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Abstract

A basic, simple energy method for the Boltzmann equation is presented here. It is based on a new macro—micro decomposi:
tion of the Boltzmann equation as well as the H-theorem. This allows us to make use of the ideas from hyperbolic conservation
laws and viscous conservation laws to yield the direct energy method. As an illustration, we apply the method for the study
of the time-asymptotic, nonlinear stability of the global Maxwellian states. Previous energy method, starting with Grad and
finishing with Ukai, involves the spectral analysis and regularity of collision operator through sophisticated weighted norms.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the Boltzmann equation:

O£ f)
K

fi+&-Vif= . (fx 1,8 eRxR>x R xRS, (1.1)

where the positive constantis the Knudsen numbdt]. For simplicity, we consider the hard sphere model, for
which the bilinear collision operata® (£, g) is of the following form:

1
QL&) =3 /3 , (Cf©8E) — 8O f6) + f(E)g(E) + 8E) fENIE — &) - 2dé, de2,

R3x S

(§—§4)-2=0

where
£=6-[¢—-&)- 212, £, =& +[E-&)- 2]
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The main purpose of the present paper is to introduce a macro—micro decomposition of the equation. The
decomposition is based on the decomposition of the solution into the macroscopic, fluid part, the local Maxwellian
M = M(x,t, & = M|, , (&), and the microscopic, non-fluid paGt = G(x, ¢, &) of the solution:

f=M+G.

The local Maxwellian is constructed from the fluid variables, the five conserved quantities, the massaddensity
momentumn (x, 1) = pu(x, 1) and energyE + |u|?/2 of the Boltzmann equatidi®]:

mLﬂE/1ﬂLL9@, nﬂmﬂz/‘%ﬂnnﬁﬁ for i=1,2,3,
R3 R3

1
P (E + EIMI2> (x, 0 = / Yaf(x.1,8)ds, (1.2)
R3
_ _p g —uf?
M= M[p,u,@] (E) = Wexp( ZRQ ) . (13)

Herebd(x, 1) is the temperature and is related to the internal enérglyrough the gas consta®t, £ = (3/2) R0,
andu(x, 1) is the fluid velocity. The five fluid variables are conserved quantities because of the following property
of the collision invariants, [1]:

/R3 YeQh,g)de =0 foranya=0,1,234
and for any function&, g:
vo=1  ¢i=§ fori=123  ya=;35° (1.4)
With respect to the local Maxwellian, we define an inner produéténRS as
o) = [ 1@
rR3 M

for functionsh, g of &. The following functions are orthogonal with respect to this inner product:

1 _ 4,1
xo(&; p,u,0) = %M, xi(& p,u,0) = ET;;M for i=1,2,3,
1 (15 —ul®
xa(&; p,u,0) = ﬁ < 70 —3) M, (Xas X8) =8ap for o, $=0,1,2,3,4 (1.5)
We define the macroscopic projectidq and microscopic projectioR; as follows:
4
mhzzymhmm Pih = h — Poh. (1.6)
a=0

We view the above decomposition of Boltzmann equation as the linearization around the local Maxwellian states
so that the linear collision operatfg, , g is

L=1Lpugg=O0Mipue +8& Mipue +8 — 0 2. (1.7)
The operatoPg and P4 are projections, that is

PoPg = Py, PP = P1q.
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A function i (¢) is called non-fluid if it gives raise to zero conserved quantities, that is
f h(&)Ye,ds =0 for «=0,1,2 3 4 (1.8)
R3

Note that functions in the range of the microscopic projectfanare non-fluid. It is clear that for the solution
f(x, t, &) of the Boltzmann equation:

Pof =M, Pif=G.
From the decomposition of the solutigh= M + G, the Boltzmann equation becomes
M+G)+§-VilM+G) = %(ZQ(G, M) + 0(G, G)). (1.9)
We now decompose the Boltzmann equation. The conservation laws are obtained, as usual, by integrating with

respect t& of the Boltzmann equation times the collision invaria®itgé):

ot +divim =0, m+ Zum + py+ /w,(f V,G)ds =0 fori=1,23,

=1 xJ

|:,0 (E+E)} +Z[m[ <£+E> +pﬂxj+/R3 V(& - ViG) dé = 0. (1.10)

Herep is the pressure for the monatomic gases:

wInNy

p = 3pE.

The microscopic equation is obtained by applying the microscopic projeBtidn the Boltzmanrequation (1.9)
Since the projections are based on local Maxwellian, the projections and partial differentiatians imay not
commute. Nevertheless, we note tMt, as a function o€, is in the space spanned gy, « = 1, 2, 3,4, 5. Thus
PoM, = M,. We note thatPoh = 0 if

f hiry d& = 0.
R3

Thus the projection of collision terms undBp is zero. We also have

/ G 06 = a,/ G dt = 0.
R3 R3
Thus we havePyG, = 0, and saP1(M; + G;) = G,. With these, the microscopic equation is
1 1
G+ P1(§ - V.G +E-V,M) = ;LG~|—;Q(G, G). (1.11)

This decomposition improvises that [&], where the linearization is about the global Maxwellian. The advantage
of the present one is that the nonlinear teP0G, G) in (1.11)depends only on the microscopic péit This is
convenient for the energy method.

From(1.11)we have

G = kL7 (P& - VM) + L™ (x(8,G + P1£ - V,G) — O(G, G)) (1.12)
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and substitute this intl.10)to result in

pr +divm =0, mi + (Zu m) +px,+;</ Vi€ - Vo L7IP1E - VM) dg
j=1 xJ

+/ Vit - VoL Y(«[G; + P1£-V,G] — 0(G,G))de =0 for i=1,2,3,

|:,0 (E + E)] + Z [uf[ (E +E) +p]L +/</]RB Va(E - VoL 1P1E - VM) dg

+ [ ¥a(e DL GG, + ik .61 - 0(G. 6) e =0 (113)

The fluid equations, the Euler and Navier—Stokes equations, are in fact part of the above equations. For instance,
when the Knudsen numberand the microscopic pa6r are set zero, the systefh.13)becomes the Euler equa-
tions as in the Hilbert expansion. When only the microscopic Gai$ set to be zero if1.13) it becomes the
Navier—Stokes equations as in the Chapman—Enskog expansion. These fluid equations as derived through the
Hilbert and Chapman-Enskog expansions are approximations to the Boltzmann effi]atitare we derive it as
part of the full Boltzmann equation. Nevertheless, our approach is consistent in spirit with these expansions in that
the higher order terms beyond first order in the expansions must satisfy a solvability condition, which means that
these terms are microscopic.

In the above system, the terms:

—K fR Vi€ VLT Prg - VM) dé
== [ e VaLih g Prg - VM) 6
= [ Wil Vil g Pat VM 66 i=1.2.3
i [ v LT VM b = [ Ve oLk, Pag - VM) 66

= -k /RS 1#4(5 . VXL[_]_?-M’Q] Plg . VxM[l,uﬁ]) dé;-'

are the viscosity and heat conductivity terms for the Navier—Stokes equations; and they are independent of the
density gradienVv, p.

The Boltzmann equation as decompose(lii0) and (1.13gonsists of the fluid equations plus the microscopic
part. This allows for the use of the ideas from hyperbolic and viscous conservation laws for the energy method.
For the conservation laws, there is the basic concept of entropy. For this, we dis@edion 2the derivation
of the macroscopic entropy based on the H-theorem for the Boltzmann equati®action 3we carry out the
energy method for the nonlinear stability of global Maxwellian states. The energy method here is elementary and
generalizes that if8]. For other energy methods making use of the spectral properties of the linearized operator,
seg[7,10,11]
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2. H-theorem

The H-theorem of the Boltzmann equation is based on the observation that

/ 0(f plog fds <0
]R3

and that the equality holds only when the solution is a Maxwellign= M. The H-theorem is obtained by
multiplying the Boltzmann equation by Ig@jand integrating with respect to

/flogfdsw-/ %‘flogfd$='c/ 0(f flog f d < 0. (2.1)
]R3 RS R3

There are two ways to view this. The first is to ignore the transport term and study the linearized collision operator.
The linearized collision operatdr of (1.7)is symmetric:

(h,Lg) = (Lh, g).
The null space ol contains the macroscopic variables:

Lx,=0 fora=0,...,4
Hilbert [6] shows that the linearized operator has the form:

(Lh) (&) = —v©hE) + MG KHM V) @) (22)
for a symmetric compadt2-operatork. Notice that the linearized operatbraroundMj, , ¢; and the linearized
operatorLy aroundM[y , ¢ have the following relation:

L = pL;.

The multiplicative operator satisfies, for the hard sphere model:
v(é)

im —= < oo
El—>o0 ||

With this, it was proved by Carlemd8] for hard sphere model, and by Grigd for cutoff hard potentials, that the
linearized operator is negative definite on the space of non-fluid distributions. That is, there exi8tsuch that
for any function satisfying1.8).

(h,Lhy < —o{(vh, h). (2.3)
In particular, this implies that the non-fluid pastof the Boltzmann solution:
(G, LG) < —o(vG, G).

When the solution is space homogeneous and close to a Maxwellian, it followg2r8jpthat it will converge to

the equilibrium exponentially in time. In other words, it gives a quantitative expression of the H-theorem. This is a

microscopic version of the H-theorem and does not take into account of the space inhomogeneity of the solutions.
For later use, we notice that the projectiabg P; are defined by the collision invariants and therefore satisfy

the following basic properties:

PoyoM = YoM, Piy,M =0 fora=0,1,2 3,4, P{L =1L, P1O(h,h) = Q(h,h),
PoL =0, PoQ(h,h) =0, (YaM, h) = (YoM, Poh) for « =0,1,2, 3,4,
(h,Lg) = (P1h, LP1g),  (h, L™'P1g) = (L™ P1h, P1g). (2.9)
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For the decompositioflL.11) and (1.13df the Boltzmann equation we have only used these basic properties of the
projections.

We next derive the macroscopic version of the H-theorem. This version is to study the dissipative property of
the Boltzmann equation with regard to the space inhomogeneity and corresponds to the notion of entropy in gas
dynamics. Set the macroscopic entrdply

—§pS zf M log M d&. (2.5)
2 R3
Itis easy to see that layf andatM/M are collision invariants and so
/ GlogM d¢ = / / O(f, HlogM d¢ = 0. (2.6)
R3 R3
Multiply (1.9)by logM and integrate if§:

3/ (M+G)IogMd§+Vx-/ sM+Gylogmds — [ MFTOMey [ MFGCE-VM
ot JRrs3 R3 M R3 M
= Q(f H log M d&. (2.7)
R3 K

Use(2.6)to simplify this into

E/ MIogMd§+Vx-/ sMIogMdéJer-/ gGIogMds—/ M,ds—Vx-/ EM dg
ot Jrs R3 R3 R3 R3

Gt V.M
= ————d&. 2.8
| e 28)
Note that, from the continuity equation:
[ M= [ epds = —p - 9. ) =0, (2.9)
R3 R3
Also from (2.5).
/ EMlogM ds = u/ M log M d¢ + / E—u)MlogM ds = —§u,oS +0 (2.10)
R3 R3 R3 2
and so we have
3 G¢- VM
309 - 39w+, ([ cGrogarae) = [ CE M g @.11)

Plug(1.11)into the right-hand side dq®.11)

3 3
_E(’OS)’_E x~(,oSLD+Vx-</ SGIogMdg)

'VxM — VM
= Rf i pug](/cPlé VM)dSJr/ 5 L[pue](KGt—i-KPlf V.G — 0(G, G)) d&.

(2.12)

From(2.4)the right-hand side of the above equation is purely microscopic and so the equation becomes
3 3
50— 3V (pSu+ V- ( [ 6Gloga e
2 2 R3

_ / P& - v,CML_1
R3

P£-ViM
M [o.u,6] M

(CP1& - VM) & + /R e

Lyt G+ kPiE - V.G — O(G. G)) 0.
(2.13)
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From(1.3) and (2.5)
3 3 1
—EpS =plogp — é,olog(ZnRQ) — Ep. (2.14)

We now construct an entropy pdif, ¢) around a given stat#f. In the following, the fluid functions foi/ are
denoted byp, i, etc. We may transform the base velodityo zero by introducing the variabke = u — i and
consider the new conserved quantities:

o = (p, pv1. pv2. pv3, p(E + 3[v[?)
= (0, puy — it1p, pup — ii2p, puz — itzp, p(E + 3u?) + 3i?p — it - (pu1, puz, pu3)).
Thus we may write the conservation lagis10)as
o+ V- p=0. (2.15)
The entropy functiorf2.14)is expressed as function of the conserved quantities

@)+ @2+ Wg)z) ) <§|og4—” - }> .
200

21
2 73 2 (2.16)

35—5 lo 8 lo
20 —30l0 gao 2Oto g|os

We set the entropy pair as
n=—30S+ 355+ 3Va(pS)le=s - (@—@).  q=—3pSu+ 3pSii + 3Ve(pS)le=z - (B—P).  (2.17)

This clearly has the property that= (M) = 0, V,7j = V,n(M) = 0. Direct calculations froni2.16)show that
at the base stafe the Hessiam?n/dw;doj, is

i_ 0 0 0 —i
2p 3 2pE
0 — 0 0 0
2pE 3
0 0o — 0 0 . (2.18)
2pE 3

0 0 0 —

3 2pE
2pE 2pE?

It is easy to check that the matrix is positive definite ang $wa convex function of the macroscopic variables
at the base stat®. Thus around the base statgthere exist positive constanfg andC, such that

Cila — al?> < n < Cola — @l (2.19)

Actually, it can be shown thatis positive except at the base state. Thus the above holdsriany given bounded
region.
From(2.13) and (2.15)

nt+vx’4+vx‘</3§G|OgMd§>
R

P&-ViM Pi§-ViM
= [ PTG e o e+ [ PEEELE 6,4 it V.6 - 06,6
(2.20)
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In the above identity, the term:

M [p,u.0]

represents the entropy dissipation. Since the non-fluid funcitags V.M belong to a finite dimensional space
in the & variables, we have from the microscopic version of the H-theqtB) that the term satisfies, for some
positive constants; andoys:

P&-ViM
K/RSB*_ L (P1&- VM) dé = k(P1& - VoM, L(L, o (P1& - VM)

|P1£ - V. M|? Pi§- VxM - |P1£ - V. M|?
—_— < - _ P \Y% —d& 2.21
Ul/R3 M = /H‘@ M [pue( 1§ M)d§<0/Rs M d& ( )
Simple calculation shows that
3
|P1§ - VM |? 2 2
|, e = o Y layul-+ 9.0 (222)

for some positive function O(1). Notice that in the macroscopic ver&d?0) of H-theorem, the dominant term

on the right-hand side is the first integral, which, as we have just seen, represents the dissipation, and the second
integral consists of only higher order derivatives and the quadratic term of microscopic com@onémetrefore, it

captures the dissipative effect of the fluid components in the solution of Boltzmann equation, and this is useful for
the energy estimates in the following sections.

3. Nonlinear stability of a Maxwellian state

In this section, we will show that the macro—micro decomposition yields elementary energy estimates for stability
of a global Maxwellian state. Thus, we assume that the initial valiyep is a small perturbation of a global
Maxwellian statelf. We will show that the macroscopic componafitends toM and the microscopic component
G tends to zero astends to infinity. There are two steps in the energy estimates. In the first step, the lower order
estimate follows from the two versions of the H-theorem. For the higher order estimates, our analysis uses the
techniques for the Navier—Stokes equations in treating the coupling of the fluid variables.

For simplicity, we assume from now on that the Knudsen numberl.

3.1. Lower order energy estimates of the fluid variables

Integrate the macroscopic H-theorén20)over O< ¢ < r andx € R3 to yield

Pit-V.M |
/ndx //Rs/Rs 18- L3, o (P1g - VM) dé dxdr

Pi- V.M
+f /RP’/M 1SM Ly}, (G + P1E- VG — Q(G, G)) dé dx dr. (3.1)

We have from(2.21), (2.22)and the Schwartz inequality that

t 3
woo [ [ logul + 19,07 drcs
=0 0 R3 j=1

1=t
/ ndx
R3 =

T 1
< c/ / ZILY, 0(Gr + Pig - V4G — Q(G, G)Pde dxdr (32)
o JraJrs M
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for some positive constanig andC. Here and in the following( is used to denote a generic constant. This yields
the main first order estimate for the fluid variables. The analysis is fully nonlinear and along the same line as the
entropy estimate for the conservation laws.

To apply the energy estimate on the microscopic component and the higher order energy estimates, we will fix a
background to be an absolute Maxwellisih._:

M_ = M1 ,60]-
Here the temperature is chosen with the propertyafat 9, for all & under consideration. For definiteness, we set

lup — it| < 1, Op=6—35 for §>0. (3.3)

Remark 3.1. The introduction of the weight functioM _ is technical. Here, we need to requirés small but
larger than the size of the perturbation|of, u, 6) — (p, it, 6)|:

lp—pl+lu—i| +10—6] <e < 8. (3.4)
With these, we have, for any given positive constanésd 3:
M_<CM@+15)7% MY <cM_(+g® (3.5)

for a constanC independent ofx, z, £).

By (3.5), (3.2)leads to

=T o T
/ndx +—°/ / > [19,ul? + V612 dx de
R3 =0 2 0 R3j:l

‘ 1 2 2 ! 1 -1 2
< c(fo fRa/RsEUGA +|V,G| )dgdxdt+fo /RJRBEM[MQ]Q(G, G)?dedxdr ). (3.6)

By the using the property of the linearized operdtadn (2.3), one can show that

(L+1EDL™ 0, L™2h) < 07 2((1 + &)~ 1h, k)

for any non-fluid functior. Hence, we have

t=t1 T 3
/ndx +@f / > Mldgiul® + 7,617 dé cbe
R3 —o 2 Jo RS

0 R R3 M— 0 ]RS IR3 M
(3.;)

3.2. Lower order energy estimates of the non-fluid variables

Multiply (1.11)with G/M _; and integrate it over [0r] x R® x R3 to result in that

2 1=t T
GPi£ - V(M
f G dedx +f / 18- Vi + 6) e g
R3xR3 M — o J0 JRexRs M-

. Lipu ,
=/ f GLipunG + GGG g gy g, (3.8)
0 JR3xR3 M_
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Since the linearized collision operator around the Maxwellian depends smoothly on the parametérshe
following lemmas follow easily from the basic properti&s2) and (2.3)of the linearized collision operator and
the choice of the Mawellian stafd _, (3.3), (3.4) and (35)Their proofs are therefore omitted. These lemmas are
used when we replace the local Maxwellishin the weighted energy estimates by the global Maxwelifn. A
polynomial of& appears in the integral because of the differentiation on the local Maxwaliamu andé give

the first and second order polynormialsinHowever, all of these polynomials can be controlled by the exponential
decay in Maxwellian wheM _ is chosen appropriately.

Lemma 3.2. There existgg > 0 so that for any K > 0 and integeri > 0:

gl M | 1812 o

Lemma 3.3. There exist€ > 0 such that for any non-fluid functiorg (§) and g2 (&) satisfying

/ 5i®)° d<oo fori=12 xeRS (3.10)
R3 M_

one has the following estimates for any givén- O:

/ 1P1Iél’g2%_ /gllél sulsl’s2 o | Klg1? + K 1go/?
]R3 ]R3 M_

d¢ for j> 0. (3.11)

Lemma3.4. Forthes satisfying(3.3), there existgg > 0so thatfor any functiog(§) Witth3(|g|2(1+|§|)/M_) de
boundedwe have

—(1+ O(L)eo) / Fimntolf g N 8 g < (1 - O()er) / S g (3.19)
and then
_ 2
/ g(L[p,u.H] L[ﬂo,uo,@o])g dg| < 0(1)60/ lgl“(1+ |&]) de. (313)
R3 M_ R3 M_

By the above lemmas, we deduce fr¢dn8) that there existX > 0 such that whed « 1:

1 G2 GL{, uo01G
-f —dgdx —-/ / Z2lpo.n000 T e gy
2 R3><R3 M R3><R3 M_

2
< K/ / (Z|uxj| 1|V, ) dxdt—l—O(l)(eo—i—K_l)/ / wdédxdt
R3xR3 R3xR3 —

2
/ A@ Rsz KIG| GQ(G G) dé dx dr. (3.14)

M_ M_

Here, and also inthe next estimate, we have (8&) From(3.7)+ oo/2K (3.14)we have by choosing sufficiently
large:
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O'OGZ
d déd
/R377 x+%;§3xR3 2KM _ d xz—o
3
oo [* GL[po uo,00] O
= ; \v4 S
+ 4/0 /Ra .§: i |2 + | V012 dx d / /RsxRa D000 d dr

<c [// GO, G)dgdxdr+// G+ 34160 P dx dé dr
R3xR3 ~ M_ 0 JR3xR3 M_
T -1H2
+// @+ B 0(G. G) dxdédt:|. (3.15)
0 JR3xR3 M-

We denote by the differential operator:

1=t

3
o = a?Oafllafgafg, 18] = Zﬁi, where 8; > 0 are nonnegative integers
i=0

Consider the first-order energy estimate from the Boltzrmequation (1.1)

0 // @ NEPLfi + & Vif — (LpuwaG + Q(G, G))])
B R3xR3 M_

dédxdr with |8 = 1. (3.16)

This yields

1 B )2 =t 4 BG)Li,.,.0 (8
-f O"D” 4t dx —/ / OO L6 4y g
2 R3xR3 M _ =0 R3xR3 M_

_ /T/' (M) (P LipunG) + (PG ([Lipua. °1G) + (3 H(P Q(G, G))
B R3xR3 M_

dé dx dr, (3.17)

where []is the Lie bracket.
From(2.3)there exister; > 0 such that

|G| + |G #G)Lipun (G
o= AZ/ L (1+|EI)dE<—Zf CELaTD) g
1B1=1

Considen(3.15)+ C1 (3.17)to obtain wherC is sufficiently large:

2 2
/ 77dx+/ G+ Y@ de dx
R3 R3xR3 M- -0

T 3 T GL G B B
[00.10.60] (0PG)L{p,u,0 (3" G)
+f / > il + 1V eFdxdr—/ / L LYY d dix dr
0 R3 P X X 0 R?’XRS M_ “3‘:1 M_

T -1H2 T
<c[/ / GOG.6) dédxdt—i—/ / wdxdédt—i—/ /
R3xR3 M- 0 JR3xR3 M_ 0 JR3xR3

- @MY LpunG) + PG ([Lipua. ¥1G) + (3 H(PQ(G, G, G))
M_

1=t

de dx dt:| . (3.18)
[81=1
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Remark 3.5. Notice that the order of differentiations on both side§318)is up to the first order. The left-hand

side contains positive integrals only. Thus to close this energy estimate, it remains to show that the smallness in
|l - oo for lower order derivative terms, so that the terms on the right-hand side can be absorbed by the terms on the
left-hand side. For this, we need to consider the higher order estimates, which will be done in the next subsection.
One also needs to keep in mind that in the energy estinfat&8) the integral in the fluid variable contains the
termst’:1 lu,;|? + | V6|2 but not the termV, p|2. This is a structure similar to the compressible Navier—Stokes
equation.

3.3. High order energy estimates

In this subsection, we will consider the energy estimate¥ ™ andd?G for 1 < || < 5.
Parallel to(3.1), (3.8) and (3.16we consider the following double integrals:

// MM + Pot - ViM + 6D .y 4, (3.19)

0 JR3xR3 M-

/r/ (0*G)(0*[G; + P1§ - V(M + G) — (L[.u,6/G + 0(G, G))]) dedxdr = 0 (3.20)
0 JR3xR3 M- o |
T B B . —

/ / DL +&- Vo = LipunG+ QG O gy 4 g (3.21)
0 JR3xR3 M-

where 1< |¢| < 4 and 2< || < 5.
Since the terms which are higher than quadratic order either contain lower order derivatives of the fluid variables
or the product oD (81 G, 3"2G) for somey, andy», the following estimate o® (g, /), cf. [4], will be used:

1061+ D720(G. )l = ClI A+ EDYCIIT,.

3.3.1. Smallness assumption

107G (x, 1, §)| 12
sup [3%p| + |8%u| + [3*6] + sup H—(|§| +1 / < €1. (3.22)
>0 >0 VM _ 12
xeR3 xeR3

lo[<2 lyI=<2

Here, the small parametey is given in terms of the initial data.
The integral(3.19) and (1.12)esult in

1 9 M)2 =Tt (8" M) (8" Pok - Vi Lt o P1& - VM)
0= _/ M) 4 +/ / il L) T dedydr
R3xR3 M_ =0 Jo JR3xR3

5 M_

+/f/ (M) (3*[Po, & - Vi]M) dé dx di
0 JR3xR3 M-
- M) (X P 'VxL_l G; + P1&-V,G) — G, G

+/ / ( ) (3% Po§ el (G 1§ )~ O )])dgdxd;, (3.23)
0 JR3xR3 M-

where [Po, & - V,] is a zeroth order differential operator. From the smallness assun{@tida), it follows that

9% M2 1=t T 3
/ " M) dé dx +/ f D 10U 1% + | V,0%60] dx de
R3xR3 =0 JO JR3T

M_

r 10,0%G|2 + Y3_110,,0°G|?
<cC / f ! 2= [ de dxdr
0 JR3xR3 M_
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+C61/ / S 187+ 107 uf? + (6% 61 dx e

(ol +1)/2<|o’| <[]

+C€1f / (1+|$|)|aa i dé dx dr. (3.24)
R3xR3

(Ial+1)/2<|0t [<le|

Similarly, (3.20) and (3.21ombined with(3.22)to yield the following two estimates:

G|? =t 3“G) L pg.u0.00] (°G
f S T / f 76 Lipouo o) O°C) ey
R3xR3 M_ = R3xRR3 M_

[ (2

oG 2 o o
/ /RS ) (Zw G2 @ G)(aMQ(G,G») e dear
x i - -

1

+61/ / > (18 o2 + 10% u|? + 0¥ 0% dx dr

(lal+1)/2<]o/|<|a|

o 112
ter / / dedxdt} (3.25)
R3xR3

M_
(\0!\+l)/2<|0t [<lel

Mo L

0%, |? + |V0%0)| ) dx dr

w\

and

B #)2 =t o B B
f i) dé dx _/ / (0°G)Lip,u,0(0"G) d dx di
R3xR3 M, =0 R3xR3 M,

‘/f CO+ 1) Xyp 2112l 07 + 107 ul® + 18761 + (1 + 5197 G
B R3xR3 M_

dedxdr.  (3.26)

Similar to the combination leading (8.18), we considet3.24)+ (1) ~1(3.25) + u2(3.26), where bothu;, i = 1, 2,
are positive constants which are sufficiently large, to result in

=T
(3°M)? + (°G)? Ck
/Rw ( > E + > | dgx

1<|o|<4 1<|BI<5 =0

+ > //Z|a“ux,| + 10V 0P drdr + Y //3 wdsdxdt

3
1<|a]<4 1<|a]<5 R3xR

<Clea+8) Y //|aﬂp| + 108 ul2 4+ 107 0)2 dx dt + C(er + 8)
1<|p/|<5

B (112
@A+ 18DI1o” GI7 dé dx dr. (3.27)
R3xR3 M_

1<\ﬂ’\<5

In the energy estimat®.27), the highest order terms of the fluid variables on the left-hand side do not contain the
term |98 p| with |8] = 5. However, on the right-hand side the error terms do congdip| with |8| = 5 but with
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small coefficient. In order to bound these terms, we need to use the conservati¢h.lHydHence, we rewrite the
first two equations 0f1.10)in the (p, u, 6, G) variables:

3 3
oot Yo =0 e Ywd ok (op02 ) [ P v -0 @2

=1 =1

Now we consider

Z/ / 3% p,i) (ut+2uu +R<9X,+9@> Vi~ ‘”g VGdg) drdr =0
R3xR3 R3 14

(3.29)

where|a| = 4. By using integration by parts and the continuity equatio8i&8), we have
3 T .
3 / / (8% p,1)0" (Reﬂ) dx dr
‘=170 JR3xR3 Y
3 . 1=t T .
= Z / (0% p,)(0%u")dx| — / / (9% div (pu))8*u’; dx dr
= /R3 =0 Jo JR3xR3

3 T
—Z/ / (0%p,1)0% Zu’ +R9x,+/ Vi~ wg V,G d¢ | dxdr. (3.30)
i—1 0 JR3xRS3 =

Thus, we have

3 T
Z/O /Rs R3|8°‘,0x1|2dxdt
i=1 x
/ S0 eP+ > 19%ul?d / S0 pl2+ D (0% ulPdx

lo/|=5 lo|=4 =0 lo/|=5 lo|=4 =1
aaGZ
+ Zf/ <|a°‘u| + 06 +/ 1" GI* ds)d dr
|o’|=5
. . |aaG|2
Z// |8u|+|89|—|—/—§ddt. (3.31)
0<|0t|<5

The combination 0f3.27) and (3.31yields

G* (0*M)? + (3" G)? (98 1)
P + ,/RsXRa (E + Z M + Z M_ dé dx
1=t

/ ndx
R3 =

1=lol=4 N 1=<|pI<5
FG)?(1
+ 2 f / < |0%u,1% + 0%V, ) dedr+ / / wdgd dr
O<|a|<4 1<|8|<5 R3xR3 -
G? (*M)? + (0°G)? @2
=€ |:/Rs ndx+ /RSXRS M_ + Z M_ + Z ™M dé dx ) (3.32)
1=lol=4 1=<181<5 o

wheree; ands are chosen to be sufficiently small.
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Furthermore(3.32)justifies the smallness assumpti@?22) The energy estimates for higher order derivatives
9*M and(0“G), |a| > 6, are similar. We therefore obtain the stability of global Maxwellian as summarized in the
following theorem.

Theorem 3.6. For any global MaxwellianM, there exists a small positive constaptsuch thatif
I f(x,0,8) — MIIH;(L@ < e€o

for s > 5, then there exist§' > 0 such that
1fCr. 2.8) = Ml s 12) < Ceéo

and

Jim 1 fGr 1.8) = Ml e 2y = 0.
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