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Abstract

A basic, simple energy method for the Boltzmann equation is presented here. It is based on a new macro–micro decomposi-
tion of the Boltzmann equation as well as the H-theorem. This allows us to make use of the ideas from hyperbolic conservation
laws and viscous conservation laws to yield the direct energy method. As an illustration, we apply the method for the study
of the time-asymptotic, nonlinear stability of the global Maxwellian states. Previous energy method, starting with Grad and
finishing with Ukai, involves the spectral analysis and regularity of collision operator through sophisticated weighted norms.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the Boltzmann equation:

ft + ξ · ∇xf = Q(f, f )

κ
, (f, x, t, ξ) ∈ R × R

3 × R
+ × R

3, (1.1)

where the positive constantκ is the Knudsen number[1]. For simplicity, we consider the hard sphere model, for
which the bilinear collision operatorQ(f, g) is of the following form:

Q(f, g)(ξ) ≡ 1

2

∫
R3×S2

(ξ−ξ∗)·Ω≥0

(−f(ξ)g(ξ∗) − g(ξ)f(ξ∗) + f(ξ′)g(ξ′
∗) + g(ξ′)f(ξ′

∗))|(ξ − ξ∗) · Ω|dξ∗ dΩ,

where

ξ′ = ξ − [(ξ − ξ∗) · Ω]Ω, ξ′
∗ = ξ∗ + [(ξ − ξ∗) · Ω]Ω.
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The main purpose of the present paper is to introduce a macro–micro decomposition of the equation. The
decomposition is based on the decomposition of the solution into the macroscopic, fluid part, the local Maxwellian
M = M(x, t, ξ) = M[ρ,u,θ](ξ), and the microscopic, non-fluid partG = G(x, t, ξ) of the solution:

f = M + G.

The local Maxwellian is constructed from the fluid variables, the five conserved quantities, the mass densityρ(x, t),
momentumm(x, t) = ρu(x, t) and energyE + |u|2/2 of the Boltzmann equation[9]:

ρ(x, t) ≡
∫
R3

f(x, t, ξ)dξ, mi(x, t) ≡
∫
R3

ψif(x, t, ξ)dξ for i = 1,2,3,

ρ

(
E + 1

2
|u|2

)
(x, t) ≡

∫
R3

ψ4f(x, t, ξ)dξ, (1.2)

M ≡ M[ρ,u,θ](ξ) ≡ ρ√
(2πRθ)3

exp

(
−|ξ − u|2

2Rθ

)
. (1.3)

Hereθ(x, t) is the temperature and is related to the internal energyE through the gas constantR, E = (3/2)Rθ,
andu(x, t) is the fluid velocity. The five fluid variables are conserved quantities because of the following property
of the collision invariantsψα [1]:∫

R3
ψαQ(h, g)dξ = 0 for any α = 0,1,2,3,4

and for any functionsh, g:

ψ0 ≡ 1, ψi ≡ ξi for i = 1,2,3, ψ4 ≡ 1
2|ξ|2. (1.4)

With respect to the local Maxwellian, we define an inner product inξ ∈ R
3 as

〈h, g〉 ≡
∫
R3

1

M
h(ξ)g(ξ)dξ

for functionsh, g of ξ. The following functions are orthogonal with respect to this inner product:

χ0(ξ; ρ, u, θ) ≡ 1√
ρ

M, χi(ξ; ρ, u, θ) ≡ ξi − ui

√
Rθρ

M for i = 1,2,3,

χ4(ξ; ρ, u, θ) ≡ 1√
6ρ

( |ξ − u|2
Rθ

− 3

)
M, 〈χα, χβ〉 = δαβ for α, β = 0,1,2,3,4. (1.5)

We define the macroscopic projectionP0 and microscopic projectionP1 as follows:

P0h ≡
4∑

α=0

〈h, χα〉χα, P1h ≡ h − P0h. (1.6)

We view the above decomposition of Boltzmann equation as the linearization around the local Maxwellian states
so that the linear collision operatorL[ρ,u,θ] is

L = L[ρ,u,θ]g ≡ Q(M[ρ,u,θ] + g,M[ρ,u,θ] + g) − Q(g, g). (1.7)

The operatorP0 andP1 are projections, that is

P0P0 = P0, P1P1 = P1.
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A functionh(ξ) is called non-fluid if it gives raise to zero conserved quantities, that is∫
R3

h(ξ)ψα dξ = 0 for α = 0,1,2,3,4. (1.8)

Note that functions in the range of the microscopic projectionP1 are non-fluid. It is clear that for the solution
f(x, t, ξ) of the Boltzmann equation:

P0f = M, P1f = G.

From the decomposition of the solutionf = M + G, the Boltzmann equation becomes

(M + G)t + ξ · ∇x(M + G) = 1

κ
(2Q(G,M) + Q(G,G)). (1.9)

We now decompose the Boltzmann equation. The conservation laws are obtained, as usual, by integrating with
respect toξ of the Boltzmann equation times the collision invariantsψα(ξ):

ρt + divm = 0, mi
t +


 3∑

j=1

ujmi




xj

+ pxi +
∫
R3

ψi(ξ · ∇xG)dξ = 0 for i = 1,2,3,

[
ρ

( |u|2
2

+ E

)]
t

+
3∑

j=1

[
uj

[
ρ

( |u|2
2

+ E

)
+ p

]]
xj

+
∫
R3

ψ4(ξ · ∇xG)dξ = 0. (1.10)

Herep is the pressure for the monatomic gases:

p = 2
3ρE.

The microscopic equation is obtained by applying the microscopic projectionP1 to the Boltzmannequation (1.9).
Since the projections are based on local Maxwellian, the projections and partial differentiations in(x, t) may not
commute. Nevertheless, we note thatMt , as a function ofξ, is in the space spanned byχα, α = 1,2,3,4,5. Thus
P0Mt = Mt . We note thatP0h = 0 if∫

R3
hψα dξ = 0.

Thus the projection of collision terms underP0 is zero. We also have∫
R3

Gtψα dξ = ∂t

∫
R3

Gψα dξ = 0.

Thus we haveP0Gt = 0, and soP1(Mt + Gt) = Gt . With these, the microscopic equation is

Gt + P1(ξ · ∇xG + ξ · ∇xM) = 1

κ
LG + 1

κ
Q(G,G). (1.11)

This decomposition improvises that of[8], where the linearization is about the global Maxwellian. The advantage
of the present one is that the nonlinear termQ(G,G) in (1.11)depends only on the microscopic partG. This is
convenient for the energy method.

From(1.11)we have

G = κL−1(P1ξ · ∇xM) + L−1(κ(∂tG + P1ξ · ∇xG) − Q(G,G)) (1.12)
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and substitute this into(1.10)to result in

ρt + divm = 0, mi
t +


 3∑

j=1

ujmi




xj

+ pxi + κ

∫
R3

ψi(ξ · ∇xL
−1P1ξ · ∇xM)dξ

+
∫
R3

ψi(ξ · ∇xL
−1)(κ[Gt + P1ξ · ∇xG] − Q(G,G))dξ = 0 for i = 1,2,3,

[
ρ

( |u|2
2

+ E

)]
t

+
3∑

j=1

[
uj

[
ρ

( |u|2
2

+ E

)
+ p

]]
xj

+ κ

∫
R3

ψ4(ξ · ∇xL
−1P1ξ · ∇xM)dξ

+
∫
R3

ψ4(ξ · ∇xL
−1)(κ[Gt + P1ξ · ∇xG] − Q(G,G))dξ = 0. (1.13)

The fluid equations, the Euler and Navier–Stokes equations, are in fact part of the above equations. For instance,
when the Knudsen numberκ and the microscopic partG are set zero, the system(1.13)becomes the Euler equa-
tions as in the Hilbert expansion. When only the microscopic partG is set to be zero in(1.13), it becomes the
Navier–Stokes equations as in the Chapman–Enskog expansion. These fluid equations as derived through the
Hilbert and Chapman–Enskog expansions are approximations to the Boltzmann equation[3]. Here we derive it as
part of the full Boltzmann equation. Nevertheless, our approach is consistent in spirit with these expansions in that
the higher order terms beyond first order in the expansions must satisfy a solvability condition, which means that
these terms are microscopic.

In the above system, the terms:

−κ

∫
R3

ψi(ξ · ∇xL
−1P1ξ · ∇xM)dξ

= −κ

∫
R3

ψi(ξ · ∇xL
−1
[ρ,u,θ]P1ξ · ∇xM[ρ,u,θ])dξ

= −κ

∫
R3

ψi(ξ · ∇xL
−1
[1,u,θ]P1ξ · ∇xM[1,u,θ])dξ, i = 1,2,3,

−κ

∫
R3

ψ4(ξ · ∇xL
−1P1ξ · ∇xM)dξ = −κ

∫
R3

ψ4(ξ · ∇xL
−1
[ρ,u,θ]P1ξ · ∇xM[ρ,u,θ])dξ

= −κ

∫
R3

ψ4(ξ · ∇xL
−1
[1,u,θ]P1ξ · ∇xM[1,u,θ])dξ

are the viscosity and heat conductivity terms for the Navier–Stokes equations; and they are independent of the
density gradient∇xρ.

The Boltzmann equation as decomposed in(1.10) and (1.13)consists of the fluid equations plus the microscopic
part. This allows for the use of the ideas from hyperbolic and viscous conservation laws for the energy method.
For the conservation laws, there is the basic concept of entropy. For this, we discuss inSection 2the derivation
of the macroscopic entropy based on the H-theorem for the Boltzmann equation. InSection 3we carry out the
energy method for the nonlinear stability of global Maxwellian states. The energy method here is elementary and
generalizes that in[8]. For other energy methods making use of the spectral properties of the linearized operator,
see[7,10,11].
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2. H-theorem

The H-theorem of the Boltzmann equation is based on the observation that∫
R3

Q(f, f)logf dξ ≤ 0

and that the equality holds only when the solution is a Maxwellian,f = M. The H-theorem is obtained by
multiplying the Boltzmann equation by logf and integrating with respect toξ:∫

R3
f logf dξ + ∇ ·

∫
R3

ξf logf dξ = κ

∫
R3

Q(f, f) logf dξ ≤ 0. (2.1)

There are two ways to view this. The first is to ignore the transport term and study the linearized collision operator.
The linearized collision operatorL of (1.7) is symmetric:

〈h,Lg〉 = 〈Lh, g〉.
The null space ofL contains the macroscopic variables:

Lχα = 0 for α = 0, . . . ,4.

Hilbert [6] shows that the linearized operator has the form:

(Lh)(ξ) = −ν(ξ)h(ξ) + M1/2(ξ)K(hM−1/2)(ξ) (2.2)

for a symmetric compactL2-operatorK. Notice that the linearized operatorL aroundM[ρ,u,θ] and the linearized
operatorL1 aroundM[1,u,θ] have the following relation:

L = ρL1.

The multiplicative operator satisfies, for the hard sphere model:

0 < lim
|ξ|→∞

ν(ξ)

|ξ| < ∞.

With this, it was proved by Carleman[2] for hard sphere model, and by Grad[5] for cutoff hard potentials, that the
linearized operator is negative definite on the space of non-fluid distributions. That is, there existsσ > 0 such that
for any function satisfying(1.8):

〈h,Lh〉 ≤ −σ〈νh, h〉. (2.3)

In particular, this implies that the non-fluid partG of the Boltzmann solution:

〈G, LG〉 ≤ −σ〈νG,G〉.
When the solution is space homogeneous and close to a Maxwellian, it follows from(2.3) that it will converge to
the equilibrium exponentially in time. In other words, it gives a quantitative expression of the H-theorem. This is a
microscopic version of the H-theorem and does not take into account of the space inhomogeneity of the solutions.

For later use, we notice that the projectionsP0, P1 are defined by the collision invariants and therefore satisfy
the following basic properties:

P0ψαM = ψαM, P1ψαM = 0 for α = 0,1,2,3,4, P1L = L, P1Q(h, h) = Q(h, h),

P0L = 0, P0Q(h, h) = 0, 〈ψαM, h〉 = 〈ψαM,P0h〉 for α = 0,1,2,3,4,

〈h,Lg〉 = 〈P1h,LP1g〉, 〈h,L−1P1g〉 = 〈L−1P1h,P1g〉. (2.4)
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For the decomposition(1.11) and (1.13)of the Boltzmann equation we have only used these basic properties of the
projections.

We next derive the macroscopic version of the H-theorem. This version is to study the dissipative property of
the Boltzmann equation with regard to the space inhomogeneity and corresponds to the notion of entropy in gas
dynamics. Set the macroscopic entropyS by

−3

2
ρS ≡

∫
R3

M logM dξ. (2.5)

It is easy to see that logM and∂tM/M are collision invariants and so∫
R3

G logM dξ =
∫
R3

G
∂tM

M
dξ = 0,

∫
R3

Q(f, f) logM dξ = 0. (2.6)

Multiply (1.9)by logM and integrate inξ:

∂

∂t

∫
R3

(M + G) logM dξ + ∇x ·
∫
R3

ξ(M + G) logM dξ −
∫
R3

(M + G)Mt

M
dξ −

∫
R3

(M + G)ξ · ∇xM

M
dξ

=
∫
R3

Q(f, f)

κ
logM dξ. (2.7)

Use(2.6) to simplify this into

∂

∂t

∫
R3

M logM dξ + ∇x ·
∫
R3

ξM logM dξ + ∇x ·
∫
R3

ξG logM dξ −
∫
R3

Mt dξ − ∇x ·
∫
R3

ξM dξ

=
∫
R3

Gξ · ∇xM

M
dξ. (2.8)

Note that, from the continuity equation:

−
∫
R3

Mt dξ − ∇x ·
∫
R3

ξM dξ = −ρt − ∇x · (ρu) = 0. (2.9)

Also from(2.5):∫
R3

ξM logM dξ = u

∫
R3

M logM dξ +
∫
R3

(ξ − u)M logM dξ = −3

2
uρS + 0 (2.10)

and so we have

−3

2
(ρS)t − 3

2
∇x · (ρSu) + ∇x ·

(∫
R3

ξG logM dξ

)
=
∫
R3

Gξ · ∇xM

M
dξ. (2.11)

Plug(1.11)into the right-hand side of(2.11):

−3

2
(ρS)t − 3

2
∇x · (ρSu) + ∇x ·

(∫
R3

ξG logM dξ

)

=
∫
R3

ξ · ∇xM

M
L−1

[ρ,u,θ](κP1ξ · ∇xM)dξ +
∫
R3

ξ · ∇xM

M
L−1

[ρ,u,θ](κGt + κP1ξ · ∇xG − Q(G,G))dξ.

(2.12)

From(2.4) the right-hand side of the above equation is purely microscopic and so the equation becomes

−3

2
(ρS)t − 3

2
∇x · (ρSu) + ∇x ·

(∫
R3

ξG logM dξ

)

=
∫
R3

P1ξ · ∇xM

M
L−1

[ρ,u,θ](κP1ξ · ∇xM)dξ +
∫
R3

P1ξ · ∇xM

M
L−1

[ρ,u,θ](κGt + κP1ξ · ∇xG − Q(G,G))dξ.

(2.13)
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From(1.3) and (2.5):

−3

2
ρS = ρ logρ − 3

2
ρ log(2πRθ) − 1

2
ρ. (2.14)

We now construct an entropy pair(η, q) around a given statēM. In the following, the fluid functions forM̄ are
denoted byρ̄, ū, etc. We may transform the base velocityū to zero by introducing the variablev = u − ū and
consider the new conserved quantities:

α ≡ (ρ, ρv1, ρv2, ρv3, ρ(E + 1
2|v|2))

= (ρ, ρu1 − ū1ρ, ρu2 − ū2ρ, ρu3 − ū3ρ, ρ(E + 1
2u

2) + 1
2ū

2ρ − ū · (ρu1, ρu2, ρu3)).

Thus we may write the conservation laws(1.10)as

αt + ∇x · β = 0. (2.15)

The entropy function(2.14)is expressed as function of the conserved quantitiesα:

−3

2
ρS = 5

3
α0 logα0 − 3

2
α0 log

(
α4 − (α1)

2 + (α2)
2 + (α3)

2

2α0

)
−
(

3

2
log

4π

3
+ 1

2

)
α0. (2.16)

We set the entropy pair as

η = −3
2ρS + 3

2ρ̄S̄ + 3
2∇α(ρS)|α=ᾱ · (α − ᾱ), q = −3

2ρSu+ 3
2ρ̄S̄ū + 3

2∇α(ρS)|α=ᾱ · (β − β̄). (2.17)

This clearly has the property thatη̄ = η(M̄) = 0, ∇αη̄ = ∇αη(M̄) = 0. Direct calculations from(2.16)show that
at the base statēα, the Hessian∂2η/∂αi∂αj, is



5

2ρ̄
0 0 0 − 3

2ρ̄Ē

0
3

2ρ̄Ē
0 0 0

0 0
3

2ρ̄Ē
0 0

0 0 0
3

2ρ̄Ē
0

− 3

2ρ̄Ē
0 0 0

3

2ρ̄Ē2




. (2.18)

It is easy to check that the matrix is positive definite and soη is a convex function of the macroscopic variablesα

at the base statēM. Thus around the base stateᾱ, there exist positive constantsC1 andC2 such that

C1|α − ᾱ|2 ≤ η ≤ C2|α − ᾱ|2. (2.19)

Actually, it can be shown thatη is positive except at the base state. Thus the above holds forα in any given bounded
region.

From(2.13) and (2.15):

ηt + ∇x · q + ∇x ·
(∫
R3

ξG logM dξ

)

=
∫
R3

κ
P1ξ · ∇xM

M
L−1

[ρ,u,θ](P1ξ · ∇xM)dξ +
∫
R3

P1ξ · ∇xM

M
L−1

[ρ,u,θ](κGt + κP1ξ · ∇xG − Q(G,G))dξ.

(2.20)
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In the above identity, the term:

κ

∫
R3

P1ξ · ∇xM

M
L−1

[ρ,u,θ](P1ξ · ∇xM)dξ = κ〈P1ξ · ∇xM, L−1
[ρ,u,θ](P1ξ · ∇xM)〉

represents the entropy dissipation. Since the non-fluid functionsP1ξ · ∇xM belong to a finite dimensional space
in the ξ variables, we have from the microscopic version of the H-theorem(2.3) that the term satisfies, for some
positive constantsσ1 andσ2:

σ1

∫
R3

|P1ξ · ∇xM|2
M

≤ −
∫
R3

P1ξ · ∇xM

M
L−1

[ρ,u,θ](P1ξ · ∇xM)dξ ≤ σ2

∫
R3

|P1ξ · ∇xM|2
M

dξ. (2.21)

Simple calculation shows that∫
R3

|P1ξ · ∇xM|2
M

dξ = O(1)
3∑

j=1

[|∂xju|2 + |∇xθ|2] (2.22)

for some positive function O(1). Notice that in the macroscopic version(2.20)of H-theorem, the dominant term
on the right-hand side is the first integral, which, as we have just seen, represents the dissipation, and the second
integral consists of only higher order derivatives and the quadratic term of microscopic componentG. Therefore, it
captures the dissipative effect of the fluid components in the solution of Boltzmann equation, and this is useful for
the energy estimates in the following sections.

3. Nonlinear stability of a Maxwellian state

In this section, we will show that the macro–micro decomposition yields elementary energy estimates for stability
of a global Maxwellian state. Thus, we assume that the initial valuef |t=0 is a small perturbation of a global
Maxwellian stateM̄. We will show that the macroscopic componentM tends toM̄ and the microscopic component
G tends to zero ast tends to infinity. There are two steps in the energy estimates. In the first step, the lower order
estimate follows from the two versions of the H-theorem. For the higher order estimates, our analysis uses the
techniques for the Navier–Stokes equations in treating the coupling of the fluid variables.

For simplicity, we assume from now on that the Knudsen numberκ = 1.

3.1. Lower order energy estimates of the fluid variables

Integrate the macroscopic H-theorem(2.20)over 0< t < τ andx ∈ R
3 to yield∫

R3
ηdx

∣∣∣∣
t=τ

t=0
=
∫ τ

0

∫
R3

∫
R3

P1ξ · ∇xM

M
L−1

[ρ,u,θ](P1ξ · ∇xM)dξ dx dt

+
∫ τ

0

∫
R3

∫
R3

P1ξ · ∇xM

M
L−1

[ρ,u,θ](Gt + P1ξ · ∇xG − Q(G,G))dξ dx dt. (3.1)

We have from(2.21), (2.22)and the Schwartz inequality that

∫
R3

ηdx

∣∣∣∣
t=τ

t=0
+ σ0

∫ t

0

∫
R3

3∑
j=1

[|∂xju|2 + |∇xθ|2] dx dt

≤ C

∫ τ

0

∫
R3

∫
R3

1

M
|L−1

[ρ,u,θ](Gt + P1ξ · ∇xG − Q(G,G))|2 dξ dx dt (3.2)



186 T.-P. Liu et al. / Physica D 188 (2004) 178–192

for some positive constantsσ0 andC. Here and in the following,C is used to denote a generic constant. This yields
the main first order estimate for the fluid variables. The analysis is fully nonlinear and along the same line as the
entropy estimate for the conservation laws.

To apply the energy estimate on the microscopic component and the higher order energy estimates, we will fix a
background to be an absolute MaxwellianM−:

M− ≡ M[1,u0,θ0] .

Here the temperature is chosen with the property thatθ0 < θ, for all θ under consideration. For definiteness, we set

|u0 − ū| � 1, θ0 = θ̄ − δ for δ > 0. (3.3)

Remark 3.1. The introduction of the weight functionM− is technical. Here, we need to requireδ is small but
larger than the size of the perturbation of|(ρ, u, θ) − (ρ̄, ū, θ̄)|:

|ρ − ρ̄| + |u − ū| + |θ − θ̄| ≤ ε0 < δ. (3.4)

With these, we have, for any given positive constantsᾱ andβ̄:

M− ≤ CM(1 + |ξ|)−ᾱ, M1+β̄ ≤ CM−(1 + |ξ|)−ᾱ (3.5)

for a constantC independent of(x, t, ξ).

By (3.5), (3.2) leads to∫
R3

ηdx

∣∣∣∣
t=τ

t=0
+ σ0

2

∫ τ

0

∫
R3

∑
j=1

[|∂xju|2 + |∇xθ|2] dx dt

≤ C

(∫ τ

0

∫
R3

∫
R3

1

M−
(|Gt|2 + |∇xG|2)dξ dx dt +

∫ τ

0

∫
R3

∫
R3

1

M−
|L−1

[ρ,u,θ]Q(G,G)|2 dξ dx dt

)
. (3.6)

By the using the property of the linearized operatorL in (2.3), one can show that

〈(1 + |ξ|)L−1h,L−1h〉 ≤ σ−2〈(1 + |ξ|)−1h, h〉
for any non-fluid functionh. Hence, we have

∫
R3

ηdx

∣∣∣∣
t=τ

t=0
+ σ0

2

∫ τ

0

∫
R3

3∑
j=1

[|∂xju|2 + |∇xθ|2] dξ dx dt

≤ C

(∫ τ

0

∫
R3

∫
R3

1

M−
(|Gt|2 + |∇xG|2)dξ dx dt +

∫ τ

0

∫
R3

∫
R3

1

M−
(1 + |ξ|)−1Q2(G,G)dξ dx dt

)
.

(3.7)

3.2. Lower order energy estimates of the non-fluid variables

Multiply (1.11)with G/M−; and integrate it over [0, τ] × R
3 × R

3 to result in that

∫
R3×R3

G2

M−
dξ dx

∣∣∣∣∣
t=τ

t=0

+
∫ τ

0

∫
R3×R3

GP1ξ · ∇x(M + G)

M−
dξ dx dt

=
∫ τ

0

∫
R3×R3

GL[ρ,u,θ]G + GQ(G,G)

M−
dξ dx dt. (3.8)
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Since the linearized collision operator around the Maxwellian depends smoothly on the parametersρ, u, θ, the
following lemmas follow easily from the basic properties(2.2) and (2.3)of the linearized collision operator and
the choice of the Mawellian stateM−, (3.3), (3.4) and (35). Their proofs are therefore omitted. These lemmas are
used when we replace the local MaxwellianM in the weighted energy estimates by the global MaxwellianM−. A
polynomial ofξ appears in the integral because of the differentiation on the local MaxwellianM in u andθ give
the first and second order polynormial inξ. However, all of these polynomials can be controlled by the exponential
decay in Maxwellian whenM− is chosen appropriately.

Lemma 3.2. There existsε0 > 0 so that, for anyK > 0 and integeri > 0:∣∣∣∣
∫
R3

g|ξ|iM
M−

dξ

∣∣∣∣ ≤ Ci

(
K

∫
R3

|g|2
M−

dξ + K−1
)
. (3.9)

Lemma 3.3. There existsC > 0 such that for any non-fluid functionsg1(ξ) andg2(ξ) satisfying

∫
R3

gi(ξ)
2

M−
dξ < ∞ for i = 1,2, x ∈ R

3, (3.10)

one has the following estimates for any givenK > 0:∣∣∣∣
∫
R3

g1P1|ξ|jg2

M−
dξ −

∫
R3

g1|ξ|jg2

M−
dξ

∣∣∣∣ ≤ C

∫
R3

K|g1|2 + K−1|g2|2
M−

dξ for j > 0. (3.11)

Lemma 3.4. For theδ satisfying(3.3), there existsε0 > 0so that for any functiong(ξ)with
∫
R3(|g|2(1+|ξ|)/M−)dξ

bounded, we have

−(1 + O(1)ε0)

∫
R3

gL[ρ0,u0,θ0]g

M−
dξ ≤ −

∫
R3

gL[ρ,u,θ]g

M−
dξ ≤ −(1 − O(1)ε0)

∫
R3

gL[ρ0,u0,θ0]g

M−
dξ (3.12)

and then∣∣∣∣
∫
R3

g(L[ρ,u,θ] − L[ρ0,u0,θ0])g

M−
dξ

∣∣∣∣ ≤ O(1)ε0

∫
R3

|g|2(1 + |ξ|)
M−

dξ. (3.13)

By the above lemmas, we deduce from(3.8) that there existsK > 0 such that whenδ � 1:

1

2

∫
R3×R3

G2

M−
dξ dx

∣∣∣∣∣
t=τ

t=0

− 1

4

∫ τ

0

∫
R3×R3

GL[ρ0,u0,θ0]G

M−
dξ dx dt

≤ K

∫ τ

0

∫
R3×R3


 3∑

j=1

|uxj |2 + |∇xθ|2

 dx dt + O(1)(ε0 + K−1)

∫ τ

0

∫
R3×R3

G2(|ξ| + 1)

M−
dξ dx dt

+
∫ τ

0

∫
R3×R3

3∑
j=1

K|Gxj |2
M−

+ GQ(G,G)

M−
dξ dx dt. (3.14)

Here, and also in the next estimate, we have used(2.3). From(3.7)+ σ0/2K (3.14)we have by choosingK sufficiently
large:
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∫
R3

ηdx +
∫
R3×R3

σ0G
2

2KM−
dξ dx

∣∣∣∣∣
t=τ

t=0

+ σ0

4

∫ τ

0

∫
R3

3∑
i=1

|uxi |2 + |∇xθ|2 dx dt − 1

8K

∫ τ

0

∫
R3×R3

GL[ρ0,u0,θ0]G

M−
dξ dx dt

≤ C

[∫ τ

0

∫
R3×R3

GQ(G,G)

M−
dξ dx dt +

∫ τ

0

∫
R3×R3

|Gt|2 +∑3
j=1 |Gxj |2

M−
dx dξ dt

+
∫ τ

0

∫
R3×R3

(1 + |ξ|)−1Q2(G,G)

M−
dx dξ dt

]
. (3.15)

We denote by∂β the differential operator:

∂β ≡ ∂
β0
t ∂

β1
x1∂

β2
x2∂

β3
x3 , |β| ≡

3∑
i=0

βi, where βi ≥ 0 are nonnegative integers.

Consider the first-order energy estimate from the Boltzmannequation (1.1):

0 =
∫ τ

0

∫
R3×R3

(∂βf)(∂β[ft + ξ · ∇xf − (L[ρ,u,θ]G + Q(G,G))])

M−
dξ dx dt with |β| = 1. (3.16)

This yields

1

2

∫
R3×R3

(∂βf)2

M−
dξ dx

∣∣∣∣
t=τ

t=0
−
∫ τ

0

∫
R3×R3

(∂βG)L[ρ,u,θ](∂
βG)

M−
dξ dx dt

=
∫ τ

0

∫
R3×R3

(∂βM)(∂βL[ρ,u,θ]G) + (∂βG)([L[ρ,u,θ], ∂
β]G) + (∂βf)(∂βQ(G,G))

M−
dξ dx dt, (3.17)

where [, ] is the Lie bracket.
From(2.3) there existsσ1 > 0 such that

σ1

∫
R3

|Gt|2 +∑3
j=1 |Gxj |2

M−
(1 + |ξ|)dξ ≤ −

∑
|β|=1

∫
R3

(∂βG)L[ρ,u,θ](∂
βG)

M−
dξ.

Consider(3.15)+C1 (3.17)to obtain whenC1 is sufficiently large:[∫
R3

ηdx +
∫
R3×R3

G2 +∑
|β|=1(∂

βf)2

M−
dξ dx

]∣∣∣∣∣
t=τ

t=0

+
∫ τ

0

∫
R3

3∑
i=1

|uxi |2 + |∇xθ|2 dx dt −
∫ τ

0

∫
R3×R3

GL[ρ0,u0,θ0]G

M−
+
∑
|β|=1

(∂βG)L[ρ,u,θ](∂
βG)

M−
dξ dx dt

≤ C

[∫ τ

0

∫
R3×R3

GQ(G,G)

M−
dξ dx dt +

∫ τ

0

∫
R3×R3

(1 + ξ|)−1Q2(G)

M−
dx dξ dt +

∫ τ

0

∫
R3×R3

×
∑
|β|=1

(∂βM)(∂βL[ρ,u,θ]G) + (∂βG)([L[ρ,u,θ], ∂
β]G) + (∂βf)(∂βQ(G,G,G))

M−
dξ dx dt


 . (3.18)
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Remark 3.5. Notice that the order of differentiations on both sides of(3.18)is up to the first order. The left-hand
side contains positive integrals only. Thus to close this energy estimate, it remains to show that the smallness in
‖ · ‖∞ for lower order derivative terms, so that the terms on the right-hand side can be absorbed by the terms on the
left-hand side. For this, we need to consider the higher order estimates, which will be done in the next subsection.
One also needs to keep in mind that in the energy estimates(3.18), the integral in the fluid variable contains the
terms

∑3
j=1 |uxj |2 + |∇xθ|2 but not the term|∇xρ|2. This is a structure similar to the compressible Navier–Stokes

equation.

3.3. High order energy estimates

In this subsection, we will consider the energy estimates of∂βM and∂βG for 1 ≤ |β| ≤ 5.
Parallel to(3.1), (3.8) and (3.16), we consider the following double integrals:∫ τ

0

∫
R3×R3

(∂αM)(∂α[Mt + P0ξ · ∇x(M + G)])

M−
dξ dx dt = 0, (3.19)

∫ τ

0

∫
R3×R3

(∂αG)(∂α[Gt + P1ξ · ∇x(M + G) − (L[ρ,u,θ]G + Q(G,G))])

M−
dξ dx dt = 0, (3.20)

∫ τ

0

∫
R3×R3

(∂βf)(∂β[ft + ξ · ∇xf − (L[ρ,u,θ]G + Q(G,G))])

M−
dξ dx dt = 0, (3.21)

where 1≤ |α| ≤ 4 and 2≤ |β| ≤ 5.
Since the terms which are higher than quadratic order either contain lower order derivatives of the fluid variables

or the product ofQ(∂γ1G, ∂γ2G) for someγ1 andγ2, the following estimate onQ(g, f), cf. [4], will be used:

‖(|ξ| + 1)−1/2Q(G,G)‖L2
ξ

≤ C‖(1 + |ξ|)1/2G‖2
L2
ξ

.

3.3.1. Smallness assumption

sup
t≥0
x∈R3

|α|≤2

|∂αρ| + |∂αu| + |∂αθ| + sup
t≥0
x∈R3

|γ|≤2

∥∥∥∥ |∂γG(x, t, ξ)|√
M−

(|ξ| + 1)1/2
∥∥∥∥
L2
ξ

< ε1. (3.22)

Here, the small parameterε1 is given in terms of the initial data.
The integral(3.19) and (1.12)result in

0 = 1

2

∫
R3×R3

(∂αM)2

M−
dξ dx

∣∣∣∣
t=τ

t=0
+
∫ τ

0

∫
R3×R3

(∂αM)(∂αP0ξ · ∇xL
−1
[ρ,u,θ]P1ξ · ∇xM)

M−
dξ dx dt

+
∫ τ

0

∫
R3×R3

(∂αM)(∂α[P0, ξ · ∇x]M)

M−
dξ dx dt

+
∫ τ

0

∫
R3×R3

(∂αM)(∂αP0ξ · ∇xL
−1
[ρ,u,θ] [(Gt + P1ξ · ∇xG) − Q(G,G)])

M−
dξ dx dt, (3.23)

where [P0, ξ · ∇x] is a zeroth order differential operator. From the smallness assumption(3.22), it follows that

∫
R3×R3

(∂αM)2

M−
dξ dx

∣∣∣∣
t=τ

t=0
+
∫ τ

0

∫
R3

3∑
j=1

|∂αuxj |2 + |∇x∂
αθ|2 dx dt

≤ C

∫ τ

0

∫
R3×R3

|∂t∂αG|2 +∑3
j=1 |∂xj ∂αG|2

M−
dξ dx dt
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+Cε1

∫ τ

0

∫
R3

∑
(|α|+1)/2<|α′|<|α|

|∂α′
ρ|2 + |∂α′

u|2 + |∂α′
θ|2 dx dt

+Cε1

∫ τ

0

∫
R3×R3

∑
(|α|+1)/2<|α′|<|α|

(1 + |ξ|) |∂
α′

G|2
M−

dξ dx dt. (3.24)

Similarly, (3.20) and (3.21)combined with(3.22)to yield the following two estimates:

∫
R3×R3

|∂αG|2
M−

dξ dx

∣∣∣∣
t=τ

t=0
−
∫ τ

0

∫
R3×R3

(∂αG)L[ρ0,u0,θ0](∂
αG)

M−
dξ dx dt

≤ C


∫ τ

0

∫
R3×R3


 3∑

j=1

|∂αuxj |2 + |∇x∂
αθ|2


 dx dt

+
∫ τ

0

∫
R3×R3


 3∑

j=1

|∂αGxj |2
M−

+ (∂αG)(∂αQ(G,G))

M−


 dξ dx dt

+ ε1

∫ τ

0

∫
R3

∑
(|α|+1)/2<|α′|<|α|

(|∂α′
ρ|2 + |∂α′

u|2 + |∂α′
θ|2)dx dt

+ ε1

∫ τ

0

∫
R3×R3

∑
(|α|+1)/2<|α′|<|α|

(1 + |ξ|)|∂α′
G|2

M−
dξ dx dt


 (3.25)

and ∫
R3×R3

(∂βf)2

M−
dξ dx

∣∣∣∣
t=τ

t=0
−
∫ τ

0

∫
R3×R3

(∂βG)L[ρ,u,θ](∂
βG)

M−
dξ dx dt

=
∫ τ

0

∫
R3×R3

C(δ + ε1)
∑

|β|/2<|β′|≤|β|[|∂β
′
ρ|2 + |∂β′

u|2 + |∂β′
θ|2 + (1 + |ξ|)|∂β′

G|2]

M−
dξ dx dt. (3.26)

Similar to the combination leading to(3.18), we consider(3.24)+(µ1)
−1(3.25)+µ2(3.26), where bothµi, i = 1,2,

are positive constants which are sufficiently large, to result in

∫
R3×R3


 ∑

1≤|α|≤4

(∂αM)2 + (∂αG)2

M−
+

∑
1≤|β|≤5

(∂βf)2

M−


 dξ dx

∣∣∣∣∣∣
t=τ

t=0

+
∑

1≤|α|≤4

∫ τ

0

∫
R3

3∑
i=1

|∂αuxi |2 + |∂α∇xθ|2 dx dt +
∑

1≤|α|≤5

∫ τ

0

∫
R3×R3

(∂αG)2(1 + |ξ|)
M−

dξ dx dt

≤ C(ε1 + δ)
∑

1≤|β′|≤5

∫ τ

0

∫
R3

|∂β′
ρ|2 + |∂β′

u|2 + |∂β′
θ|2 dx dt + C(ε1 + δ)

×
∑

1≤|β′|≤5

∫ τ

0

∫
R3×R3

(1 + |ξ|)|∂β′
G|2

M−
dξ dx dt. (3.27)

In the energy estimate(3.27), the highest order terms of the fluid variables on the left-hand side do not contain the
term |∂βρ| with |β| = 5. However, on the right-hand side the error terms do contain|∂βρ|2 with |β| = 5 but with
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small coefficient. In order to bound these terms, we need to use the conservation laws(1.10). Hence, we rewrite the
first two equations of(1.10)in the(ρ, u, θ,G) variables:

ρt +
3∑

j=1

(ρuj)xj = 0, ui
t +

3∑
j=1

ujui
xj

+ R

(
θxi + θ

ρxi

ρ

)
+
∫
R3

ψi − uiψ0

ρ
ξ · ∇xGdξ = 0. (3.28)

Now we consider

3∑
i=1

∫ τ

0

∫
R3×R3

(∂αρxi)∂
α


ui

t +
3∑

j=1

ujui
xj

+ R

(
θxi + θ

ρxi

ρ

)
+
∫
R3

ψi − uiψ0

ρ
ξ · ∇xG dξ


 dx dt = 0,

(3.29)

where|α| = 4. By using integration by parts and the continuity equation in(3.28), we have

3∑
i=1

∫ τ

0

∫
R3×R3

(∂αρxi)∂
α

(
Rθ

ρxi

ρ

)
dx dt

=
3∑

i=1

∫
R3

(∂αρxi)(∂
αui)dx

∣∣∣∣
t=τ

t=0
−
∫ τ

0

∫
R3×R3

(∂α div (ρu))∂αui
xi

dx dt

−
3∑

i=1

∫ τ

0

∫
R3×R3

(∂αρxi)∂
α


 3∑

j=1

ujui
xj

+ Rθxi +
∫
R3

ψi − uiψ0

ρ
ξ · ∇xG dξ


 dx dt. (3.30)

Thus, we have
3∑

i=1

∫ τ

0

∫
R3×R3

|∂αρxi |2 dx dt

≤ C


∫
R3

∑
|α′|=5

|∂α′
ρ|2 +

∑
|α′|=4

|∂α′
u|2 dx

∣∣∣∣∣∣
t=0

+
∫
R3

∑
|α′|=5

|∂α′
ρ|2 +

∑
|α′|=4

|∂α′
u|2 dx

∣∣∣∣∣∣
t=τ

+
∑

|α′|=5

∫ τ

0

∫
R3

(
|∂α′

u|2 + |∂α′
θ|2 +

∫
R3

|∂α′
G|2

M−
dξ

)
dx dt

+ ε1

∑
0≤|α′|<5

∫ τ

0

∫
R3

(
|∂α′

u|2 + |∂α′
θ|2 +

∫
R3

|∂α′
G|2

M−
dξ

)
dx dt


 . (3.31)

The combination of(3.27) and (3.31)yields∫
R3

ηdx

∣∣∣∣
t=τ

+
∫
R3×R3


 G2

M−
+

∑
1≤|α|≤4

(∂αM)2 + (∂αG)2

M−
+

∑
1≤|β|≤5

(∂βf)2

M−


 dξ dx

∣∣∣∣∣∣
t=τ

+
∑

0≤|α|≤4

∫ τ

0

∫
R3

(
3∑

i=1

|∂αuxi |2 + |∂α∇xθ|2
)

dx dt +
∑

1≤|β|≤5

∫ τ

0

∫
R3×R3

(∂βG)2(1 + |ξ|)
M−

dξ dx dt

≤ C


∫
R3

ηdx +
∫
R3×R3

G2

M−
+

∑
1≤|α|≤4

(∂αM)2 + (∂αG)2

M−
+

∑
1≤|β|≤5

(∂βf)2

M−
dξ dx



∣∣∣∣∣∣
t=0

, (3.32)

whereε1 andδ are chosen to be sufficiently small.
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Furthermore,(3.32)justifies the smallness assumption(3.22). The energy estimates for higher order derivatives
∂αM and(∂αG), |α| ≥ 6, are similar. We therefore obtain the stability of global Maxwellian as summarized in the
following theorem.

Theorem 3.6. For any global MaxwellianM, there exists a small positive constantε0 such that, if

‖f(x,0, ξ) − M‖Hs
x(L

2
ξ
) ≤ ε0

for s ≥ 5, then there existsC > 0 such that

‖f(x, t, ξ) − M‖Hs
x(L

2
ξ
) ≤ Cε0

and

lim
t→∞ ‖f(x, t, ξ) − M‖L∞

x (L2
ξ
) = 0.
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