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L1 Stability Estimates
for n×n Conservation Laws

Alberto Bressan, Tai-Ping Liu & Tong Yang

Abstract

Let ut +f (u)x = 0 be a strictly hyperbolic n×n system of conservation laws,
each characteristic field being linearly degenerate or genuinely nonlinear. In this
paper we explicitly define a functional Φ = Φ(u, v), equivalent to the L1 distance,
which is “almost decreasing” i.e.,

Φ
(
u(t), v(t)

) − Φ
(
u(s), v(s)

)
5 O (ε) · (t − s) for all t > s = 0,

for every pair of ε-approximate solutions u, v with small total variation, generated
by a wave front tracking algorithm. The small parameter ε here controls the errors
in the wave speeds, the maximum size of rarefaction fronts and the total strength of
all non-physical waves in u and in v. From the above estimate, it follows that front-
tracking approximations converge to a unique limit solution, depending Lipschitz
continuously on the initial data, in the L1 norm. This provides a new proof of
the existence of the standard Riemann semigroup generated by a n × n system of
conservation laws.

1. Introduction

The aim of this paper is to provide a new, concise proof of the L1 stability of
solutions to the Cauchy problem

ut + f (u)x = 0, (1.1)

u(0, x) = ū(x) (1.2)

for a strictly hyperbolic n × n system of conservation laws. Within a domain of
small BV functions, the existence of a globally Lipschitz flow, whose trajectories
are entropy weak solutions to (1.1), was conjectured in [2] and first proved in [7]
for systems of two equations and in [8] for general n × n systems. In all these
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works, the basic idea is to connect two solutions u, v of (1.1) by a one-parameter
family of solutions uθ , and study how the length of the path γt : θ 7→ uθ (t)

varies in time. As long as all solutions uθ remain sufficiently regular, the length
of γt can be computed by integrating the norm of a generalized tangent vector. By
studying the linearized evolution equation for these tangent vectors [11], an a-priori
estimate on their norm is derived [5]. In turn, this provides a bound on the length
of γt and hence on the distance

∥∥u(t) − v(t)
∥∥

L1 . Unfortunately, this approach is
hampered by the possible loss of regularity of the solutions uθ . In order to retain
the minimal regularity (piecewise Lipschitz continuity) required for the existence
of tangent vectors, in [4, 7, 8] various approximation and restarting procedures had
to be devised. These eventually led to entirely rigorous proofs, but at the price of
heavy technicalities.

A different approach has been proposed in [18, 20, 21, 22]. It relies on the
explicit construction of a functional Φ = Φ(u, v) which is equivalent to the L1

distance:
1

C
‖u − v‖L1 5 Φ(u, v) 5 C

∥∥u − v‖L1 , (1.3)

and which is decreasing in time along any pair of solutions of (1.1), i.e.,

Φ
(
u(t), v(t)

)
5 Φ

(
u(s), v(s)

)
for every t > s = 0. (1.4)

For n×n systems with coinciding shock and rarefaction curves, a functional having
these properties was introduced in [20]. In the case of 2 × 2 systems without this
coincidence property, the construction of an appropriate functional was carried out
in [21]. The method can also be applied to general n × n systems [22].

In the present paper we show that the functional constructed in [21] and [22]
can be simplified considerably when the distance between the two solutions u and
v are measured along shocks, instead of rarefaction curves. The new functional is
then a part of the original ones in [21] and [22]. Indeed, for piecewise constant u, v,
the value of Φ(u, v) is defined as follows. For each x ∈ R, connect u(x) with v(x)

always moving along shock curves. Call qi(x) the size of the i-th shock in the jump
thus determined by u(x) and v(x). We then define

Φ(u, v)
.=

n∑
i=1

∫ ∞

−∞
∣∣qi(x)

∣∣Wi(x) dx, (1.5)

where the weights Wi have the following form:

Wi(x)
.= 1 + κ1 · [

total strength of waves in u and in v

which approach the i-wave qi(x)
]

+ κ2 · [
wave interaction potentials of u and of v

]
.

(1.6)

See (2.16) for a precise definition. This functional consists of the linear, quadratic
and generalized entropy functionals of [21] and [22]. Here the functional is ex-
pressed in a form so that the weights Wi look very similar to those used in [2, 4,
5, 7, 8]. In the case of systems with coinciding shock and rarefaction curves, our
functional coincides with the one in [20]. In the opposite case, for a given genuinely
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nonlinear family i ∈ {1, . . . , n}, it is interesting to observe that the contribution to
Wi given by the i-waves in u and v approaching qi(x) yields precisely the nonlinear
entropy functional studied in [19].

Most of our analysis will be concerned with ε-approximate solutions con-
structed by a wave-front tracking algorithm [1, 3, 13, 23]. These are piecewise
constant functions in the t, x-plane with a finite number of wave fronts, classified
as shocks, rarefactions and non-physical waves. The small parameter ε controls
three types of errors:

• Errors in the speeds of shock and rarefaction fronts.
• The maximum strength of rarefaction fronts.
• The total strength of all non-physical waves.

As ε → 0, every strong limit of ε-approximate solutions provides an en-
tropy weak solution to (1.1). Studying the behavior of the functional Φ(t)

.=
Φ

(
u(t), v(t)

)
in connection with front tracking approximations offers consid-

erable advantages. Indeed, the maps t 7→ u(t), t 7→ v(t) are continuous with
values in L1. Hence the same is true for the corresponding wave strengths qi in
(1.5). Moreover, at every time τ where two fronts in u or in v interact, by the Glimm
interaction estimates [14, 24] all weights Wi decrease. This trivially implies that
Φ(τ+) < Φ(τ−). Therefore, to prove the basic inequality

Φ(t) 5 Φ(s) + O (1) · ε(t − s), 0 5 s < t, (1.7)

it suffices to show that Φ̇ 5 O (1) ·ε outside interaction times. This can be checked
by a direct calculation, relying again on standard interaction estimates.

By using (1.7) in connection with sequences of approximate solutions uν, vν and
letting εν → 0, it now becomes clear that front-tracking approximations converge to
a unique limit, depending Lipschitz continuously on the initial data. This provides
a new, much simpler proof of the existence of a Lipschitz semigroup generated
by the n × n system of conservation laws (1.1). We recall that the existence of
such a semigroup plays a key role in various uniqueness proofs [9, 10] for entropy
weak solutions of the Cauchy problem. As a further consequence, thanks the front-
tracing technique developed in [16], sharp error estimates on approximate solutions
constructed by the Glimm scheme can also be derived [12].

The paper is organized as follows. After a review of basic material, in Section
2 we give the definition of the functional Φ and state the main results. Section 3
contains an outline of the proof. The calculations involved in the main estimate
are then performed in Section 4 for the case with coinciding shock and rarefaction
curves, and in Section 5 for the general genuinely nonlinear case.

2. Statement of the Main Results

Let (1.1) be a strictly hyperbolic n×n system of conservation laws in one space
dimension, and assume that each characteristic field is either linearly degenerate or
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genuinely nonlinear [15, 24]. In the following we denote by λ1(u) < · · · < λn(u)

the eigenvalues of the Jacobian matrix A(u)
.= Df (u). Moreover,

σ 7→ Si(σ )(u0), σ 7→ Ri(σ )(u0) (2.1)

indicate respectively the i-shock and i-rarefaction curves through the point u0. If the
i-th field is linearly degenerate, or else if the i-rarefaction curves are straight lines,
then these shock and rarefaction curves coincide [25]. In this case, we parametrize
them simply by arc length. On the other hand, in the general genuinely nonlinear
case without this coincidence property, we choose the parameter σ in (2.1) so that

d

dσ
λi

(
Si(σ )(u0)

) ≡ 1,
d

dσ
λi

(
Ri(σ )(u0)

) ≡ 1,

λi

(
Si(σ )(u0)

) − λi(u0) = σ = λi

(
Ri(σ )(u0)

) − λi(u0).

In all cases, it is well known [24] that the two curves Si , Ri have a second-order
tangency at u0. By λi(u

+, u−) we denote the i-th eigenvalue of the averaged matrix

A(u+, u−)
.=

∫ 1

0
A

(
θu+ + (1 − θ)u−)

dθ.

When u+ = Si(σ )(u−), this eigenvalue coincides with the Rankine-Hugoniot
speed of the i-shock joining u− with u+. In the following we shall consider ap-
proximate solutions of (1.1) with small total variation, obtained by a wave-front
tracking algorithm.

Definition 1. Given ε > 0, we say that u : [0, ∞[ 7→ L1(R; R
n) is an ε-

approximate front-tracking solution of (1.1) if the following holds:

1. As a function of two variables, u = u(t, x) is piecewise constant, with dis-
continuities occurring along finitely many lines in the (t, x)-plane. Only finitely
many wave-front interactions occur, each involving exactly two incoming fronts.
Jumps can be of three types: shocks (or contact discontinuities), rarefactions and
non-physical waves, denoted as J = S ∪ R ∪ N P .

2. Along each shock (or contact discontinuity) x = xα(t), α ∈ S , the values
u− .= u(t, xα−) and u+ .= u(t, xα+) are related by

u+ = Skα (σα)(u−), (2.2)

for some kα ∈ {1, . . . , n} and some wave size σα . If the kα-th family is genuinely
nonlinear, then the entropy admissibility condition σα < 0 also holds. Moreover,
the speed of the shock front satisfies∣∣ẋα − λkα (u+, u−)

∣∣ 5 ε. (2.3)

3. Along each rarefaction front x = xα(t), α ∈ R, one has

u+ = Rkα (σα)(u−), σα ∈ ]0, ε], (2.4)
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for some genuinely nonlinear family kα . Moreover,∣∣ẋα(t) − λkα (u+)
∣∣ 5 ε. (2.5)

4. All non-physical fronts x = xα(t), α ∈ N P have the same speed:

ẋα(t) ≡ λ̂, (2.6)

where λ̂ is a fixed constant strictly greater than all characteristic speeds. The total
strength of all non-physical fronts in u(t, ·) remains uniformly small, namely,∑

α∈N P

∣∣u(t, xα+) − u(t, xα−)
∣∣ 5 ε for all t = 0. (2.7)

If, in addition, the initial value of u satisfies∥∥u(0, ·) − ū
∥∥

L1 < ε, (2.8)

we say that u is an ε-approximate solution to the Cauchy problem (1.1), (1.2).
In the following, we simply call

σα
.= ∣∣u(t, xα+) − u(t, xα−)

∣∣, α ∈ N P , (2.9)

the strength of the non-physical front at xα(t). By convention, we regard non-
physical fronts as belonging to a fictitious linearly degenerate (n + 1)-th charac-
teristic family, so that kα

.= n + 1 for every α ∈ N P . As customary, the total
strength of waves in u is measured by

V (u)
.=

∑
α

|σα|, (2.10)

where the summation runs over all wave fronts of u. The wave interaction potential
is

Q(u) =
∑

(α,β)∈A

|σα · σβ |, (2.11)

where the summation runs over all couples of approaching waves. With the above
convention on non-physical fronts, we recall that two fronts of the families kα, kβ ∈
{1, . . . , n+1} located respectively at xα, xβ with xα < xβ are approaching if either
kα > kβ , or kα = kβ , and at least one of them is a genuinely nonlinear shock.

The existence of front-tracking approximate solutions was proved in [13] for
systems of two equations and in [1, 3, 23] for general n×n systems. More precisely,
for each ε > 0 and for all initial data ū ∈ L1 with sufficiently small total variation,
there exists an ε-approximate solution u = u(t, x) to the Cauchy problem of (1.1),
(1.2), defined for all t = 0. For a suitable constant C0, the function

t 7→ Υ
(
u(t)

) .= V
(
u(t)

) + C0Q
(
u(t)

)
, (2.12)

bounding the total variation of u, is non-increasing.
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Now let v be another ε-approximate solution of (1.1) with small total variation.
We wish to estimate how the distance

∥∥v(t) − u(t)
∥∥

L1 changes in time. For this
purpose, we define the scalar functions qi implicitly by

v(x) = Sn

(
qn(x)

) ◦ · · · ◦ S1
(
q1(x)

)(
u(x)

)
. (2.13)

Intuitively, qi(x) can be regarded as the strength of the i-shock wave in the jump(
u(x), v(x)

)
. On a compact neighborhood of the origin, we clearly have

1

C1
· ∣∣v(x) − u(x)

∣∣ 5
n∑

i=1

∣∣qi(x)
∣∣ 5 C1 · ∣∣v(x) − u(x)

∣∣ (2.14)

for some constant C1. We now consider the functional

Φ(u, v)
.=

n∑
i=1

∫ ∞

−∞
∣∣qi(x)

∣∣Wi(x) dx, (2.15)

where the weights Wi are defined by setting:

Wi(x)
.= 1 + κ1 · [

total strength of waves in u and in v

which approach the i-wave qi(x)
]

+ κ2 · [
wave interaction potentials of u and of v

]
.= 1 + κ1Ai(x) + κ2

[
Q(u) + Q(v)

]
.

(2.16)

The amount of waves approaching qi(x) is defined as follows. If the i-shock and
i-rarefaction curves coincide (Temple class), we simply take

Ai(x)
.=

[ ∑
xα<x, i<kα5n

+
∑

xα>x, 15kα<i

]
|σα|. (2.17)

The summations here extend to waves both of u and of v. By [25], the definition
(2.17) applies if the i-th field is linearly degenerate or if all i-rarefaction curves
are straight lines. On the other hand, if the i-th field is genuinely nonlinear with
shock and rarefactions curves not always coinciding, our definition of Ai contains
an additional term, accounting for waves in u and in v of the same i-th family:

Ai(x)
.=

[ ∑
α∈J (u)∪J (v)

xα<x, i<kα5n

+
∑

α∈J (u)∪J (v)

xα>x, 15kα<i

]
|σα|

+



[ ∑
kα=i

α∈J (u), xα<x

+
∑
kα=i

α∈J (v), xα>x

]
|σα| if qi(x) < 0,

[ ∑
kα=i

α∈J (v), xα<x

+
∑
kα=i

α∈J (u), xα>x

]
|σα| if qi(x) > 0.

(2.18)
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Here and in the sequel, J (u) and J (v) denote the sets of all jumps in u and in
v, while J .= J (u) ∪ J (v). We recall that kα ∈ {1, . . . , n + 1} is the family
of the jump located at xα with size σα . Notice that the strengths of non-physical
waves do enter in the definition of Q. Indeed, a non-physical front located at xα

approaches all shock and rarefaction fronts located at points xβ > xα . On the other
hand, non-physical fronts play no role in the definition of Ai .

The values of the large constants κ1, κ2 in (2.16) will be specified later. Observe
that, as soon as these constants have been assigned, we can then impose a suitably
small bound on the total variation of u, v so that

1 5 Wi(x) 5 2 for all i, x. (2.19)

From (2.14), (2.15) and (2.19) it thus follows that

1

C1
· ∥∥v − u

∥∥
L1 5 Φ(u, v) 5 2C1 · ∥∥v − u

∥∥
L1 . (2.20)

In view of (2.12), our L1 stability estimate for front tracking approximations can
now be stated as follows.

Theorem 1. For suitable constants C2, κ1, κ2, δ0 > 0 the following holds. Let u, v

be ε-approximate front tracking solutions of (1.1), with

Υ
(
u(t)

)
< δ0, Υ

(
v(t)

)
< δ0 for all t = 0. (2.21)

Then the functional Φ in (2.15)–(2.18) satisfies

Φ
(
u(t), v(t)

) − Φ
(
u(s), v(s)

)
5 C2ε(t − s) for all 0 5 s < t. (2.22)

From this result, the existence of a Lipschitz semigroup generated by (1.1) can
be easily proved. Indeed, recalling (2.12), consider the domain

D .= cl
{
u ∈ L1(R; R

n); u is piecewise constant, V (u) + C0 · Q(u) < δ0
}
,

(2.23)

where cl denotes L1-closure. We then have

Theorem 2. For all initial data ū ∈ D , as ε → 0 any sequence of ε-approximate
front-tracking solutions of the Cauchy problem (1.1), (1.2) converges to a unique
limit u = u(t, x). The map (ū, t) 7→ u(t, ·) .= St ū defines a uniformly Lipschitz
continuous semigroup, whose trajectories are entropy weak solutions of (1.1).

Proof of Theorem 2. Let ū ∈ D be given. Consider any sequence {uν}ν=1, such
that each uν is a front-tracking εν-approximate solution of (1.1) with∥∥uν(0) − ū

∥∥
L1 < εν, lim

ν→∞ εν = 0, (2.24)

Υ
(
uν(t)

)
< δ0 for all t = 0. (2.25)
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For every µ, ν = 1 and t = 0, by (2.20) and (2.22) it now follows that∥∥uµ(t) − uν(t)
∥∥

L1 5 C1 · Φ
(
uµ(t), uν(t)

)
5 C1 · Φ

(
uµ(0), uν(0)

) + C1C2t · max{εµ, εν} (2.26)

5 2C2
1

∥∥uµ(0) − uν(0)
∥∥

L1 + C1C2t · max{εµ, εν}.
Since the right-hand side of (2.26) approaches zero as µ, ν → ∞, the sequence is
a Cauchy sequence and converges to a unique limit. The semigroup property

Ss

(
St ū) = Ss+t ū

is an immediate consequence of uniqueness. Finally, let ū, v̄ ∈ D be given. For
each ν = 1, let uν, vν be front-tracking εν-approximate solutions of (1.1) with∥∥uν(0) − ū

∥∥
L1 < εν,

∥∥vν(0) − v̄
∥∥

L1 < εν, lim
ν→∞ εν = 0. (2.27)

Again using (2.20) and (2.22) we deduce that∥∥uν(t) − vν(t)
∥∥

L1 5 C1 · Φ
(
uν(t), vν(t)

)
5 C1 ·

[
Φ

(
uν(0), vν(0)

) + C2tεν

]
(2.28)

5 2C2
1

∥∥uν(0) − vν(0)
∥∥

L1 + C1C2tεν .

Let ν → ∞; by (2.27) it follows that∥∥u(t) − v(t)
∥∥

L1 5 2C2
1 · ‖ū − v̄‖L1 . (2.29)

This establishes the Lipschitz continuity of the semigroup, completing the proof.

For the uniqueness of the semigroup S and a characterization of its trajectories
we refer to [6].

3. The Basic Estimate

To prove Theorem 1, we need to examine how the functional Φ evolves in time.
In connection with (2.13), at each x define the intermediate states ω0(x) = u(x),
ω1(x), . . . , ωn(x) = v(x) by setting

ωi(x)
.= Si

(
qi(x)

) ◦ Si−1
(
qi−1(x)

) ◦ · · · ◦ S1
(
q1(x)

)(
u(x)

)
. (3.1)

Moreover, call

λi(x)
.= λi

(
ωi−1(x), ωi(x)

)
(3.2)
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the speed of the i-shock connecting ωi−1(x) with ωi(x). A direct computation now
yields

d

dt
Φ

(
u(t), v(t)

)
=

∑
α∈J

n∑
i=1

{∣∣qi(xα−)
∣∣Wi(xα−) − ∣∣qi(xα+)

∣∣Wi(xα+)
}

· ẋα

=
∑
α∈J

n∑
i=1

{∣∣qα+
i

∣∣Wα+
i

(
λα+

i − ẋα

) − ∣∣qα−
i

∣∣Wα−
i

(
λα−

i − ẋα

)}
,

(3.3)

with obvious notations. We regard the quantity
∣∣qi(x)

∣∣λi(x) as the flux of the i-th
component of |v − u| at x. For xα−1 < x < xα , we clearly have∣∣q(α−1)+

i

∣∣λ(α−1)+
i W

(α−1)+
i = ∣∣qi(x)

∣∣λi(x)Wi(x) = ∣∣qα−
i

∣∣λα−
i Wα−

i .

Moreover, the assumption that u(t), v(t) ∈ L1 and are piecewise constant implies
that qi(t, x) ≡ 0 for x outside a bounded interval. This allowed us to add and
subtract the above terms in (3.3), without changing the overall sum.

In connection with (3.3), for each jump point α ∈ J and every i = 1, . . . , n,
define

Eα,i
.= ∣∣qα+

i

∣∣Wα+
i

(
λα+

i − ẋα

) − ∣∣qα−
i

∣∣Wα−
i

(
λα−

i − ẋα

)
. (3.4)

Our main goal is to establish the bounds

n∑
i=1

Eα,i 5 O (1) · |σα|, α ∈ N P , (3.5)

n∑
i=1

Eα,i 5 O (1) · ε|σα|, α ∈ R ∪ S . (3.6)

Here and throughout the following, by the Landau symbol O (1) we denote a quan-
tity whose absolute value satisfies a uniform bound, depending only on the system
(1.1). In particular, this bound does not depend on ε or on the functions u, v. It is
also independent of the choice of the constants κ1, κ2 in (2.16).

From (3.5), (3.6), recalling (2.7), (2.9) and the uniform bounds at (2.12) on the
total strength of waves, we obtain the key estimate

d

dt
Φ

(
u(t), v(t)

)
5 O (1) · ε. (3.7)

If the constant κ2 in (2.16) is chosen large enough, by the Glimm interaction esti-
mates [15, 23] all weight functions Wi(x) decrease at each time τ where two fronts
of u or two fronts of v interact. Integrating (3.7) over any interval [0, t] we therefore
obtain

Φ
(
u(t), v(t)

)
5 Φ

(
u(0), v(0)

) + O (1) · κ1εt, (3.8)
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proving the theorem. All the remaining work is thus aimed at establishing (3.5),
(3.6).

If α ∈ N P , calling σα the strength of this jump as in (2.9), for i = 1, . . . , n

we have the easy estimates

qα+
i − qα−

i = O (1) · σα,

Wα+
i − Wα−

i = 0,

λα+
i − λα−

i = O (1) · σα.

(3.9)

Therefore, with

Eα,i = (|qα+
i | − |qα−

i |)Wα+
i (λα+

i − ẋα)

+ |qα−
i |(Wα+

i − Wα−
i )(λα+

i − ẋα) + |qα−
i |Wα−

i (λα+
i − λα−

i ),
(3.10)

the estimate (3.5) is clear.

Proving (3.6) will require more work. The case where the jump at xα occurs in
a family with coinciding shock and rarefaction curves is somewhat easier, and will
be covered in Section 4. The general case will then be studied in Section 5.

4. The Case of Coinciding Shock and Rarefaction Curves.

The goal of this section is to establish (3.6) in the case where the jump at xα

occurs in a family with coinciding shock and rarefaction curves. We recall that σα

denotes the size of this jump, occurring in the kα-th characteristic family. In the
following, since all computations refer to a fixed jump α ∈ R ∪ S , we drop the
superscript α and simply write W+

i

.= Wα+
i , q−

kα

.= qα−
kα

, etc. The definition of the
weights at (2.16), (2.17) implies that

W+
kα

= W−
kα

, W+
i − W−

i =
{

κ1|σα| if i < kα,

−κ1|σα| if i > kα.
(4.1)

By strict hyperbolicity, we can assume that in the (suitably small) neighborhood Ω

of the origin where u and v take values, we have

λj (ω) − λi(ω
′) = c > 0 for all i < j, ω, ω′ ∈ Ω. (4.2)

For α ∈ R ∪ S , thanks to the assumption of coinciding shock and rarefaction
curves, we have the estimates∣∣q+

kα
− q−

kα
± σα

∣∣ +
∑
i |=kα

|q+
i − q−

i | = O (1) ·
∑
j |=kα

∣∣q−
j

∣∣|σα|

= O (1) ·
∑
j |=kα

∣∣qj+
∣∣|σα|.

(4.3)
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In the first term, the plus or minus sign is taken in the case where the jump occurs
in u or in v, respectively. Indeed, to derive (4.3), we can regard the waves q±

i as
generated by the interaction of the waves q∓

i with a single kα-wave of strength |σα|.
More precisely, if the jump occurs in v, we consider the interactions:

(q−
1 , . . . , q−

n ) � (0, . . . , 0, σα , 0, . . . , 0) 7→ (q+
1 , . . . , q+

n ),

(q+
1 , . . . , q+

n ) � (0, . . . , 0, −σα , 0, . . . , 0) 7→ (q−
1 , . . . , q−

n ).

If the jump occurs in u, we consider the interactions:

(0, . . . , 0, −σα , 0, . . . , 0) � (q−
1 , . . . , q−

n ) 7→ (q+
1 , . . . , q+

n ),

(0, . . . , 0, σα , 0, . . . , 0) � (q+
1 , . . . , q+

n ) 7→ (q−
1 , . . . , q−

n ).

In all cases, the difference between the total amount of i-waves before and after
interaction is bounded by an interaction potential, which contains only products of
waves of distinct families. We now estimate the left-hand side of (3.6), separating
the terms related to the kα-th family from all the others. For i |= kα , writing Eα,i

in the form (3.10) and using (4.1), (4.2), we deduce

Eα,i 5 O (1) · Wmax
∑
j |=kα

∣∣q−
j

∣∣|σα| − cκ1
∣∣q−

i

∣∣|σα| + O (1) · ∣∣q−
i

∣∣|σα|W−
i . (4.4)

Here Wmax denotes an upper bound for all weight functions Wi . As remarked at
(2.19), one can assume that Wmax 5 2. Concerning the kα-th component, we claim
that

Eα,kα = W−
kα

{
|q+

kα
|(λ+

kα
− ẋα) − |q−

kα
|(λ−

kα
− ẋα)

}
5 O (1) ·

{
ε|σα| +

∑
j |=kα

∣∣q−
j

∣∣|σα|
}
.

(4.5)

To prove (4.5), assume that the jump occurs in v, the other case being entirely
similar. As in (3.1), consider the intermediate states

ω−
0 = u(xα−), . . . , ω−

i = Si(q
−
i )(ω−

i−1), . . . , ω
−
n = v(xα−),

ω+
0 = u(xα+), . . . , ω+

i = Si(q
+
i )(ω+

i−1), . . . , ω
+
n = v(xα+).

(4.6)

Moreover, define the quantities

q̃kα

.= q−
kα

+ σα, (4.7)

λ∗
kα

.=
∫ 1

0
λkα

(
Skα (θσα)(ω−

kα
)
)
dθ, (4.8)

λ̃kα

.=
∫ 1

0
λkα

(
Skα (θ q̃kα )(ω−

kα−1)
)
dθ. (4.9)
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By assumption, either the kα-th family is linearly degenerate, or else its rarefaction
curves are straight lines. In both cases, the shock speed defined according to (3.2)
satisfies

λ−
kα

.=
∫ 1

0
λkα

(
Skα (θq−

kα
)(ω−

kα−1)
)
dθ. (4.10)

From (4.8)–(4.10) follows the identity

q−
kα

(λ−
kα

− λ∗
kα

) = q̃kα (̃λkα − λ∗
kα

). (4.11)

Indeed, introducing the scalar flux function

g(σ )
.=

∫ σ

0
λkα

(
Skα (s)(ω−

kα−1)
)
ds

and calling q−
kα

.= a, q̃kα

.= b, we have

λ−
kα

= g(a)

a
, λ̃kα = g(b)

b
, λ∗

kα
= g(b) − g(a)

b − a
,

and (4.11) follows easily. In addition, we have the bounds

|ẋα − λ∗
kα

| = O (1) · ε + O (1) · |ω−
kα

− ω−
n |

= O (1) ·
(
ε +

∑
j |=kα

∣∣q−
j

∣∣), (4.12)

|q+
kα

− q̃kα | = O (1) ·
∑
j |=kα

∣∣q−
j

∣∣|σα|, (4.13)

|λ+
kα

− λ̃kα | = O (1) · (|ω+
kα−1 − ω−

kα−1| + |q+
kα

− q−
kα

− σα|)
= O (1) ·

∑
j |=kα

∣∣q−
j

∣∣|σα|. (4.14)

We now write

Eα,kα 5 W−
kα

·
{
|̃qkα |(̃λkα − λ∗

kα
) − |q−

kα
|(λ−

kα
− λ∗

kα
) + ∣∣q+

kα
− q̃kα

∣∣|̃λkα − λ∗
kα

|
+∣∣q+

kα
− q−

kα

∣∣|ẋα − λ∗
kα

| + |q+
kα

|∣∣λ+
kα

− λ̃kα

∣∣}
(4.15)

and observe that, by (4.12),∣∣q+
kα

− q−
kα

∣∣|ẋα − λ∗
kα

| = O (1) ·
(
ε +

∑
j |=kα

∣∣q−
j

∣∣)|σα|. (4.16)

Moreover, (4.13) and (4.14) imply that∣∣q+
kα

− q̃kα

∣∣|̃λkα − λ∗
kα

| + |q+
kα

|∣∣λ+
kα

− λ̃kα

∣∣ = O (1) ·
∑
j |=kα

∣∣q−
j

∣∣|σα|. (4.17)
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To estimate the term

E∗
α

.= |̃qkα |(̃λkα − λ∗
kα

) − |q−
kα

|(λ−
kα

− λ∗
kα

) (4.18)

we distinguish four cases.

Case 1. q−
kα

, q̃kα have the same sign. In this case (4.11) implies E∗
α = 0.

Case 2. The kα-field is linearly degenerate. In this case λ−
kα

= λ∗
kα

= λ̃kα ; hence
E∗

α = 0.

Case 3. The kα-field is genuinely nonlinear and q−
kα

< 0 < q̃kα ; hence σα > 0.
In this case, a basic property of front tracking approximations requires σα 5 ε.
Therefore, from the estimates

|̃qkα | + |q−
kα

| = σα, |̃λkα − λ∗
kα

| = O (1) · ε, |λ−
kα

− λ∗
kα

| = O (1) · ε,

we deduce E∗
α = O (1) · ε|σα|.

Case 4. The kα-field is genuinely nonlinear and q̃kα < 0 < q−
kα

; hence σα < 0. In

this case, we have λ̃kα < λ∗
kα

< λ−
kα

; therefore E∗
α < 0.

The discussion of these four cases completes the proof of (4.5).

By (4.4), (4.5), we can now choose the constant κ1 in (2.16) so large and the
total variation of u, v so small that

Eα,kα +
∑
i |=kα

Ei,α 5 O (1) ·
∑
j |=kα

∣∣qα−
j

∣∣|σα| − cκ1

·
∑
i |=kα

∣∣qα−
i

∣∣|σα| + O (1) · ε|σα|

5 O (1) · ε|σα|.

(4.19)

This establishes (3.6).

5. The Genuinely Nonlinear Case

We now prove (3.6) in the genuinely nonlinear case, dropping the assumption
that shock and rarefaction curves coincide. To fix the ideas, let α ∈ J (v), the other
case being similar. As usual, let σα be the size of the jump at xα , occurring in the
kα-th characteristic family. According to (2.16), (2.18), the weights Wα±

i satisfy

W+
i − W−

i =
{

κ1|σα| if i < kα,

−κ1|σα| if i > kα,
(5.1)

W+
kα

− W−
kα

=
{

κ1|σα| if min{q+
kα

, q−
kα

} > 0,

−κ1|σα| if max{q+
kα

, q−
kα

} < 0.
(5.2)
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We first seek an estimate relating the quantities q+
i , q−

i , σα , which will replace
(4.3). Toward this goal, by an easy modification of Theorem 3.3 in [17] we obtain

Lemma 1. Given any state u∗ ∈ Ω , if the values σi, σ
′
i , σ

′′
i satisfy

Sn(σn) ◦ · · · ◦ S1(σ1)(u
∗)

= Sn(σ
′
n) ◦ · · · ◦ S1(σ

′
1) ◦ Sn(σ

′′
n ) ◦ · · · ◦ S1(σ

′′
1 )(u∗),

then

n∑
i=1

|σi − σ ′
i − σ ′′

i | = O (1) ·
( ∑

j

|σ ′
j σ

′′
j |(|σ ′

j | + |σ ′′
j |) +

∑
j |=k

|σ ′
j σ

′′
k |

)
.

If the values σ ′
i , σ are related by

Rkα (σ )(u∗) = Sn(σ
′
n) ◦ · · · ◦ S1(σ

′
1)(u

∗),

then

|σ − σ ′
kα

| +
∑
i |=kα

|σ ′
i | = O (1) ·

(
|σ ′

kα
σ |(|σ ′

kα
| + |σ |) +

∑
j |=kα

|σ ′
j σ |

)
.

In the case where the jump σα in v is a shock, using the first part of Lemma 1
we obtain ∣∣q+

kα
− q−

kα
− σα

∣∣ +
∑
i |=kα

|q+
i − q−

i |

= O (1) ·
(
|q−

kα
|(|q−

kα
| + |σα|) +

∑
j |=kα

∣∣q−
j

∣∣)|σα|, (5.3)

= O (1) ·
(
|q+

kα
|(|q+

kα
| + |σα|) +

∑
j |=kα

∣∣q+
j

∣∣)|σα|. (5.4)

On the other hand, in case of a rarefaction, recalling that σα ∈ ]0, ε] and using both
parts of Lemma 1 we recover the estimates∣∣q+

kα
− q−

kα
− σα

∣∣ +
∑
i |=kα

|q+
i − q−

i |

= O (1) ·
(
ε + |q−

kα
|(|q−

kα
| + |σα|) +

∑
j |=kα

∣∣q−
j

∣∣)|σα|, (5.5)

= O (1) ·
(
ε + |q+

kα
|(|q+

kα
| + |σα|) +

∑
j |=kα

∣∣q+
j

∣∣)|σα|. (5.6)

The following simple lemma will be repeatedly used in the sequel.
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Lemma 2. Let ω̄ ∈ Ω , σ, σ ′ ∈ R, k ∈ {1 . . . , n}. Define the states and wave speeds

ω
.= Sk(σ )(ω̄), λ

.= λk(ω̄, ω),

ω′ .= Sk(σ
′)(ω), λ′ .= λk(ω, ω′),

ω′′ .= Sk(σ + σ ′)(ω̄), λ′′ .= λk(ω̄, ω′′).

Then ∣∣(σ + σ ′)(λ′′ − λ′) − σ(λ − λ′)
∣∣ = O (1) · |σσ ′|(|σ | + |σ ′|). (5.7)

Proof. The function

Ψ (σ, σ ′) .= (σ + σ ′)λ′′ − σλ − σ ′λ′ = (σ + σ ′)(λ′′ − λ′) − σ(λ − λ′)

is smooth and satisfies

Ψ (σ, 0) ≡ Ψ (0, σ ′) ≡ 0,
∂2Ψ

∂σ ∂σ ′ (0, 0) = 0. (5.8)

Therefore,

Ψ (σ, σ ′) =
∫ σ

0

∫ σ ′

0

∂2Ψ

∂σ ∂σ ′ (r, s) drds = O (1) ·
∫ |σ |

0

∫ |σ ′|

0

(|r| + |s|) drds,

proving the lemma.

We can now begin the proof of the basic estimate (3.6), considering first the
case of a rarefaction front: α ∈ R. Since the total variation is small, by (5.5), (5.6)
we can assume that

σα ∈ ]0, ε], 0 < q+
kα

− q−
kα

< 2σα 5 2ε. (5.9)

Three cases must be studied, depending on the signs of q−
kα

, q+
kα

.

Case 1. 0 < q−
kα

< q+
kα

. We first seek an estimate similar to (4.4), valid for i |= kα .
Again writing Eα,i in the form (3.10) but using (5.5) in place of (4.3), we obtain

Eα,i 5 O (1) ·
(
ε +|q−

kα
|(|q−

kα
|+ |σα|)+

∑
j |=kα

∣∣q−
j

∣∣)|σα|− cκ1
∣∣q−

i

∣∣|σα|, i |= kα.

(5.10)

Next, for i = kα , we seek an estimate replacing (4.5). Consider the intermediate
states ω±

i as in (4.6). We then define the states

ω̃kα

.= Skα (q−
kα

+ σα)(ω−
kα−1), ω∗

kα

.= Skα (σα)(ω−
kα

), (5.11)

and the shock speeds

λ∗
kα

.= λkα (ω−
kα

, ω∗
kα

), λ̃kα

.= λkα (ω−
kα−1, ω̃kα ). (5.12)
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We recall that, according to (3.2),

λ−
kα

.= λ−
kα

(ω−
kα−1, ω−

kα
). (5.13)

One can easily check that, if shock and rarefaction curves coincide, then ω̃kα = ω∗
kα

and the above definitions would reduce to (4.8)–(4.10). An application of Lemma
2 with ω̄ = ω−

kα−1, σ = q−
kα

, σ ′ = σα yields∣∣(q−
kα

+σα)(̃λkα −λ∗
kα

)−q−
kα

(λ−
kα

−λ∗
kα

)
∣∣ = O (1) · ∣∣q−

kα

∣∣|σα|(|q−
kα

|+|σα|). (5.14)

Moreover,

|λ+
kα

− λ̃kα | = O (1) · (|ω−
kα−1 − ω+

kα−1| + |q+
kα

− q−
kα

− σα|)
= O (1) ·

(
ε + |q−

kα
|(|q−

kα
| + |σα|) +

∑
i |=kα

|q−
i |

)
|σα|, (5.15)

|λ∗
kα

− ẋα| 5 ε + O (1) · |ω−
kα

− ω−
n |

5 ε + O (1) ·
∑
i |=kα

|q−
i |. (5.16)

The assumption of genuine nonlinearity implies that

λ∗
kα

− λ̃kα > c′|q−
kα

| (5.17)

for some constant c′ > 0. In this case W+
kα

= W−
kα

+ κ1|σα|. Using (5.14)–(5.17)

and recalling that the quantities σα, q+
kα

, q−
kα

are all positive, we now compute

Eα,kα = (
W−

kα
+ κ1σα

)
q+
kα

(
λ+

kα
− ẋα

) − W−
kα

q−
kα

(
λ−

kα
− ẋα

)
5 κ1σα

(
q−
kα

+ σα

)(
λ̃kα − λ∗

kα

)
+ κ1σα

(
q−
kα

+ σα

)(∣∣λ+
kα

− λ̃kα

∣∣ + ∣∣ẋα − λ∗
kα

∣∣)
+ κ1σα

∣∣q+
kα

− q−
kα

− σα

∣∣∣∣λ+
kα

− ẋα

∣∣
+ W−

kα

{
q+
kα

(λ+
kα

− ẋα) − q−
kα

(λ−
kα

− ẋα)
}

5 −c′κ1q
−
kα

σα

(
q−
kα

+ σα

)
+ O (1) · κ1σα(q−

kα
+ σα)

(
ε + q−

kα
(q−

kα
+ σα) +

∑
i |=kα

|q−
i |

)

+ W−
kα

{∣∣(q−
kα

+ σα)(̃λkα − λ∗
kα

) − q−
kα

(λ−
kα

− λ∗
kα

)
∣∣
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+ ∣∣q+
kα

− q−
kα

− σα

∣∣∣∣λ+
kα

− ẋα

∣∣
+ σα

∣∣λ∗
kα

− ẋα

∣∣ + (
q−
kα

+ σα

)∣∣λ+
kα

− λ̃kα

∣∣}
5 −c′κ1q

−
kα

σα

(
q−
kα

+σα

)+O (1) ·
(
ε+q−

kα

(
q−
kα

+σα

)+ ∑
i |=kα

|q−
i |

)
σα. (5.18)

With the constant κ1 chosen large enough, (5.10) and (5.18) together imply (3.6).

Case 2. q−
kα

< q+
kα

< 0. The estimates are almost the same as in Case 1, using (5.6)

instead of (5.5). For i |= kα , writing Eα,i in the form (3.10) we obtain

Eα,i 5 O (1) ·
(
ε +|q+

kα
|(|q+

kα
|+ |σα|)+

∑
j |=kα

∣∣q+
j

∣∣)|σα|− cκ1
∣∣q+

i

∣∣|σα|, i |= kα.

(5.19)

To estimate Eα,kα , consider the intermediate states ω±
i as in (4.6) and define

ω̃kα

.= Skα (q+
kα

− σα)(ω+
kα−1), ω∗

kα

.= Skα (−σα)(ω+
kα

), (5.20)

and the shock speeds

λ∗
kα

.= λkα (ω+
kα

, ω∗
kα

), λ̃kα

.= λkα (ω+
kα−1, ω̃kα ). (5.21)

We recall that, according to (3.2),

λ−
kα

.= λ−
kα

(ω−
kα−1, ω−

kα
). (5.22)

An application of Lemma 2 with ω̄ = ω+
kα−1, σ = q+

kα
, σ ′ = −σα yields∣∣(q+

kα
−σα)(̃λkα −λ∗

kα
)−q+

kα
(λ+

kα
−λ∗

kα
)
∣∣ = O (1) · ∣∣q+

kα

∣∣|σα|(|q+
kα

|+|σα|). (5.23)

Moreover, by (5.4) we have

|λ−
kα

− λ̃kα | = O (1) · (|ω−
kα−1 − ω+

kα−1| + |q+
kα

− q−
kα

− σα|)
= O (1) ·

(
ε + |q+

kα
|(|q+

kα
| + |σα|) +

∑
i |=kα

|q+
i |

)
|σα|, (5.24)

|λ∗
kα

− ẋα| 5 ε + O (1) · |ω+
kα

− ω+
n |

5 ε + O (1) ·
∑
i |=kα

|q+
i |. (5.25)

The assumption of genuine nonlinearity implies that

λ̃kα − λ∗
kα

> c′|q+
kα

|, (5.26)
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for some constant c′ > 0. In this case W−
kα

= W+
kα

+ κ1|σα|. Using (5.23)–(5.26)

and recalling that q−
kα

< q+
kα

< 0 < σα , we now compute

Eα,kα = W+
kα

|q+
kα

|(λ+
kα

− ẋα) − (
W+

kα
+ κ1σα

)|q−
kα

|(λ−
kα

− ẋα)

5 −κ1σα

(|q+
kα

| + σα

)
(̃λkα − λ∗

kα
)

+ κ1σα

(|q+
kα

| + σα

)(|λ+
kα

− λ̃kα | + |ẋα − λ∗
kα

|)
+ κ1σα

∣∣q+
kα

− q−
kα

− σα

∣∣|λ−
kα

− ẋα|

+ W+
kα

{|q+
kα

|(λ+
kα

− ẋα) − |q−
kα

|(λ−
kα

− ẋα)
}

5 −c′κ1|q+
kα

|σα

(|q+
kα

| + σα

) + O (1) · κ1σα

(|q+
kα

| + σα

)
(
ε + |q+

kα
|(|q+

kα
| + σα

) +
∑
i |=kα

|q+
i |

)

+ W+
kα

{∣∣∣|q+
kα

|(λ+
kα

− λ∗
kα

) − (|q+
kα

| + σα

)
(̃λkα − λ∗

kα
)

∣∣∣
+ ∣∣q+

kα
− q−

kα
− σα

∣∣|λ−
kα

− ẋα|+σα|λ∗
kα

− ẋα| + (|q+
kα

| + σα

)|λ−
kα

−λ̃kα |
}

5 −c′κ1|q+
kα

|σα

(|q+
kα

| + σα

)
+ O (1)

(
ε + |q+

kα
|(|q+

kα
| + σα

) +
∑
i |=kα

|q+
i |

)
σα. (5.27)

with the constant κ1 chosen large enough, (5.19) and (5.27) together imply (3.6).

Case 3. q−
kα

< 0 < q+
kα

. For the terms Eα,i with i |= kα , the estimates (5.10) remain
valid. Using (2.19) and (5.9), for the term Eα,kα we easily obtain the estimate

Eα,kα = W+
kα

|q+
kα

|(λ+
kα

− ẋα) − W−
kα

|q−
kα

|(λ−
kα

− ẋα)

5 2
(|q+

kα
| + |q−

kα
|)(|λ+

kα
− ẋα| + |λ−

kα
− ẋα|) (5.28)

= O (1) · σα

(
ε +

∑
i |=kα

|q−
i |

)
.

With the constant κ1 chosen large enough, (5.10) and (5.28) together imply (3.6).

The final part of our analysis is be concerned with a shock front: α ∈ S ; hence
σα < 0, q+

kα
< q−

kα
. As before, three cases are considered, depending on the signs

of q−
kα

and q+
kα

.
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Case 1. 0 < q+
kα

< q−
kα

. For i |= kα , using (5.4) we now obtain

Eα,i 5 O (1) ·
(
|q+

kα
|(|q+

kα
| + |σα|) +

∑
j |=kα

∣∣q+
j

∣∣)|σα| − cκ1
∣∣q+

i

∣∣|σα|, i |= kα.

(5.29)

Next, we seek an estimate onEα,kα . For this purpose, consider again the intermediate
states ω±

i as in (4.6). Moreover, define the states ω̃kα , ω∗
kα

and the shock speeds

λ∗
kα

, λ̃kα as in (5.20), (5.21). By (5.4) and Lemma 2, the estimates (5.23)–(5.25)
still hold. The assumption of genuine nonlinearity now implies that

λ∗
kα

− λ̃kα > c′q+
kα

(5.30)

for some constant c′ > 0. In this case, W−
kα

= W+
kα

− κ1|σα|. Using (5.30) together

with (5.23)–(5.25) and recalling that σα < 0 < q+
kα

< q−
kα

, we compute

Eα,kα = W+
kα

q+
kα

(λ+
kα

− ẋα) − (
W+

kα
− κ1|σα|)q−

kα
(λ−

kα
− ẋα)

5 κ1
(
q+
kα

+ |σα|)|σα|(̃λkα − λ∗
kα

) + κ1|σα|∣∣q+
kα

− q−
kα

− σα

∣∣|λ−
kα

− ẋα|

+ κ1q
+
kα

|σα|(|λ−
kα

− λ̃kα | + |ẋα − λ∗
kα

|)
+ W+

kα

{
q+
kα

(λ+
kα

− ẋα) − q−
kα

(λ−
kα

− ẋα)
}

5 −c′κ1
(
q+
kα

+ |σα|)|σα|q+
kα

+ O (1) · κ1|σα|
(
q+
kα

(
q+
kα

+ |σα|) +
∑
i |=kα

|q+
i |

)
|σα|

+ O (1) · κ1|σα|q+
kα

(
ε + q+

kα
|σα|(q+

kα
+ |σα|) +

∑
i |=kα

|q+
i |

)
5 −c′κ1

(
q+
kα

+ |σα|)|σα|q+
kα

+ O (1)
(
ε + (

q+
kα

+ |σα|)q+
kα

+
∑
i |=kα

|q+
i |

)
|σα|. (5.31)

with the constant κ1 chosen large enough, (5.29) and (5.31) together imply (3.6).

Case 2. q+
kα

< q−
kα

< 0. The estimates are almost the same as in Case 1, using (5.3)
instead of (5.4). For i |= kα , we obtain

Eα,i 5 O (1) ·
(
|q−

kα
|(|q−

kα
| + |σα|) +

∑
j |=kα

∣∣q−
j

∣∣)|σα| − cκ1
∣∣q−

i

∣∣|σα|, i |= kα.

(5.32)
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To estimate Eα,kα , consider the intermediate states ω±
i as in (4.6) and define ω̃kα ,

ω∗
kα

, λ∗
kα

, λ̃kα as in (5.11), (5.12). By (5.3) and Lemma 2, the estimates (5.14)–(5.16)
again hold. The assumption of genuine nonlinearity now implies that

λ̃kα − λ∗
kα

> c′|q−
kα

| (5.33)

for some constant c′ > 0. In this case W+
kα

= W−
kα

− κ1|σα|. Using (5.33) together

with (5.14)–(5.16) and recalling that q−
kα

< q+
kα

< 0 and σα < 0, we now compute

Eα,kα = (
W−

kα
− κ1|σα|)|q+

kα
|(λ+

kα
− ẋα) − W−

kα
|q−

kα
|(λ−

kα
− ẋα)

5 −κ1|σα|(|q−
kα

| + |σα|)(̃λkα − λ∗
kα

)

+ κ1|σα|(|q−
kα

| + |σα|)(|λ+
kα

− λ̃kα | + |ẋα − λ∗
kα

|)
+ κ1|σα|∣∣q+

kα
− q−

kα
− σα

∣∣|λ+
kα

− ẋα|

+ W−
kα

{|q+
kα

|(λ+
kα

− ẋα) − |q−
kα

|(λ−
kα

− ẋα)
}

5 −c′κ1|q−
kα

||σα|(|q−
kα

| + |σα|)
+ O (1) · κ1|σα|(|q−

kα
| + |σα|)(ε + |q−

kα
|(|q−

kα
| + |σα|) +

∑
i |=kα

|q−
i |

)

+ W−
kα

{∣∣q−
kα

(λ−
kα

− λ∗
kα

) − (
q−
kα

+ σα

)
(̃λkα − λ∗

kα
)
∣∣

+ ∣∣q+
kα

−q−
kα

−σα

∣∣|λ+
kα

−ẋα| + |σα||λ∗
kα

−ẋα| + (|q−
kα

| + |σα|)|λ+
kα

−λ̃kα |
}

5 −c′κ1|q−
kα

||σα|(|q−
kα

| + |σα|)
+ O (1)

(
ε + |q−

kα
|(|q−

kα
| + |σα|) +

∑
i |=kα

|q−
i |

)
|σα|. (5.34)

With the constant κ1 chosen large enough, (5.32) and (5.34) together imply (3.6).

Case 3. q+
kα

< 0 < q−
kα

. To fix the ideas, assume that |q−
kα

| 5 |q+
kα

|, the other
case being entirely similar. Since the total variation is small, the above assumption
implies

|σα| > 3
2q−

kα
, q−

kα
+ σα < 1

3σα < 0. (5.35)

For i |= kα , by (5.3) the estimate (5.32) still holds. Defining ω±
i as in (4.6) and ω̃kα ,

ω∗
kα

, λ∗
kα

, λ̃kα as in (5.11), (5.12), the estimates (5.14)–(5.16) also remain valid. In
the present case, the assumption of genuine nonlinearity implies that

λ∗
kα

= λ̃kα , λ−
kα

− λ∗
kα

= c′|q−
kα

+ σα| (5.36)
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for some constant c′ > 0. Recalling that q+
kα

< 0 < q−
kα

< |σα| and using (2.19),
(5.15), (5.16) together with (5.35), (5.36), we now compute

Eα,kα = W+
kα

|q+
kα

|(λ+
kα

− ẋα) − W−
kα

|q−
kα

|(λ−
kα

− ẋα)

5 W+
kα

|q+
kα

|(̃λkα − λ∗
kα

) − W−
kα

|q−
kα

|(λ−
kα

− λ∗
kα

)

+ W+
kα

|q+
kα

|(|λ+
kα

− λ̃kα | + |λ∗
kα

− ẋα|) + W−
kα

|q−
kα

|∣∣λ∗
kα

− ẋα

∣∣
5 −c′

3
· ∣∣q−

kα

∣∣|σα| + O (1) ·
(
ε + q−

kα

(
q−
kα

+ |σα|) +
∑
i |=kα

|q−
i |

)
|σα|. (5.37)

Since the amplitude of the solution is small, (5.32) and (5.37) together imply (3.6).
This completes the proof of the estimate (3.6) in all cases where q+

kα
, q−

kα
|= 0. The

remaining cases where q+
kα

= 0 or q−
kα

= 0 can be easily recovered as limits of the
previous ones.
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