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Abstract: In this paper, we consider the compressible Navier–Stokes equations for is-
entropic flow of finite total mass when the initial density is either of compact or infinite
support. The viscosity coefficient is assumed to be a power function of the density so that
the Cauchy problem is well-posed. New global existence results are established when
the density function connects to the vacuum states continuously. For this, some new
a priori estimates are obtained to take care of the degeneracy of the viscosity coefficient
at vacuum. We will also give a non-global existence theorem of regular solutions when
the initial data are of compact support in Eulerian coordinates which implies singularity
forms at the interface separating the gas and vacuum.
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1. Introduction

Consider the one-dimensional compressible Navier–Stokes equations for isentropic flow
in Eulerian coordinates,{

ρτ + (ρu)ξ = 0,
(ρu)τ + (ρu2 + P(ρ))ξ = (µuξ )ξ ,

(1.1)

with initial data
ρ(ξ, 0) = ρ0(ξ), u(ξ, 0) = u0(ξ), a ≤ ξ ≤ b, (1.2)

where ξ ∈ R1 and τ > 0, and ρ = ρ(ξ, τ ), u = u(ξ, τ ) and P(ρ) denote respectively
the density, velocity and the pressure; µ ≥ 0 is the viscosity coefficient. For simplicity
of presentation, we consider only the polytropic gas, i.e., P(ρ) = Aργ with γ > 1,
A > 0 being constants.

We will consider this hyperbolic-parabolic system when the initial data is of com-
pact support, i.e., connecting to the vacuum state. Our main concern here is the global
existence of solutions and the evolution of the vacuum boundary when the viscous gas
connects to vacuum continuously and the viscosity coefficient depends on the density.
The physical consideration of the dependence of the viscosity coefficient on density
and the difficulty from the degeneracy of the vanishing viscosity at vacuum will be
addressed in the following. Right now, let’s notice that one of the important features of
this problem is that the interface separating the gas and vacuum propagates with finite
speed if the initial data are of compact support. For the physical significance of this kind
of phenomenon, we refer the readers to the survey paper [16]. It is interesting to notice
that the proof of this finite speed propagation is obtained after the lower bound of the
density function is given in the form of a power function in Lagrangian coordinates. In
other words, this finite speed propagation property is difficult to be justified without the
estimate on the density function.

Let’s first review some of the previous works in this direction. When the viscosity
coefficientµ is a constant, the study in [6] shows that there is no continuous dependence
on the initial data of the solutions to the Navier–Stokes equations (1.1) with vacuum.
The main reason for this non-continuous dependence at the vacuum comes from the
kinetic viscosity coefficient being independent of the density. It is motivated by the
physical consideration that in the derivation of the Navier–Stokes equations from the
Boltzmann equations through the Chapman-Enskog expansion to the second order, cf.
[4], the viscosity is not constant but depends on the temperature. For isentropic flow,
this dependence is translated into the dependence on the density by the laws of Boyle
and Gay-Lussac for ideal gas as discussed in [13]. In particular, the viscosity of gas
is proportional to the square root of the temperature for hard sphere collision. Under
this hypothesis, the temperature is of the order of ργ−1 for the perfect gas where the
pressure is proportional to the product of the density and the temperature. Therefore,
for the hard sphere model where γ = 5

3 for monotomic gas, the viscosity µ is propor-
tional to ρθ with θ = 1

3 . Notice that the following theorem on global existence requires
that 0 < θ < 2

9 which does not include this case. Hence, further investigation on this
problem is needed.

This non-continuous dependence result leads people to study the initial boundary
value problem instead of the initial value problem. For this, the free boundary problem
of one dimensional Navier–Stokes equations with one boundary fixed and the other
connected to vacuum was investigated in [18], where the global existence of the weak
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solutions was proved. Similar results were obtained in [19] for the equations of spheri-
cally symmetric motion of viscous gases. Furthermore, the free boundary problem of the
one-dimensional viscous gases which expand into the vacuum has been studied by many
people, see [18, 19, 22] and reference therein. A further understanding of the regularity
and behavior of solutions near the interfaces between the gas and vacuum was given
in [14].

The above non-continuous dependence on the initial data for constant viscosity with
vacuum is also a motivation for the works on the case when the viscosity function is
a function of density, such as µ = cρθ , where c and θ are positive constants. Notice
that now the viscosity coefficient vanishes at vacuum and this property yields the well-
posedness of the Cauchy problem when the initial density is of compact support. In this
situation, the local existence of weak solutions to Navier–Stokes equations with vacuum
was studied in [13], where the initial density was assumed to be connected to vacuum
with discontinuities. This property, as shown in [13], can be maintained for some finite
time. And the authors in [20] obtained the global existence of weak solutions when
0 < θ < 1/3 with the same property. This result was later generalized to the cases when
0 < θ < 1

2 and 0 < θ < 1 in [24] and [10] respectively.
It is noticed that the above analysis is based on the uniform positive lower bound

of the density with respect to the construction of the approximate solutions. This es-
timate is crucial because the other estimates for the convergence of a subsequence of
the approximate solutions and the uniqueness of the solution thus obtained will follow
from the estimation by standard techniques as long as the vacuum does not appear in the
solutions in finite time. And this uniform positive lower bound on the density function
can only be obtained when the density function connects to vacuum with discontinuities.
In this situation, the density function is positive for any finite time and thus the viscosity
coefficient never vanishes. This good property of the solution was obtained and used to
prove global existence of solutions to (1.1) when the initial data is of compact support,
cf. [10, 20, 24].

If the density function connects to vacuum continuously, there is no positive lower
bound for the density and the viscosity coefficient vanishes at vacuum. This degeneracy
in the viscosity coefficient gives rise to new analysis difficulties because of the less
regularizing effect on the solutions. To our knowledge, only a local existence result has
been obtained in this case so far, cf. [25]. Another difficulty comes from the singularity
at the vacuum boundary when the density function connects to the vacuum continuously.
This can be seen from the analysis in [22] on the non-global existence of the regular
solution to Navier–Stokes equations when the density function is of compact support
when the viscosity coefficient is constant. The proof there is based on the estimation of
the growth rate of the support in terms of time t . If the growth rate is sub-linear, then
a nonlinear functional was introduced in [22] which yields the non-global existence of
regular solutions. The intuitive explanation of this phenomena comes from the consid-
eration of the pressure in the gas. No matter how smooth the initial data is, the pressure
of the gas will build up at the vacuum boundary in finite time and it will push the gas
into the vacuum region. This effort can not be compensated by the dissipation from the
viscosity so that the support of the gas stays unchanged. This is different from the system
of Euler-Possion equations for gaseous stars where the pressure and the gravitational
force can become balanced to have stationary solutions. This kind of singularity at the
vacuum boundary is discussed in [23] and references therein. In the case of compressible
Navier–Stokes equation, the pressure will have the effort on the evolution of the vacuum
boundary in finite time so that the density function at the interface will not be smooth.
This singularity at the derivatives, maybe of second order for the one-dimensional case,
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cf. [22], gives some analytic difficulty, but it can be overcome by introducing some
appropriate weights in the energy estimates. Notice that these weight functions vanish
at the vacuum boundary.

In summary, the main task of this paper is to introduce some weight functions and
prove some new a priori estimates on the solutions. Two new global existence results
are established: the first one is for the case when the density function is of compact
support in Eulerian coordinates, and the second is when the support of gas in Eulerian
coordinates is infinite but the total mass is finite. We will also give a non-global existence
theorem for regular solutions when the initial data is of compact support.

Precisely, for the case when the density function of compact support is in both Eulerian
and Lagrangian coordinates, the restriction on the solution coming from the boundedness
of the support is

∫ 1

0

1

ρ(x, t)
dx < ∞, (1.3)

in Lagrangian coordinates (x, t). However, the straightforward energy estimate does not
guarantee this condition. To overcome this difficulty, we introduce a weight function
in applying the energy method and succeed in obtaining a global existence result when
0 < θ < 2

9 . And (1.3) which is a consequence of the boundedness of velocity in the L∞
norm is justified after the a priori estimates on the density function are obtained. The
second case is for the density function of infinite support in Eulerian coordinates. Even
though the total mass is assumed to be finite, no restriction like (1.3) will be imposed.
Some new a priori estimates are established in this case so that the global existence of
the weak solution is also obtained when 1

3 < θ <
3
7 . Notice that the intervals for θ are

disjoint for these two cases in our analysis.
The theorem on non-global existence of regular solutions generalizes the one for a

constant viscosity coefficient in [22] to the case when the viscosity coefficient depends
on density. We think that this will shed some light on the study of the vacuum problem
to the full Navier–Stokes equation for non-isentropic gas when the viscosity and heat
conductivity coefficients depend on the temperature. It is noticed that the corresponding
vacuum problem for this full Navier–Stokes equation is still open. We should also men-
tion that the non-global existence theorems of regular solutions for inviscid compressible
flow, such as the system of Euler equations with frictional damping and the system of
Euler-Possion equations for gaseous stars, are also based on the estimate on the growth
rate of the support of the density function.

There has been a lot of investigation on the Navier–Stokes equations when the initial
density is away from vacuum, both for smooth initial data or discontinuous initial data,
and one dimensional or multidimensional problems. For these results, please refer to
[5, 7, 9, 11, 12, 21] and references therein. And recently, the non-appearance of vacuum
in the solutions for any finite time if the initial data does not contain vacuum was proved
in [8].

The rest of this paper is organized as follows. In Sect. 2, we give the definition
of the weak solution and then state the main theorems of this paper. In Sect. 3, we
will give the sketch of the proof of global existence in the above two cases. The de-
tails of the proofs for those a priori estimates and the construction of the weak solu-
tions will be given in the Appendices. In Sect. 4, we will give a non-global existence
theorem on regular solutions when the initial data of compact supports in Eulerian
coordinates.
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2. The Main Theorems

To solve the free boundary problem (1.1), it is convenient to convert the free bound-
aries to fixed boundaries by using Lagrangian coordinates. By assuming that the weak
solution under consideration has the regularity properties stated in (2.4)–(2.5) below,
we know that there exist two curves ξ = a(τ) and ξ = b(τ) issuing from ξ = a and
ξ = b respectively which separate the gas and the vacuum if the support of the density
function is compact. Let

x =
∫ ξ

a(τ )

ρ(z, τ )dz, t = τ.

Then the free boundaries ξ = a(τ) and ξ = b(τ) become x = 0 and x = ∫ b(τ)
a(τ )

ρ(z, τ )

dz = ∫ b
a
ρ0(z)dz by the conservation of mass, where

∫ b
a
ρ0(z)dz is the total mass. We

normalize
∫ b
a
ρ0(z)dz = 1. If the support is infinite, then x = ∫ ξ

−∞ ρ(z, τ )dz without
any ambiguity.

Hence, in the Lagrangian coordinates, the free boundary problem (1.1) becomes



ρt + ρ2ux = 0,

ut + P(ρ)x = (µρux)x, 0 < x < 1, t > 0,
(2.1)

with the boundary conditions

ρ(0, t) = ρ(1, t) = 0, (2.2)

and initial data

(ρ, u)(x, 0) = (ρ0(x), u0(x)), 0 ≤ x ≤ 1, (2.3)

where P(ρ) = Aργ , µ = cρθ . We normalize A = 1 and c = 1.
Throughout this paper, the assumptions on the initial data, θ and γ can be stated as

follows:

(A1) For any positive integer n, 0 ≤ ρ0(x) ≤ C(x(1 − x))α with 0 < α < 1,
(ρ0(x))

−1 ∈ L1([0, 1]), for some k1 with 1 < k1 < min
{
1 + (1 − 3θ)α, (2γ −

3θ+1)α, 5−15θ
1+3θ ,

3−5θ
1+θ , α(4−2θ)

}
, such that (x(1−x))k1ρ2θ−2

0 (x) ∈ L1([0, 1]),

(x(1 − x)) 1
2 (ρθ0 (x))x ∈ L2([0, 1]), and (ργ0 (x))x ∈ L2n([0, 1]);

(A2) u0(x) ∈ L∞([0, 1]) and (ρ1+θ
0 (x)u0x)x ∈ L2n([0, 1]);

(A3) 0 < θ < 2
9 , γ > 1.

Under the assumptions (A1)–(A3), we will prove the existence of a global weak
solution to the initial boundary value problem (2.1)–(2.3). The weak solution defined
below is similar to the one in [20].

Definition 2.1. A pair of functions (ρ(x, t), u(x, t)) is called a global weak solution to
the initial boundary value problem (2.1)–(2.3), if for any T > 0,

ρ, u ∈ L∞([0, 1] × [0, T ]) ∩ C1([0, T ];L2([0, 1])), (2.4)



334 T. Yang, C.J. Zhu

ρ1+θux ∈ L∞([0, 1] × [0, T ]) ∩ C1/2([0, T ];L2([0, 1])). (2.5)

Furthermore, the following equations hold:∫ ∞

0

∫ 1

0
(ρφt − ρ2uxφ)dxdt +

∫ 1

0
ρ0(x)φ(x, 0)dx = 0, (2.6)

and ∫ ∞

0

∫ 1

0
(uψt + (P (ρ)− µρux)ψx)dxdt +

∫ 1

0
u0(x)ψ(x, 0)dx = 0,

for any test functionφ(x, t) andψ(x, t) ∈ C∞
0 ( )with = {(x, t) :0 < x < 1, t ≥ 0}.

In what follows, we always use C (C(T )) to denote a generic positive constant
depending only on the initial data (or the given time T ).

We now state the main theorems in this paper. The first one is the global existence
theorem when the density function is of compact support in Eulerian coordinates.

Theorem 2.2. Under the conditions (A1)–(A3), the free boundary problem has a weak
solution (ρ(x, t), u(x, t)) with ρ, u ∈ C1([0, T ];H 1([0, 1])) and ρ(x, t) satisfies

C(T )(x(1 − x)) k2
1−2θ ≤ ρ(x, t) ≤ C(T )(x(1 − x))α, (2.7)

where k2 = 1
2 (1 + k1).

Remark 2.3. It is noticed that the set of initial data (ρ0(x), u0(x)) verifying all the
assumptions in Theorem 2.2 contain a quite general family of functions. For example,
if we choose ρ0(x) = A(x(1 − x))α with the exponent α satisfying

1

γ
< α < 1,

then it satisfies all assumptions on density.
Notice also that when the initial data is given in the form of A(x(1 − x))α , the

condition (A1) implies that k2
1−2θ > α.

The second global existence theorem is for the weak solution to (1.1) and (1.2) with
the support of the initial density ρ0(x) being infinite. The assumptions on the initial data,
θ and γ in this case can be stated as follows:

(H1) 0 ≤ ρ0(x) ∈ L∞([0, 1]), and for any positive integer n, (x(1 − x))1− 1
2n ρ

2(θ−1)
0

(x) ∈ L1([0, 1]), (ρθ0 (x))x ∈ L2([0, 1]), (ργ0 (x))x ∈ L2n([0, 1]);
(H2) u0(x) ∈ L∞([0, 1]) and (ρ1+θ

0 (x)u0x)x ∈ L2n([0, 1]);
(H3) 1

3 < θ <
3
7 , γ > 1.

Under the assumptions (H1)–(H3), we will prove the following existence theorem of
a global weak solution to the initial boundary value problem (2.1)–(2.3).

Theorem 2.4. Under the conditions (H1)–(H3), the free boundary problem has a weak
solution (ρ(x, t), u(x, t)) and ρ(x, t) satisfies

ρ(x, t) ≥ C(T )(x(1 − x)) 1
2(1−2θ) . (2.8)
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Remark 2.5. It is noticed that the set of initial data (ρ0(x), u0(x)) verifying all the
assumptions in Theorem 5.2 contain a quite general family of functions. For example,
if we choose ρ0(x) = A(x(1 − x))α with the exponent α satisfying

1

2θ
< α <

1

1 − θ ,

which implies θ > 1
3 , then it satisfies all assumptions on the density function. And it is

easy to see that the integral
∫ 1

0
1

ρ(x,t)
dx = ∞ because θ < 3

7 and thus the support of the
density is infinite even though it is of finite total mass.

Finally in Sect. 4, we will give a non-global existence theorem on regular solutions
when the initial data is of compact support. The corresponding theorem on Navier–
Stokes equations for compressible fluid with constant viscosity and heat conductivity
coefficients was obtained in [22]. Here we generalize the above theorem to the case
when the viscosity coefficient depends on density for the isentropic gas flow.

We give first the definition of the regular solution of (1.1) and (1.2) as follows.

Definition 2.6. A solution of (1.1) and (1.2) is called a regular solution in R × [0, T ] if
(i) ρ(ξ, τ ) ∈ C1(R × [0, T ]), ρ ≥ 0, and u(ξ, τ ) ∈ C2(R × [0, T ]);
(ii) ρ

θ−1
2 (ξ, τ ) ∈ C1(R × [0, T ]).

Now the non-global existence theorem can be stated as follows.

Theorem 2.7. Let 1 < θ ≤ γ and (ρ(ξ, τ ), u(ξ, τ )) be a regular solution of (1.1) and
(1.2) on 0 ≤ τ ≤ T . If the support of the initial data (ρ0(ξ), u0(ξ)) is compact and
(ρ0(ξ), u0(ξ)) 
≡ 0, then T must be finite.

3. Sketch of the Proof

3.1. The case of compact support. In this subsection, we will consider the case when
the density function is of compact support in Eulerian coordinates. That is, besides the
assumption on finite total mass, the solution obtained in Lagrangian coordinates should
satisfy ∫ 1

0

1

ρ(x, t)
dx < ∞.

This restriction gives rise to some difficulties in analysis because the straightforward
energy estimates violate this assumption as discussed in Sect. 5. For this, we introduce
weight function as power functions of x(1 − x) in applying the energy method. The
weights seem to be optimal in our case if one wants to use the weight in the form of
xα(1 − x)β .

For simplicity of presentation, we establish certain a priori estimates in the con-
tinuous version to the initial boundary value problem (2.1)–(2.3). The corresponding
estimates in discrete version will be given in Sect. 5. First, we list some useful identities
as follows.

The proof of the following Lemma 3.1 is straightforward and is omitted, cf. [20, 24].



336 T. Yang, C.J. Zhu

Lemma 3.1 (Some identities and standard energy estimates). Under the conditions
of Theorem 2.2, we have for 0 < x < 1, t > 0 that

d

dt

∫ x

0
u(y, t)dy = − d

dt

∫ 1

x

u(y, t)dy, (3.1)

(
ρ1+θux

)
(x, t) = ργ (x, t)+

∫ x

0
ut (y, t)dy = ργ (x, t)−

∫ 1

x

ut (y, t)dy, (3.2)

ρθ (x, t)+ θ
∫ t

0
ργ (x, s)ds = ρθ0 (x)− θ

∫ t

0

∫ x

0
ut (y, s)dyds

= ρθ0 (x)+ θ
∫ t

0

∫ 1

x

ut (y, s)dyds, (3.3)

∫ 1

0

(
1

2
u2 + 1

γ − 1
ργ−1

)
dx +

∫ t

0

∫ 1

0
ρ1+θu2

xdxdt

=
∫ 1

0

(
1

2
u2

0(x)+
1

γ − 1
ρ
γ−1
0 (x)

)
dx ≤ C, (3.4)

∫ 1

0
u2ndx + n(2n− 1)

∫ t

0

∫ 1

0
u2n−2ρ1+θu2

xdxds ≤ Ce(n−1)(2n−1)t ≤ C(T ). (3.5)

The following lemma gives us the upper bound for density function ρ(x, t). It is
noted that an upper bound in the form of a power function of x(1 − x) is required in
later analysis, cf. (5.33), (5.35), (5.43), (5.46) and (5.51).

Lemma 3.2. Under the conditions of Theorem 2.2, we have

ρ(x, t) ≤ C(T )(x(1 − x))α. (3.6)

Proof. From (3.3), Assumption (A1) and Lemma 3.1, we have

ρθ (x, t) ≤ ρθ0 (x)− θ
∫ x

0
u(y, t)dy + θ

∫ x

0
u0(y)dy

≤ ρθ0 (x)+ C
(∫ 1

0
u2n(x, t)dx

) 1
2n

(x(1 − x)) 2n−1
2n + Cx(1 − x)

≤ C(x(1 − x))θα + C(T )(x(1 − x)) 2n−1
2n ,

which implies

ρ(x, t) ≤ C(x(1 − x))α + C(T )(x(1 − x)) 2n−1
2nθ .

Noticing 0 < α < 1, Lemma 3.2 follows.
Now we will give a weighted energy estimate on the function (ρθ )x .And as discussed

in [24] for the case when the density function connects to vacuum with discontinuity,
one can lower the power of ρ in

∫ t
0

∫ 1
0 ρ

1+θu2
xdxds to

∫ t
0

∫ 1
0 ρ

1+θ+α1u2
xdxds for some

α1 < 0 to have a better estimate on the lower bound of ρ with a weight function
(x(1 − x))k1 .
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Lemma 3.3. For any positive integerm, if the assumptions in Theorem 2.2 are satisfied,
then for any k1 > 1, when 0 < θ < 1, we have∫ 1

0
x(1 − x)ρ2θ−2ρ2

xdx ≤ C(T ), (3.7)

∫ 1

0
(x(1 − x))k1ρα1u2dx +

∫ t

0

∫ 1

0
(x(1 − x))k1ρ1+θ+α1u2

xdxds ≤ C(T ), (3.8)

and ∫ 1

0
(x(1 − x))k1ρβ1dx ≤ C(T ), (3.9)

where α1 = (
1 − 1

2m
)
(θ − 1) < 0 and β1 =

(
2 − 1

2m

)
(θ − 1) < 0.

The proof can be found in Appendix 5.1.
Based on the above lemma, we can obtain the lower bound of density function in the

following lemma. With this crucial estimate on the lower bound for density function, we
can now study the other property of the solution (ρ, u) for compactness of the sequence
of the approximate solutions given in Appendix 5.6.

Lemma 3.4. For any 0 < θ < 1
2 , k1 > 1 and k2 = 1

2 + k1
2 , there exists C(T ) > 0 such

that

ρ(x, t) ≥ C(T )(x(1 − x)) k2
1−2θ . (3.10)

Proof. Let

β2 = θ +
(

1 − 1

2m+1

)
(θ − 1). (3.11)

Then for sufficiently large m, β2 < 0. Now by using Sobolev’s embedding theorem
W 1,1([0, 1]) ↪→ L∞([0, 1]) and Young’s inequality, we have from Lemma 3.3 that

(x(1 − x))k2ρβ2(x, t)

≤ C
∫ 1

0
(x(1 − x))k2ρβ2(x, t)dx + C

∫ 1

0

∣∣∣((x(1 − x))k2ρβ2
)
x

∣∣∣ dx
≤ C

∫ 1

0
(x(1 − x))k2−1ρβ2(x, t)dx + C

∫ 1

0
(x(1 − x))k2ρβ2−1|ρx |dx

≤ C
∫ 1

0
(x(1 − x))k1ρβ1(x, t)dx + C

∫ 1

0
(x(1 − x))

(
k1
2 − 1

2 − k1β2
β1

)
β1

β1−β2 dx

+C
∫ 1

0
x(1 − x)ρ2θ−2ρ2

xdx + C
∫ 1

0
(x(1 − x))k1ρ2β2−2θ dx

≤ C(T )+ C
∫ 1

0
(x(1 − x))

(
k1
2 − 1

2 − k1β2
β1

)
β1

β1−β2 dx. (3.12)
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When 0 < θ < 1
2 , we have for sufficiently large m(

k1

2
− 1

2
− k1β2

β1

)
β1

β1 − β2
> −1.

Therefore (3.12) implies

(x(1 − x))k2ρβ2(x, t) ≤ C(T ). (3.13)

Since 2θ − 1 < β2 < 0, (3.13) implies

ρ(x, t) ≥ C(T )(x(1 − x))−
k2
β2 ≥ C(T )(x(1 − x)) k2

1−2θ .

This completes the proof of Lemma 3.4.

Lemma 3.5. Under the assumptions of Theorem 2.2, if 0 < θ < 2
9 , then there exists

k1 with 1 < k1 < min
{

5−15θ
1+3θ , 1 + (1 − 3θ)α, (2γ − 3θ + 1)α

}
such that for any

positive integer n,∫ 1

0
u2n
t dx + n(2n− 1)

∫ t

0

∫ 1

0
ρ1+θu2

xtu
2n−2
t dxds ≤ C(T ). (3.14)n

The proof can be found in Appendix 5.2.

Lemma 3.6. Under the conditions in Theorem 2.2, if 1 < k1 < min{α(4−2θ), 1+ (1−
3θ)α, (2γ − 3θ + 1)α}, then we have that∫ 1

0
|ρx(x, t)|dx ≤ C(T ), (3.15)

∥∥∥ρ1+θ (x, t)ux(x, t)
∥∥∥
L∞([0,1]×[0,T ])

≤ C(T ), (3.16)

∫ 1

0

∣∣∣(ρ1+θux)x(x, t)
∣∣∣ dx ≤ C(T ), (3.17)

∫ 1

0
|ux(x, t)|dx ≤ C(T ), (3.18)

||u(x, t)||L∞([0,1]×[0,T ]) ≤ C(T ), (3.19)

and for 0 < s < t ≤ T ,∫ 1

0
|ρ(x, t)− ρ(x, s)|2dx ≤ C(T )|t − s|, (3.20)

∫ 1

0
|u(x, t)− u(x, s)|2dx ≤ C(T )|t − s|, (3.21)

∫ 1

0

∣∣∣(ρ1+θux
)
(x, t)−

(
ρ1+θux

)
(x, s)

∣∣∣2 dx ≤ C(T )|t − s|. (3.22)
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The proof can be found in Appendix 5.3.
The construction of a weak solution to the initial boundary value problem (2.1)–(2.3)

with the corresponding estimates for the approximate solutions is given in Appendix 5.6.
With the above a priori estimates, we can show that the subsequence of the sequence of
approximate solutions converges to a weak solution defined by Definition 2.1.

3.2. The case of infinite support. The corresponding a priori estimates to infinite support
are listed later. The proofs are given inAppendices 5.4 and 5.5. These estimates guarantee
the convergence of approximate solutions to a weak solution defined by Definition 2.1.

Lemma 3.7. Under the conditions of Theorem 2.4, if 1
3 < θ <

3
7 , then for any positive

integers m and n, we have ∫ 1

0
ρ2θ−2ρ2

xdx ≤ C(T ), (3.23)

∫ 1

0
ρα1u2dx +

∫ t

0

∫ 1

0
ρ1+θ+α1u2

xdxds ≤ C(T ), (3.24)

∫ 1

0
(x(1 − x))1− 1

2n ρβ1dx ≤ C(T ), (3.25)

ρ(x, t) ≥ C(T )(x(1 − x)) 1
2(1−2θ) , (3.26)

and ∫ 1

0
u2n
t dx + n(2n− 1)

∫ t

0

∫ 1

0
ρ1+θu2

xtu
2n−2
t dxds ≤ C(T ), (3.27)n

where α1 = (
1 − 1

2m
)
(θ − 1), β1 =

(
2 − 1

2m

)
(θ − 1).

Lemma 3.8. Under the assumptions in Theorem 2.4, we get∫ 1

0
|ρx(x, t)|dx ≤ C(T ), (3.28)

∥∥∥ρ1+θ (x, t)ux(x, t)
∥∥∥
L∞([0,1]×[0,T ])

≤ C(T ), (3.29)

∫ 1

0

∣∣∣(ρ1+θux)x(x, t)
∣∣∣ dx ≤ C(T ), (3.30)

and for 0 < s < t ≤ T , we have∫ 1

0
|ρ(x, t)− ρ(x, s)|2dx ≤ C(T )|t − s|, (3.31)

∫ 1

0
|u(x, t)− u(x, s)|2dx ≤ C(T )|t − s|, (3.32)

∫ 1

0

∣∣∣(ρ1+θux
)
(x, t)−

(
ρ1+θux

)
(x, s)

∣∣∣2 dx ≤ C(T )|t − s|. (3.33)
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4. Non-global Existence of Regular Solutions

In this section, we will prove the non-global existence of regular solutions to the com-
pressible Navier–Stokes equations (1.1) when the initial data (ρ0(ξ), u0(ξ)) have com-
pact supports, i.e. Theorem 2.7. The proof is based on the non-growth of the support for
the density function and the estimation on the nonlinear functional introduced in [22]
for constant viscosity and heat conductivity coefficients.

Proof of Theorem 2.7. We first prove that the supports of any regular solution of (1.1)
and (1.2) with compact initial data will not change in time. That is, we want to prove
 (τ) =  (0), where  (τ) = supp(ρ(ξ, τ ), u(ξ, τ )).

To do this, we let w = ρ
θ−1

2 and rewrite (1.1) as



wτ + uwξ + θ − 1

2
wuξ = 0,

uτ + uuξ + 2γ
θ−1w

2(γ−θ)
θ−1 wwξ = 2θ

θ−1wwξuξ + w2uξξ .

(4.1)

Let

M = sup(|w| + |u| + |wξ | + |uξ | + |uξξ |). (4.2)

Then ∣∣∣∣∂w∂τ
∣∣∣∣+

∣∣∣∣∂u∂τ
∣∣∣∣ ≤ CM(|w| + |u|),

which implies by Gronwall’s inequality

|w(ξ, τ )| + |u(ξ, τ )| ≤ (|w0(ξ)| + u0(ξ)|)eCMτ . (4.3)

Equation (4.3) immediately implies that  (τ) ⊂  (0).
On the other hand, it is easy to see  (τ) ⊃  (0). Therefore,  (τ) =  (0).
Now we introduce the following functional as in [22]:

H(τ) =
∫

R
(ξ − (1 + τ)u(ξ, τ ))2ρ(ξ, τ )dξ + 2

γ − 1
(1 + τ)2

∫
R
ργ (ξ, τ )dξ

=
∫

R
ξ2ρ(ξ, τ )dξ − 2(1 + τ)

∫
R
ξρ(ξ, τ )u(ξ, τ )dξ

+ (1 + τ)2
∫

R

(
ρ(ξ, τ )u2(ξ, τ )+ 2

γ − 1
ργ (ξ, τ )

)
dξ. (4.4)

By using (1.1) and the Cauchy-Schwarz inequality, we have

H ′(τ ) = 2(3 − γ )
γ − 1

(1 + τ)
∫

R
ργ dξ + 2(1 + τ)

∫
R
ρθuξdξ − 2(1 + τ)2

∫
R
ρθu2

ξ dξ

≤ 2(3 − γ )
γ − 1

(1 + τ)
∫

R
ργ dξ +

∫
R
ρθdξ − (1 + τ)2

∫
R
ρθu2

ξ dξ

≤ 2(3 − γ )
γ − 1

(1 + τ)
∫

R
ργ dξ +

∫
R
ρθdξ. (4.5)
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Case 1. When θ = γ , we have from (4.4) and (4.5),

H ′(τ ) ≤ 3 − γ
1 + τ H(τ)+

γ − 1

2(1 + τ)2H(τ),

which implies

H(τ) ≤ H(0)(1 + τ)3−γ e−
γ−1

2(1+τ) . (4.6)

Equations (4.4) and (4.6) show∫
R
ργ (ξ, τ )dξ ≤ γ − 1

2
H(0)(1 + τ)1−γ e−

γ−1
2(1+τ) . (4.7)

By conservation of mass and Hölder’s inequality, we have∫
 (0)

ρ0(ξ)dξ =
∫
 (τ)

ρ(ξ, τ )dξ

≤
(∫

 (τ)

ργ (ξ, τ )dξ

) 1
γ

( (τ))
γ−1
γ

≤ ( (0)) γ−1
γ

(
γ − 1

2
H(0)

) 1
γ

(1 + τ) 1−γ
γ e

− γ−1
2γ (1+τ) . (4.8)

Equation (4.8) implies that T must be finite.

Case 2. When 1 < θ < γ , we can rewrite (4.5) as follows by using Young’s inequality:

H ′(τ ) ≤ 2(3 − γ )
γ − 1

(1 + τ)
∫

R
ργ dξ + θ

γ

∫
R
ργ dξ + γ − θ

γ
 (τ). (4.9)

Equations (4.4) and (4.9) show

H ′(τ ) ≤ 3 − γ
1 + τ H(τ)+

θ(γ − 1)

2γ (1 + τ)2H(τ)+
γ − θ
γ

 (0). (4.10)

Solving the inequality (4.10), we have

H(τ) ≤ (1 + τ)3−γ e−
θ(γ−1)

2γ (1+τ)
{
H(0)+ γ − θ

γ
 (0)

∫ τ

0
(1 + s)γ−3e

θ(γ−1)
2γ (1+s) ds

}
.

(4.11)

When γ 
= 2, we have

H(τ) ≤
(
H(0)− γ − θ

γ (γ − 2)
 (0)e

θ(γ−1)
2γ

)
(1 + τ)3−γ e−

θ(γ−1)
2γ (1+τ)

+ γ − θ
γ (γ − 2)

 (0)e
θ(γ−1)

2γ (1 + τ)e−
θ(γ−1)

2γ (1+τ) . (4.12)

When γ = 2, we have

H(τ) ≤ H(0)(1 + τ)3−γ e−
θ(γ−1)

2γ (1+τ) + γ − θ
γ

 (0)e
θ(γ−1)

2γ (1 + τ)3−γ e−
θ(γ−1)

2γ (1+τ) ln(1 + τ).
(4.13)

Similar to the estimates (4.6)–(4.8), (4.12) and (4.13) also imply that T must be finite.
This completes the proof of Theorem 2.7.
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Remark 4.1. Even though the non-global existence Theorem 2.7 is for one dimension-
al Navier–Stokes equations, it is straightforward to generalize it to the case in multi-
dimensions, cf. [22].

5. Appendices

5.1. Proof of Lemma 3.3. First we show that (3.7) holds. From (2.1), we have(
ρθ
)
xt

= −θ (ut + (ργ )x) . (5.1)

Multiplying (5.1) by x(1 − x)(ρθ )x and integrating it over [0, 1] × [0, t], we have

θ2

2

∫ 1

0
x(1 − x)ρ2θ−2ρ2

xdx

= θ2

2

∫ 1

0
x(1 − x)ρ2θ−2

0 ((ρ0)x)
2 dx − θ

∫ t

0

∫ 1

0
x(1 − x)ut

(
ρθ
)
x
dxds

− θ2γ

∫ t

0

∫ 1

0
x(1 − x)ργ+θ−2ρ2

xdxds

≤ C − θ
∫ 1

0
x(1 − x)u (ρθ )

x
dx + θ

∫ 1

0
x(1 − x)u0

(
ρθ0
)
x
dx

+ θ
∫ t

0

∫ 1

0
x(1 − x)u (ρθ )

xt
dxds − θ2γ

∫ t

0

∫ 1

0
x(1 − x)ργ+θ−2ρ2

xdxds.

(5.2)

By using the Cauchy-Schwartz inequality, (5.1) and (5.2) implies

θ2

2

∫ 1

0
x(1 − x)ρ2θ−2ρ2

xdx + θ2γ

∫ t

0

∫ 1

0
x(1 − x)ργ+θ−2ρ2

xdxds

≤ C + θ2

4

∫ 1

0
x(1 − x)ρ2θ−2ρ2

xdx + θ2
∫ 1

0
x(1 − x)u2dx

− θ2
∫ t

0

∫ 1

0
x(1 − x)uutdxds − θ2γ

∫ t

0

∫ 1

0
x(1 − x)ργ−1uρxdxds

≤ C + θ2

4

∫ 1

0
x(1 − x)ρ2θ−2ρ2

xdx + θ2
∫ 1

0
x(1 − x)u2dx

− θ2

2

∫ 1

0
x(1 − x)u2dx + θ2

2

∫ 1

0
x(1 − x)u2

0dx

+ θ2γ

2

∫ t

0

∫ 1

0
x(1 − x)ργ+θ−2ρ2

xdxds

+ θ2γ

2

∫ t

0
max
[0,1]

ργ−θ
∫ 1

0
x(1 − x)u2dxds. (5.3)

Then Lemma 3.1, Lemma 3.2, and (5.3) yield

θ2

4

∫ 1

0
x(1 − x)ρ2θ−2ρ2

xdx + 1

2
θ2γ

∫ t

0

∫ 1

0
x(1 − x)ργ+θ−2ρ2

xdxds ≤ C(T ),
(5.4)

which implies (3.7).
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Now we turn to prove (3.8). For any positive integer m, we have from (2.1),(
(x(1 − x))k1ραmu2m

)
t

= −αm(x(1 − x))k1ρ1+αmu2mux + 2m(x(1 − x))k1ραmu2m−1
(
ρ1+θux

)
x

− 2m(x(1 − x))k1ραmu2m−1P(ρ)x, (5.5)

where αm is a constant to be defined later.
By integrating (5.5) over [0, 1] × [0, t], we have∫ 1

0
(x(1 − x))k1ραmu2mdx + 2m(2m − 1)

∫ t

0

∫ 1

0
(x(1 − x))k1ρ1+θ+αmu2m−2u2

xdxds

=
∫ 1

0
(x(1 − x))k1ρ

αm
0 u2m

0 dx − αm
∫ t

0

∫ 1

0
(x(1 − x))k1ρ1+αmu2muxdxds

− 2mαm

∫ t

0

∫ 1

0
(x(1 − x))k1ρθ+αmu2m−1ρxuxdxds

− 2mk1

∫ t

0

∫ 1

0
(x(1 − x))k1−1ρ1+θ+αmu2m−1uxdxds

− 2mγ
∫ t

0

∫ 1

0
(x(1 − x))k1ργ+αm−1u2m−1ρxdxds

=
5∑
i=1

Imi . (5.6)

Now we estimate Imi , i = 1, 2, . . . , 5 as follows:

Im3 = −2mαm

∫ t

0

∫ 1

0
(x(1 − x))k1ρθ+αmu2m−1ρxuxdxds

≤ C
∫ t

0

∫ 1

0
ρ1+θu2m+1−2u2

xdxds + C
∫ t

0

∫ 1

0
(x(1 − x))2k1ρθ+2αm−1ρ2

xdxds.

(5.7)

Let
θ + 2αm − 1 = 2θ − 2,

i.e.

αm = θ − 1

2
. (5.8)

Then by Lemma 3.2 and (3.7) and noticing that k1 > 1, we have

Im3 ≤ C(T ). (5.9)

Furthermore, since u0 ∈ L∞([0, 1]) and (x(1 − x))k1ρ2θ−2
0 ∈ L1([0, 1]), we have

Im1 =
∫ 1

0
(x(1 − x))k1ρ

αm
0 u2m

0 dx ≤ C, (5.10)
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and

Im2 = −αm
∫ t

0

∫ 1

0
(x(1 − x))k1ρ1+αmu2muxdxds

≤ C
∫ t

0

∫ 1

0
(x(1 − x))2k1u2m+1

dxds + C
∫ t

0
max
[0,1]

ρ1−θ+αm
∫ 1

0
ρ1+θu2

xdxds

≤ C(T ), (5.11)

and

Im4 = −2mk1

∫ t

0

∫ 1

0
(x(1 − x))k1−1ρ1+θ+αmu2m−1uxdxds

≤ C
∫ t

0

∫ 1

0
ρ1+θu2m+1−2u2

xdxds + C
∫ t

0
max
[0,1]

ρ1+θ+2αm

∫ 1

0
(x(1 − x))2k1−2dxds

≤ C(T ). (5.12)

Noticing that 2γ + 2αm − 2 ≥ 2θ − 2, we have

Im5 = −2mγ
∫ t

0

∫ 1

0
(x(1 − x))k1ργ+αm−1u2m−1ρxdxds

≤ C
∫ t

0

∫ 1

0
u2m+1−2dxds + C

∫ t

0

∫ 1

0
(x(1 − x))2k1ρ2γ+2αm−2ρ2

xdxds

≤ C(T ). (5.13)

Now from (5.6) and (5.9)–(5.13), we have

∫ 1

0
(x(1 − x))k1ραmu2mdx + 2m(2m − 1)

∫ t

0

∫ 1

0
(x(1 − x))k1ρ1+θ+αmu2m−2u2

xdxds

≤ C(T ), (5.14)

where αm is given in (5.8).
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By applying (5.6) again, we have

∫ 1

0
(x(1 − x))k1ραm−1u2m−1

dx

+ 2m−1(2m−1 − 1)
∫ t

0

∫ 1

0
(x(1 − x))k1ρ1+θ+αm−1u2m−1−2u2

xdxds

=
∫ 1

0
(x(1 − x))k1ρ

αm−1
0 u2m−1

0 dx − αm−1

∫ t

0

∫ 1

0
(x(1 − x))k1ρ1+αm−1u2m−1

uxdxds

− 2m−1αm−1

∫ t

0

∫ 1

0
(x(1 − x))k1ρθ+αm−1u2m−1−1ρxuxdxds

− 2m−1k1

∫ t

0

∫ 1

0
(x(1 − x))k1−1ρ1+θ+αm−1u2m−1−1uxdxds

− 2m−1γ

∫ t

0

∫ 1

0
(x(1 − x))k1ργ+αm−1−1u2m−1−1ρxdxds

=
5∑
i=1

Im−1
i . (5.15)

Similar to the estimates of Imi , we can estimate for Im−1
i as follows:

Im−1
3 = −2m−1αm−1

∫ t

0

∫ 1

0
(x(1 − x))k1ρθ+αm−1u2m−1−1ρxuxdxds

≤ C
∫ t

0

∫ 1

0
(x(1 − x))k1ρ1+θ+αmu2m−2u2

xdxds

+C
∫ t

0

∫ 1

0
(x(1 − x))k1ρθ−1+2αm−1−αmρ2

xdxds. (5.16)

Let

θ − 1 + 2αm−1 − αm = 2θ − 2,

i.e.,

αm−1 = αm

2
+ θ − 1

2
. (5.17)

Then we have from (5.14), (5.16) and Lemma 3.2, (3.7) and using k1 > 1 that

Im−1
3 ≤ C(T ). (5.18)

Similarly, for αm−1 given in (5.17), we have

Im−1
i ≤ C(T ), i = 1, 2, 5. (5.19)
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We can estimate Im−1
4 as follows. Since 0 < θ < 1 and k1 > 1, we have from Lemma

3.2 and (5.14),

Im−1
4 = −2m−1k1

∫ t

0

∫ 1

0
(x(1 − x))k1−1ρ1+θ+αm−1u2m−1−1uxdxds

≤ C
∫ t

0

∫ 1

0
(x(1 − x))k1ρ1+θ+αmu2m−2u2

xdxds

+C
∫ t

0
max
[0,1]

ρ1+θ+2αm−1−αm
∫ 1

0
(x(1 − x))k1−2dxds

≤ C(T ). (5.20)

Thus, (5.15) and (5.18)–(5.20) give∫ 1

0
(x(1 − x))k1ραm−1u2m−1

dx

+ 2m−1(2m−1 − 1)
∫ t

0

∫ 1

0
(x(1 − x))k1ρ1+θ+αm−1u2m−1−2u2

xdxds

≤ C(T ). (5.21)

By solving the recurrence relation (5.17), we have∫ 1

0
(x(1 − x))k1ρα1u2dx +

∫ t

0

∫ 1

0
(x(1 − x))k1ρ1+θ+α1u2

xdxds ≤ C(T ), (5.22)

where

α1 =
(

1 − 1

2m

)
(θ − 1). (5.23)

This completes the proof of (3.8).
Finally, we prove (3.9). From the first equation of (2.1), we have(

(x(1 − x))k1ρβ1
)
t
= −β1(x(1 − x))k1ρ1+β1ux. (5.24)

By integrating (5.24) over [0, 1] × [0, t] and applying the Cauchy-Schwartz inequality,
we have∫ 1

0
(x(1 − x))k1ρβ1dx ≤

∫ 1

0
(x(1 − x))k1ρ

β1
0 dx

+C
∫ t

0

∫ 1

0
(x(1 − x))k1ρ1+θ+α1u2

xdxds

+C
∫ t

0

∫ 1

0
(x(1 − x))k1ρ1+2β1−θ−α1dxds. (5.25)

By noticing that∫ 1

0
(x(1 − x))k1ρ

β1
0 dx ≤ C

∫ 1

0
(x(1 − x))k1ρ

2(θ−1)
0 dx ≤ C
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and
1 + 2β1 − θ − α1 = β1,

we have from (5.25) and (3.8)∫ 1

0
(x(1 − x))k1ρβ1dx ≤ C(T )+ C

∫ t

0

∫ 1

0
(x(1 − x))k1ρβ1dxds. (5.26)

Equation (5.26) implies (3.9) by Gronwall’s inequality and the proof of Lemma 3.3 is
completed.

5.2. Proof of Lemma 3.5. By differentiating (2.1)2 with respect to the time t and then
integrating it after multiplying 2nu2n−1

t with respect to x and t over [0, 1] × [0, t], we
deduce ∫ 1

0
u2n
t dx + 2n

∫ t

0

∫ 1

0
(ργ )xtu

2n−1
t dxds

=
∫ 1

0
u2n

0t dx + 2n
∫ t

0

∫ 1

0

(
ρ1+θux

)
xt
u2n−1
t dxds. (5.27)

Since
u0t =

(
ρ1+θ

0 u0x

)
x

− (
ρ
γ
0

)
x
,

we have from Assumptions (A1) and (A2) that∫ 1

0
u2n

0t (x)dx ≤ C. (5.28)

On the other hand, using integration by parts, we have from (2.1)1,

2n
∫ t

0

∫ 1

0

(
ρ1+θux

)
xt
u2n−1
t dxds

= 2n
∫ t

0

∫ 1

0

{(
ρ1+θux

)
t
u2n−1
t

}
x
dxds

−2n
∫ t

0

∫ 1

0

(
ρ1+θux

)
t

(
(ut )

2n−1
)
x
dxds

= −2n(2n− 1)
∫ t

0

∫ 1

0
ρ1+θu2n−2

t u2
xtdxds

+2n(2n− 1)(1 + θ)
∫ t

0

∫ 1

0
ρ2+θu2

xu
2n−2
t uxtdxds. (5.29)

As to the second term in the left-hand side of (5.27), we can get similarly

2n
∫ t

0

∫ 1

0

(
ργ
)
xt
u2n−1
t dxds

= 2n
∫ t

0

∫ 1

0

{(
ργ
)
t
u2n−1
t

}
x
dxds − 2n(2n− 1)

∫ t

0

∫ 1

0

(
ργ
)
t
u2n−2
t uxtdxds

= 2n(2n− 1)γ
∫ t

0

∫ 1

0
ρ1+γ uxuxtu2n−2

t dxds. (5.30)
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Here in (5.29) and (5.30), we have used the boundary condition (2.2) and Eqs. (2.1).
Substituting (5.28)–(5.30) into (5.27), we have∫ 1

0
u2n
t dx + 2n(2n− 1)

∫ t

0

∫ 1

0
ρ1+θu2n−2

t u2
xtdxds

≤ C + 2n(2n− 1)(1 + θ)
∫ t

0

∫ 1

0
ρ2+θu2

xu
2n−2
t uxtdxds

− 2n(2n− 1)γ
∫ t

0

∫ 1

0
ρ1+γ uxuxtu2n−2

t dxds.

Furthermore, we have

2n(2n− 1)(1 + θ)
∫ t

0

∫ 1

0
ρ2+θu2

xu
2n−2
t uxtdxds

≤ 1
2n(2n− 1)

∫ t

0

∫ 1

0
ρ1+θu2n−2

t u2
xtdxds

+ 2n(2n− 1)(1 + θ)2
∫ t

0

∫ 1

0
ρ3+θu4

xu
2n−2
t dxds,

and

−2n(2n− 1)γ
∫ t

0

∫ 1

0
ρ1+γ uxuxtu2n−2

t dxds

≤ 1
2n(2n− 1)

∫ t

0

∫ 1

0
ρ1+θu2n−2

t u2
xtdxds

+ 2n(2n− 1)γ 2
∫ t

0

∫ 1

0
ρ2γ+1−θu2

xu
2n−2
t dxds.

Therefore ∫ 1

0
u2n
t dx + n(2n− 1)

∫ t

0

∫ 1

0
ρ1+θu2n−2

t u2
xtdxds

≤ 2n(2n− 1)(1 + θ)2
∫ t

0

∫ 1

0
ρ3+θu4

xu
2n−2
t dxds

+ 2n(2n− 1)γ 2
∫ t

0

∫ 1

0
ρ2γ+1−θu2

xu
2n−2
t dxds

= 2n(2n− 1)(1 + θ)2I (1)n + 2n(2n− 1)γ 2I
(2)
n . (5.31)

Now we will give the proof of (5.14)n. First we consider the case of n = 1. To do this,
we need to estimate I (1)1 and I (2)1 .

In fact, by Hölder’s inequality, we have

I
(1)
1 =

∫ t

0

∫ 1

0
ρ3+θu4

xdxds ≤ max
[0,1]

(
(x(1 − x))−k1ρ2−α1u2

x

) ∫ t

0
V (s)ds, (5.32)

where

V (s) =
∫ 1

0
(x(1 − x))k1ρ1+θ+α1u2

x(x, s)dx.
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On the other hand, from Lemma 3.1, Lemma 3.2 and noticing that −α1 − 2θ > 0 when
0 < θ < 1

3 and sufficiently large m, we have

(x(1 − x))−k1ρ2−α1u2
x = (x(1 − x))−k1ρ−α1−2θ

(
ρ1+θux

)2

= (x(1 − x))−k1ρ−α1−2θ
(∫ x

0
ut (y, t)dy + ργ

)2

≤ C(x(1 − x))−k1ρ−α1−2θ x(1 − x)
∫ 1

0
u2
t dx

+C(x(1 − x))−k1ρ2γ−α1−2θ

≤ C(T )(x(1 − x))1−k1−α(α1+2θ)
∫ 1

0
u2
t dx

+C(T )(x(1 − x))α(2γ−α1−2θ)−k1 . (5.33)

When 0 < θ < 1
3 and 1 < k1 < min

{
5−15θ
1+3θ ,

3−5θ
1+θ , 1 + (1 − 3θ)α, (2γ − 3θ + 1)α

}
,

for sufficiently large m, we have{
1 − k1 − α(α1 + 2θ) ≥ 0,

α(2γ − α1 − 2θ)− k1 ≥ 0,

which implies

max
[0,1]

(
(x(1 − x))−k1ρ2−α1u2

x

)
≤ C(T )

∫ 1

0
u2
t dx + C(T ).

Therefore,

I
(1)
1 ≤ C(T )

∫ t

0
V (s)

∫ 1

0
u2
t dxds + C(T )

∫ t

0
V (s)ds. (5.34)

Similarly, we have

I
(2)
1 =

∫ t

0

∫ 1

0
ρ2γ+1−θu2

xdxds

≤ C
∫ t

0
max
[0,1]

(
(x(1 − x))−k1ρ2γ−2θ−α1

)
V (s)ds

≤ C(T )
∫ t

0
max
[0,1]

(x(1 − x))α(2γ−α1−2θ)−k1V (s)ds

≤ C(T )
∫ t

0
V (s)ds. (5.35)

From (5.31), (5.34) and (5.35) and Lemma 3.3, we have∫ 1

0
u2
t dx +

∫ t

0

∫ 1

0
ρ1+θu2

xtdxds ≤ C(T )
(

1 +
∫ t

0
V (s)

∫ 1

0
u2
t dxds

)
. (5.36)
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Gronwall’s inequality and Lemma 3.3 give∫ 1

0
u2
t dx ≤ C(T ) exp

(
C(T )

∫ t

0
V (s)ds

)
≤ C(T ). (5.37)

Combining (5.36) with (5.37), we can get (3.14)1 immediately.
Now we consider the case of n > 1. Assume Lemma 3.5 holds for n− 1, i.e.,∫ 1

0
u2n−2
t dx + (n− 1)(2n− 3)

∫ t

0

∫ 1

0
ρ1+θu2

xtu
2n−4
t dxds ≤ C(T ). (5.38)

Now we need to prove Lemma 3.5 holds also for n, i.e., (3.14)n is true. To do this, we
first estimate I (1)n and I (2)n as follows: By the assumption (5.38), we have

I (1)n =
∫ t

0

∫ 1

0
ρ3+θu4

xu
2n−2
t dxds ≤ C(T )

∫ t

0
max
[0,1]

(
ρ3+θu4

x

)
ds.

On the other hand, from Lemma 3.1 and Lemma 3.4, we have

ρ3+θu4
x = ρ−1−3θ

(
ρ1+θux

)4

= ρ−1−3θ
(∫ x

0
ut (y, t)dy + ργ

)4

≤ C(x(1 − x)) 4n−2
n ρ−1−3θ

(∫ 1

0
u2n
t dx

) 4
2n

+ Cρ4γ−1−3θ

≤ C(T )(x(1 − x))4− 2
n ρ−1−3θ

(∫ 1

0
u2n
t dx

) 2
n

+ C(T ).

When 0 < θ < 2
9 and 1 < k1 < min

{
5−15θ
1+3θ ,

3−5θ
1+θ , 1 + (1 − 3θ)α, (2γ − 3θ + 1)α

}
,

for sufficiently large m and any n > 1, we have

4 − 2

n
− k2(1 + 3θ)

1 − 2θ
≥ 0,

which implies

max
[0,1]

(x(1 − x))4− 2
n ρ−1−3θ ≤ C(T )(x(1 − x))4− 2

n
− k2(1+3θ)

1−2θ ≤ C(T ).

Therefore,

I (1)n ≤ C(T )

1 +

∫ t

0

(∫ 1

0
u2n
t dx

) 2
n

ds


 .

By Young’s inequality, we have for n > 1,

(∫ 1

0
u2n
t dx

) 2
n

≤ 2

n

∫ 1

0
u2n
t dx + n− 2

n
,
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which implies

I (1)n ≤ C(T )
(

1 +
∫ t

0

∫ 1

0
u2n
t (x, s)dxds

)
. (5.39)

Similarly, we have

I
(2)
n =

∫ t

0

∫ 1

0
ρ2γ+1−θu2

xu
2n−2
t dxds

≤ C
∫ t

0
max
[0,1]

(
ρ2γ+1−θu2

x

)(∫ 1

0
u2n
t dx

) n−1
n

≤ C(T )
(

1 +
∫ t

0

∫ 1

0
u2n
t dxds

)
. (5.40)

From (5.31), (5.39) and (5.40), we have∫ 1

0
u2n
t dx + n(2n− 1)

∫ t

0

∫ 1

0
ρ1+θu2n−2

t u2
xtdxds

≤ C(T )
(

1 +
∫ t

0

∫ 1

0
u2n
t dxds

)
. (5.41)

Gronwall’s inequality gives ∫ 1

0
u2n
t dx ≤ C(T ).

This and (5.41) show (3.14)n. This completes the proof of Lemma 3.5.

5.3. Proof of Lemma 3.6. Since

(
ρ1+θux

)
(x, t) =

∫ x

0
ut (y, t)dy + ργ (x, t),(

ρ1+θux
)
x
(x, t) = ut (x, t)+ (ργ )x (x, t),

(5.42)

(3.16) and (3.17) follow from Lemma 3.2, Lemma 3.3 and Lemma 3.5.
On the other hand, from Lemma 3.2 and Lemma 3.3, we have∫ 1

0
|ρx(x, t)|dx ≤

∫ 1

0
x(1 − x)ρ2θ−2ρ2

xdx +
∫ 1

0
(x(1 − x))−1ρ2−2θ dx

≤ C(T )+ C(T )
∫ 1

0
(x(1 − x))−1+α(2−2θ)dx

≤ C(T ). (5.43)

This gives (3.15).
In addition, from (3.2), we have

ux(x, t) = ργ−1−θ (x, t)+ ρ−1−θ
∫ x

0
ut (y, t)dy. (5.44)
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From Lemma 3.5 and by using Hölder’s inequality, we have∫ 1

0
|ux(x, t)|dx ≤

∫ 1

0
ργ−1−θ (x, t)dx +

∫ 1

0
ρ−1−θ (x, t)

∫ x

0
|ut (y, t)|dydx

≤
∫ 1

0
ργ−1−θ (x, t)dx

+
∫ 1

0
ρ−1−θ (x(1 − x)) 2n−1

2n dx

(∫ 1

0
u2n
t (x, t)dx

) 1
2n

≤
∫ 1

0
ργ−1−θ (x, t)dx + C(T )

∫ 1

0
(x(1 − x)) 2n−1

2n ρ−1−θ dx.

Case 1. If γ − 1 − θ < 0, then β1
γ−1−θ > 1. By Young’s inequality, we have

∫ 1

0
ργ−1−θ (x, t)dx =

∫ 1

0
(x(1 − x))

k1(γ−1−θ)
β1 ργ−1−θ (x, t)(x(1 − x))

k1(1+θ−γ )
β1 dx

≤ C
∫ 1

0
(x(1 − x))k1ρβ1dx + C

∫ 1

0
(x(1 − x))

k1(1+θ−γ )
β1+1+θ−γ dx.

Similarly, noticing that − β1
1+θ > 1, we have

∫ 1

0
(x(1 − x)) 2n−1

2n ρ−1−θ dx =
∫ 1

0
(x(1 − x))−

k1(1+θ)
β1 ρ−1−θ (x(1 − x)) 2n−1

2n + k1(1+θ)
β1 dx

≤ C
∫ 1

0
(x(1 − x))k1ρβ1dx

+ ∫ 1
0 (x(1 − x))

[
2n−1

2n + k1(1+θ)
β1

]
β1

β1+1+θ dx.

When 0 < θ < 2
9 , 1 < k1 < min

{
1+γ−3θ
1+θ−γ ,

3−5θ
1+θ

}
= 3−5θ

1+θ , it is easy to see that for

sufficiently large n,
k1(1 + θ − γ )
β1 + 1 + θ − γ > −1,

and [
2n− 1

2n
+ k1(1 + θ)

β1

]
β1

β1 + 1 + θ > −1.

Therefore we have in this case∫ 1

0
|ux(x, t)|dx ≤ C(T ). (5.45)

Case 2. If γ − 1 − θ ≥ 0, we can also obtain (5.45). This proves (3.18).
On the other hand, by Sobolev’s embedding theorem W 1,1([0, 1]) ↪→ L∞([0, 1])

and Young’s inequality, we have from (5.45) and Lemma 3.1,

||u(x, t)||L∞([0,1]×[0,T ]) ≤ C(T ),
which implies (3.19).
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Now we prove (3.20). To do so, from (2.1)1 and Hölder’s inequality, we deduce by
using Lemma 3.2,

∫ 1

0
|ρ(x, t)− ρ(x, s)|2dx =

∫ 1

0

∣∣∣∣
∫ t

s

ρt (x, η)dη

∣∣∣∣
2

dx

=
∫ 1

0

∣∣∣∣
∫ t

s

(ρ2ux)(x, η)dη

∣∣∣∣
2

dx

≤ |t − s|
∫ t

s

∫ 1

0

(
ρ4u2

x

)
(x, η)dxdη

≤ |t − s|
∫ t

s

max
[0,1]

(
(x(1 − x))−k1ρ3−θ−α1

)
V (η)dη

≤ C(T )|t − s|
∫ t

0
max
[0,1]

(x(1 − x))α(3−θ−α1)−k1V (η)dη.

(5.46)

Therefore, for sufficiently large n, when k1 < α(4 − 2θ), we have

α(3 − θ − α1)− k1 ≥ 0,

which implies (3.20).
Since

∫ 1

0
|u(x, t)− u(x, s)|2dx =

∫ 1

0

∣∣∣∣
∫ t

s

ut (x, η)dη

∣∣∣∣
2

dx

≤ |t − s|
∫ t

s

∫ 1

0
u2
t (x, η)dxdη

≤ C(T )|t − s|, (5.47)

(3.21) follows.
Finally, we prove (3.22). For this, we first obtain from Hölder’s inequality that

∫ 1

0

∣∣∣(ρ1+θux
)
(x, t)−

(
ρ1+θux

)
(x, s)

∣∣∣2 dx
=
∫ 1

0

∣∣∣∣
∫ t

s

(
ρ1+θux

)
t
(x, η)dη

∣∣∣∣
2

dx

≤ |t − s|
∫ t

s

∫ 1

0

[(
ρ1+θux

)
t
(x, η)

]2
dxdη. (5.48)

On the other hand, from (2.1) and (3.2), we get

(
ρ1+θux

)
t
(x, t) =

(
ρ1+θuxt

)
(x, t)+ (1 + θ) (ρθρtux) (x, t)

= (
ρ1+θuxt

)
(x, t)− (1 + θ) (ρ2+θu2

x

)
(x, t). (5.49)
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From (3.14)n with n = 1, we have∫ t

s

∫ 1

0

[(
ρ1+θux

)
t
(x, η)

]2
dxdη

≤
∫ t

0

∫ 1

0
ρ2+2θu2

xtdxds + C
∫ t

0

∫ 1

0
ρ4+2θu4

xdxds

≤ C(T )+ C
∫ t

0

{
V (s)max

[0,1]

(
(x(1 − x))−k1ρ3+θ−α1u2

x

)}
ds. (5.50)

Similar to (5.33), we have for 1 < k1 < min{1 + (1 − 3θ)α, (2γ − 3θ + 1)α},

(x(1 − x))−k1ρ3+θ−α1u2
x = (x(1 − x))−k1ρ1−θ−α1

(
ρ1+θux

)2
= (x(1 − x))−k1ρ1−θ−α1

{∫ x

0
ut (y, t)dy + ργ

}2

≤ max
[0,1]

ρ1+θ (x(1 − x))−k1ρ−α1−2θ
{∫ x

0
ut (y, t)dy + ργ

}2

≤ C(T ).
(5.51)

Therefore∫ t

s

∫ 1

0

[(
ρ1+θux

)
t
(x, η)

]2
dxdη ≤ C(T )

(
1 +

∫ t

0
V (s)ds

)
≤ C(T ). (5.52)

This and (5.48) imply (3.22) and then we complete the proof of Lemma 3.6.

5.4. Proof of Lemma 3.7. The proofs of (3.23) and (3.24) can be found in [24].
Now we prove (3.25). From the first equation of (2.1), we have(

(x(1 − x))1− 1
2n ρβ1

)
t
= −β1(x(1 − x))1− 1

2n ρ1+β1ux. (5.53)

Integrating (5.53) over [0, 1] × [0, t] and applying the Cauchy-Schwartz inequality, we
have∫ 1

0
(x(1 − x))1− 1

2n ρβ1dx ≤
∫ 1

0
(x(1 − x))1− 1

2n ρ
β1
0 dx + C

∫ t

0

∫ 1

0
ρ1+θ+α1u2

xdxds

+C
∫ t

0

∫ 1

0
(x(1 − x))2(1− 1

2n )ρ1+2β1−θ−α1dxds.

(5.54)

By noticing that∫ 1

0
(x(1 − x))1− 1

2n ρ
β1
0 dx ≤ C

∫ 1

0
(x(1 − x))1− 1

2n ρ
2(θ−1)
0 dx ≤ C

and
1 + 2β1 − θ − α1 = β1,
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we have from (3.24) and (5.54) that∫ 1

0
(x(1 − x))1− 1

2n ρβ1dx ≤ C(T )+ C
∫ t

0

∫ 1

0
(x(1 − x))1− 1

2n ρβ1dxds. (5.55)

Equation (5.55) implies (3.25) by Gronwall’s inequality.
Now we turn to prove (3.26). Let

β2 = θ +
(

1 − 1

2m+1

)
(θ − 1). (5.56)

Then for sufficiently large m, β2 < 0. Now by using Sobolev’s embedding theorem
W 1,1([0, 1]) ↪→ L∞([0, 1]) and Young’s inequality, we have

(x(1 − x)) 1
2 (1− 1

2n )ρβ2(x, t)

≤ C
∫ 1

0
(x(1 − x)) 1

2 (1− 1
2n )ρβ2(x, t)dx + C

∫ 1

0

∣∣∣((x(1 − x)) 1
2 (1− 1

2n )ρβ2
)
x

∣∣∣ dx
≤ C

∫ 1

0
(x(1 − x))1− 1

2n ρ2β2(x, t)dx + C
∫ 1

0
(x(1 − x))− 1

2 (1+ 1
2n )ρβ2(x, t)dx

+C
∫ 1

0
(x(1 − x)) 1

2 (1− 1
2n )ρβ2−1|ρx |dx

≤ Cmax
[0,1]

ρ2β2−β1

∫ 1

0
(x(1 − x))1− 1

2n ρβ1(x, t)dx

+C
∫ 1

0
(x(1 − x))1− 1

2n ρβ1(x, t)dx

+C
∫ 1

0
(x(1 − x))−

[
1
2 (1+ 1

2n )+(1− 1
2n )

β2
β1

]
β1

β1−β2 dx

+C
∫ 1

0
ρ2θ−2ρ2

xdx + C
∫ 1

0
(x(1 − x))1− 1

2n ρ2β2−2θ dx

≤ C(T )+ C
∫ 1

0
(x(1 − x))−

[
1
2 (1+ 1

2n )+(1− 1
2n )

β2
β1

]
β1

β1−β2 dx. (5.57)

When θ > 1
3 , we have for sufficiently large n,

−
[

1

2

(
1 + 1

2n

)
+
(

1 − 1

2n

)
β2

β1

]
β1

β1 − β2
> −1.

Therefore

(x(1 − x)) 1
2 (1− 1

2n )ρβ2(x, t) ≤ C(T ). (5.58)

Since 2θ − 1 < β2 < 0, (5.58) implies

ρ(x, t) ≥ C(T )(x(1 − x))− 1
2β2
(1− 1

2n ) ≥ C(T )(x(1 − x)) 1
2(1−2θ) .

This proves (3.26).
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Finally, we prove (3.27)n. Similar to the proof of Lemma 3.5, we can get∫ 1

0
u2n
t dx + n(2n− 1)

∫ t

0

∫ 1

0
ρ1+θu2n−2

t u2
xtdxds

≤ 2n(2n− 1)(θ + 1)2I (1)n + 2n(2n− 1)γ 2I (2)n . (5.59)

Now we prove (3.27)n. When n = 1, we estimate I (1)1 and I (2)1 as follows: In fact

I
(1)
1 =

∫ t

0

∫ 1

0
ρ3+θu4

xdxds ≤
∫ t

0
max
[0,1]

(
ρ2−α1u2

x

)
V1(s)ds,

where

V1(s) =
∫ 1

0
ρ1+θ+α1u2

x(x, s)dx.

On the other hand, we have

ρ2−α1u2
x = ρ−α1−2θ

(
ρ1+θux

)2

= ρ−α1−2θ
(∫ x

0
ut (y, t)dy + ργ

)2

≤ Cρ−α1−2θ x(1 − x)
∫ 1

0
u2
t dx + Cρ2γ−α1−2θ .

From (3.26), we have for 1
3 < θ <

3
7 and sufficiently large m,

x(1 − x)ρ−α1−2θ ≤ C(T )(x(1 − x))1− α1+2θ
2(1−2θ) ≤ C(T ),

which implies

max
[0,1]

ρ2−α1u2
x ≤ C(T )

∫ 1

0
u2
t dx + C.

Therefore,

I
(1)
1 ≤ C(T )

∫ t

0
V1(s)

∫ 1

0
u2
t dxds + C

∫ t

0
V1(s)ds. (5.60)

Similarly, we have

I
(2)
1 =

∫ t

0

∫ 1

0
ρ2γ+1−θu2

xdxds ≤ C
∫ t

0
max
[0,1]

ρ2γ−α1−2θV1(s)ds ≤ C(T )
∫ t

0
V1(s)ds.

(5.61)

From (5.59), (5.60) and (5.61), we have∫ 1

0
u2
t dx +

∫ t

0

∫ 1

0
ρ1+θu2

xtdxds ≤ C(T )
(

1 +
∫ t

0
V1(s)

∫ 1

0
u2
t dxds

)
. (5.62)

Gronwall’s inequality gives∫ 1

0
u2
t dx ≤ C(T ) exp

(
C

∫ t

0
V1(s)ds

)
≤ C(T ). (5.63)

Combining (5.62) with (5.63), we can get (3.27)1 immediately.
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When n > 1, similar to (5.39) and (5.40), we have

I (1)n =
∫ t

0

∫ 1

0
ρ3+θu4

xu
2n−2
t dxds ≤ C(T )

(
1 +

∫ t

0

∫ 1

0
u2n
t (x, s)dxds

)
, (5.64)

and

I (2)n =
∫ t

0

∫ 1

0
ρ2γ+1−θu2

xu
2n−2
t dxds ≤ C(T )

(
1 +

∫ t

0

∫ 1

0
u2n
t (x, s)dxds

)
. (5.65)

From (5.59), (5.64) and (5.65), we have∫ 1

0
u2n
t dx + n(2n− 1)

∫ t

0

∫ 1

0
ρ1+θu2n−2

t u2
xtdxds

≤ C(T )
(

1 +
∫ t

0

∫ 1

0
u2n
t (x, s)dxds

)
.

Gronwall’s inequality gives ∫ 1

0
u2n
t dx ≤ C(T ).

This completes the proof of Lemma 3.7.

5.5. Proof of Lemma 3.8. Since

(
ρ1+θux

)
(x, t) =

∫ x

0
ut (y, t)dy + ργ (x, t),(

ρ1+θux
)
x
(x, t) = ut (x, t)+ (ργ )x (x, t),

(5.66)

(3.29) and (3.30) follow from Lemma 3.7.
On the other hand, we have∫ 1

0
|ρx(x, t)|dx ≤

∫ 1

0
ρ2θ−2ρ2

xdx +
∫ 1

0
ρ2−2θ dx ≤ C(T ). (5.67)

This proves (3.28).
Now we prove (3.31). To do so, from (2.1)1 and Hölder’s inequality, we deduce

∫ 1

0
|ρ(x, t)− ρ(x, s)|2dx =

∫ 1

0

∣∣∣∣
∫ t

s

ρt (x, η)dη

∣∣∣∣
2

dx

=
∫ 1

0

∣∣∣∣
∫ t

s

(ρ2ux)(x, η)dη

∣∣∣∣
2

dx

≤ |t − s|
∫ t

s

∫ 1

0

(
ρ4u2

x

)
(x, η)dxdη

≤ C(T )|t − s|. (5.68)

This is (3.31).
The proof of (3.32) is similar to (3.21), and thus it is omitted.
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At last, we prove (3.33). For this, we first obtain from Hölder’s inequality that

∫ 1

0

∣∣∣(ρ1+θux
)
(x, t)−

(
ρ1+θux

)
(x, s)

∣∣∣2 dx
=
∫ 1

0

∣∣∣∣
∫ t

s

(
ρ1+θux

)
t
(x, η)dη

∣∣∣∣
2

dx

≤ |t − s|
∫ t

s

∫ 1

0

[(
ρ1+θux

)
t
(x, η)

]2
dxdη. (5.69)

On the other hand, from (2.1), (3.2), we can get

(
ρ1+θux

)
t
(x, t) =

(
ρ1+θuxt

)
(x, t)+ (1 + θ) (ρθρtux) (x, t)

= (
ρ1+θuxt

)
(x, t)− (1 + θ) (ρ2+θu2

x

)
(x, t). (5.70)

From (3.27)n, we have

∫ t

s

∫ 1

0

[(
ρ1+θux

)
t
(x, η)

]2
dxdη

≤
∫ t

0

∫ 1

0
ρ2+2θu2

xtdxds + C
∫ t

0

∫ 1

0
ρ4+2θu4

xdxds

≤ C(T )+ C
∫ t

0

{
V1(s)max

[0,1]

(
ρ3+θ−α1u2

x

)}
ds. (5.71)

On the other hand, we have from Lemma 3.7 and Hölder’s inequality

ρ3+θ−α1u2
x = ρ1−θ−α1

(
ρ1+θux

)2
= ρ1−θ−α1

{∫ x

0
ut (y, t)dy + ργ

}2

≤ C(T ). (5.72)

Therefore

∫ t

s

∫ 1

0

[(
ρ1+θux

)
t
(x, η)

]2
dxdη ≤ C(T )

(
1 +

∫ t

0
V1(s)ds

)
≤ C(T ). (5.73)

This and (5.69) give (3.33) and then complete the proof of Lemma 3.8.

5.6. Construction of weak solutions. To construct a weak solution to the initial boundary
value problem (2.1)–(2.3), we apply the line method as in [17], which can be described
as follows. For any given positive integer N , let h = 1

N
. Discretizing the derivatives
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with respect to x in (2.1), we obtain the system of 2N ordinary differential equations




d

dt
ρh2n(t)+

(
ρh2n(t)

)2 uh2n+1(t)− uh2n−1(t)

h
= 0,

d

dt
uh2n−1(t)+

P(ρh2n(t))− P(ρh2n−2(t))

h
= 1

h2

{
G(ρh2n(t))(u

h
2n+1(t)− uh2n−1(t))

− G(ρh2n−2(t))(u
h
2n−1(t)− uh2n−3(t))

}
, (5.74)

with the boundary conditions

ρh0 (t) = ρh2N(t) = 0, (5.75)

and initial data 

ρh2n(0) = ρ0

(
2n · h

2

)
,

uh2n−1(0) = u0

(
(2n− 1) · h

2

)
,

(5.76)

where n = 1, 2, . . . , N , G(ρ) = µ(ρ)ρ. And for n = 1 and N , we set uh−1(t) =
uh2N+1(t) = 0.

In the following, we will use (ρ2n, u2n−1) to replace (ρh2n, u
h
2n−1) without any ambi-

guity.
By using the arguments in [20], we can prove the following lemmas for obtaining the

uniform estimate of the approximate solutions to (5.74)–(5.76) with respect to h. Since
they are the same as or similar to those in [20], we omit the proofs for brevity. Interested
readers please refer to [20]. In the following, we consider the solutions to (5.74)–(5.76)
for the case of compact support for 0 ≤ t ≤ T where T > 0 is any constant.

Lemma 5.1. Let (ρ2n(t), u2n−1(t)), n = 1, 2, . . . , N , be the solution to (5.74)–(5.76).
Then we have

N∑
n=1

(
1

2
u2

2n−1(t)+
1

γ − 1
ρ
γ−1
2n (t)

)
h

+ ∫ t0 N∑
n=1
G(ρ2n(s))

(
u2n+1(s)−u2n−1(s)

h

)2
hds

=
N∑
n=1

(
1

2
u2

2n−1(0)+
1

γ − 1
ρ
γ−1
2n (0)

)
h. (5.77)

As a consequence of (5.77), the problem (5.74)–(5.76) has a unique global solution
for any given h.
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Lemma 5.2. There exist C and C(T ) independent of h such that

ρ2n(t) ≤ C(T )(nh(1 − nh))α, (5.78)

and

N∑
n=1

nh(1 − nh)
(
ρθ2n(t)− ρθ2n−2(t)

h

)2

h ≤ C(T ). (5.79)

Lemma 5.3. For any positive integers k and m, we have

N∑
n=1

(nh(1 − nh))k1ρ
β1
2n(t)h ≤ C(T ), (5.80)

N∑
n=1

u2k
2n−1(t)h+ k(2k − 1)

∫ t

0

N∑
n=1

u2k−2
2n−1(s)ρ

1+θ
2n (s)

(
u2n−1(s)− u2n−3(s)

h

)2

hds

≤ C(T ), (5.81)

N∑
n=1

(nh(1 − nh))k1ρ
α1
2n(t)u

2
2n−1(t)h

+
∫ t

0

N∑
n=1

(nh(1 − nh))k1ρ
1+θ+α1
2n (s)

(
u2n−1(s)− u2n−3(s)

h

)2

hds

≤ C(T ), (5.82)

and

N∑
n=1

[
d

dt
u2n−1(t)

]2k

h+
∫ t

0

N∑
n=1

ρ1+θ
2n (s)

[
d

dt
u2n−1(s)

]2k−2

(
d
dt
u2n−1(s)− d

dt
u2n−3(s)

h

)2

hds ≤ C(T ), (5.83)

where α1 =
(

1 − 1

2m

)
(θ − 1), β1 =

(
2 − 1

2m

)
(1 − θ). Furthermore, we have

ρ2n(t) ≥ C(T )(nh(1 − nh)) k2
1−2θ . (5.84)

Based on Lemma 5.1, Lemma 5.2 and Lemma 5.3, similar to the arguments in [16]
and those in the proof of Lemma 3.8, we can get the following estimates:

Lemma 5.4. There exists C(T ) such that the following estimates hold:

N∑
n=1

|ρ2n(t)− ρ2n−2(t)| ≤ C(T ), (5.85)
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N∑
n=1

|u2n+1(t)− u2n−1(t)| ≤ C(T ), (5.86)

|u2n+1(t)| ≤ C(T ), (5.87)

∣∣∣∣ρ1+θ
2n (t)

u2n+1(t)− u2n−1(t)

h

∣∣∣∣ ≤ C(T ), (5.88)

N∑
n=1

∣∣∣∣G(ρ2n+2(t))
u2n+1(t)− u2n−1(t)

h
−G(ρ2n(t))

u2n−1(t)− u2n−3(t)

h

∣∣∣∣ ≤ C(T ),

(5.89)

N∑
n=1

|ρ2n(t)− ρ2n(s)|2 h ≤ C(T )|t − s|, (5.90)

N∑
n=1

|u2n−1(t)− u2n−1(s)|2 h ≤ C(T )|t − s|, (5.91)

and

N∑
n=1

∣∣∣∣G(ρ2n(t))
u2n−1(t)− u2n−3(t)

h
−G(ρ2n(s))

u2n−1(s)− u2n−3(s)

h

∣∣∣∣
2

h

≤ C(T )|t − s|. (5.92)

Now we can define the sequence of approximate solutions (ρh(x, t), uh(x, t)) for
(x, t) ∈ [0, 1] × [0, T ] as follows:

ρh(x, t) = ρ2n(t),

uh(x, t) = 1

h

{(
x −

(
n− 1

2

)
h

)
u2n+1(t)+

((
n+ 1

2

)
h− x

)
u2n−1(t)

}
,

(5.93)

for

(
n− 1

2

)
h < x <

(
n+ 1

2

)
h. Then we have for

(
n− 1

2

)
h < x <

(
n+ 1

2

)
h

∂xuh(x, t) = 1

h
(u2n+1(t)− u2n−1(t)) , (5.94)
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and 


C(T )(x(1 − x)) k2
1−2θ ≤ ρh(x, t) ≤ C(T )(x(1 − x))α,

|uh(x, t)| ≤ C(T ),
∫ 1

0
|∂xuh(x, t)| dx ≤ C(T ),

|G(ρh(x, t))∂xuh(x, t)| ≤ C(T ),∫ 1

0
|∂x (G(ρh(x, t))∂xuh(x, t))| dx ≤ C(T ).

(5.95)

By using Helly’s theorem and arguments in one of the references [13, 14, 18–20, 24],
we complete the proof of Theorem 2.2.

Similarly, we can construct a weak solution to the initial boundary value problem
(2.1)–(2.3) for the case of infinite support and complete the proof of Theorem 2.4.

Remark 5.5. The lower bound of the density function ρ(x, t) obtained above is not opti-
mal. In order to obtain the detailed description of the evolution of the interface separating
the vacuum and gas, optimal decay rate of the density function is desired. However, such
a decay rate estimate has not been obtained even for the case when the density function
connects to vacuum with discontinuities.
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