
Physica D 237 (2008) 3172–3177
Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Computing reactive front speeds in random flows by variational principle
James Nolen a,∗, Jack Xin b
a Department of Mathematics, Stanford University, Stanford, CA 94305, United States
b Department of Mathematics, University of California at Irvine, Irvine, CA 92697, United States

a r t i c l e i n f o

Article history:
Received 17 July 2007
Received in revised form
7 April 2008
Accepted 14 April 2008
Available online 8 June 2008
Communicated by B. Sandstede

PACS:
42.25.Dd
02.50.Fz
05.10.-a
02.60.Cb

Keywords:
Front propagation
Random drift
KPP

a b s t r a c t

We study reactive front speeds in randomly perturbed cellular flows using a variational representation
for the front speed. We develop this representation into a computational tool for computing the front
speeds without resorting to closure approximations. We demonstrate that the front speeds depend on
flow statistics and topologies in a complex and dramatic manner.
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1. Introduction

Front or interface propagation in complex fluids is an ubiqui-
tous nonlinear phenomenon in various areas of science and tech-
nology such as chemical reaction fronts in liquids, population
growth of ecological communities (plankton) in the ocean, andpre-
mixed flame propagation in fluid turbulence [1–5]. If the fluid ve-
locity is modeled by random processes with known statistics, a
fundamental challenge is to characterize the front speed in termsof
the given velocity statistics. In such a model, a system of coupled
equations that governs the propagating front may be reduced, in
the case of equal species diffusion (unit Lewis number), to a reac-
tive passive scalar equation [3,4]:

ut = κ∆zu+ EB(z, t) · ∇zu+
1
τr
f (u), z ∈ Rn, t > 0. (1)

In this paper we use a numerical method to study the speed of
fronts governed by Eq. (1) and propagating along the first spatial
coordinate axis. We focus on the case f (u) = u(1 − u), which is
the so-called Kolmogorov–Petrovsky–Piskunov (KPP) nonlinearity.
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If the initial data for u is nonnegative and wave-like, the large time
behavior of u is a propagating front. We will use c∗ to denote the
asymptotic speed of this front, and we want to understand how
this speed depends on the prescribed velocity field EB.
For simplicity, we suppose that the spatial dimension is n = 2

and that the spatial coordinate z is decomposed as z = (x, y),
where x ∈ R parameterizes the unbounded propagation direction,
and y belongs to an interval [0, L]. So, we are modeling fronts
propagating in an infinite channel with cross-section [0, L]. In
the examples studied here, the vector field EB(z, t) is a random
perturbation of a cellular flow. It is incompressible, random in t
and/or x, and periodic with period one in y. Moreover, the field
B(z, t) has zero spatial mean. Periodic boundary conditions are
imposed in y for u. The two positive constants in the model are:
κ , the species diffusion constant; τr , the reaction time scale.
For a velocity field that varies randomly or periodically, the

front speed c∗ is a time-averaged quantity. For an initial condition
u(x, y, 0) that is wave-like with sufficiently fast decay away from
the interface (for example, u(x, y, 0) = H(x), the Heaviside
function in x), the asymptotic speed of the fronts governed by
the nonlinear equation (1) may be defined as the unique constant
c∗ > 0 such that

lim
t→∞

max
y∈[0,L]
x<−ct

u(x, y, t) = 0 if c > c∗,

http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
mailto:jnolen@math.stanford.edu
mailto:jxin@math.uci.edu
http://dx.doi.org/10.1016/j.physd.2008.04.024


J. Nolen, J. Xin / Physica D 237 (2008) 3172–3177 3173
lim
t→∞

min
y∈[0,L]
x>−ct

u(x, y, t) = 1 if c < c∗. (2)

Although the solution u(x, t) to (1) is random (it depends on the
realization of B(z, t)), we show in [6,7] that this front speed is
well-defined and deterministic, under suitable hypotheses on B.
It is known that even when EB ≡ 0, Eq. (1) may admit traveling
wave solutions with different speeds. However, the speed defined
by (2) is unique, meaning that it is independent of the initial
data, under the assumption that the initial data decays very fast
away from the interface. Specifically, we assume that u(x, y, 0) ≤
min(eλ

∗x, 1) for some constant λ∗ > 0 sufficiently large. We also
assume that B is continuous in both z and t , statistically stationary
and ergodic with respect to shifts in x and t , and that B satisfies
suitable regularity and moment bounds in order to guarantee
the existence of a classical solution (almost surely) to Eq. (1)
with initial data u(x, y, t). Under these conditions, the asymptotic
behavior described by (2) holds with probability one and the front
speed is deterministic and independent of the initial data. See [7]
for the most general hypotheses required of B. We suspect that a
similar convergence result holds for other nonlinearities, but we
are not aware that this has been demonstrated rigorously for other
nonlinearities. It is not known whether this convergence holds for
a velocity field that is white noise in time.
In turbulent combustion, the front speed c∗ is called the

turbulent front velocity [3,5]. This is an upscaled quantity that
depends on the many continuous scales of the flow field EB as well
as the diffusion and reaction scales. Let L be the size of the domain
cross section, δ be the root mean square amplitude of EB, and τb be
the time scale (time correlation length) of EB. Two nondimensional
parameters are: the Péclet number Pe = Lδ

κ
which measures the

relative strength of advection and diffusion, and the Damköhler
number Da = τb

τr
, a ratio of advection and reaction time scales. We

use the channel width L in the definition of Pe, since the velocity
length scale and the channel width are the same in the cases we
consider.
Eq. (1) is nonlinear and stochastic. As well as direct numerical

simulation, several approximation methods exist. A conventional
approach, often employed in studying fluid turbulence, is a
closure approximation to construct equations for the moments
or probability distribution function of solutions [3,8,9]. Another
approach, the renormalization group method (RG), is a procedure
to remove length scales in EB iteratively for approximating c∗. The
RGmethod has been applied to c∗ in the regime of thin fronts (κ �
1, τr � 1) and large Péclet numbers (Pe � 1), [10,11]. However,
the closure method is ad hoc in nature. The RG method, though
systematic, lacks control of convergence, and is not a method for
robust numerical computation.
In this paper we use an exact variational representation of c∗

for the stochastic KPP reactive fronts to study the front speed
numerically in a fast advection regime. This representation has
been proved rigorously for periodic flows [12–14], for random
shear flows [6], and for one-dimensional random potential
flows [15]. In a forthcoming paper [7], we prove the representation
for general flows that vary randomly in both space and time,
without restrictions on the flow geometry. In particular, all of the
cases considered in the present article are within the scope of
these results. The authors of [16] have developed a strategy for
integrating this variational approach into large scale simulation of
turbulent premixed flames.
Here we consider two examples of randomly perturbed cellular

flows in two space dimensions. The variational representation
holds for arbitrarily many dimensions, however. In Section 2,
we introduce the variational representation for the front speed
c∗, and we describe the numerical simulations. In Section 3,
we demonstrate the results of these numerical simulations. The
particular flows we study were chosen because the scaling
properties of the front speeds in unperturbed cellular flows are
known [17,18]. See also [19] for related analytical estimates of c∗
in deterministic flows. Numerical computation of front speeds in
steady deterministic flows has been carried out in [20,21]. Fronts
propagating in deterministic perturbations of cellular flows have
been studied experimentally in [2] and numerically in [22] using
a simplified geometric front model. We show here that random
perturbations can yield strikingly different results.

2. A variational representation for c∗

First, we briefly describe and formally motivate the variational
representation for the front speed c∗; for details of the proof see [6,
7]. Fronts governed by the KPP nonlinearity are called ‘‘pulled
fronts’’ [23] because their speed is determined by the behavior of
the solution far beyond the front interface, in the region where u
is close to zero, the unstable equilibrium. Linearizing the equation
near this unstable equilibrium, we obtain

vt = κ∆zv + EB(z, t) · ∇zv +
1
τr
f ′(0)v. (3)

Approximate plane wave solutions of (3), which approximate the
tails of left-moving KPP fronts, are generated from initial data
v(z, 0) = exp{λx}, for a positive wave number λ. For a large time
t , one anticipates that v behaves like exp{λx + µ(λ)t} to leading
order, for some positive numberµwhich is convex and superlinear
for large λ. The asymptotic speed of the approximate plane wave
is then µ(λ)/λ.
The quantity µ(λ)may be determined, as follows. Let us write

w(z, t) = exp{−λx}v(z, t), and let Ee be the unit vector along the
positive x-axis. Thenw solves the initial value problem:

wt = κ∆zw + (2κλEe+ EB) · ∇zw

+ (κλ2 + λEe · EB+ τ−1r f
′(0))w, (4)

with initial data w(z, 0) = 1. By the maximum principle, the
functionw is positive for all time. The number µ can be expressed
as the almost-sure limit:

µ = lim
t→∞

1
t
ln

∫
Ω

w(x, y, t)dy, (5)

for any x. The number µ is the so-called principal Lyapunov
exponent of the parabolic equation (4), and it is deterministic and
independent of x. That is, (5) holds with probability one, although
w itself is random. Thus, the asymptotic speed of the approximate
plane wave, µ(λ)/λ, is a deterministic quantity.
In [6,7], we demonstrate that for the fronts governed by the

original nonlinear equation, the asymptotic front speed satisfies
c∗ = infλ>0

µ(λ)

λ
. In other words, the minimal plane wave speed

of the linearized equation (3) agrees with that of the nonlinear
KPP equation (1)! Through this formula, which is exact, one may
estimate the speed c∗ by estimating the function µ(λ), which is
deterministic.
As a function of the parameter λ, µ is convex, and grows

super-linearly with large λ, so µ(λ)/λ has a unique minimum.
The minimum value of µ(λ)/λ is the front speed c∗. It is easy
to see that the function logw will solve a nonlinear, Hamilton-
Jacobi type equation with an additional viscous term. From this
perspective, the same quantity µ(λ) may be recovered as the
effective Hamiltonian via homogenization theory [14,24].
Our strategy for computing c∗ is to numerically integrate (4),

compute the growth rate µ(λ), then minimize µ(λ)

λ
to yield c∗. In

the regime considered here, the minimization step requires only a
few (<10) evaluations of µ(λ). The x dimension is truncated into
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Fig. 1. Top: c∗ as a function of ω for δ = 80 (Pe = 8.0 × 103), ε = 0.04, 0.08. The solid line is the front speed in the unperturbed flow (ε = 0, δ = 80). Bottom: c∗ as a
function ofα (the inverse of the correlation time), δ = 125, 50 (Pe = 1.25×104, 5.0×103), ε = 2.0. The solid line is the front speed in the unperturbed flow (ε = 0, δ = 50).
a finite and large enough interval [0, Lx] with periodic boundary
conditions at x = 0, Lx.
Our first set of numerical examples is where EB is a temporally

perturbed cellular flow in two space dimensions (δ, ε are constant
parameters):
EB(x, y, t) = δ2π(− sin(2π(x+ εγ (t)))

× cos(2πy), cos(2π(x+ εγ (t))) sin(2πy)).

As EB has period one in x and y, the spatial domain for (4) is the
unit square. We examine how temporally random perturbations
influence c∗ in the case where γ (t) is an Ornstein-Uhlenbeck
process (Gaussian and Markov), and we compare the results
with the case where γ (t) is periodic in time. As γ (t) has an
intrinsic parameter, the time correlation length (denoted by 1

α
),

the front speed depends on three parameters c∗ = c∗(δ, ε, α). The
parameter α has the unit of frequency. If γ (t) = cos(ωt), then
c∗ = c∗(δ, ε, ω).
Our second example is when the perturbation is a spatially
random shear flow so that EB is random in x:

EB(x, y) = δ[2π (− sin(2πx) cos(2πy), cos(2πx)
× sin(2πy))+ ε(0, ξ(x))], (6)

where ξ(x) is a mean zero stationary ergodic process, and we
examine how the spatial randomness influences the front speed c∗.
The evolution problem (4) is solved with an operator splitting

technique to handle diffusion and advection-reaction time step-
ping separately. After a long enough evolution period, we sample
the logarithmof the spatial integral ofw atmanypoints in time and
let µ be the slope of the best-fit line through these points. For the
advection-reaction step, we use a semi-Lagrangian scheme [25],
which permits larger time steps and minimal numerical diffusion.
For the diffusive step, we use the implicit unconditionally stable
Crank–Nicholson scheme in time and spectral method in space.
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Fig. 2. Top: Log–log plot of c∗ versus flow amplitude δ for various periodic shaking frequencies. Bottom: Log–log plot of c∗ versus flow RMS amplitude δ for various
correlation times 1/α. For both plots, the perturbation amplitude is fixed at ε = 2.0. For comparison, the two solid lines have slope p = 0.3.
With the constants µ(λ) computed in this way, we minimize the
functionµ(λ)/λ using a standard algorithm based on a golden sec-
tion search [26].

3. Numerical results

We first study c∗ in unsteady cellular flows. Due to ‘‘shaking’’ by
γ (t), the positions of the saddle points in the flowsoscillate in time.
At a fixed time t0, the streamlines of the flow B(z, t0) are bounded.
When γ (t) is periodic with frequency ω � 1, nearly ballistic
trajectories may result from the creation of oscillating unbounded
channels within the shaken reference frame. In this regime, the
temporal perturbation γ allows Lagrangian particles to hop from
one bounded cell to another, traveling a distance of order ω−3 in
a time scale of order ω−3 logω [27]. Consequently, the front speed
in such a shaking flow may be significantly larger than that in the
unperturbed steady flow.
In the periodic case, with γ (t) = ε cos(ωt), there appears an
intriguing resonance pattern when c∗ is plotted as a function of
ω for fixed δ and ε. The frequency range spans the interval ω ∈
[5.0, 195.0]. The diffusion constant is κ = 0.01, and the reaction
time scale is τr = 0.5. In Fig. 1(top), c∗ is plotted as a function of ω
at flow amplitude δ = 80, and ε = 0.04, 0.08. We observe multi-
ple resonance peaks. The peaks become more pronounced as ε or
δ gets larger.
Resonance peaks of c∗ in periodically shaking cellular flows

were computed previously from a simplified geometric front
model [22] (the so called G equation). This model is an approx-
imation to the front in the thin front regime when the reaction
time scale is much smaller than the diffusive and advective time
scales. Here we consider a different regime in which the advective
time scale is much smaller than the reactive time scale (fast advec-
tion). In this regime, the geometric front approximation may be
very inaccurate, even for steady shear flows [28]. The variational
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Fig. 3. Top: Front speed c∗/c0 versus channel length ratio Lx/Ly for fixed flow amplitudes δ = 100, 200, 300. Bottom: Log–log plot of c∗/c0 as a function of amplitude δ for
various values of ε, at Lx/Ly = 5. Diffusion constant κ is fixed at κ = 0.01, the Péclet number ranges from 1.0× 103 to 4.0× 104 .
representation of c∗ is exact, however. Thus we should expect our
results to differ from those of [22]. For example, for the range of
parameters shown in Fig. 1(top), the speed in the perturbed flow
is always greater than the speed of the corresponding unperturbed
flow (ε = 0, δ = 80). This is different from the results of [22]where
the fronts governed by the G-equation may travel faster or slower
than the fronts in the unperturbed flow. We observe a slow-down
of front speeds as ω→∞ and ω→ 0.
Now we plot c∗ as a function of δ for fixed values of ω or α.

Fig. 2(top) shows that the front speed in the periodically shaking
flows may not be a monotonic function of the flow amplitude δ.
When δ is large, c∗(δ) scales sub-linearly, approximately O(δ0.3) at
ε = 2, larger than O(δ1/4) in the steady flows [17,18]. This may
be explained in terms of the competing effects of the underlying
cellular flow and the nature of oscillatory channels created by the
temporal shaking. When ω is very small, the channels have small
width, of order O(ω). The diffusing Lagrangian particles may easily
hop out of these channels, which may result in less enhancement
of the front speed. As the frequency increases, the channels widen,
leading to greater enhancement of the Lagrangian transport and
front speed. However, for very large frequencies, the perturbation
destroys more of the cellular structure so that over a large time
interval the flow is closer to a purely oscillatory flow. It can be
shown analytically that a purely oscillatory flow B = B(t) does not
enhance the front speed. So, if too much of the cellular structure
is destroyed by very fast perturbation, the front speed cannot be
greater than the speed corresponding to unperturbed flow.
Nowcompare these results to the case of randomperturbations.

Let γ (t) be the Ornstein-Uhlenbeck process defined by the Ito
equation: dγ (t) = −aγ (t)dt + rdW (t), where W is the Wiener
process, a and r are positive constants. We choose r =

√
2α3/4

so that the covariance function is
√
αe−α |t−s|. The total energy
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in the power spectrum is invariant with α. We integrate the Ito
equation by an implicit second-order strong Taylor scheme [29].
Fig. 1(bottom) shows c∗ as a function of α, the inverse of the
time correlation length, with δ = 50 and δ = 125 fixed. There
is an optimal time correlation length leading to maximal speed
enhancement. As α goes to +∞, the correlation length goes to
zero, and the front speed decreases to the speed in the unperturbed
steady flow. When the α is less than the optimal value, the front
speed c∗ decreases with decreasing α. In the randomly shaking
flows,multiple resonance peaks disappear in contrast to the case of
periodically shaking flows. Moreover, for the range of parameters
we simulated with the randomly shaking flows, the front speed is
always greater than the speed in the unperturbed flow.
Fig. 2(bottom) shows c∗ as a function of flow amplitude for

various fixed correlation times at ε = 2. We observe that c∗ scales
sub-linearly with large δ. In the randomly shaking flows, however,
c∗ increases monotonically in δ, without local resonance peaks.
The continuously many scales in the random shaking removes
resonance. The speed scaling in large δ is also O(δ0.3). However,
the range of values of δ over which this scaling is manifested
changes with α. Specifically, we observe that when α is large
(e.g. α = 10) this scaling O(δ0.3) is manifested only at larger
values of δ, compared to the case of smaller α (e.g. α = 1).
A rigorous justification of this observed scaling is not known to
the authors.
Next, we consider spatial randomness in the direction of front

propagation. The shear perturbation ξ is generated by the random
Fourier method: ξ(x, ω) ≈

∑Fm
j=0 E

1/2(j∆k)
√
∆k(ζj cos(2π j∆kx)

+ ηj sin(2π j∆kx)), where ∆k is the wavenumber spacing and
Fm is the highest Fourier mode included in the approximation.
The variables ζj and ηj are independent unit Gaussians. We take
E1/2(k) = 1

k and Fm = 30, and use a uniform grid of 1000 ×
200 (Lx × 1 with Lx = 5.0) to approximate the truncated
channel. Fig. 3(top) shows the dependence of c∗ on the channel
length Lx for values in the range Lx = 1.0 to Lx = 12.0. The
front speed is seen to converge to a deterministic constant as
Lx increases.
We observe that the random transverse perturbation destroys

the O(δ1/4) growth law of the front speed in steady cellular
flows [18]. Fig. 3(bottom) is a log–log plot of the front speed as a
function of flow amplitude for various values of the perturbation
strength ε. The plots demonstrate the power-law scaling of c∗
with respect to δ; the solid lines fitting the data have slopes 0.28,
0.14, 0.09, and 0.05, respectively. This demonstrates a significant
reduction of the front speed due to the transverse random
perturbation breaking the cellular structures at many places along
the channel.
In conclusion, we have developed a variational principle based

numerical method to compute reactive front speeds in random
flows. With this method we discover new phenomena in front
speeds in randomly perturbed cellular flows. When a cellular flow
is perturbed by temporally random oscillations, the front speed c∗
does not exhibit a resonance between spatial and temporal scales,
as in the case of time periodic oscillation of cellular flows. On
the other hand, random spatial oscillations significantly diminish
the speed-enhancing effect of the underlying cellular flow. The
variational approach is a promising tool for studying stochastic
reactive fronts arising in other scientific areas such as multiscale
surface reactions [30], among other problems of front propagation
into unstable states [23].
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