steady State Solutions 

\Ve consider the following diffusive, water content form of the Richards' equa

tion in one-dimension as given in (1.1): 

Ut = (D(u,x)ux - J((ll,x))~" (2.1 ) 

There are two steady state solutions to (2.1) to be considered; one corresponding 

to the upper boundary near x = 0, U/(X)i the other to the boundary near x = 00, 

u,.(:t}. During steady infiltration, ut(:r) is achieved when transients die out and 

lIt(.r) > ur(x) assuming that the initial wat.er content profile was not too wet near 

.Z· = 00. \Ve would now like to prove the existence and uniqueness of these steady 

state solutions. 

Proposition 2.1 (Emistence) Let D(u,x),I{(u,:l') be positiVE smooth functiolls 

in 11 and x; i-pcT'iodie in x: Du > 0, /{u > 0 for all x. Let c satisfy 

sup/{(O,x) < c < inf]{(l,:l'). 
x x 

(2.2) 

Til ell there exists a positive, smooth, i-periodic solution u( x) to thE equation 

D(u,x)ux - K(u,:r) = -c (2.3) 

for ;z: E Rl such that 0 < u(x) < 1. 

Proof: The steady state solutions, u/(:r) and ur(:r), satisfy the steady state version 

of equation (2.1) 

(2.4) 

or 

(2.5) 
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where i = 1, rand Cj are positive constants which correspond to the flux rates of 

the infiltration. \Ve will start by rewriting equation (2.5) as 

-Ux = c-K(u,x) 

D(u, x) 
(2.6) 

for x E RI. Let.ting ii(x) = u(-x), ii(x) satisfies 

_ c-K(ii,-x) c-k(ii.,x) 
U x = = -

D(ii,-x) D(ii,:c) 
(2.7) 

for ;r. E RI. For the remainder of the chapter, we will drop the tildes. 

It is clear that showing existence of positive periodic solutions to (2.7) is the 

same as doing so for (2.5). VVe also want 1l to range strictly between zero and one 

since u represents soil water content in unsaturated infiltration which is defined to 

be the water filled fraction of a soil's total pore space. Let us consider the initial 

,"olue problem for (2.7) on [0,1] with u(x = 0) = Ub 2:: 0, 

Assume that 

Ub $ u· = sup{u 2:: 01 inf K(u,:I:) $ c}. 
,rE[O.l) 

(2.8) 

c> sup l\·(O,.T). (2.9) 
xE[O,I) 

which implies thatu· is well defined. By our earlier assumptions that D( u,:/:) > 0 

and Du(u,x) > 0 for:1: E [0,1] and Ub E [0,1), (2.7) has a local solution on [0, a:·) 

for some x· > 0 and u(x) > 0 for x sufficiently near zero. Now if u(xd = 0 for 

some Xl > 0, then ux(xd $ O. In view of (2.7) and (2.9), we see that such an Xl 

does not exist, and u(x) > 0 on [O,x*). Similarly, if U(X2) > u· for the first such 

.1:2 > 0, t.hen 

(2.1O) 

by definition of u*. So (2.7) says Ux (X2) < 0 which contradicts the existence of 

such an X2 where U x (X2) 2:: O. 
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Combining the above arguments, we see that 0 < u(x) :::; u*, on (0, x*). This 

allows the extension of x" to any value, in particular 1. So, for any Ub E [O~ u'"], 

(2.7) defines a mapping T : Ub ~ u(x = 1, Ub). T is a C1 mapping from [0, ?L*] 

into itself. Therefore, T has a fixed point, up, such that u(x, up) is a non-negative 

periodic solution to equation (2.7). Since any point x is an interior point, u(x, up) 

is strictly positive. 

To insure that u(x, up) :::; 1 for physical reasons, we also impose 

c < inf J{ (1, x). 
xe[o,l) 

(2.11 ) 

If u(x, up) ;:::: 1 at x = X3 and X3 is any maximal point, then ux(x = X3, up) = 0 or 

C = ]{(U(X3,Up),X3);:::: ]((I,x3) by (2.7). But this violates (2.11). Thus, under the 

assumptions of this proposition, we have the existance of I-periodic steady state 

solutions with 0 < u(x) < 1. 

\Ve nO\v turn to a proof of the uniqueness of these st.eady state solutions. 

Proposition 2.2 (Uniqueness) Let D(u,3.:)J{(11,:r) be positive, smooth func

tions in II and x,' i-periodic in 3.:,' Du > 0, l\u > 0 for all :r. Also, D(ll~ x) has the 

form 

D(u,x) = Do(u)a(;z;). (2.12) 

Then, the solution to 

D(u,x)ux - ]((u,x) = -c (2.13) 

is unique and increases monotonically with c. 

Proof: Suppose that u and v are two positive, periodic, steady states with fluxes 

C1 ~ C2. So 

- C1 = D(u,x)ux - [{(u.x), (2.14) 
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- C2 = D(v. x)vx - K(v. x). (2.15 ) 

Making the change of variable: U = F(u) = f Do(u)du and V = F(v) = f Do(v)dv, 

we have the following equations for U and l' 

(2.16) 

(2.17) 

where I((F-l(U),X) is increasing in U for any fixed x. Now consider the function 

11" = U - 11 and suppose that W has a negative minimum at Xt, or U(xd < V(xd 

while UA.T.t) = Vx(xd. Letting x = Xl in (2.16)-(2.17) and subtracting the two 

equations yields 

(2.18) 

which contradicts Ct ~ C2. Thus, U ~ V or 11 ~ v for all x. Additionally, this 

shows that u( x) increases monotonically with c. The proof is complete. 

Remark 2.1 A similar argument yields uniqueness of the steady state solutions if 

(2.12) is replaced by the condition that ~f~:;l is non-decreasing in u for all x. In 

fact. u'e can divide (2.14) and (2.15) by D(u,x) lind apply a comparison a7'!/umcnt 

as above. This condition is physically L'alid for infiltration into dry soils. This can 

b£ seen if we lake ~f~:;l = (~~ )-1, a function which increases monotonically fol' 

most values of u before decreasing for valucs Vf7'y close to saturation (u = 1) (see 

[5) p.30). 
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In this chapter, we will begin to investigate the existence and uniqueness of 

traveling wave solutions to (1.1). For our analysis, we would like to know that 

the steady states at the boundaries, u/(Y) and ur{y) discussed in chapter 2, bound 

the traveling wave solution. Physically, this shows that infiltration does not cause 

the soil to get wetter than its non-transient wet state or get dryer than its non

transient dry state in the long time limit. Also, we would like to have a formula 

to calculate the speed of the traveling wave. Furthermore, we would like to show 

that the traveling wave solution goes to the steady states exponentially near the 

boundaries. This result is useful in showing the existence and uniqueness of the 

t.raveling wave solution. These results will be presented in two lemmas. Lemma 3.1 

will give a formula for the speed of the traveling waye. Lemma 3.2 uses an entropy 

condition derived in this section to show that the differences between the traveling 

\\'aye solutions and the steady states decay exponentially at the boundaries. 

\Ve will start with the Richards' equation (1.1) and will be looking for travel

ing waye solutions of the form u(t,x) = 1l'(J~ - el,:r) where c is the wave speed. 

Thinking of these traveling wave solutions as connections between the two steady 

states at the boundaries discussed in chapter 2, we will assume that c/ > Cr , where 

CI and cr are the prescribed fluxes from the boundary conditions in (1.12) for x = 0 

and x = 00 respectively, By Proposition 2.2, this implies that UI( x) > ur{ x) or 

physically, that the infiltrating water generally moves from a region of higher water 

content at x = 0 to a region of lower water content at x = 00. 

Changing into some moving frame variables by taking s = x - ct and y = x, 
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we have the solutjon (u', e) to the traveling wave equation: 

- eu~ = (Oy + os)(D(u',y)(u~ + u~) - f{(u',y)), (3.1 ) 

where u'(-oo,y) = Ul(Y), u'(oo,y) = ur(y), and u' is I-periodic in y. For the re

mainder of this chapter, as well as chapters 4 through 6, we will drop the "prime" 

on u' and let u represent the traveling wave solution. The "prime" notation for 

traveling wave solutions will reappear in chapter 7. 

In order to prove these lemmas, we need to assume (A 1) - (A5). Using our 

assumptions on the hydraulic functions, we can manipulate equation (3.1) as fol-

lows: 

- eus = (os + oy)[D(u,y)(os + Oy)u - K(u,y)], (3.2) 

- eus = (os + Oy)[J(u(u)a(y)(os + Oy)u - K(u)b(y)], (3.3) 

- ells = (os + oy)[a(y)(os + oy)Ar(u) - b(y)J((Il)]. (304) 

Since K(u) is a monotone, one-to-one function of Il, let us use the change of variable 

U = K(u). Then 

Let 

Us = f{/(f{-l(U))u s, 

Us 
Us = K'(l{-l(U))" 

1 
M(U) = J('(J(-l(U))" 

Employing the change of variable, (3.1) becomes 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(Os + oy)[a(y)(os + Oy)U - b(y)U] + eAf(U)Us = 0, (3.10) 
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\vith 

(3.11) 

and U has period one in y. In proving these lemmas, we would like to invoke a 

maximum principle. While the solutions of equation (3.10) do not have a maximum 

principle, we may use a change of variable 

U(8, y) = e(y )11-'( 8, y), 

where we would like e(y) to be strictly positive, to obtain the equation 

o = e(y)(8s + 8y)(a(y)(8s + 8y )H') + 2a(y)e'(y)(8s + 8y)lV 

- e(y)b(y)(8s + 8y)lV + ce(y)J\!(U)Ws 

+ ((a(y)ey(y))y - (b(y)e(y))y)lV. 

Removing the lowest order term gives the following equation for t.(y): 

(a(y)ey(y))y - (b(y)e(y))y = O. 

(3.12) 

(3.1:3) 

(3.1·1 ) 

The existence of a positive e(y) is easily seen by directly integrating equation 

(3.1-1). Hence, we may divide equation (3.13) by e(y) to get 

o - (8s +8y)(a(y)(8s +8y )JV) 

+ (2~i:l a(y) - b(y))(8s + 8y)}Il' + cM(U)Ws, (3.15) 

with 

W ( - 00, y) = W/, lV ( 00, y) = 1Vr, (3.16) 

11" I-periodic in y, and }Il'L, WT are now constants. The fact that }Ill, and 1Vr are 

now constants can be seen as e(y) satisfies (3.14) and Hnder the change of variable, 

U = ]{(u), the steady state equation (2.4) becomes 

(a(y)U/,ry(y))y - (b(y)U/,r(Y))y = O. (3.17) 
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Since (3.14) and (3.17) are the same homogeneous ordinary differential equation, 

(3.18) 

where Vl'/,r are constants. Solutions to (3.15) satisfy a maximum principle, by 

which we have IVr ~ IV(s, y) ~ WI. To simplify notation, let 

e'(y) 
bi (y) = 2 e(y) a(y) - b(y). (3.19) 

V\~e are now ready to state our first lemma. 

Lemma 3.1 Assume that (u(s, y), c) is a classical solution of the traveling wave 

equation (3.1) with assumptions (AJ) -(AS) and that tis decays to zero as s ~ ±oo 
llllzformly in y. Then we have u/(y) > u(s,y) > ur(y) for all (s,y) E R x T and 

the wa t'E speed is 

c = cell = ( () ()) . 
u/ Y - Ur Y 

(3.20) 

whae (-) denotes the integral average ovel' one period in y. 

Proof: Using equation (3.15), it follows directly from the maximum principle 

that lV/ > IV(s, y) > IVr • Changing back to our original variables we see L:(~v/ > 

l:(/~)) > ~(~1( Therefore, U/(y) > U(s, y) > lJr(y) since e(y) > 0 and hence 

lL/(Y) > u(s,y) > ur(y) for all (s,y) in the original version of the traveling wave 

equation since f{ (u) is monotone increasing. 

"'orking now in the original variables and averaging the traveling wave equation 

(3.1) over one period in y, we obtain 

- c(u)s = (D(u,y)(us + uy»)s - (1{(u,y))s' (3.21 ) 

Int.egrate once in s to get 

- c(u) = (D(u,y)(u s + uy») - (I((tI,y») + ko, (3.22) 
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where ko is the C0nstant of integration. Rewriting, we get 

- c(u) = (D(u,y)u s ) - (D(u,y)u y) - (I«u,y)) + ko. (3.23) 

Now, we will let s go to positive and then negative infinity. In the limit, (D(u, y)us ) 

goes to zero as s goes to infinity due to the assumption that 'U s vanishes as s goes 

to infinity. (D(u, y)uy) goes to (D(u/,r, Y)U/,ry) by the following argument: 

D(u,y)u y = (E(u,y))y - Ey(u,y), (3.24 ) 

where E = J D(u, y)du. Averaging over y we get. 

(D(u,y)u y) = -(Ey(u,y)). (3.25 ) 

Thus 

lim (D(u,y)u y) lim -(Ey(u,y)) 
s-±oo s-±~ 

- -(Ey(u/,nY)) = (D(u/,r,y)u/,ry). (3.26) 

Taking the limits as s goes to positive and negative infinities of (3.26), we end up 

with 

- c(ur) = (D(uny)uru ) - (J{(Ur, .'I)) + It·o, (3.27) 

- c(u/) = (D(u/,y)u/y) - (K(u/,y») + ko. (3.28) 

The right hand sides of (3.27) and (3.28) resemble the steady state equation (2.5). 

Thus we have 

Subtracting the second equation from t.he first, we get. 

(3.29) 

(3.30) 

(3.31 ) 
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Solving for the speed c gives 

(3.32) 

The proof is complete. 

VVe \\'ould no\\' like to prove a second lemma which would show that the traveling 

wave solution goes exponentially to the steady states near positive and negative 

s-infinities. A piece of information that we will use in proving the second lemma 

and in proofs throughout the rest of the thesis is an entropy condition. Entropy 

conditions are analogous to viscous shock conditions and give a criterion for the 

existence of a traveling wave solution (see Lax [23]). Of particular importance 

is the question of how inhomogeneity in a medium affects the entropy condition. 

Below is the derivation of the entropy condition and a theorem which shows the 

df:'gree of inhomogeneity of a soil with our assumptions (AI )-( A5) will not affect 

the validity of the entropy condition. Starting with the equation (3.10), we will 

linearize this equation around the steady state solution, UI = K(ut} at s = -00, 

by letting 

(3.33) 

where v = UI - U. Substituting and neglecting second order terms, gives 

Since UI solves the steady state equation (3.17) and [TIs = 0, we have 

(3.35 ) 

Now look for solutions of the form v(s,y) = eAScpl(Y)' Substituting, we have 
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Use (3.36) to define an operator 

LllPl = >.2alPl + >'(2alP~ + a'lPl - blPI) 

+ alP,' + a'<f',- br.p~ - b'lPl + c>.!vJ(Ud<f'l· (3.37) 

By linearizing (3.10) around the other steady state solution, Ur = K(u r ) at s = 00, 

letting v = U - Ur, and assuming v(s, y) = e->'slPr(Y), we can define an analogous 

operator 

LrlPr >.2a lPr - >'(2alP~ + a'-Pr - br.pr) 

+ a'P~ + a''P~ - blP~ - b'lPr - c>.Al( Ur )lPr' (3.38) 

by the same process. These operators have principal eigenvalues, PI(>.) and Pr (>.) 

respectively, which are smooth functions of).. We wiII examine the eigenvalue 

problem with the operator in (3.37). Results for the eigenvalue problem in (3.38) 

wiII be analogous. 

Let PI(>') = Po + >'PI + O().2) and lPI(Y) = 'r'o(Y) + >'lPI(Y) + O().2) for small >. 

and set up the eigenvalue problem: 

PI(>.)'PI(Y) - ).2alPl + ,\(2a<f'~ + a''r'/ - br.p/) 

+ alP,' + a'cp,- b'Pi- b''r'1 + c).!vJ(Ut)lP/. (3.39) 

Substituting the expansions for PI().) and lPI(Y) into (3.39) and separating by pow

ers of >., we obtain the zeroth order equation 

(3.40) 

Averaging over one period in y yields po = 0 due to the I-periodicity of a(y), b(y), 

and lPo(Y) in y. The first order equation is 

(3.41) 
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A yeraging yields 

(3.42) 

V\ie may scale the solution of (3.40) so that ('Po) = 1. Then we have 

(3.43) 

From the zeroth order equation, we can solve 'Po(y) by integrating (3.40) to get 

or: dividing by a(y): 

Using an integrating factor 

for !I E [0: 1], we have 

a(y )cp~ - b(y)'1'o = fit, 

, b( y) 111 
CPo - a(y) <Po = a(y)' 

P(y) = [Y b(y) dy 
Jo a(y) 

e-P(y) 
(e-P(y)<p )' = i'h--. 

o a(y) 

Integrate both sides and solve for 'Po(Y) to get 

where 
e P(1) 11 e-P(s) 

10= --ds 
1 - eP(l) 0 a(s) 

(3.44) 

(3.4.5 ) 

(3.46) 

(3.47) 

(3,48) 

(3.49) 

is a constant chosen so that 'Po(y) is I-periodic. To simplify notation, define a T(y) 

so that 

where 

<Po(Y) = fhT(y), 

fY cP(s) 

T(y)=eP(Y)[Jo a(s) ds+To]. 

(3 .. 50) 

(3.51) 
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Remark 3.1 Since equation (3.40) is thE same as (quations (3.14) and (3.17), 

we can use thE , .. arne process to get the solutions t{y) = -kT(y) from (3.14) and 

K(v.d = UI = -cIT(y} and K(u r ) = [IT = -crT(y) from (3.17). 

Using the solution in (3.50) and equation (3.43L we can rewrite PI as 

PI = c(M(UJ)'Po) + m. (3.52) 

By continuity of PIP), and since PI(O) = Po = 0 and PI(A) -+ 00 as A -+ 00, to 

insure that there is a positive Al such that PI(At} = 0, we require PI(A) < 0 for 

some small A > 0 and hence, we require PI < O. Thus, 

(3.53) 

0]' 

- m > c(ilf(UJ)ihT(y»). (3.54) 

vVe have eP(y) > 0 and 

lo
y e-P(s) 
--ds + To 

o a(s} 

lo
y e-P(s) eP(I) loy eP(s) eP(I) 11 e-P(s) 

- --ds + --ds + --ds 
o a(s) 1 - eP(!) 0 a(s) 1- eP(l) y a(s) 

1 iY e-P(s) eP(l) 1,1 e-P(s) 
--ds + --ds < 0, (3 .. 55) 

1 - eP(I) 0 a(s) 1 - eP(1) y a(s) 

which gives T(y) < O. Having imposed (yo) = (ihT) = 1, we see that m < O. 

Therefore, dividing (3.54) by m gives 

- 1 < c(A1(UJ)T(y»), (3.56) 

0]' 

- (M(UI )T(y))-! > c. (3.57) 

Switching back to the original variables, this is the same as 

(3 .. 58) 
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Note that for the homogeneous case this is simply 

} "() C/ - Cr ]( (uL) - J« U r ) 
\ U / > = ----'---'------'----'-

U/ - Ur U/ - U r 
(3.59) 

which is analogous to the entropy condition used by Noren [30] (Lemma 3, p. 11). 

Si milarly for s = +00 or Un we have 

- (Al(Ur )T(y))-l < c. (3.60) 

Combining the inequalities (3.57) and (3.60), we have the entropy condition 

- (T(y)Al(Ur ))-l < c < -(T(y)j\J(Udt1, (3.61 ) 

0)' 

(3.62) 

Having derived this entropy condition, we will now see that it is valid for all soils 

\\'hose hydraulic functions satisfy (Al)-(A.j) regardless of their degree of hetero

geneity. 

Theorem 3.1 Under assumptions (Al)-(A.5), the entropy condition holds. 

Proof: Since Huu > 0, we have 

Therefore, using ]((u/,r) = U/,r(Y) = -c/,rT(y) from Remark 3.1, we see 

and 

_( T(y) )-1 
K'( U/) 

(3.63) 

(3.64) 

(3.65) 
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The proof is complete. 

Corollary 3.1 For any c+ E [cr, cd and its 'related steady state u+ (y) bounded 

below by ur(y) and above by uI(y) by Proposition 2.2, the entropy condition (3.62) 

and Theorem 3.1 still hold when cr is replaced by c+. 

This corollary follows from the fact that u+(y) = -c+T(y). Simply make this 

Sll bstitution in the above arguments to verify Corollary 3.1. 

\Ve are now ready to state our second lemma. 

Lemma 3.2 L[t (u, c) satisfy the conditions in Lemma 3.1. Then there exist con

stants s) < 0, S2 > 0, Al > 0, A2 < 0, and positive functions 'Pi(Y) E C2(T) such 

thal 

UI(y) - U(8, y) ::; G\c: A1S'Pl (y), s::; S1, 

u(s,y) - ur(y)::; G2eA2S'P2(Y)' 8 ~ 82, 

wh[l'f G1 , G2 > 0 (Irt constants. 

Proof: From the equation (3.10), we can write the two equations 

(3.66) 

(3.67) 

(os + Oy)(a(y)(os + Oy)U - b(y)U) + cJ1(U)Us = 0, (3.68) 

and 

where Uls = 0 since UI = UI(Y). Letting V = UI - U, we then have 

(os + oy)(a(y)(os + Oy)V - b(y)V) - cJW(U)Vs = O. (3.70) 

There exists a S1 such that if 8 =5 81 then UI - U =5 c: and !v! (U) - M (Ud =5 N € 

for some Lipschitz constant N. Let us construct an upper solution for (3.70) on 
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(-00,81] X T. Define the operator 

L7(1I) (as + ay)(a(y)(as + ay)~') 

(as + ay)(bV) - c(M(Uil + N€)"~. (3.71 ) 

When exponential solutions to (3.71) of the form 

(3.72) 

are considered with ,.\ > 0, c.p1(Y) > 0, we have 

Lr(\'o) - ,.\2ac.p1 + "\(2a'P~ + a'c.pl - b'Pl) 

+ ac.p~' + a' c.p~ - b'P~ - b' 'PI + c,.\( M (Ud + i'/€ )'PI = O. (3.73) 

For the .5 -+ oc case, letting V = U - Ur would give the analogous operator 

L;(l1) _ (as + ay)(a{y)(as + ay)F) 

(as + ay)(bV) - c(ll1(Ur l + N€)V~, (3.74 ) 

where considering "0(8, y) = e-"\sc.pr(Y) would give 

L;(\/o) - ,.\2a'Pr - "\(2a'P~ + a'c.pr - b.pr) 

+ ay~ + a''P~ - b'P~ - b'Yr - d(M(Ur) + N€)'Pr = O. (3.75) 

Notice that (3.73) and (3.75) vary from (3.37) and (3.:38) only by the term N €. 

Recall that the entropy condition from (3.62) was the condition that guaranteed 

that PI("\) < 0 for some positive ,.\ close to zero. where PI("\) is the principle 

eigenfunction for the operator LI in (3.37). We can define a principle eigenfunction, 

pf, for Lf. If f is small enough, we have PT < 0 as can be seen by comparing 

(3.76) 

to (:3.52). By continuity of P[ in "\, there exists a ,.\~ > 0 such that pf("\i) < O. 

Denoting the corresponding eigenfunction by 'P~' we showed that L[(V) = 0 admits 
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positive exponential solution Vi(s,y) = eA;S<p~(y). Obviously, Vis > O. Plugging 

Vi into the L.H.S. of (3.73), we have 

(8s + 8y)(a(y)(8s + 8y)Vi) - (8s + 8y)(bl~) - eM(U)ltJs 

= PTPi)ltJ + e(l\I(Ud + NE)V1s - eM(U)Vis. (3.77) 

The Lipschitz condition on M(U) implies 

(3.78) 

for to small enough since Ai > O,PT(A~) < 0, Vi > 0 and the term 2eNEA; is order 

€2. )Jow. we combine (3.73) and (3.77) to get: 

(8s + 8y)(a(y)(8s + 8y)(ltJ - V) 

-b(y)(Vi - vT
)) - el\I(U)(l'l - V)s 

= PT(At}ltJ + e(l\I(Ud + NE)Vis - clv/(U)ltJs. (3.79) 

This form of the equation has no maximum principle so we will make the change 

of variable V(s,y) = e(y)H!(s,y), ltJ(s,y) = e(y)lV1(s,y) where E(y) is given by 

(3.14). Then H"1 - H'satisfies 

(8s + 8y)(a(y)(8s + 8y)(H!1 - lV)) 

+bt{y)(8s + 8y)(Wl - Hf) + el\1(U)(lVl - W)s 

= PT(Ai)H!I + e(l\1(Ud + NE){lV1l> - el\I(U)H!Is 

:::; PT( Ai) lVI + 'leN E WIs 

= W1(PT(Ai) + 2eN EA~) :::; 0 (3.80) 

for E small enough (i.e. s :5 Sl). With this sign, the maximum principle implies 

that there exist.s a constant, C, depending on f(Y) and <PI (y) such that 

CH!l(S,y) -lV(s,y);:::: 0, (3.81) 
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0)' 

(3.82) 

for 8 :::; 81. Similarly, 

(3.83) 

Therefore, 

(3.84) 

So 

Changing back to our original variables, we see 

(3.86) 

for 8 :::; 81 and, after applying the Mean Value Theorem 

(3.87) 

where C l and C2 are constants depending on 'PI (y), e(y), K( u), and C. A similar 

argument will yield 

(3.88) 

for >'2 now less than zero and 8 ~ 82. Therefore, we have exponential decay of 

the solution to the steady-states at positive and negative infinity. The proof is 

complete. 
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4 Uniqueness of Traveling Waves 

Having shown Lemmas 3.1 and 3.2, we will now adapt an argument presented 

by Xin in [60] to show the uniqueness of the traveling wave solution to (3.1). These 

solutions are unique up to a constant translation, So, in the s-variable. The choice 

of So will prove to be crucial to our proof of stability in chapter 7. 

Theorem 4.1 (Uniqueness) Suppose that (u,c) and (u',c') all satisfy the con

ditions in Lemma 3.J and assume that thE hydraulic functions satisfy (AJ) - (AS). 

ThEn ll'(s, y) = u(s - so, y) for some So in Rand c = c'. 

Proof: That c = c' follows from Lemma 3.1. 

Recall that we have made the transformation from u(s, y) to U(s, y) = K(u(s, y)). 

Suppose U and U' are two solutions of equation (3.10) with (3.11). Let 

lV(s,y,..\) = U(s - ..\,y) - [l'(s,y) (4.1 ) 

for ..\ E Rl. \Ve know from Lemma 3.2 that VV goes to zero as s goes to infinity. 

\\;e have the two equations 

(os + oy)[a(y)(os + Oy)U - b(y)U] + cM(V)Vs = 0, (4.2) 

(os + oy)[a(y)(os + Oy)U' - b(y)U'] + dvJ(V')V~ = O. (4.3) 

Subtract (4.3) from (4.2) to obtain 

o - (os + oy)[a(y)(os + Oy)(V - V') - b(y)(V - V')] 

+ c[NJ(U)Us - A1(U')U~1· 

A1(U)Us - A1( U')U~ M(U)Us - A1(U)U~ + M(U)U~ - M(U')U~ 

- A1(U)[Us - U~l + [l\1(U) - M(U')]U~ 

- ."1(UHUs - U~] + Af'(Q)(U - [I')U; 

( 4.4) 

- M(U)[Us - U;] + (3([" - U')V~. (4.5) 
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where Q is an intermediate value and 

(3 = fa1 iVJ'(TU(S + A,y) + (1- T)U'(s,y))dT. ( 4.6) 

Then we have 

iV/(U)Us - A1(U')U; = M(U)W.~ + (31'VU;. (4.7) 

So we end up with the equation 

(8s + 8y )[a(y)(8s + 8y )vV - b(y)Hl] + ciV/(U)lVs + (3111U; = o. (4.8) 

Solutions to the above equation do not have a maximum principle. Therefore~ we 

need to use the change of variables 

\I(s, y, A) = W(s('~' A) , 
e y 

( 4.9) 

where t(y) > 0, to obtain an equation with a maximum principle. Then we have 

(os + oy)[a(y)(8s + 8y )(e\l) - b(Y)fV] + c(JlJ(U)(e\l)s + ,'3e\lU;) 

= e(8s + 8y )[a(8s + 8y)1'] + 2('([(8s + ay)V - eb(8s + 8y )\/ 

+[(t'a)' - (eb)']V + ec(.M(U)\/~ + ;3\1U;). (4.10) 

\Ve will determine t{y) > 0 as in (3.14). Then we can divide by e(y) to get 

Ultimately, we will show that \I(s, y, A) = 0 for some choice of A. To this end, we 

will begin with the following argument: 

For any I'll > 0,1'12 > 0 there exists Ao = Ao(NI, 1'12 ) such that if A ~ Ao, then 

\I(s, y, A) > 0 for (s, y) E [-Nb 1'12] X T. Now we choose the sizes of I'll and N2 

to prove that V> 0 if A ~ AO for all (s,y). 

Let us assume that V is of the form 

"(8, y, A) = e.fscj>(y)w(.s, y, ,\) (4.12) 



where € > a and dJ(y) > a are to be chosen. Then, 10 :-;atisfies the equation: 

? 
a - (8s + 8y)[a(8s + 8y)w] + ':;'[(9 + ¢'](8s + fJy)w 

(j) 

?e' + (=-a - b)(8s + Oy)w + cA1(U)w.~ + !{2W, 
e 

where f{2 is defined by 

1 ?e' 
f{2 - ¢;[(a¢')' + 2w¢' + (':;-a - b)¢' 

3i 

(4.13) 

')e' + [€( =-a - b) + €2a + w' + €cA1(U) + ct1U;]¢]. (4.14) 
e 

Choose e€s¢ to be the principle eigenfunction of LI in (3.37) with ( replacing ,\ 

there and with eigenvalue PI( f). After performing the change of variable in (4.9), 

LI has the form 

Then. 

LI(eY¢) - (os + Oy)[a(ff(s¢ + (fs~-/)] 
?e' + [=-a - b]( fe

fs
" + (;t.~ q» + cfe€s ¢j1J (['I) 

e 
'h' 

- e€S[(a¢')' + 2wC/ + (=-a - b)¢' 
e 

?e' + [€(=-a - b) + €2a + w' + €cM(Ur)]¢]. (4.16) 
e 

Using the eigenfunction, f{2 becomes 

( 4.17) 

So we obtain the equation 

? 
a - (8s + 8y)[a(8s + Oy)w] + ~[€¢ + ¢'](os + 8y)w 

?e' + (=-a - b)(8s + 8y)w + cAJ(U)ws 
e 

+ (PI(f) + fC[A1(U) - J\1(UI )] + c(3U;)w. (4.18) 
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Expand PI ( () as 

(4.1 g) 

where p/(O) < 0 for ( small enough. ,\t'e will choose ( small enough that 

(4.20) 

and Nt large enough that IV;I ~ (2 and U/(y) - U(s, y) ~ (2 for (s, y) E [-00, Nt] x 

T. This is possible due to Lemma 3.2. Similarly, we can choose V(s, Y~ A) = 
e-fS¢t(Y)Wt(s,y,A) with e-(s¢t(Y) being the positiv(~ principle eigenfunction for 

the operator Lr in (3.38) and having Pr( -f) as the corresponding eigenvalue. Now. 

select 1'/2 so that U'(s,y) -lqy) ~ (2 and IUs I ~ (2 for (s,y) E [N2 ,oo] x 1'. 

Suppose infRxT V(s, y, A) < O. Then inf(_oo.l\·!lxT V(s, y, A) < 0 or/and 

inf(N2.oc.)xT V(s, y, A) < O. Assume the first case. This implies that 

inf(_ov,N!lxT w(s,y, A) < O. By Lemma 3.2, w(s,g, A) ~ 0 as s ~ -00. Let 

W($l,Yt.A) be the minimum of w(s,y~A). So UI(Y) - U(St - A,Ya) ~ (2 since 

s] - A ~ 81 < N] and IU:I ~ f2. Evaluate 

.) 

o (8s + 8y)[a(8s + 8y)w] + ;[(9 + ¢'](8s + 8y)w 

?e' + (=-a - b)(8s + a,/)w + cM(U)W.9 e . 

+ (PI(f) + fc[Al(U) - .M(Ud] + (!j3U~)w (4.21) 

at (8], yJ) to obtain 

L.H.S. > w(s]'yd(PI(() + fc[Al(U) - .U(UI)] + cj3U~) 
> W(S]'Yl)(~P~(0)(+O(f2))>0. (4.22) 

Thus, we have a contradiction to (4.21). 
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Now assume the second case. This implies inf(N2.'X))XT w(s, y, A) < O. Let 

w( Sl, Y1, A) be the minimum. In this case, w solves 

.) 

o = (os + oy)[a(os + Oy)w] + ~[€¢ + ¢'](os + Oy)w 

')e' + (=--a - b)(os + Oy)w + c.M(U)ws 
e 

+ (Pr( -f) - fc[l\1( U) - .M( Ur)] + cfjU;)w. ( 4.23) 

Evaluating at (S1, yd, we get 

(4.24 ) 

(4.25) 

a contradiction to (4.23). Therefore, we have shown that V(s, y, A) ~ 0 for A ~ '\0' 

\Ve will now show V(s, y, A) = 0 for some A. Let So = in! PIV(s, y, A) = OJ. 
\~;e know that V(s,y,so) ~ 0 for all (s,y) and for some So E [-00, Ao). If 

V(s,y,so) = 0 at any finite point, then V(S,y,A) is identically zero by the maxi

mum principle. Otherwise, V(s,y,so) > 0 for all (."1,y). By the minimality of So, 

there is a sequence ,\j ~ so,j ~ 00, such t,hat illfRxT V(S,y,Aj) = V(Sj,Yj,Aj) < 

O. 

Suppose that. the s/s are unbounded, so Sj ~ +Xl or Sj ~ -00, up to a subse

quence still denoted by Sj. Thus, if j is large enough, Sj is in [-NIl N2t Assume 

first that Sj < -N1 so V(Sj, Yj, Aj) < O. Letting V = tfs</>(y)w as before, we see 

that w(Sj,Yj,Aj) < O. The infimum of w(Sj,Yj,Aj) is obtained at a finite point 

(Sj, Vj). If the .'i/s are unbounded as j ~ 00, then Sj ~ -00 up to a subsequence. 

Evaluating equation (4.21) shows a contradictioll just as before. 
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So the si's are bounded and Sj --+ 81, tiJ --+ Y1 with (81, yd in [-00. N1] x T 

and therefore 

(4.26) 

which implies that V(S}, llI, so) $ 0, a contradiction. 

Next assume that Sj is in (N2' +(0) so that inf(N!.oo) V(S,y,Aj) < O. Letting 

V = e-€s¢>(y)w, we see that inf(N2,oo) W(S,y,Aj) < O. The infimum of W(S,y,Aj) is 

achieved at a finite point (sj, Yj) since w(s, y, Aj) --+ 0 as 8 --+ 00. If the si's are 

unbounded, then 5j --+ +00 up to a subsequence, and evaluating equation (4.23) at 

(sh liJ) shows that the left hand side is strictly larger than zero, a contradiction. If 

the si's are bounded, then (Sj,Yj) --+ (Sl,yt) in [N2 ,+:xJ] x T up to a subsequence 

and 

( 4.27) 

which implies that V(Sl,Y1,SO) $ 0, a contradiction. 

Therefore, \/(Sl,Y1,SO) > 0 is not possible and l'(s,y,so) = 0 for all (s.y), 

implying U(s - so,y) = [T'(s,y). Uniqueness of the traveling wave is proven. 

Corollary 4.1 (Monotonicity) SllPPOS( that (U(s. y), e) satisfy the conditions 

in Lemma 3.1. then Us(s,y) < 0, for all (s,y) E R1 X T. 

Proof: Taking ([f',e') = (U,e) in the uniqueness theorem and following the same 

proof, we see that U(s - A,y) > U(s,y) if A> So and If(s - so,y) = U(s,y). Since 

[! approaches different limits at 05 infinities, So = O. This implies that Us $ O. 

Differentiating the traveling wave equation (3.15) to s and applying the strong 

maximum principle, we have that Us(s, y) < 0, for all (s, y) E R1 X T. 



41 

5 The Continuation of Regularized Solutions 

Due to the traveling wave equation's (3.10) degeneracy in sand y, we will 

continue our adaptation of the argument in [60] to establish the existence for the 

following elliptically regularized equation: 

with 

(5.2) 

U I-periodic in y, where v E (0,1]. \Ve will prove the existence of a solution to 

(:3.10) by passing to the limit v -+ 0 in chapter 6. After converting the equation 

to a form for which the maximum principle applies, we will begin by constructing 

the solution of the equation by the continuation method. In other words, we know 

from ~oren [30] that a solution exists to the homogeneous case. Vve can take that 

solution and perturb it to show the existence of solutions for heterogeneous cases. 

Since the above equation does not have a maximum principle, we must intro

duce the change of variables 

11,( ) _ U(s,y) 
" s, y - (). e y 

Substituting, \ve obtain 

o - evH'ss + e(os + oy)(a(os + oy)IV) - eb(os + oy)IV 

+ cM(e(W))elVs - elVby - blVey 

+ aey(os + oy)lV + Waycy + alVeyy . 

(5.3) 

(5.4) 

Looking at the lowest order terms of the above equation, we will choose e(y) > 0 

as in (3.14). After dividing by e(y) we get. 

()e 

l'H'ss + (os + oy)(a(os + oy)lV) + (::...!La - b)(os + oy)IV + cAl(elV)lVs = O. (5.5) 
e 
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To simplify notation, let 

2ey(y) 
b.(y)= e(y) a(y)-b(y). (5.6) 

At this point, our strategy for showing the existence of the traveling wave solution 

is to start by recognizing that (5.5) has a solution for the homogeneous case (i.e. 

where a(y) and b(y) are constant). This was shown by Noren [30]. Then, we will 

pert urb the coefficients in (5.5) by a small amount by taking a(y) and b(y) to be 

small, periodic perturbations of constant functions, then show the existence of this 

perturbed solution. We will continue this perturbation process until we ha.ve the 

existence of the solution for the equation we are considering. 

Let us consider the family of equations parametrized by 7: 

where 

(5.8) 

H;/ > ll~. > 0 are constants, H1 T(s,y) I-periodic in y, whereaT = (a)(1-7)+7a(y) 

and bT = (b.)(l - 7) + 7b.(y). First we show that if this equation admits solutions 

for 7 = 70,70 E [0,1), then it has solutions for T = 70 + b if b is sufficiently 

small. For simplicity, let us denote a TO, bTO , eTO , and ~VTO as a, b, e, and IV and 

aTo+8,bTO+b,eTO+b, and MlTO+b as ab,b8,eb, and H1b. We can write ab = a + bal, 

bb = b + bbl , eb = e + bel, and W b = IV + bV, where al and bl are smooth 

functions of y and el and V are unknowns. Subst.itutiug these expressions into the 

equation and using the fact that (W, c) is a solution when b = 0, we find that V 

satisfies the equation 

LV IIl(,s + (os + fJy)(a(os + fJy)V) + b.(fJs + fJy)V + eiU(el¥)l(, 

- (os + fJy)(al(fJs + fJy)W) + 6(fJs + fJy)(al(fJ'i + Oy)V) + bl(os + Oy)MI 
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82
( e \1)2 

+ 8b l (8s +8y )V+c8VseVM'+c 2 V~1I1" 

8( e V)2 + dVs~ V 1\1' + c 2 1-Vsll!" + Cl (1-V + 81/)1\1 (e lV + e8V). (5.9) 

To solve for (V, c), we need to study the invertibility of the linear operator L. Let 

us consider the operator L on L~(R x T) where p(s) = cosh2es, e ~ 1 and 

L;(R x T) = {h(s,y)1 [ (cosh2es)h2(s,y)dsdy < +oo}, JRxT 
(5.10) 

with t to be chosen. The domain of definition D(L) of L is H;(R x T). It is easy 

to see that L is a closed operator on L~. By the properties of H'(s,y) in chapter 

4, especially the monotonicity corollary, we see that H's E L~ if e is suitably small, 

and that H's is in the kernel of L. 

Our goal is to show that zero is an isolated simple ~igenvalue of L. Then by the 

spectral theorem of Kato [16], L is a Fredholm operator with index zero. This wiII 

imply the local continuation of regularized solutions via the Contraction Mapping 

Theorem. First~ we will prove that the essential spectrum of L is bounded away 

from zero by a positive distance depending on (lV, c). Let 

(.5.11) 

where ((s) is a smooth function of s, such that 0 < ((s) < 1 for all s E (-1,1); 

((s) = 0 for s :::; -1; ((s) = 1 for s ;::: 1; rPr(Y) ;::: 1; rPl(y);::: 1, are in COO(T) to be 

determined; e > 0 is the same as in the weight function cosh2es for L;. Similarly, 

let 9 = Wagl. So the problem 

LV = g, g E L~(R x T). (5.12) 

becomes 

(5.13) 
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Calculation shows 

0)' 

2 L(wo) 
L(w) + -(vwosws + ((8s + 8y)wo)a(8s + 8y)w) + --w = 91. (5.15) 

Wo Wo 

Let us compute L(wo). If s s:; -1, then 

Choosing rPl to be the eigenfunction of the operator in (3.37) as before, we have 

(5.17) 

0)' 

d(s,y) = L(wo) = Pl(f.) + cf.(i\I(U) - i\1(Ul)), 
Wo 

(5.18) 

where Pt(!} = pHO)f. + 0(f.2) < o. Thus 

. L(wo) 
hm -- = Pl(f.) < o. 

s--oo tvo 
(5.19 ) 

No\\" if s ~ 1, 

or, by choosing rPr from (3.38) in a way analogous to d>l in (.5.17), 

d(s,y) = L(wo) = Pr(-f.) + cf.(l\I(Ur l- M(U)), (5.22) 
Wo 

where Pr( -f.) = p~(O)f. + 0(f.2) < o. Thus 

. L(wo) 
hm -- = Pr(-f.) < o. 

s-+oo Wo 
(5.23) 
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The function d( s, y) is smooth in (s, y), approaching Pl( E)(Pr( -E)) as s --+ -oo( +00). 

Now compute 

and 

If oS ~ -1, then 

If .5 ~ 1, then 

(os + Oy)Wo - (e-Es()s<Pr(Y) + ((1 - ()eEs)s<Pl(Y) 

+ (e-Es()<Pry + (l - OfES<ply 

211 
d2(s,y) = -WOs = 2EII. 

Wo 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

211 
d2(s,y) = -Wos = -2(1/. (.5.29) 

Wo 

Thus d1(s,y) and d2 (s,y) are smooth functions of (b,y) E R x T, and equal to 

B,(Br ) and ±2w if s is outside [-1,1]. 

"We can rewrite the operator equation as 

The spectrum of L on L; is the same as that of the operator L1 on L2. Define a 

new operator 

QW _ IIWss + (os + oy)(a{os + Oy)w) + B(b, y)(os + Oy)w 

+ [c(((as)(M(Ur) - 2w) + (1 - ((os))(M(UL) + 2w))]ws 

+ (Pr(-E)((OS) + Pl{E)(1 - ((a.s)))w, (5.31) 
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where 0: is a smail, positive number to be chosen and 

B(s, y) = b.(y) + ((o:s)a(y)Br(Y) + (1 - ((o:s))a(y)B/(y). (5.32) 

Define also 

where 

BI = a(y)dI(s,y) - (((o:s)a(y)Br(y) + (1 - ((as))a(y)B/(y)), (5.34) 

B2 = c(l11(U) - ((as)(M(Ur) - 2w) + (1 - ((as))(.M(UI) + 2w)), (5.35) 

and 

B3 = d(s,y) - (Pr(-t)((as) + p/(t)(l - ((o:s))). (5.36) 

We see that Bi(S,y) --t O,i = 1,2,3, uniformly in y as s --t 00. 

Let us show that Q is invertible on L2(R x T) by the Lax-Milgram Theorem. 

Proposition 5.1 There exists a positive number 00 = O:o(f) E (0,1]' such thai if 

Q" E (0,0:0] the operator Q as defined is invertible on L2(R x T). A1oreover, there 

is a positive constant Al = A1(0:,f) such that 

( 5.37) 

Proof: First we prove that the equation Qw = 9 admits a weak solution in 

HI(R x T) for 9 E L2(R x T). Consider the following bilinear functional from 

HI x HI to R: 

- [ vws(mv)s + ((os + oy)w)a(y)(os + oy)(mv) 
JRxT 

- B(s,y)((os + 8y)w)(mv) 

- [c(M(U) - ((o:~)(M(Ur) - 2w) 

+ (1 - ((o:s))(M(UI) + 2w))]ws7nt' 

- [Pr( -f)((O:S) + p/(f)(l - ((os))]mvw. (5.38 ) 
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Here m = m(sll Y) = m(Q's, y), and m(s}, y) is a smooth function on R x T such 

that 1 ~ m ::; Mil uniformly for all Q' E (0,1], where !v!I is independent of E. \Ve 

will choose such a function m later. 

Obviously, D( tv, v) satisfies: 

(5.39) 

for some positive constant 1112 independent of €. Now we calculate D( v. v) as 

follows: 

D(v, v) - r dsdY(lIv;m + IIl'Vsms 
J RxT 

-:- m((8s + 8y)v)a(fJ" + 8y)v + v((8s + dy)v)a(8s + 8y)m 

- mB(8s+8y)(v2j2) 

- [c(1I1(U) - ((Q's)(Jl(Ur ) - 2w) 

+ (1 - ((Q's))(1Il(Ut) + 2w))]m(t,2/2)s 

- [Pr( -E)((Q'S) + PI(€)(1 - ((os))]mv2). 

Integration by parts gives 

D(v,v) > r dsdY(lIv;m-lI(v2/2)rnss+m(8s+8y)v 
JRxT 

- (v2/2)(8s + 8y)(a(8s + 8y)m) + (u2/2)(8s + 8y)(mB) 

+ (v2/2)ms[c(.M(U) - ((Q's)(M(Ur ) - 2w) 

+ (1 - ((Q's))(M(Ut) + 2w))] 

+ m(v2j2)[c(M(U) - ((Q's)(1IJ(Ur ) - 2w) 

+ (1 - ((Q's))(M(Ut) + 2w))]s + C1W2), 

where C1 is a positive constant independent of € such that 

(5040) 

(5.41 ) 

(5.42) 
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Not.icing that m = m( as: y), so all the terms involving s derivatives of mare O( a). 

Similarly~ s derh"atives of Bare O( a). It follows that 

D(v,v) > [ dsdy(vv;m+m(os+oy)u 
JRxT 

+ (v2/2)[-(am y)y + (mB)y + 0(0')] + C1W
2

). 

\~~e choose m to satisfy the following equation: 

- (amy)y + (mB)y = 0, 

or 

- (amy)y + (m(b+ ((O's)aBr(y) + (1- ((O's))aB/(y)))y = 0 

(5.43) 

(5.44) 

(5.45 ) 

",here s is just a parameter. For any fixed s~ it is known that the above equation has 

a unique positive smooth solution on T up to constant multiplication as discussed 

by Bensoussan. et al [3]. By elliptic regularity, m depends smoothly on the 

coefficients and so m = m(s',y) = m(as,y) is a bounded smooth function in 

(.,:-'. !I) E R x T. If we normalize m so that m 2:: 1, then 111 = m( as, y) is as desired. 

We see that there exists a number 00 = ao( f) such that if a E (0, 00), the O( a) 

term is no larger than ~Cl f in absolute ,'alue. It follows from the bound of D( v, v), 

the choice of m, and such choice of Q that. 

(5.46) 

for some positive constant C2 = C2 (f, v). Hence, the functional D(w, v) is coercive, 

and Lax-Milgram theorem implies the existence of a weak solution to Qv = 9 in 

HI. By elliptic regularity (Theorem 8.8, pp.183-18.5, Gilbarg and Trudinger [7]), 

v E H2, and the estimate on IIQ-1 11 holds. 

Next we have 

Lemma 5.1 The operat07' 5'Q-l is compact 011 L2(R x T). 
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The proof is similar to that of Lemma 2.7 in [.58], and is omitted. 

By the Gohberg-Krein Theorem, Ll and Q differ by a relatively compact op

erator, so they have the same essential spectrum. Proposition 5.1 says that the 

essential spectrum is bounded away from zero by a positive distance depending on 

E, hence (li', c). Thus 0 is an isolated eigenvalue of finite multiplicity of LIon L2 

or L on L~. 

Summarizing, we have 

Corollary 5.1 Zero is an isolated eigEnvalue of finite multiplicity of the operat07' 

L on L~(R x T). 

\iVe show next: 

Proposition 5.2 The kernel of L is one-dimensional. and zero is its algebraically 

simple eigenvalue. 

The proof is similar to that of Proposition 2.1 in [58] except that near s infinities, 

we need to make the change of variable of the form U' = exp(±ElS)¢(Y)v. with 

o < El « 1 and ¢ > 0, for function v in the kernel of the operator L. For details. 

we refer to the proof of Theorem 4.1. 

By Kato's theorem [16] (Theorem 5.28, p.239), L is a Fredholm operator of 

index zero, and L·, the adjoint operator L, has a simple eigenfunction, denoted by 

v·, in Ker(L·). Moreover, the inner product of M's and v· can be normalized to 

one. See also Sattinger [41], pp. 320-321. We have 

Proposition 5.3 The equation Lv = g, where g E L~( R x T) is solvable in L~(R x 

T) if and only if 

f pgv'"dsdy = 0, 
JRxT 

(5.47) 
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where v* is thE simple eigenfunction of L * corresponding to eigenvalue zero, such 

that the L~ inner product of HIs and v· is equal to one. W71en thE integral condition 

holds, the solution space is one-dimensional. 

Applying Proposition 5.3, elliptic regularity estimates and the contraction mapping 

theorem, we get: 

Theorem 5.1 Suppose that equation (3.10) with its boundary conditions and the 

normalization condition IT U(O, y)dy = Uo, Uo E (Ur • Ud has a classical solution 

(l.'\ cT
), where T E [0,1). Then there Exists 00 = ooUl, c) such that if 0 E (0,00), 

the equation admits a unique classical sollltion (U r +O, cT +O) satisfying the same 

boundm'y conditions and the normalization condition. 

\\o"e remark that the solvability condition in the above Proposition is used to de

termine the perturbed speed cT +O. For details of the proof, we refer to Xin [61] 

and [62]. 
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6 Limit of Regularized Solutions 

Having shown the existence of solutions to (.5.7) in chapter 5, we will show that 

this continuation can be done to construct solutions for any degree of heterogeneity. 

~;e will do this by concluding our adaptation of th(' argument given in [60] by 

considering the limit as v ~ 0 of classical solutions (WT, cT) of equation (5.7) 

satisfying the boundary conditions: 

(6.1 ) 

H;T(S,y) I-periodic in y and the normalization condition minYETlVT(O,y) = lVo~ 

as T ~ TO E (0,1]. Due to uniqueness of solutions (Theorem 4.1), the solutions 

(llOT, cT
) above are just the ones generated by t.he continuation method (Thereom 

.5.1) modulo constant translations in s. We have: 

Proposition 6.1 Let Tn be any sequence tending to TO E (0,1]. Then there is a 

subsequencE, still denoted Tn, such that ijlVI-lVo ::; EO, EO a small positive number 

dCjJ(;TIding on the nonlinear junction .~1(U), H'Tn(8,y) converges to HlTO(S.y) in 

eL. and 

C
Tn 

= c
TO 

= cef! = (f(-l(c:(Y)H'~) = ~;'-l(e(Y)Hrr)) > O. (6.2) 

Moreover, (lVTo. cTO ) is a classical solution 10 equation (5.7) and (3.16) with T = To. 

Proof: Applying Lemma 3.1, we see that cTn = CeJJ. Choosing H'I- H'o < fa < 1, 

where EO is as small as required in the proof of Lemma 3.2, and following the 

argument there for constructing upper solutions, we have sequences ).rn ~ ).~ > 0, 

<l>In ~ <I>~(y) in C(Tn), minYETn <l>In(y) = minYET"<I>~(Y) = 1, such that 

H'I- H'Tn(s,y)::; exp[).r"s]<I>r"(y), V(s.y) E (-00,0) x T. (6.3) 

This follows from 
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and the maximum principle. 

Since WI 2:: Vl'Tn(S,y) 2: Wr and eTn is independent of Tn, II WTnIICloc(RxT) :5 

C1 < +00 due to elliptic Schauder estimates. As Tn -+ TO, eTn -+ eTO and Vl!rn -+ 

H;ro in Cloc(R x T) up to a subsequence of Tn. Letting n -+ +00 in (6.3) gives: 

which implies that 

lim WTO(s,y) = IVI • 
8-'-00 

So Ivro satisfies: 

IIVll;~ + (as + Oy)(aTO(y)(as + Oy)Vl!TO) 

+bTO(y)(os + Oy)WTO + eTO Al(e(y)J1,rO)Vll;o = 0 

(6 .. 5) 

(6.6) 

(6.7) 

in the weak sense and, by elliptic regularity, IV To is a classical solution of (5.7). 

Moreover, HfTO(_oo,y) = U'/' minyETn WTo(O,y) = ~vo, IV;o :5 0, and HfTO(s,y) 

has period one in y. 

\Ve have yet to justify HfTO(+oo,y) = H'r. The limit 

(6.8) 

exists due to monotonicity of WTo(s,y) in s. By local regularity estimates and 

the fact that 0 < JRxT - W;Odsdy :5 1111 - ~Vr < +00, it follows that W;o -+ 0 

as s -+ +00 uniformly in y. Differentiating (6.7) to s and applying the elliptic 

Schauder estimates on ll1;o imply that W;~ -+ 0 as s -+ +00. 

Multiplying any smooth test function ~'(y) E COO(T) on both sides of (6.7), 

integrating over y, we get by integration by parts: 
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(6.9) 

where 

1 - -1r 1jJ(y)(Os + oy)(a(y)(os + Oy)l1'TO)dy 

- £ dy1jJ(y)8s(a(y)(os + Oy)WTO) + Oy(a(y)(OS + Oy)WTO) 

- £ dy1jJ(y)a(y)W;~ - £ dyIV;Ooy(1jJ(y)a(y)) 

- £ dyvV;O(1jJya(y)) + Ir dyH'TOay(y)1jJu· (6.10) 

Letting .5 -+ +00 in (6.10) shows that: 

(6.11 ) 

which implies that H'+ is a weak and hence a classical solution of the equation: 

011 T. The maximum principle implies that H'+ =constant. Thus, 

Applying Lemma 3.1, we have then 

TO _ iii - c+ _ CI - c+ 
C - UI- Ur - (J(-l(e(y)lVt) - ]{-l(e(y)H'+))' 

The limit Co of c~ satisfies the speed formula, so we have: 

~-~ _ ~-4 

(J(-l(e(y)H'I) -l(-l(e(y)Wr )) - (](-l(e(y)WI) - ](-l(e(y)W+))' 

\\'e see that W+ = lVr is a unique solution by the following argument: 

Define the right hand side of (6.14) to be the non-linear function 

(]{-l(e(y)l1'l) - ](-l(e(y)W+)) 
CI- ('+ 

(6.12) 

(6.1:3) 

(6.14 ) 

(6.15) 

(6.16 ) 
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by Remark 3.1, where T(y) is defined in (3.51) to be independent of c+. V .. /e are 

interested in showing that the only solution to F( c+) = eTa is c+ = Cr and hence 

H:+ = n'r. The first derivative of F(c+) is 

dF 
-= 

-(I{-l(-c/T(y)) - ]{-l(-c+T(y))) + (c/- c+)(dK-l(~~±T(Y))) 

(K-l (-c/T(y)) - ]{-l( -c+T(y) ))2 
(6.17) 

The following algebraic manipulation of (6.17) will show that its numerator is 

equivalent to the entropy condition in (3.62). First notice that 

dK-1( -c+T(y)) = -T( )dK-1(U) / _ 
dc+ Y dU U=-c± T(y) 

= -T(y) K'(I(~l(U)) /U=-c±T(y) = -T(y)M(U)/u=-c±T(y), (6.18) 

where JU( U) is defined in (3.9). Therefore, we can rewrite the numerator as 

\Ve see from Corollary 3.1 and the entropy condition (3.62) that 

This implies (6.19) and hence (6.17) are strictly positive. Therefore, c+ = cr is a 

unique solution. 

Now, differentiating equation (6.7) to s and applying the strong maximum prin

ciple yields ItJ';a < 0, for all sand y. The proof of the proposition is complete. 

In summary we have: 

Theorem 6.1 For any given positive number lJ > 0. there exist a classical solution 

(VV", c") to {5.7} satisfying all the bounda7'y condition$ {3.16}. Moreover, VV: < 0, 

IF/ > HIli> H'TI for all (s,y) E R x T; e" = Cell' 
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Theorem 6.2 (Ervistence) Suppose the Entropy condition (3.62) holds for all 

u(s,y) such that UI(Y) > u(s,y) > ur(y). Then there exists a classical travEling 

wave solution to equation (3.1) of the form u = u(x - ct, x) = u(s, y) where 

s = x - ct,y = x; c is the wave speed; u(-oo,y) = UI(Y),U(+oo,y) = ur(y), and 

u(s,y) is i-periodic in y. 

Proof: We are ready to take the limit v ~ 0 in equation (6.7). Since Ku > 0, we 

have 

o < Cl l :5 c" 1I1(dV") :5 Ct < +00, 

where C t is independent of v. Parabolic Schauder estimates give: 

with positive C2 independent of v. We impose: 

min H"'(O, y) = n'o, 
yET 

(6.21) 

(6.22) 

(6.23) 

",here H'o E (lVr,lVr). Now choose lFo close to HI,. as In Proposition 6.1 and 

pass to the limit v ~ O. All the steps there go through except now we use 

the parabolic Schauder estimates instead of the ellip1 ic estimates. Justifying the 

boundary conditions with the entropy condition again and changing back to the 

original variables, we complete the proof. 
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7 Stability Theorems 

Having shown that traveling wave solutions exist, in this chapter our goal is 

use six preliminary lemmas which are proved in Appendix A to demonstrate that 

a time-dependent solution to (1.1), with front-like init.ial data, approaches a trav

eling wave solution asymptotically as t --t 00. This notion of stability is analogous 

to the better known concept of stability which refers to the dependence of solu

tions of differential equations on their initial data. In our case, we will show that 

if the initial data for (1.1) satisfies the conditions (7.6), (7.7), and (7.8), then the 

solution of (1.1) will tend to a traveling wave. The proofs for the six lemmas are 

long, tedious, and add no particular insight to the problem. It is suggested that 

the reader skip the proofs until after the rest of the thesis has been completed at 

which time they can be read at leisure. 

In the course of this stability analysis, we will need to look at three different 

versions of Richards' equation in diffusive form with some assumptions on the ini

tied data and boundary conditions. We will write down the three forms with their 

related assumptions. 

First, we use the actual Richards' equation from (1.1) 

Ut = [D(u,x)u,7' - K(u,x)]J" (7.1 ) 

Letting ( - x - ct where c is the speed of the traveling wave, equation (7.1) 

becomes 

(at - cac)u = [D(u, (+ ct)U( - I«u, (+ ct)k, (7.2) 

where -ct < ( < 00 and t ~ O. Equation (7.2) is considered with the initial 

condition 

u((,O) = uo((), (7.3) 
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and boundary conditions 

D(u, (+ ct)U( - K(u, (+ ct)k=-d = -c/ (7.4 ) 

and 

D(u,( + ct)u( - K(u.( + ct)k=oc = -Cr' (7.5 ) 

Moreover, 

(7.6) 

(7.7) 

and 

(7.8) 

where U 1' is the steady state as ( ~ +00. Please note that in this chapter All and 

1112 will be used as generic, positive constants depending on a(x), b(:L'), and initial 

and boundary data. 

Next, under the assumption (A3), that D = ]{', we make the change of variable 

U = J{ (u) to get the equation 

Recall from (3.9) 

A1(U)Ut = [a(x)l'x - b(:l')U]x. 

1 
M(U) = [(1(l\'-l(U)) 

(7.9) 

(7.10) 

Lett ing ( = x-ct where c is the speed of the travelling wave, this equation becomes 

JvJ(U)(Ot - coc)U = [a(( + ct)U( - b(( + ct)Uk, (7.11) 

where U((,O) = Uo((), and 

a(( + ct)U( - b(( + ct)Uk=-ct = -c/, (7.12) 
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a(( + ct)U, - b(( + ct)Uk=oo = -cr , (7.13) 

]{(UT ) = Ur (() s:; Uo(() s:; UI(() = ]{(UI), and IUod s:; 1112 • It follows from (7.8) 

that 

(7.14) 

where Ur = ]{(u r ) is the steady state as ( -+ +00. 

Finally, when a form of the equation with a maximum principle is required, we 

make the change of variable U(x, t) = (~(x)lV(.r, I), with e(x) > 0, to obtain 

(7.I.5) 

with 
e'(x) 

b1(x) = 2-) a(x) - b(:c). 
E.{x 

(7.16) 

where the choice of e(x) is determined by (3.14). Letting ( = x - ct where c is the 

speed of the travelling wave, this equation becomes 

.\1(U)(Ot - coc)W = [a(( + ct)H'c], + ill(( + ct)lV" (7.17) 

where 1-V((,O) = IVo((), 

e(( + ct)a(( + ct)lF, - kH"k=_ct = -el, (7.18) 

WI 11' -cr 
'=00 = fl'" = -k' (7.19) 

where k > ° is the constant of integration which com(~s from integrating (3.14): 

a(x)e'(x) - b(:r)e(x) = -,,~. (7.20) 

H-~r :5 It'o(() :5 WI = ~ and IH/oei ::5 1112 , We have from (7.8) 

(7.21 ) 
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where HrT , a constant as seen in (3.18), is the steady state of (7.15) as ( -t +00. 

Since solutions to (7.17) satisfy the parabolic maximum principle, there exists a 

constant MI > 0 such that W((, t) :5 AIl < 00 for all -ct :5 ( :5 00 and 0 :5 t :5 T 

for T > 0 where AI depends on the initial data and the coefficients a( x) and b( x) of 

(7.11). Because of the maximum principle, the largest value of W((, t) must occur 

011 the boundary. On the t = 0 boundary, ~V((, 0) :5 lvJI < 00 by assumption. At 

( = 00, W = HfT :5 AIl < 00 by the boundary condition (7.19). If the maximum 

occurs at the ( = -ct boundary, assume that the maximum value is attained when 

t = t max :5 T. The boundary condition (7.18) with ( = -ctmax says: 

(7.22) 

Since we are at a maximum, l¥d( = -ctma:n t max ) :5 0 implying 

(7.23) 

or 

IV(( = -ctma;r, t 71lux ) :5 ~ < 00. (7.24) 

Since W((, t) :5 AIl < 00 on the boundaries, it is hounded by All everywhere in 

its domain. 

ror the proofs of Lemma 7.3 and Theorem 7.3, we need the first derivatives 

In the space variable of solutions to (7.1) and (7.2) to be finite. Therefore, we 

will cite a theorem by Ladyzenskaja which gives us Iud = luxl < 00. Since we 

can make the bound 0 :5 u(·, t) :5 MI and D( u, .) and J( (u, .) are both finite for 

unsaturated flow, we wiII refer to Theorem 7.2 in Ladyzenskaja [20] (pA86) to 

show that Iud = luxl < 00. To employ this theorem, we need to write the initial 

boundary value problem in the following form: 

Ut - D(u, x)uxx 
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D(u.x)ux 

D(u,x)ux 

u(x,O) 

- [Du(u,x)(ux? + Dx{u,.r)ux - ]{u(u,x)'lIx - ]{x(u,x)] = 0, 

I«u, x) + cdx=o = 0, 

I«u, x) + crlx=oo = 0, 

uo(x). (7.25) 

The theorem goes as follows: 

Theorem 7.1 : (Ladyzenskaja Theorem 7.2) (Let p denote ux.) Suppose the 

functions D( u,.r), [Du( u, x )p2 + Dx( u, x)p - ]{1I( u, a:)p - ]{x( u, x)], 

Du (u,x),Dx(u,x),-I«u,x)+CL,-I«u,x)+cr ,1<u(u.x), and J\x(u,x) satisfy the 

conditions 

IDu (u, x), Dx(u, x), -f{( 1l,:1') + el, 

-f{(u, x) + Cr , /{u(u, :1'), J(x (11 , :r)1 :::; p, 

(7.26) 

(7.27) 

(i.28) 

aTid lui::; A1 for all (x,t) E !1, a bounded, open: connected domain in R x [O,T]. 

Then, any solution u(x, t) to (7.25) has the estimate 

(7.29) 

where the constant !v[2 depends only on )\;/1, II, and Il, constants depending on the 

coefficients of (7.25). 

The lengthy proof will be omitted here. Verifying the conditions (7.26) - (7.28) of 

the theorem, we have 

(7.30) 

since ° < D(u,x) ::; D(A11 ,x) < 00 for ° :::; u :::; M. Next, by our assumptions 

on the hydraulic functions, we can bound all the following by some constant It: 
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Du(u,x),DAu~x),-f{(u,x) + CL,-f{(u,x) + cr.f{u(u.x), and J{x(u,x). Finally, 

we have the bound 

IDu(u, X )p2 + Dx{u, x)p - f{u{u, x)p - f{x( u, x)1 

:s; [lDu( u, x) 1+ IDx{u, x)1 + lI<u( u, x )l]p2 + lI<x( u, x) I 

:s; f.l(p2 + 1). (7.31) 

Thus, the conditions of the theorem are satisfied. Still, Ladyzskaja's proof of this 

theorem considers only bounded domains while we have a semi-infinite domain. 

However, since our sup-norm on IU(.1',t)1 does not depend on the value of x, we 

can extend the bounded domain argument to a semi-infinite domain by covering 

our domain of interest with bounded domains. Now. we can apply the theorem 

and bound luxl = lu<1 < i\th. 

Finally, recall that we showed the existence of a t raveling wave solution to (1.1) 

in the form u'(:r - ct - So, x), So E RI where So is the same parameter that appeared 

in the uniqueness proof in chapter 4. By varying So, we can make u'{x - ct - So, x) 

take on any value between udx) and ll r (x) for any particular choice of x and t. 

Going to the traveling frame \'ariables, we can use this to find the minimum and 

maximum values of the following functional which is continuous in So: 

H(so, t) - l:t[u'(s - So, s + ct) - 'Ul(S + ct)]ds 

+ 10
00 

[u'(s - So, s + ct) - ur(.s + ct)]ds. 

The minimum of H(so, t) for any fixed t is obtained when So = -00 and 

H( -00, t) = l:t[ur(s + ct) - Ul(S + ct)]ds :s; 0, 

(7.32) 

(7.33) 

with the actual value depending on t. The maximum is obtained when So = 00 

and 

(7.34) 
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Thus, the freedom in selecting So allows us to set 1 h(~ value of H to any positive 

value for all t and some negative values dependent OIl t. H(so, t) will be used in 

the proof of Theorem 7.2. 

We are now ready to state five preliminary lemmas used in chapter 7 which 

describe the behavior of the time-dependent solution~ u( (, t) near the boundaries 

( = 00 and ( = -ct. 

Lemma 7.1 If 

(7.35 ) 

then 

lim (u((, t) - uA( + ct)) = 0 ,-00 (7.36) 

uniformly in 0 ~ t ~ T, for any T > O. 

Lemma 7.2 If 

(7.37) 

then 

lim 8,(u((, t) - 'U r (( + ct)) = 0 (-00 (7.38) 

uniformly in 0 ~ t ~ T for T > O. 

Lemma 7.3 

JOO [u(s, t) - ur(s + ct)]d.s (7.:39) 

e:dsts and is finite for t E [0, T], for T > 0 and any finite (. 

Lemma 7.4 Let 

V((,t) = joo[u(s,t)-ur(s+ct)]ds. (7.40) 

If our initial assumptions (7.4)-(7.8) hold, then 

lim V((, t) = 0 '-00 (7.41 ) 

uniformly for t 2:: o. 
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Lemma 7.5 For any f: > 0, there exists an X = X(f:) < 0 such that 

(7.42) 

JOI' ( :::; X and t ~ ~c. 

Lastly, we require a lemma which is an adaption of some basic theory done by 

Inn, Kalashnikov, and Oleinik [13] (Section 12, p. 13:3) and Il'in and Oleinik [14]. 

Lemma 7.6 Suppose that the Junction u(:t ~ t) satisfi( s 

L(u) = a(x, t)uXJ' + b(x, t)ux - 'Itt = 0 (7.43) 

il1 the bounded cylinder Q = {x E [x/,:Z'r],t ~ A}, with u = gt{t) 011 the left 

boundU1'y, :z: = :Z:/, and u = g2(t) on the right boundary, x = X r , with gi(i) :::; f: as 

t ~ 00 JOI' i = 1,2. Then limsupt_ooill(X, t)1 :::; f: uniformly with respect to x. 

With these lemmas, we can show the following: 

Theorem 7.2 IJ u(x, t) is a bounded solution of the initial bounda7'y value p1'Ob

lem, then there is a unique So E Rl depending on the inlial data uo(x) such that 

lim 100 

[u{x', t) - v'(x' - ct - so, x')]dx' = 0 
t-oo x 

(7.44) 

uniformly for all x ~ O. Here, u'{x - cI - so, x) is a fral1fling wave solution. 

Proof: Making the change of variable ( = x - ct, we define 

Z{(,I) = joo[u(s,t) - u'(s - so,s + ct)]ds. (7.45 ) 

As in Lemma 7.4, Z satisfies the equation 

LZ = 0, (7.46) 
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where 

D( t" )a 2 • D(u,(+ct)-D(u',(+ct) 'a. 
L· - u, ~ + ct , + u(( + ct, t) _ u'(( _ So, (+ ct) u, , 

I«u, (+ ct) - I«u', (+ ct) a . +ca . -at' . (7.47) 
u (( + ct, t) - u' (( - So, ( + ct) , , 

Let € > O. By Lemma 7.4, there exists an Xl = X 1 (€,so) such that IZ((,t)1 :5 € 

for ( ~ Xl and t ~ O. Near the boundary, ( = -ct, Z((, t) may be expressed as 

Z((, t) 100 [u(s, t) - u'(s - so, 8 + ct)]ds 
-ct 

l ' , [u(s, t) - U (8 - so,." + ct)]ds. 
-ct 

(7.48) 

\Ve would like to see IZ( -ct, t)1 :5 € for all t ~ O. To see that. the second integral 

in (7.48) is smaller than ~, rewrite it as 

u'(s - So, s + ct)]ds 

- i'ct [u(s, t) - UI(8 + ct)]ds 

+ l')u l (i3 + ct) - u'(s - So, s + ct)]ds. (7.49) 

The first. integral is accounted for in Lemma 7.5, while for the second integral we 

have 

(7 .. 50) 

where >'1 > 0 and 8 < Sl < 0 by Lemma 3.2. Now we need to show that 

100 € 
[u(s, t) - u'(s - so, s + ct)]d8 < -2 

-ct 
(7.51) 

as t --. 00. Start by rewriting the left hand side of (7.51) as 

l:[u - u']ds = J(t) - H(so, t) (7.52) 

where H(so, t) was given in (7.32) as 

H(so, t) - I:Ju'(s - So, 8 + ct) - VI(S + ct)]ds 

+ 1000 

[u'(s - 80,8 + ct) - ur(s + ct)]ds, (7.53) 
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and we define 

J(t) = [0 [u(s, t) - UteS + ct)]ds + [oo[u(s, t) - Ur(s + ct)]ds. (7.54) J-d ~ 

J(t) is finite for t 2:: 0 by Lemma 7.3. We can see J(t) is oscillating in time by 

writing it as 

J(t) = J(O) + lot OtJ(t), 

where 

OtJ(t) - 1:[Ut(s, t) - cUrs(s + ct)]ds - 1:1 eUts(S + ct)ds 

+ l°rt CUrs(S + ct)ds + c[u(s, t) - UteS + ct)]ls=-ct 

- l: [D(u, s + ct)Us - K(u. s + ct) + cCu(s. t) - ur(s + ct))]sd.s 

_ [0 CUts(s + ct)ds + [0 cUrs(s + ct)ds 
J- rt J-ct 

+ c[u(s, t) - Ut(s + ct)]ls=-ct 

(7.55) 

- Ct - cr + c(u(s, t) - ur(s + ct))ls=oo - cu(,-;, i)ls=-ct - CUt(s + ct)I~=_ct 

- cUr(s + ct)ls=o + c(u(s, t)ls=-ct - u/(s + cf)ls=-ct} 

(7 .. 56) 

slIIce 

CU(s, t) - Ur(S + ct))ls=oo = 0 (7 .. 57) 

by Lemma 7.1. Using the formula for speed (3.20), (7.56) becomes 

(7.58) 

where U/ and Ur are ~-periodic in t. Since, averaging over [0, ~], (OtJ(t)) = 0, we 

see that J(t) is a bounded function which oscillates around J(O). 

The strategy at this point is to show that although J(t) and H(so,t) are peri

odic and have no limit as t ~ 00 individually, J(t) - H(so, t) does have a limit as 
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t -+ 00. Then~ we will be able to pick a So value so that this limit is zero. 

Take the derivative of (7.52) with respect to t. 

at joo[u - u']ds _ joo[ut - u~]ds + c[u - 'U']k=-ct 
-ct -ct 

- l:[((D(u,s + ct)us - [((u,s + ct))s + cus) 

- ((D(u',s + ct)u~ - f{(u',.') + ct))s + cu~)]ds 

+ c[u - u'](=-ct 

- [(D(u,s + ct)u( - /{(u,s + ct)) 

- (D(u', s + ct)u~ - [((u', s + ct)) 

+ c(u - u')]I:-ct + c[u - u']s=-ct 

- (-cr + cd + c(u - u')ls=oo 

- (-Cr-(D(u',s+ct)u~-J((U',8+ct))ls=_cd. (7.59) 

Rewriting 11 - Il' as (u - ur ) - (u' - 'U r ) and applying Lemma 7.1 and Lemma 3.2 

c(u - u')ls=.x. = 0. (7.60) 

Then 

at 100 

[u - u']ds - (D(u', ( + ct )ll, - A'(u', ( + ct))k=-ct + C/ 
-ct 

[-(D(u/, (+ ct)u/(: - /«u/, (+ ct)) 

+ (D(u', (+ ct)u~ - [{(u', (+ ct))]k=-ct 

- -D(u/,O)(u/ - u'), - Du (0},0)u,(u/- u') 

+ I<u(8 2,0)(u/(0) - u'(-ct - so,O), (7.61) 

where 0 1 and O2 are intermediate values and INul :::; Nh < 00 since lu,1 :::; A12 < 00 

and lu/" :::; A12 < 00. We can then use Lemma 3.2 to make the following bound 

lat l:[u - u']dsl :::; 1[-NuD(u/,O) - D(01.O)u( + J((02 ,0)](u/- u')1 
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< G e- Act _ 1 , (7.62) 

where CI = G1(so) > O. Therefore, 

Ijoo [u - u']dsl < Co + 1t Gle- ACT dr' 
-ct tJ 

(7.63) 

where Co = Go( So, tJ) is a constant and tJ ~ O. By taking tJ sufficiently large 

depending on f, we can guarantee that 

(7.64) 

for any fJ > O. Thus, the quantity, IJ(t) - H{so, t)1 converges to a constant as 

t --+ 00 or 

lim J(t) - H(s, t) = H(s) 
t-oo 

(7.65) 

for all s. Furthermore, fI (s) is monotonically increasing in s by Corollary 4.1 and 

the range of fJ(s) is RI as seen in (7.33) and (7.34). Now choose So to be the 

unique value such that fJ(so) = O. \\lit.h this choice, we have our bound (7.51) and 

IZ((, t)1 =::; to as ( =5 X 2 • Then, for every to > 0 there exists a to = to{f) such that 

f f 
- 4" < J(t) - H(so~t) < 4' (7.66) 

if t ~ to. This choice of So is unique by the monotonicity of fJ(s). Now, by our 

selection of So, we have uniquely determined a travding wave solution which a 

time-dependent solution may tend to asymptotically as t --+ 00, pending the com

pletion of the proof. 

To this point we have bounded IZ((, t)1 =5 f for ( ~ Xl and ( :=5 X 2 • To make 

the same bound for the remainder of the ( domain, we will invoke Lemma 7.6 

to show that for some i = iI, IZ((, il)1 :=5 to for all (. Using what we have done 

above to show that Z((, i) :=5 to on the boundaries, we see that the conditions of 

Lemma 7.6 are met. Applying Lemma 7.6, we can choose a t = tl ~ to so that 
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IZ((, tdl < £ for all ( E [-db 00]. 

Now, treating t = t1 as a new initial time value, we can apply the maximum 

principle argument to show that IZ((, t)1 ::::; £ for all ( and t;::: t1 and hence 

lim 100 

[u(x', t) - u'(x' - ct - so, x')]d.T' = O. 
t-co x 

(7.67) 

The proof is com plete. 

Remark 7.1 The difference between the proof of Theorem 7.2 for the pe7'iodie CliSE 

and for the homogeneous case shown by Noren [30} on p.41 lies in the nature of 

J(t) and H(s, t). In the periodic case, as shown by (7.58), J(t) and H(s, t) go to 

bounded periodic functions in t as t ~ 00; while in the homogeneous case, J(t) 

and H(s, i) simply go to constants. Therefore, f07' the homogeneous case, we can 

simply choose the So so thai J(oo) - H(so, 00) is identically equal to zero. 

Next we need an interpolation lemma whose proof was given by Noren [30] (p. 43). 

Lemma 7.7 Lft F(x) E C2[a, LJ, where (/ ;::: 0, F(a) = B, and IF"(x)1 ::::; if! where 

i1 is a positivE constant. If 

L;::: 2 sUP;r.E[a.LjIF(J~) - BI 
;\1 

IF'(a)l ::::; )2111 SUPxE[a,LjIF(:z') - BI· 

Proof: By Taylor's formula 

F(x) = F(a) + F'(a)(x - a) + ~F"(:I'·)(x - a)2. 

Therefore 

sup IF(x) - BI ;::: IF(x) - BI 
xE[a,Lj 

(7.68) 

(7.69) 

(7.70) 

(7.71) 
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= IF'(a)x + ~F"(x·)(x - a)21 ~ IF'(a)IIx - al- ~ Ix - a12, (7.72) 

or, letting S = Ix - al and m = sUPxE[u,LjIF(x) - BI 

M 
2S2 -IF'(a)ls + m ~ O. (7.73) 

If S1 and S2 are roots of the quadratic expression on the left hand side of (7. i3), 

then 81 + S2 ~ O. Thus both roots must be positi\'e. Also, 81 S2 = ~ ~ L2. 

Therefore, S1 and S2 can not both be greater than L. Consequently, there can be 

no real roots of 

(7.74) 

and 

IF'(a)j2 - 2Jf1m ~ 0, (7.75) 

or 

IF'(a)l ~ j2jfiJ SUPxE[a,LjIF(:r) - BI· (7.76) 

The proof is complete. 

Now, we are ready to use Lemma 7.7 and Theorem 7.2 to prove the following 

theorem: 

Theorem 7.3 Under the hypothesEs of ThwT'tnl 7.2, 

lim lu(x,t) - u'(x - ct - so,x)1 = 0 
t-oo 

(7.77) 

uniformly for :1:' ~ O. 

Proof: Let € > 0 and take T sufficiently large that 

11
00 

[u(x', t) - u'(x' - ct - 80, x')]da"1 ~ €, (7.78) 

for t ~ T and :1: ~ O. Then, we may apply Theorem 7.1 to show 

8x[u(x, t) - u'(x - ct - ,'la, x)] ~ !V!, (7.79) 
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for ;2: ~ 0 and t ~ o. Application of Lemma 7.7 by taking F(x) = I JxOO[u(x', t) -

u'{x' - ct - so,x')]dx'i and a = x in the notation used in Lemma 7.7 gives 

lu(x, t) - u'{x - ct - So, x)1 :5 v'2.M f., (7.80) 

for any x. Therefore 

lim lu(x, t) - u'{x - ct - So, x)1 = o. 
t-oo 

(7.81) 

The proof is complete. 
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8 Soil Heterogeneity and Wave Speed 

In regard to the effect of periodic heterogeneity on wave speed, we will show 

examples where the waves travel at the same rate in a heterogeneous soil as a ho

mogeneous soil, where they travel slower, and where they travel faster. The speed 

differences depends on the conductivity function selected and, more importantly, 

the selection of the a(x) and b(x) functions to describe the heterogeneity. The 

functions a(x) and b(x) were introduced in (AI) and (A2) of the introduction. If 

we take a(:r) and b( x) to be proportional, the wave speed is no faster in a heteroge

neous medium than in a homogeneous one, while if we take them completely "out 

of phase", the wave speed is no slower. \Ve will show five examples to illustrate 

this. In these examples, we take a(x) = a(x, €) and b(x) = b(x, €) where € E [0,1) is 

the parameter controlling the degree of' heterogeneity in the soil (i.e. € = 0 would 

be' a homogeneous soil while f. = 0.99 would be a very heterogeneous soil). 

Example 1: Recall the formula for the speed was given in (3.12) to be 

(8.1 ) 

We would like 1.0 show an example in which the partial derivative of c with respect 

to f is zero, 

Cf = O. (8.2) 

We consider the conductivity function ](( 1.l) = eU
• We start by computing the 

partial with respect to €. Recall from Remark 3.1 that 

(8.3) 

or 

(8.4) 



where T(x) is defined in (3.51). Notice 

(U/(X ))€ 

(ur(x ))E 

- ((](-1( U))' IU=-c/T c,( -T)E), 

((1(-1(U))' IU=-crT cA -T)E). 

Therefore, we have 

Our choice of conductivity function leads to 

](-1(U) _ 

(1(-1 (U))' 

IT/(U). 
1 
~., 

Substitut.ing into the appropriate term in (8.6), we see 
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(8.5 ) 

(8.6) 

(8.7) 

Hence, c(': = 0 and for this choice of hydraulic function, the speed is independent 

of the amount of heterogeneity in the soil. 

Remark 8.1 Example 1 is of particular interest sinr.e it is, in fact, this exponential 

choice of the conductivity function which is used in most analytical work (see f44J 
and [51}) and in stochastic numerical w01'k (see [lO}). Thus, much of the current 

work in modeling heterogeneous soils uses a conductivity function for which the 

front speed in a heterogeneous soil matches the speed in a homogeneous soil with 

the same mean conductivity. 
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Example 2: Take the hydraulic conductivity to be an algebraic function 

(Brooks and Corey hydraulic function), 

(8.9) 

for n > 1 and 

a(x) = 1 + Wl(X), (al{x)) = 0, 

b(x) = 1 + fbI (x), (bI{x)) = O. (8.10) 

V\;e show that the speed in the periodic soil is larger (smaller) than that in the 

homogenoues soil if al = -bI (al = b]) and f is small. 

\\;e study the inequality: 

(8.11 ) 

where UI and ilr are constant steady states for the homogeneous case. By the 

steady state equations and remark 3.1, we have 

ill = f{-l{(b~~))) = ](-I(cdl\--l((h(x))-l), 

Tl r = ](-l((b~:))) = f{-I(cr)f{-1((b(x)t 1
), 

UI(X) = ]{-l(-CIT(x)) = j{-1 (CdJ\-I (-T(x)), 

ur(x) = ]{-I(-crT(x)) = H-1(cr )]{-I(-T(x)), 

since ](-l(U) = U*. For (8.11) to be valid, we need to have 

or 

Recall from chapter 3 that T satisfies: 

a{x)T.x(x) - b(:r)T{:z;) = 1. 

(8.12 ) 



or: 

V,,'e express T(:r) with the regular perturbation expansion: 

Plugging (8.14) into (8.13), we have: 

Thus, the O( €) order equation is 

showing that (-Tl) = O. The 0(€2) order equation is 

It follows from (8.16) and (8.17) that 

and so: 

-aIT; + biTI = at( -1; + bd + blTI 

= (b l - adTI + alb l , 

Now we compare (/{-I(_T») with /{-l((b(x»)-I) = 1. By (8.14), we have 
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(8.13) 

(8.14) 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

(8.20) 
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We will show that (-T2) - n2-;/ (Tn is negati\'e (positive) if al = -b1(al = bt}, 

which implies (I{-l(-T)) < (» J(-l((b(x))···l) = 1. It follows from (8.16) that 

-( 1l )' + T; - b1 Tl = 0 

and so (Tn = (bITI ). By (8.19): 

n-1 2 
-(T2) - ~(TI) 

Let us expand al and bI into Fourier series: 

Then (8.16) gives 

Hence, 

al = L 0'/exp{27rilx} 
I¢O 

b) = L .Blexp{27rilx}. 
I¢O 

Tl = L 1!~ ./exp{27rilx}. 
I¢O ~7rl 

( ' n+1 T) (a] + ~bl) I 

It follows that 

(8.21) 

(8.22) 

(8.23) 



76 

If , = -1, (( a~ + n2~1 bt)TI) < 0 and the wave speed in periodic soil is faster. On 

the other hand, if, = 1, ((a~ + ntnl bx)TI) > 0 and t.h() wave speed in periodic soil 

is slower. 

Remark 8.2 We can think of al (x) = -bi (x) as a( x) and b( x) differing by a phase 

shift of half the period or completely out of phase. So whether the heterogeneities 

increase the Wa1!e speeds or not in the case of power nonlinearity depends on how 

correlaifd the phases of heterogenieties are in diffusivit.1J and conductivity functions. 

Example 3: Numerical examples for four r.hoic(~s of conductivity functions 

with 

a(x, e) = 1 + esin(27rx), 

b(x, e) = 1 + esin(27r;1'), (8.24) 

are shown in Figure 8.1. Notice how the speed in non-increasing in e for all the con

ductivity functions. Assumptions (Al)-(A3) were used and a fourth order Runga

Kutta scheme was used to calculate the steady states which were then incorpora.ted 

into the speed formula. The selected functions were exponential, cubic, Fujita, and 

van Genuchten conductivity functions, multiplied by an inhomogeneity term. They 

had the forms 

A) K(u, x) eu- l b(:2:, e), 

B) K(u, x) u3b(x, e), 

C) K(u,x) 
u2 

-2-b(x,e), 
-u 

D) K(u,x) - JU[I - VI - u2]2b(x, e) (8.25) 

and 

D(u, x) = Ku(u)a(x, e), (8.26) 

for all four cases. 
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Example 4: Numerical examples for four choices of conductivity functions 

with 

a( €, x) = 1 - €sin(271"x), 

b(€,x) = 1 + €sin(271".T.), (8.27) 

are shown in Figure 8.2. Notice how the speed in non-decreasing in epsilon for all 

the conductivity functions. 

Example 5: Numerical examples for four choices of conductivity functions 

with 

a(€,.r) = 1 - €sin(271"x) + €Si n3(271":r), 

b(€,x) = 1 + €sin(271".r) + fsin3(271"x), (8.28) 

are shown in Figure 8.3. Notice how the speed is constant for the exponential case, 

increasing for the cubic and Fujita cases. and decreasing for the van Genuchten 

case. 

Speed calculations based on numerical solutions to the entire problem will also 

be presented in chapter 9. 



78 

Normalized Speeds 
1 .2 

1 .0 A 

0.8 
0 
C) 

""'- 0.6 
C) 

0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

€ 

Figure 8.1, Normalized Speeds for A) Exponential. B) Cubic, C) Fujita, D) van 
Genuchten Conductivity Functions, a(x, f) = b(x, f) = 1 + fsin(27rx) 



79 

Normalized Speeds 
1.20 

o . 9 0 L-''____-'--____ --'----'-~--'---'-_ ____'__'_"__"____~ 

0.0 0.2 0.4 0.6 0.8 1.0 
€ 

Figure 8.2, Normalized Speeds for A) Exponential. B) Cubic, C) Fujita, D) van 
Genuchten Conductivity Functions, a(x, f) = I-fsin(27rx), b(x, f) = 1 +fsin(27rx) 
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Normalized Speeds 
1.020 

1 .01 0 . 
0 
C) 

'-.... 
C) 

1.000 
D 

o . 9 9 0 '---.l....---'--_-'--~_-'---'-_.......L___'__ _ ____'____"'_____' 

0.0 0.2 0.4 0.6 0.8 1.0 
€ 

Figure 8.3, Normalized Speeds for A) Exponent.ial. B) Cubic, C) Fujita, D) van 
Genuchten Conductivity Functions, a(x, f) = 1- fsin(27rx) + fsin3 (27rx), b(a~, f) = 
1 + fsin(27rx) + fsin 3 (27rx) 
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9 Numerical Solutions 

A first order in time, second order in space, fully implicit, finite difference 

scheme was selected. The scheme is the following: 

U~+1 - u~ 
I I 

D
j+l 
. I 
1-2" 

j+l j+l i+l j+l 
_l_[Di+l ui+l - Ui _ Di+l Uj - 1li-l ] __ l_[}<,j+l _ },j+l] 

- . I . I •. I \. I , 
~.T. 1+2" ~x 1-2" ~x ~x 1+2" 1-2" 

[ 1 1 ]-1 
D( i+l (. 1) A ) + D( j+1 . A) , 

Ui+l, l + uX Ui' luX 

[ 1 1 ]-1 
D( ~+1 . A ) + D( ~+l (. _ 1) A.) , U , ,luX U , _ 1 , l u3· 

[ 1 1 ]-1 
} '( j+l (. /) A ) + }'( j+l . A) , \ Ui+l' 1 + uX \. Ui • luX 

[ 
1 1 ]_1 

= }'( j+l . A ) + }'( j+l (. 1) A) . 
\ tij ,luX \. Ui_l' 7. - uX 

(9.1 ) 

For a layered soil, harmonic averages are the most appropriate choices for D111 
2 

and K!;i since they satisfy the mass balance condition (see [4]). Intuitively, this 
2 

cboice can be thought of by imagining that. we have a layer of soil with conduc-

tivity ]{ and an impermeable steal plate of equal depth with conductivity zero. 

Obviously, no water will flow through the steel plate and the conductivity for the 

entire system should be zero. However, if we use an arithmetic average to find 

the conductivity of the system, we wiII get J{"Vf = I~ > O. Using the harmonic 

average, we get. the correct J(ave = O. This use of the harmonic average is also 

analogous to the difference between electric circuits in parallel as opposed to series 

in electromagnetic theory. 

\Vhile higher order accuracy can be attained, the higher order schemes are in

creasingly more difficult. The second order accuracy proved to be sufficient for 

the interior of the solutions' domains. Any accuracy problems which occured were 

observed on the boundaries, particularly the right boundary (x = L) which was 

meant to represent infiltration deep in a soil. A fully implicit scheme was selected 
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due to the nature of the traveling wave solutions. These solutions often have a 

relatively sharp front. The implicit scheme was able to better resolve the solution 

at these fronts than explicit or Crank-Nicholson type schemes and it was able to 

do this with ~t values which were orders of magnitude larger than for the other 

two types of schemes. 

The boundary conditions, especially the right boundary, presented a major 

challenge in obtaining numerical solutions. As in (1.12), prescribed flux conditions 

were imposed by balancing fluxes at the boundary nodes with fluxes at interior 

nodes. The equations for balancing the fluxes look like 

J2 - 2Jt + Jo = 0, left 

IN - 2JN-t + IN-2 = 0, right 

i = l, 2, N - 2, N - 1 

(9.2) 

A less general way to implement these boundary conditions which avoids the 

problems mentioned above is to recall from Proposition 2.2 that for any prescribed 

flux. c, there is a unique steady state solution. Therefore, if we take our initial con

dition ncar the boundary to be the steady state solution which corresponds to the 

prescribed flux. we can guarantee that the correct flux is being implemented at the 

boundary. Additionally, since the steady state solution will not change in time, we 

will be able to use a Dirichlet boundary condition by taking the prescribed value 

at the boundary from the value of the steady state solution there. This is the real 

advantage of this handling of the boundary condition since it appears than imple

menting the prescribed fluxes, especially at the right boundary, is far more difficult 

that implement.ing the prescribed values (see [28]). The numerical examples in this 
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section except Example 3 use this implementat ion of the boundary conditions. 

Numerical speed is calculated by selecting 

(9.3) 

to mark the position of the wave front, where Ul(O) is the value of the steady state 

at. the left. hand boundary and ur(L) is the value of the steady state at the right 

hand boundary. For each timestep, we count the number of nodes, Nt, for which 

llf ::; u·. As the traveling wave moves from left to right, Nt will decrease. The rate 

at which Nt decreases is the speed of the wave propogation. 

The rest of this section is devoted to showing some numerical examples which 

illustate properties of these traveling wave solutions to (1.1). 

Example 1: In Figures 9.1-9.5, we took the J((u, x) and D(u, x) to be an 

adaptation of the Fujita hydraulic function (with parameter m = 2) where 

2 

J((u,x)=(m-1) u (1 + Esin(27rx)), 
m. - u 

2mu - u2 
. 

D(u,x) = (m -1) ( )2 (1 + ESZ71(27rx)). 
m -u 

(9.4) 

The adaption from the actual Fujita function is the multiplication by the term 

(1 + Esin(27rx)) which is meant to represent the periodic inhomogeneity of the 

soil. The parameter E E [0, 1) controls the degree of inhomogeneity. Additionally, 

D(u,x) is taken to satisfy assumption (A3) and is not the actual Fujita diffusivity 

function. Comparison between the D( u, x) in (9.4) and the actual Fujita diffusivity 

function will be shown in Example 2. 

Figures 9.1 through 9.3 show the solutions to Richards' equation with three 

different E values (E = 0,0.5, and 0.9) at dimensionless time values of t = 40,80, 
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and 120. In obtaining these results, we used ~t = 0.1 and ~x = 0.1. The 

prescribed boundary fluxes were c/ = K(0.5,0) and cr = K(0.3,0). The initial 

condition was taken to be the discontinuous function 

u(O,x) - u/(x) x:::; 16, 

- U r ( x) X > 16. (9.5) 

where u/(x) and ur(x) are the steady states related to c/ and cr respectively. With 

this initial condit.ion, the boundary conditions could be changed to the equivalent 

forms: u(t,O) = u/(O) and u(t, L) = ur(L). Notice how the solutions show peri

odically oscillating steady states at the boundaries with a connecting front which 

mo\"es toward t.he right hand boundary in time. 

Figure 9.5 shows the wave speed of these solutions. The wave speed is the 

negative of the slope of the lines shown. Notice how the speed decreases with 

increasing € relating to an increased degree of heterogeneity. The roughness of the 

lilles is due to poor spatial resolution and the oscillat ory nature of the solutions. 

Additional comments on the wave speeds were made in chapter 8. The relat.ive 

mass balance errors for these calculations is less than 2 percent for these three f 

values with the error generally increasing as f increases. 

Example 2: This example is identical to Example 1 except that it compares 

the choice of hydraulic functions in (9.'1) with the actual Fujita Diffusivity function 

(with m = 2) 
m(m-1) . 

D(u, x) = ( )2 (1 + fsm(27l'x)). 
m-u 

(9.6) 

The solution for the diffusivity as given by (9.6) is shown in Figure 9.6. Compari

son of Figure 9.6 and Figure 9.2 show that the different choices of D{ u, x) do not 

lead to a qualitative difference in the numerical solutions of (1.1). 
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Example 3: The hydraulic functions in this example are identical to Example 

1 with E = 0.5 except now the prescribed flux boundary conditions are implemented 

instead of using the equivalent prescribed value boundary conditions. Due to the 

full matrix inversion needed to use the presecribed flux boundary conditions, we 

took a much smaller range for our x and calculated fewer time steps. The results 

are shown in Figure 9.7. The prescribed flux condition tends to lead to slightly 

larger values on the boundaries. A comparison of the speeds is shown in Figure 9.8. 

Line A represents the prescribed value boundary cOlldtions; Line B, the prescribed 

flux. The irregularity in these lines is due to poor spatial resolution. \Vhile Line A 

and Line B are not identical, they have roughly the same average slope indicating 

the same wave speed. 

Example 4: This example is identical to Example 1 except with € = 0.05 and 

we now take the periodic inhomogeneity function to be 

g(x) l+E 
1 

= x<-- 2' 

1 - ( 
1 

- x> 2' (9.7) 

instead of 1 + (sin(27rx). Results are shown in Figure 9.9. The solution in Figure 

9.9 is a more physical solution than the solutions which use 1 + Esin(27l'x) to de

scribe there heterogeneity in that it is more comparable to the experimental and 

numerical results shown in [11]. However, due to the discontinuity of the hetero

geneity function g( x), reliable numerical solutions can only be obtained with this 

scheme when E is very small. 

Example 5: This example is identical to Example 2 except that a pulse is 

added to the initial data. Notice how the transient decays to the familiar traveling 

wave solution as time increases in Figure 9.lD. 
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Figure 9.3, to = 0.9 for Three t Values, t = 40,80,120 
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10 Analysis with General Hydraulic Functions 

As noted in the introduction, during much of the analysis done in Chapters 2 

through 9, we use a few assumptions - most notably (A1)-(A5) - on the hydraulic 

functions, D( u, x) and J( (u, x). At this time, we would like to comment on problem 

(1.1) when we do not make these assumptions. First, recall that Khusnydtinova 

[Ii] and Noren [30] showed the existence, uniqueness and asymptotic stability for 

(1.1) where the hydraulic functions had no x dependence for the Dirichlet and pre

scribed flux boundary conditions respectively. In their proofs, they only needed 

assumptions (A4) and (A.S). The single most important difference and difficulty 

which arises when we consider spatial inhomogeneity and do not assume (A1)-(A3) 

is that. we are no longer able to find a change of variable as in (3.14) which pro

duces a form of equation (3.1) with a maximum principle for the entire range of 

s \·alues. Without. a maximum principle, many of t.he assertions in this thesis are 

very difficult to prm·e. We will now briefly outline which parts of the thesis still 

hold and which parts are lost when we fail t.o assume some or all of (Al)-(A5). 

In chapter 2, Proposition 2.2 uses the assumption that the variable dependence 

in D(u.:r) is separable by taking 

D(u,x) = Do{u)a(x), (10.1) 

in equation (2.12). This is equivalent to (AI). As Remark 2.1 points out, we 

may even do away with this assumption as long as we are considering infiltration 

which is not too close to saturation. Using a fourth order Runga-Kutta scheme to 

numerically solve the steady state equation (2.4), we have never observed a case 

where a periodic steady state was not achieved for every degree of heterogeneity, 

even when (10.1) was violated. 
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In chapter 3, :he formula for the speed of the traveling wave given in Lemma 

3.1 by equation (3.20) is valid for general D(u,x) and K(u,x). However, we are 

no longer able to bound the traveling wave solution by the two steady states, 

(10.2) 

Even without (A1)-(A5), we can still derive an entropy condition similar to the 

one in (3.62). The derivation goes as follows: 

Linearize equat.ion (3.1) around the steady state solution u/(y) at s = -00, assum

ing it exists, by taking 

D(u,y) = D(u/(y),y) + vDu(u/(y),y) + 0(v2), 

]((tl: y) = ]((u/(y), y) + v](u(u/(y), y) + 0(v2), (10.:3) 

where v(s:y) = u/(y) - u(s,y). Ignoring 0(v2) terms and recognizing that u/(lI) 

satisfies (2.4), (3.1) becomes 

-c(v(s,y))s - (8s +8y)[D(u/(y),y)(8,+8y)v(s,y) 

+ v(s, y)(Du(u/(y), y)u/y(y) - /{u(u/(y),lI))]. (10...1) 

Assume that v( s, y) = eAsc.p/(y). Substitut ing into (10.4) and dh'iding by eAS, we 

are left with 

o Dc.p/A2 + [(Dep/)' + Dep~ + (Duu/y - /{u)ep/ + Cep/JA 

+ [(Dc.pt), + ((Dutl/y - J(u)c.piY], (10.5) 

where the "prime" denotes differentiation by y. As we did in chapter 3, we can 

turn (10.5) into an eigenvalue problem, 

P/(>')c.p/ - Dc.p{A2 + [(Dc.pd' + Dc.pt + (Duu{y - /{u)c.p{ + Cep{]A 

+ [(Dept)' + ((Duu{y - ](u)c.pd]. (10.6) 
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Again, we would !ike to show the existence of ).1 > 0 such that PI().d = O. We can 

see by inspection that for)' large enough, PI().) > O. Therefore, we will expand 

PI(>.) = Po + ).PI + O().2) and 'PI(Y').) = 'Po(Y) + ).'Pl(Y) for small),. Substituting 

into (10.6), we get the zeroth order equation 

(10.7) 

The periodicity of 'Po(Y) and the coefficients in Y implies that averaging (10.7) over 

one period in Y yields po = o. Therefore, PI(O) = o. Thus, by continuity of PI(>.), 

we can show the existence of a ).1 if we can find a). > 0 such that PI().) < o. The 

first order equation from (10.6) is 

PI 'Po - (D'P~)' + ((DuUly - Ku)'Pl)' 

+ (Dc,?o)' + D'P~ + (DuUly -l\u)'Po + Cc,?o· 

Again averaging over one period in y and assumimg that ('Po(Y)) 

becomes 

From the zeroth order equation, 

and~ integrating once in Y, (10.10) becomes 

where fill is a constant. Substituting (10.11) into (10.9), we get 

PI = ml + c. 

(10.S) 

1, (10.8) 

(10.9) 

(10.10) 

(10.11) 

(10.12) 

In order to have PI().) < 0, we need to have PI < 0 and thus we derive the condition 

c < -fill. (10.13) 
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Going back to (10.11), we can solve for CPo{Y) getting 

P(y) (10.14) 

A8 in chapter 3, we can see that (CPo(y)) == 1 implies that 

(10.15) 

and thus, (10.13) becomes 

(10.16) 

Linearizing around the other steady state. ur(y) at ,'i = 00, and doing the same 

analysis with v(s,y) = u(s,y)-ur(y) = e-'\scpr(Y), we obtain an analgous condition 

which we can combine with (10.16) to get the entropy condition for the general 

case. 

(10.17) 

where ~.(y) is of the same form as T/(y) with ur(y) replacing u/(y) in (10.14). 

In chapter :J, we were able to prove Theorem 3.1 which said that the entropy 

condition (3.62) was never violated for any degree of heterogeneity. We have no 

similar result for the general case. However, our numerical evaluation of (10.17) 

for Gardner and Russo, Brooks and Corey, Fujita, and van Genuchten hydraulic 

functions with various degrees and functional representations of heterogeneity has 

failed to produce an example where the entropy condition was violated. The fol

lowing is an example of a numerical calculation. 

Example: We evaluated the terms in (10.17) for the Fujita conductivity 

functions with the heterogeniety term 1 + €sin(271"x) for values of € E [0,1). A 
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fourth-order Runga-Kutta method was used to solve for the steady states. Figure 

10.1 shows the results of this evaluation. If the lines on Figure 10.1 were to inter

sect, that would give evidence that the entropy condition was violated for some 

degree of heterogeneity measured by L However, since the lines did not cross, we 

can conclude that the entropy condition holds for all E in this example. 

Entropy Condition Example 
1.0 

0.8 I· _______ L_ert __ 

O. 6 r· _______ s_p_ee_d ___ ~ 

0.4 I· ______ R....,:lg::....h_t ___ _ 

0.2 

o . 0 ~...L._....L...._ _ _'_____'__--'----''---_-'--_'__~__'_____'_--J 

0.0 0.2 0.4 0.6 0.8 1.0 
€ 

Figure 10.1, Terms of (10.17) as Functions of E 

A result like Lemma 3.2 may be proven if we aSS1lme (AI) and (A2) without 

(A3) and if we can establish the solvability of an operator shown below. The 

argument begins by using (AI) and (A2) to convert (3.1) into an equation of the 

form 

(os + oy)[a(y)D(u)(os + Oy)u - b(y)K(u)] + cUs = O. (10.18) 
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Defining the function E( u) = J D( u )du and making thc! change of variables U( s,./j) = 
E(u(s, V)), (10.18) becomes 

where 

(os + oy)[a(y)(os + Oy)U - b(y)JC(U)] + dr(U)Us = 0, 

](*(U) 

ltr(U) -
1 1 

E'(E-l(U)) - D(E-l(U))" 

N ow assume for s ~ SI > > 1, the solution takes the form 

U(s, y) = Ur(y) + [T(s, V), 

where Ur(y) = E(ur(y)) satisfies the equation 

Then (10.19) becomes 

(10.19) 

(10.20) 

(10.21 ) 

(10.22) 

r -. f{-( U) - f{-( Ur ) o - (os+oy)[a(y)(os+oy)(Lr+U)-b(y) U-U
r 

(U-Ur) 

- b(y)]C(Ur )] + c1'vJ"(U)(Cr + [T)!; 

- (os + oy)[a(y)(os + oy)D - b(y)Q(s,y)(r] + cR(s.y){rs, 

Q(s,y) _ ](*(UJ = ~-(Ur) = ](ii(Ur ) + ~f{uv(e)(U - Ur), 

R(s,y) - A1*(U(s,y)), (10.23) 

where e is an intermediate value and Q(s,y) > 0 since](u > O. To obtain a form 

of (10.23) which has a maximum principle, we make the change of variables 

(; = (e(y) + e(s,y))w(s,y). (10.24) 

Substituting into (10.23), we get 



b(y)Q(s,y)(e+ e)w] + cR(s,y)((t + e)w)s 

- (e + e)(8s + 8y)[a(8s + 8y)w] 

+ (2a(8s + 8y)(e + e) - b(e + e)Q)(8s + 8y)w 

+ cR(e + e)ws + [(aey)y - (beQ)y]w 
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+ [(8s + 8y)[a(8s + 8y)ej- (8s + 8y)(beQ) + cRes - bQse]w. (10.25) 

Notice the similarity between the first lowest order term in (10.25) and equa

tion (3.14) which we used to make a change of variable back in chapter 3. Since 

Q(8, y) > 0, we use the same argument as we used there to show there exists an 

t(y) > 0 such that 

(aey)y - (beQ)y = O. (10.26) 

To remo\"e the other lowest order term, it remains to be shown that there exists 

an f( s, y) such that 

(10.27) 

and that. for s sufficiently large, e( s, y) is sma.ll. The solvability of (10.27) is dis

cussed by Ladyzenskaja in [21] (Sec. 3.6, p. 160). If we are able to show that 

the space which contains e( s, y) is a closed space, then we can establish the exis

tence of a solution. Then, after a similar argument was made for the case where 

S ::; S2 « -1. we could find a change of variables for which (10.23) has a max

imum principle. This would allow us to complete the proof of a result similar to 

Lemma 3.2. 

\Vithout a general maximum principle which is valid for all s, we are unable to 

show the important results in chapter 4: Theorem 4.1 (Uniqueness) and Corollary 

4.1 (Monotonicity in s). However, we can still show the existence of solutions by 

the same continuation argument given in chapter 5 in Theorem 5.1. \Vithout the 
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maximum principle, we again run into difficulty in chapter 6 when we try to pass 

the limit of the solutions. This is summarized by the following remark: 

Remark 10.1 Without a general maximum principle, we are only able to prove 

the existence and uniqueness of traveling wave solutions with a small degree of 

pEriodic inhomogeneity. This uniqueness is in the sense of the space we use in our 

construction of a solution. The proofs of existence and uniqueness are the same 

as those present in chapter 5. Beyond this point, 'We have no guarantee of the 

existence or uniqueness of traveling wave solutions. Additionally, we are unable to 

show the monotonicity in s of these traveling wave solutions. 

Without (Al)-(A5), the arguments in chapter 7 do not hold again due to the 

lack of a general maximum principle. Therefore, as of now, we are unable to show 

rigorously that solutions of (1.1) tend to traveling waves as t ~ 00 in general. 

Never-the-Iess, numerical solutions indicate that traveling wave solutions exist for 

all degrees of heterogenity and that time-dependent solutions do tend toward trav

eling waves even when (A1)-(A5) do not hold. 
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In this appendix, we state and prove five preliminary lemmas used in chap

ter 7 which describe the behavior of the time-dependent solution, u((, t) near the 

boundaries ( = 00 and ( = -ct and a sixth lemma dealing with the long time 

behavior of u( (, t) for all (. 

Proof of Lemma 7.1: \Ve will begin by showing that if 

(1.1 ) 

then 

lim W((, t) = ~Fr 
(-00 

(1.2) 

uniformly in 0 :::; t :::; T. Then argue that the above statement and the statement 

of the lemma are equivalent. 

Let € > 0.1' > O. Note IVo( is bounded for ( ;::: -el,O :::; t :::; T by assumption. 

Therefore~ there exists a (0 > 0 such that 

(1.3) 

for ( > (0 by assumption (7.21). Let 

V((,t) = H/r + ~ + Ne,3tHo-(. ( 1.4) 

Define 

Then 
LV = (a(( + ct) - a((( + ct) - b1(( + ct) _ _ (3)1\; /3tHo-( 

M(U) c e . (1.6) 
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Since, a. a(, bI , and A1(U) are finite and differentiable, we may choose f3 large 

enough that 

LV::; o. (1.7) 

Then 

L(V - W) ::; 0, (1.8) 

since LH! = 0 by (7.17). Evaluation shows 

V((,O) - 11'((,0) = IVr + ~ + Ne(o-( - 11'o(() ~ 0, (1.9) 

and 

V(-ct t) - IV(-ct t) = IV + ~ + Ne/3t+(o+ct - 11'(-ct t) > 0 (1.10) 
, , T 2 ' - , 

for a large enough choice of N by (1.9) and the fact that. 11'( -ct, t) is bounded by 

MI as in (7.24). By the maximum principle 

V((, t) - 11/((, t) ~ 0 (1.11) 

or 

(1.12) 

This implies that 

(1.13) 

for ( ~ X where X is smallest value of ( so that 

(1.14) 

Similarly, if we define 

(1.15) 

we can show 

(1.16) 
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for ( ;::: (0 where (0 is the smallest value of ( where Nt e{Jlt+(o-( < ~. Thus we have 

lim fV((, t) = flir 
(-00 

(1.17) 

uniformly in 0 ::; t ::; T. This implies 

lim W((, t) - IVr = 0, 
(-00 

(1.18) 

and hence, undoing the change of variables, 

lim U((, t) - Ur (( + ct) = o. 
(-00 e((+ct) 

(1.19) 

Since e( ( + ct) > 0 and is one-periodic in ( + ct, we have 

lim U((, t) - Ur (( + ct) = 0, 
(-00 

( 1.20) 

or going back to our original variables 

lim I«u((, t)) - I{(ur (( + ct)) = o. 
(-00 

(1.21) 

Since]{ is cont.inuous and 1(' > 0 we have, 

lim ]{'(0)(u((, t) - lLr(( + el)) = 0, 
(-00 

(1.22) 

or 

lim (u((, t) - ur (( + ct)) = o. 
(-00 

( 1.23) 

The proof is complete. 

Proof of Lemma 7.2: We will prove this lemma by a similar strategy to 

Lemma 7.1. First we will show that if 

(1.24 ) 

then 

(1.25) 
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ulliformly in 0 ::; t ::; T. Then we will argue that t.his statement is equivalent to 

the lemma by a change of variables. 

Start by taking B( of the following equation 

! _ 1 bI (( + ct) 
11 t - .M(U) [a(( + ct)~Vd, + [c + A1(U) ]W(. 

Lett ing w = (lV ((, t) - Wr )" this differentiation yields 

Wt _ a(( + ct) f1 2 
Al(U) ,w 

+ [( a(C+ct)) Q,((+ct) bI((+ct)]f) 
Al(U) ,+ 1\1(U) +c+ Al(U) (W 

[( a dC + ct)) (bI(C + ct)) ] 
+ Al(U) (+ 1I-1(U) 'w. 

Define the operator 

L a((+ct)B 2 [(a((+ct)) a,(,+ct) btC(+ct)]f1 
. - Al(U) ,. + Al(U) (+ Af(U) + c+ M(U) ,. 

(1.26) 

(1.27) 

ad C + ct) bI (C + ct) .) + [( AI(U) ), + ( Al(U) )d' -f)t" (1._8) 

Note that this operator does not have a maximum principle in general because its 

lo\\'est order term does not have a sign. However, since the minimum we are 

considering is zero, we can still apply a maximum principle by the change of 

variable argument given by Corollary 9.14 in Smoller [43] (p. 90). Now let 

Then 

L(V - w) 

V(C, t) = ~e/3(t-T) + Ne/3tHo-'. 

_ {a(( + ct) 
lvJ(U) 

_ [ad' + ct) (ad' + ct)) . bI (, + ct)] 
M(U) + lvJ(U) ( + (. + M(U) 

+ [(ad' + ct)) + (bI (( + ct)) ]_ (J}N /3t+(o-( 
Al(U) ( M(U) ( e 

+ {[(adC+ct)) +(bdC+ct))] -(J}':" /3(t-T) 
M(U) ( M(U) ( 2e 

. 

(1.29) 

(1.30) 
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Since a, a" bI , and A1( U) are finite, we may select I~ sufficiently large so that 

L(V - w) :5 o. (1.31 ) 

Now, 

(1.32) 

Since lim,_oo IVa, = a by assumption, there exists a X 2 = X 2 (T) ~ a such that 

(1.33) 

for ( ~ x 2 • Now choosing N sufficiently large to take care of ( E [-ct, X 2 ] implies 

(1.34 ) 

Likewise, 

V(-ct,t)-IVd-ct,t) = ~eJ3(t-T)+Nf.{3tHo+cl -lVd-ct,t). (1.35) 

\Ve know 11V,( -ct, t)1 :5 A12 < 00 by the boundary condition (7.19) and can thus 

choose N sufficiently large depending on T so that 

V( -ct, t) - Wd -ct, t) ~ a (1.36) 

for t E [0, T]. Thus, we can use the maximum principle to say 

V((, t) - Wd(, t) ~ o. (1.37) 

This implies that there exists a X3 = X3(T) such that Wd(, t) :5 f. for ( ~ X 3. 

An analogous argument, taking 

V((,t) = _':e/3(t-T) - NeJ3tHo-( 
2 

will yield H',((, t) ~ -f. for ( ~ X 4 = X 4 (€, T) for some X 4 E R. Thus 

(1.38) 

(1.39) 
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uniformly in 0 ~ t ~ T. Then we have 

lim a (U((, t) - Ur (( + ct)) = 0, (1.40) 
(-00 ( e((+ct) 

lim e(( + ct)(U - Ur)( - e(( + ct)dU - Ur) = O. (1.41) 
(-00 e2( ( + ct) 

Since e(( + ct) > 0 and is one-periodic in (, we know 

Looking at only the second term in the limit and letting El = min( e( ( + ct)( and 

E'2 = max( e(( + ct)" we have 

El lim (U - [Tr) ~ lim inf e( ( + ct)d [T - Ur ) 
(-00 (-OC 

(1.43) 

By Lemma i.1~ both the bounding limits go to zero. Therefore the middle part of 

(1.4:3) also goes to zero. Thus we are left with 

lim e(( + ct)(U - Urk = 0, 
(-00 

(1.44 ) 

and since e(( + el) > 0 and is one-periodic in (, we again know 

lim (U(s, t) - Ur{s + ct))( = o. 
(-00 

(1.45) 

Changing back into our original variables, we see 

(1.46) 

or 

(1.47) 

where e is an intermediate value of u and lir. Taking the derivative we have 

(1.48) 



By Lemma i.1, tIle second term in (1.48) vanishes and J(' > 0 implies 

lim (u((, t) - ur (( + ct))( = o. 
( ..... 00 

The proof is complete. 

Proof of Lemma 7.3: Let 

l!( (, t) = i oo 
[u(s, t) - ur(s + ct)]ds. 

Then by Lemma i.1 and Richards' equation we have 

{.~ joo [(D(u, s + ct)uds~ t) - ]{(u, s + ct)), 

+ cuds, t) - curds)]ds 

- (D(u, s + ct)u( - J((u, s + ct) + cu(s, t) - cur(s + ct))I:( 

I(D(u,X + ct)U«(X,t) - J((u,X + ct}) 

(D(u, (+ ct)u( - J((u, (+ ct)) 

+ c(u(X, t) - u((, t))I. 
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(1.49) 

( 1.50) 

(1.51 ) 

Since Iud :5 A1'}. < 00 by Theorem 7.1, we can bound ID(u, ·)U( - J((u, ·)1 < A13 < 

x and, with lu(·, t)1 :5 1, we obtain 

l"\ttl :5 2Nh + 2c < 00. (1.52) 

Now, think of F((, t) as having the following form 

V((, t) - V((, 0) + lot {~dt 
< ioo[uo(s) - ur(s + ct)]ds + lot IVtldt, (1.53) 

which is finite for any t E [0, T] since the first integral on the right hand side is 

finite by assumption (7.8). Then (1.53) implies 

ioo[u(s, t) - ltr(s + ct )]ds < 00 (1.54 ) 
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for any t E [0, T]. The proof is complete. 

Before stating our next lemma, we will observe the following: 

Remark A.1 Lei 111 and 112 be any solutions of (7.:1) {i.e. full time-dependent, 

traveling wave, or.steady state solutions}. Let U1 and U2 be any solutions of {7.11}; 

1-Vl and 11'2 t any solutions of (7.17). Then the following are equivalent: 

l
X2 

lUI - 1l21ds < f, 
Xl 

l
X2 

lUI - U2 1ds < C'f., 
Xl 

l
X2 

C"f., IWI -lV2 lds < (1.55) 
Xl 

fol' the same f. where X}'X2 E Rl and C',C" > 0 are constants depending on K(u) 

ande((+ct). 

Proof: 

(1.56) 

where e is an intermediate value between III and 112. Since e(( + ct) and K(u) are 

bounded, positive functions, we have 

(1..57) 

where C' ~ mOJ.:uK(u). Similarly, 

(1..58) 

where C" ~ mClx(u,(+ct) e~~uc't)' The proof is complete. 
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Proof of Lemma 7.4: Let 

V(, t) = fcoc[u(s, t) - ur(s + ct)]ds. (1.59) 

Since IV(, t) ~ lVr by the maximum principle l this implies u(, t) ~ ur (( + ct) 

and V(, t) ~ 0 for any ((, t). We will now derive an upper bound by defining 

G((, t) = j=[u'(s - So,S + ct) - ur(s + ct)]ds +~, (1.60) 

where u' is a traveling wave solution with So to be chosen and 

l/;((,t) = G((,t) - V((,t) = joc[u'(s - So,S + ct) - u(s,t)]ds +~. (1.61) 

To get our upper bound we wiII use the version of Richards' equation in (7.2). 

Define the operator 

L. D( ' t)a 2 D(u',(+ct)-D(u,(+ct)'a 
= u~+c (.+ u (" 

, u'((~so,(+ct)-1t((+ct,t) ( 
K(u',( + ct) - K(u,( + ct):::J a· a 

~---'---"--~--'-.,.----'--UI • +c ".. - t' (1 6')) 
u'((-so,(+ct)-u((+ct,t) ~ ~. .-

This operator is derived by writing down (7.2) once with a traveling wave solution 

and again with a full, time-dependent solution: 

(at - cadu' = [D(u',( + ct)uc - K(u',( + ct)]" 

(at - cadu = [D( 1£, ( + ct )u( - K(u l ( + ct )k. 

Subtract the two equations to get 

(at - cad(u' - u) - [D(u',( + ct)u( - D(u,( + ct)u, 

( 1.63) 

(J((u',( + ct) - K(u,( + ct))k (1.64) 

This can be rewritten as 

(at-cad(u'-u) - [D(u,(+ct)(u'-uk 

D(u',(+ct)-D(u,(+ct) '(' ) + u". u - u 
u'(( - So, (+ ct) - u(( + ct, t) ~ 

K ( u', ( + ct) - K ( u. ( + ct) (' ] 
u'((-so,(+ct)-u((+ct,t) u -u),. ( 1.65) 
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Int.egrate (1.65) once from ( to 00 and we obtain LV;. It is easy to verify that 

L \.'2 = O. Now since 

V2((,0) - [00 [u'(s - so,s) - uo(s)]ds + ~ J, _ 

- fcoo[u'(s - so,s) - ur(s)]ds + fcoo[ur(s) - uo{s)]ds + i, (1.66) 

where the second integral is finite by assumption (7.8) for 0 :::; ( < 00. Vole can 

choose So 2:: 0 large enough to make the first integral as large as we need so that 

the sum of the two integrals is posith'e. Thus, 1,:!((,0) 2:: 0 for all ( > O. vVhen 

( = -ct, we can show ~(-ct, t) 2:: 0 by calculating 

1I2t (-ct,t) - 100 

(u' - U)tds + c[u' - U]k=-d 
-ct 

- (D{u', (+ ct)u( - /((u', (+ ct) + CUi 

D(u, (+ ct)u, + 1\(u, (+ ct) - cu(( + ct, t))I~-ct 

+ c[u' - u]k=-ct. 

Evaluating by the boundary conditions (7.4) and (7.5), we see 

- - cr + cr - (D( u' , ( + ct) lI( - /( ( u' . ( + ct) ) k=-ct - Cl 

+ c(u' - u)l~ct + c[u' - u]k=-ct 

(1.67) 

- -(D(u',( + ct)u( -1\(u',( + cf))k=-d - Cl + c(u' - u)k=o:,. (1.68) 

By Lemma 3.2, we know that u'( ( - so, ( + ct) - ur( ( + ct) < e->', for ( 2:: s}, t 2:: 0 

and by Lemma 7.1, we know lim,_oo(u - u r ) = O. Therefore, we have 

c(u' - u)k=oo = c(ur - ur) = 0, (1.69) 

and thus, 

V;{ -ct, t) - ~(O, 0) 

+ fot[-(D(u l
, (+ cr)u( - /((u', (+ cr))k=-CT - ct]dr. (1.70) 
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\Ve can see that ~he integral in (1.70) is finite for all t by the following argument. 

From the steady state equation (2.5), we know -c/ = D(u/, (+ct)u/(-K(u/, (+ct). 

Substituting into (1.70), we see that the integrand is equal to 

[(D(u/, (+ cr)u/( 

-(D(u', (+ cr)u( 

I«u/'(+cr)) 

I«u', ( + cr))]k=-CT. (1.il) 

Adding and subtracting D(u/, (+ cr)u, to expression (1.71) makes the integrand 

equivalent to 

ID(u/, (+ cr)(u/ - u')( + D(01 , (+ cr)u((u/ - u') - ]((82 , (+ cr)(u/ - u')I 

::; I[NuD( u/, ( + cr) + D(01 , ( + cr )U( - K(8 2 , ( + cr)]( u/ - u')~1.72) 

where 8 1 and 8 2 are intermediate values and INu I ::; ifJ2 < 00 since lu,1 ::; 1112 < 00 

and lu/(I ::; 1112 < 00. By Lemma 3.2, (11./(( + ct) - u'(( - So, (+ ct)) ::; Ce-ACT 

where A > O. Therefore, the integrand can be bounded by Ct e- ACT and hence, the 

integral in (1.70) exists and is finite for all t ~ o. 

Select So such that lt2(0,0»> 1 as in (1.74) and then we have l'2(-ct,t) ~ o. 
Then by the maximum principle, we have our upper bound 

G((, t) ~ \l((, f), (1.73) 

and therefore, since the limits of both the upper and lower bounds go to zero, 

lim 11((, t) = O. 
( ..... 00 

(1. 74) 

The proof is complete. 

Proof of Lemma 7.5: Since W/ ~ W((, t) by the maximum principle, this 

implies u/{( + ct) ~ u((, t) and we have 

i:t[u/(s + ct) - u(s, t)]ds ~ 0 (1.75) 
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for any ((, t). Now we will show an upper bound. Let 

1< , 
h((' t) _ct[u(s, t) - u (s - so, s + d)]ds 

J
-ct f: 

+ -eo [u/(s + ct) - u'(s - so, s + ct)]ds + 2' (1.76) 

where u(s, t) is a time-dependent solution of Richards' equation and u'(s-so, s+ct) 

is a traveling wave solution. Now, define the parabolic operator 

L· = 
D('· )82 D(u,(+ct)-D(u',(+ct) a 

u , ~ + ct < . + u(( + ct, t) _ u'(( _ so, (+ ct) u< <. 

K(u, (+ ct) - K(u', (+ ct) fJ • +c:a . -at' . 
u((+ct,t)-u'((-so,(+ct) < < 

(1.77) 

This is the same operator that was derived in the proof of Lemma 7.4 with the 

roles of 1l and u' reversed. As before, we can see L l'2 = O. Now 

l'2( (,0) - f<[uo-u']ds+jO [u/-ll']ds+':' 
Jo -00 2 

1< 1<' £0 , f: - [uo - ur]ds + [u 1• - u ]ds + [u/ - u ]ds + -2 
o 0 ·-00 

> f< [uo - U r ]ds + roo [Ur - u'Jds + 10 
[u/ _ u']ds + _?f: , Jo Jo -eo _ (1.78) 

which is non-negative as the sum of t.he second and third integrals is equal to 

-H(so. 00) and can be made any positive "alue by increasing So and, on the other 

hand, 1000 luo - U r I < 00. Additionally, 

1-
ct f: 

V2 ( -ct, t) = -00 [u/ - u'Jds + 2 2:: 0, (1. 79) 

since the integrand is positive by Lemma 3.1. Therefore, the maximum principle 

for parabolic operators tells us that V:z 2:: O. Thus, 

f< r-ct 
f: J_)u - u']ds + Leo [u/ - u']ds + 2 ;::: 0, (1.80) 

and is the same as 

1< j< f: [u - udds + [u/ - 'Il']ds + - 2:: 0, 
-ct -00 2 

(1.81 ) 
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or 

j ' j' '] E -ct [UI - u]ds ~ -00 [UI - U ds + 2' (1.82) 

By Lemma 3.2, we may choose X = X(E) such that 

o ~ l'o)uI - u']ds ~ ~ (1.83) 

for ( ~ X. Then combining (1.86) and (1.87), we have 

l')uI(s + ct) - u(s, t)]ds ~ Eo (1.84 ) 

The proof is complete. 

Proof of Lemma 7.6: First we employ a change of variables 

u(;r, t) = v(x, t)q(x) = u(x, t)(1 - (:JeO'(r-xl»), (1.8.5 ) 

where a: and f3 are positive constants to be determined so that ~ :s; q(x) :s; 1 for 

,'l: E [Xl, ,'l·r]. Then 

L'( v) = a(x, t)vxx + b'(x, t )vx - c(x, t)v - Vt = 0, (1.86) 

where 

b'( x, t) 

c(x, t) (1.87) 

Since X comes from a bounded domain, we may choose an a: larger than supC:1bl ) 

and then a f3 = f3(a:,x r - xI) small enough that ~ ~ q(x) ~ 1, for all x E [XI,X r ]. 

Then 

inf c(x, t) = 8 2:: 2a:j3(aa + b) > O. 
(rtt) 

(1.88) 

Next, for every E > 0 there exists a T = T(c:) > 0 such that 1~1(~ll < E and I~Wll < c: 

for t > T( E). Next, consider the auxilliary functions 

w±(x, t) = Ale-co (t-T) + 2t ± v(x, t), (1.89) 
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where /'vI > 0 and Co > 0 are constants. By choosing JVf large enough and using 

our bounds on the boundary values, we have 

For t ~ T, we have 

- M + 2E ± v(x,T) ~ 0, x E Q 

_ M e-co(t-T) + 2E ± 91( (t)) 2: 0, t ~ T, 
q XI 

_ M e-co(t-T) + 2<: ± 9(2(t)) ~ 0, t ~ T. 
q Xr 

(1.90) 

L'(w±) = -c(x, t)(Ale-co(t-T) + 2E) + cQJl1e-co (t-T) ::;; 0, (1.91) 

if we select Co = 8. Thus, we can apply the maximum principle to show that 

w±(.'t, t) ~ 0 for all x E [XI, x r ] and t ~ Tor 

Iv( x, t) I ::;; E + 1\1 E-co(t-T) ( 1.92) 

for t ~ T(E), which implies when sending t --+ 00 that 

lim sup lu(x. t)1 ::;; E. (1.93) 
t-oo 

The proof is complete. 
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