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For the viscous and heat-conductive fluids governed by the compressible Navier-Stokes
equations with an external potential force, there exist non-trivial stationary solutions
with zero velocity. By combining the L

p
−L

q estimates for the linearized equations and
an elaborate energy method, the convergence rates are obtained in various norms for the
solution to the stationary profile in the whole space, when the initial perturbation of
the stationary solution and the potential force are small in some Sobolev norms. More
precisely, the optimal convergence rates of the solution and its first order derivatives in
L

2-norm are obtained when the L
1-norm of the perturbation is bounded.
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1. Introduction

The motion of compressible viscous and heat-conductive fluids in the whole space

R
3 can be described by the initial value problem of the compressible Navier-Stokes

1
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equations for the density ρ, velocity u = (u1, u2, u3) and temperature θ:










ρt + ∇ · (ρu) = 0,

ρ [ut + (u · ∇)u] + ∇P (ρ, θ) = µ∆u + (µ + µ′)∇(∇ · u) + ρF,

ρcν [θt + (u · ∇)θ] + θPθ(ρ, θ)∇ · u = κ∆θ + Ψ(u).

(1.1)

In the following discussion, initial data satisfy

(ρ, u, θ)(0, x) = (ρ0, u0, θ0)(x) → (ρ∞, 0, θ∞) as |x| → ∞. (1.2)

Here, t ≥ 0, x = (x1, x2, x3) ∈ R
3. P = P (ρ, θ), µ, µ′, κ and cν are the pressure,

the first and second viscosity coefficients, the coefficient of heat conduction and the

specific heat at constant volume respectively. In addition, F is an external force

and Ψ = Ψ(u) is the classical dissipation function:

Ψ(u) =
µ

2

(

∂iu
j + ∂ju

i
)2

+ µ′
(

∂ju
j
)2

. (1.3)

Throughout this paper, the above physical parameters and known functions are

assumed to satisfy the following usual conditions:

A.1. µ, κ and cν are positive constants, while µ′ is a constant satisfying µ′+ 2
3µ ≥ 0.

A.2. ρ∞ and θ∞ are positive constants, and P = P (ρ, θ) is smooth in a neighborhood

of (ρ∞, θ∞) satisfying Pρ(ρ∞, θ∞) > 0 and Pθ(ρ∞, θ∞) > 0.

A.3. There exists a function Φ ∈ H5(R3) such that F (x) = −∇Φ(x).

As a sequence of the above assumptions, the stationary solution (ρ̃, ũ, θ̃)(x) of

(1.1)-(1.2) in a neighborhood of (ρ∞, 0, θ∞) is given by
∫ ρ̃(x)

ρ∞

Pρ(η, θ∞)

η
dη + Φ(x) = 0, ũ(x) = 0, θ̃(x) = θ∞, (1.4)

and satisfies

‖ρ̃ − ρ∞‖l ≤ C‖Φ‖l, 0 ≤ l ≤ 5, (1.5)

‖∇ρ̃‖L6/5 ≤ C‖∇Φ‖L6/5 . (1.6)

Under these assumptions, the nonlinear stability of the stationary solution to

the problem (1.1)-(1.2) was proved by Matsumura and Nishida15,16 as stated in the

following proposition.

Proposition 1.1. Under the assumptions A.1-A.3, there exist constants C0 > 0

and ǫ0 > 0 such that if

‖(ρ0 − ρ∞, u0, θ0 − θ∞)‖3 + ‖Φ‖5 ≤ ǫ0,

then the initial value problem (1.1)-(1.2) has a unique solution (ρ, u, θ) globally in

time and a unique stationary state (ρ̃, 0, θ∞), which satisfy

ρ − ρ̃ ∈ C0(0,∞; H3(R3)) ∩ C1(0,∞; H2(R3)),

u, θ − θ∞ ∈ C0(0,∞; H3(R3)) ∩ C1(0,∞; H1(R3)),
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and

‖(ρ − ρ̃, u, θ − θ∞)(t)‖2
3

+

∫ t

0

(‖∇(ρ − ρ̃, u, θ − θ∞)(s)‖2
2 + ‖∇(u, θ − θ∞)(s)‖2

3) ds

≤ C0‖(ρ0 − ρ̃, u0, θ0 − θ∞)‖2
3. (1.7)

Based on this stability result, the main purpose in this paper is to investigate

the optimal convergence rates in time to the stationary solution. We remark that

the convergence rate is an important topic in the study of the fluid dynamics for the

purpose of the computation5,6. Since the background profile is non-trivial due to the

effect of the external force, the analysis on the convergence rates is more delicate

and difficult than the case without external forces. The main idea in this paper is to

combine the Lp −Lq estimates for the linearized equations and an improved energy

method which includes the estimation on the higher power of L2-norm of solutions.

By doing this, the optimal convergence rates for solutions to the nonlinear problem

(1.1)-(1.2) in various norms can be obtained and are stated in the following theorem.

Theorem 1.1. Let ǫ0 be the constant defined in Proposition 1.1. There exist con-

stants ǫ1 ∈ (0, ǫ0) and C > 0 such that the following holds. For any ǫ ≤ ǫ1, if

‖(ρ0 − ρ∞, u0, θ0 − θ∞)‖3 + ‖Φ‖5 + ‖∇Φ‖L6/5 ≤ ǫ, (1.8)

and

ρ0 − ρ∞, u0, θ0 − θ∞ ∈ L1(R3), (1.9)

then, the solution (ρ, u, θ) in Proposition 1.1 enjoys the estimates

‖(ρ − ρ̃, u, θ − θ∞)(t)‖Lp ≤ C(1 + t)−
3
2 (1−

1
p ), 2 ≤ p ≤ 6, t ≥ 0, (1.10)

‖(ρ − ρ̃, u, θ − θ∞)(t)‖L∞ ≤ C(1 + t)−
5
4 , t ≥ 0, (1.11)

‖∇(ρ − ρ̃, u, θ − θ∞)(t)‖2 ≤ C(1 + t)−
5
4 , t ≥ 0, (1.12)

‖(ρt, ut, θt)(t)‖ ≤ C(1 + t)−
5
4 , t ≥ 0. (1.13)

Remark 1.1. In Theorem 1.1, (1.8) together with (1.5)-(1.6) implies that

‖ρ̃− ρ∞‖5 + ‖∇ρ̃‖L6/5 ≤ Cǫ. (1.14)

In addition, (1.9) shows that the perturbation of initial data around the constant

state (ρ∞, 0, θ∞) is bounded in L1-norm, which need not be small.

Remark 1.2. The linearized equations of (1.1) around the constant state

(ρ∞, 0, θ∞) take the following form12,16:






ρt + γ∇ · u = 0,

ut − µ1∆u − µ2∇∇ · u + γ∇ρ + λ∇θ = 0,

θt − κ̄∆θ + λ∇ · u = 0,
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where µ1, µ2, γ, λ and κ̄ are positive constants which will be given precisely in

Section 2. Compared to the decay estimates of the solution to the above linearized

equations by using Fourier analysis12 stated in Lemma 2.1 in the next section,

Theorem 1.1 gives the optimal decay rates for the solution in Lp-norm, 2 ≤ p ≤ 6,

and its first order derivatives in L2-norm. However, notice that the convergence

rates of the derivatives of higher order in L2-norm and the solution in L∞-norm are

not the same as those for linearized equations. Even though it may not be feasible

for the nonlinear system with external forces to have the same decay for higher

order derivatives as the linearized one because the differentiation can be taken only

on the stationary background profile, what are the optimal convergence rates for

higher order derivatives is not known and is left for future study.

A lot of works have been done on the existence, stability, large time behavior

and convergence rates of solutions to the compressible Navier-Stokes equations for

either isentropic or nonisentropic (heat-conductive) case, cf.15,16,8,11,17,23 and refer-

ences therein; see also references18,20 about some existence results of the stationary

solutions to the compressible viscous Navier-Stokes equations with general external

forces. In the following, we recall some studies on the convergence rates for the

compressible Navier-Stokes equations in the whole space with or without external

forces which are related to the results in this paper.

When there is no external force, Matsumura and Nishida14 obtained the con-

vergence rate for the compressible viscous and heat-conductive fluid in R
3:

‖(ρ − ρ∞, u, θ − θ∞)(t)‖2 ≤ C(1 + t)−
3
4 , t ≥ 0,

if the small initial disturbance belongs to H4(R3) ∩ L1(R3). For the same system,

Ponce19 gave the optimal Lp convergence rate

‖∇l(ρ − ρ∞, u, θ − θ∞)(t)‖Lp ≤ C(1 + t)−
n
2
(1− 1

p )− l
2 , t ≥ 0,

for 2 ≤ p ≤ ∞ and l = 0, 1, 2, if the small initial disturbance belongs to Hs(Rn) ∩

W s,1(Rn) with the integer s ≥ [n/2] + 3 and the space dimension n = 2 or 3. From

the pointwise estimates through the study of the Green function, the optimal decay

rates for the isentropic viscous fluid in R
n, n ≥ 2, were obtained by Hoff-Zumbrun7

and Liu-Wang13:

‖(ρ − ρ∞, ρu)(t)‖Lp ≤







Ct−
n
2 (1− 1

p), 2 ≤ p ≤ ∞,

Ct−
n
2 (1− 1

p)+ n−1

4 ( 2
p−1)Ln(t), 1 ≤ p < 2,

for all large t > 0, if the small initial disturbance belongs to Hs(Rn)∩L1(Rn) with

the integer s ≥ [n/2] + 3, where Ln(t) equals log(1 + t) if n = 2 and 1 otherwise.

This result was later generalized by Kobayashi-Shibata12 and Kagei-Kobayashi9,10

to the viscous and heat-conductive fluid and also to the half space problem but

without the smallness of L1-norm of the initial disturbance.
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When there is an external potential force F = −∇Φ(x), there are also some

results on the convergence rate for solutions to the compressible viscous Navier-

Stokes equations. The difficulty in these analysis comes from the appearance of

non-trivial stationary solutions. For this case, when the initial perturbation is not

assumed in L1, the analysis only on the Sobolev space Hs(R3) yields a slower

decay2,3. Recently, an almost optimal convergence rate in L2(Rn), n ≥ 3, was

obtained by Ukai-Yang-Zhao22:

‖(ρ − ρ̃, u)(t)‖3 ≤ C(n, δ)(1 + t)−
n
4
+δ, t ≥ 0,

if the initial disturbance belongs to Hs(Rn) ∩ L1(Rn), s ≥ [n/2] + 2 with only Hs-

norm small, where (ρ̃, 0) is the stationary solution and δ is any small positive con-

stant. But C(n, δ) is a constant depending on n and δ which satisfies C(n, δ) → ∞

when δ tends to zero. The result in this paper generalizes the above one and im-

proves its method. Finally, for the general (non-potential) external force F = F (x),

the velocity of the stationary solution may not be zero20. For this, the following

convergence rate was obtained by Shibata-Tanaka21 for the isentropic viscous fluid:

‖∇(ρ − ρ∗, u − u∗)(t)‖2 ≤ C(δ)t−
1
2
+δ, (1.15)

for any large t > 0, if the initial disturbance belongs to H3(R3) ∩ L6/5(R3) with

only H3-norm small, where (ρ∗, u∗) denotes the stationary solution and δ is any

small positive constant.

Remark 1.3. Considers a potential force F = −∇Φ with Φ of the special form

Φ(x) =
η

(1 + |x|)1+r
,

where η > 0 is sufficiently small and r is a constant. Clearly, the condition (1.8)

is satisfied if and only if r > 1/2 and then Theorem 1.1 holds on the optimal

convergence rates for L1 initial disturbance. On the other hand, it is seen that

the argument of Ref. [21] is valid for this potential with r ≥ 0 and the stationary

solution defined by (1.4), to deduce the convergence rate (1.15) for L6/5 initial

disturbance. Thus, the optimal convergence rate depends on the spatial decay order

of the potential function as well as the summability of the initial disturbance. A

similar result holds for some negative r. This will be reported in a future.

To obtain the optimal convergence rates of the solution and its first order deriva-

tives in L2-norm for the case of the potential force in Theorem 1.1, besides the

Lp − Lq estimates on the solutions for the linearized system and the energy esti-

mates for the nonlinear system, a new idea is to consider the estimates not only

on the energy itself but also on its powers, which yields a uniform decay estimate

when the power tends to infinity. That is, we are going to prove an estimate in the

form of

(1 + t)
5p
4
−δ‖∇(σ, w, z)(t)‖p

2 ≤ C(δ, p, ǫ),
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for all δ > 0, p ≥ 2 where (σ, w, z) is the solution to the reformulated problem (2.8)

defined in the next section whereas ǫ is as in (1.8). Actually, we can only obtain

the constant C(δ, p, ǫ) > 0 such that C(δ, p, ǫ) → ∞ as δ → 0 for each fixed p, ǫ. In

other words, this estimate cannot give the desired optimal convergence rate if p is

fixed. However, for fixed δ > 0, if we can show that

C(δ, p, ǫ)
1
p → C(δ, ǫ) as p → ∞,

then, we get

‖∇(σ, w, z)(t)‖2 ≤ C(δ, ǫ)(1 + t)−
5
4 ,

which is the desired optimal estimate for the first order derivatives with respect to

the space variable. This effective method to obtain the optimal convergence rate can

be also applied to the other cases4. The optimal convergence rate of the solution in

L2-norm can then be obtained by using the integral formula of the solution to the

nonlinear problem which will be given in Section 4.

The rest of the paper is organized as follows. In Section 2, the nonlinear prob-

lem is reformulated, and some basic inequalities and the decay properties of the

linearized equations are given. Based on the Lp − Lq and the energy estimates,

some lemmas for obtaining optimal convergence rates are proved in Section 3. And

then the main result Theorem 1.1 will be proved in the last section.

Notations. Throughout this paper, the norms in the Sobolev Spaces Hm(R3) and

Wm,p(R3) are denoted respectively by ‖ · ‖m and ‖ · ‖m,p for m ≥ 0, any p ≥ 1.

In particular, for m = 0, we will simply use ‖ · ‖ and ‖ · ‖Lp . 〈·, ·〉 denotes the

inner-product in L2(R3). Moreover, C denotes a general constant which may vary

in different estimates. If the dependence needs to be explicitly pointed out, then

the notation C(a, b, . . .) is used. Finally,

∇ = (∂1, ∂2, ∂3), ∂i = ∂xi , i = 1, 2, 3,

and for any integer l ≥ 0, ∇lf denotes all derivatives up to l-order of the function

f . And for multi-indices α and β

α = (α1, α2, α3), β = (β1, β2, β3),

we use

∂α
x = ∂α1

x1
∂α2

x2
∂α3

x3
, |α| =

3
∑

i=1

αi,

and Cβ
α =

(

β

α

)

when β ≤ α.
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2. Preliminaries

In this section, the initial problem (1.1)-(1.2) will be reformulated as follows. Set

ρ′(t, x) = ρ(t, x) − ρ̃(x), u′(t, x) = u(t, x), θ′(t, x) = θ(t, x) − θ∞,

and

ρ̄(x) = ρ̃(x) − ρ∞. (2.1)

By (1.4), it holds that

F (x) = −∇Φ(x) =
∇P (ρ̃, θ∞)

ρ̃
.

Thus (1.1) becomes






























ρ′t + ρ∞∇ · u′ = F ′
1,

u′
t −

µ

ρ∞
∆u′ −

µ + µ′

ρ∞
∇∇ · u′ +

Pρ(ρ∞, θ∞)

ρ∞
∇ρ′ +

Pθ(ρ∞, θ∞)

ρ∞
∇θ′ = F ′

2,

θ′t −
κ

cνρ∞
∆θ′ +

θ∞Pθ(ρ∞, θ∞)

cνρ∞
∇ · u′ = F ′

3,

(2.2)

where

F ′
1 = −∇ · (ρ′u′) −∇ · (ρ̄u′), (2.3)

F ′
2 = −(u′ · ∇)u −

[

Pρ(ρ
′ + ρ̃, θ′ + θ∞)

ρ′ + ρ̃
−

Pρ(ρ∞, θ∞)

ρ∞

]

∇ρ′

−

[

Pθ(ρ
′ + ρ̃, θ′ + θ∞)

ρ′ + ρ̃
−

Pθ(ρ∞, θ∞)

ρ∞

]

∇θ′

−

[

Pρ(ρ
′ + ρ̃, θ′ + θ∞)

ρ′ + ρ̃
−

Pρ(ρ∞, θ∞)

ρ∞

]

∇ρ̄

+

[

µ

ρ′ + ρ̃
−

µ

ρ∞

]

∆u′ +

[

µ + µ′

ρ′ + ρ̃
−

µ + µ′

ρ∞

]

∇(∇ · u′), (2.4)

F ′
3 = −(u′ · ∇)θ′ −

[

(θ′ + θ∞)Pθ(ρ
′ + ρ̃, θ′ + θ∞)

cν(ρ′ + ρ̃)
−

θ∞Pθ(ρ∞, θ∞)

cνρ∞

]

∇ · u′

+

[

κ

cν(ρ′ + ρ̃)
−

κ

cνρ∞

]

∆θ′ +

[

1

cν(ρ′ + ρ̃)
−

1

cνρ∞

]

Ψ(u′)

+
1

cνρ∞
Ψ(u′). (2.5)

Denote the scaled parameters and constants by

µ1 =
µ

ρ∞
, µ2 =

µ + µ′

ρ∞
, γ =

√

P1ρ∞, λ =
√

P2P3, κ̄ =
κ

cν

√

P2

P1P3ρ∞
.

Then by defining

σ(t, x) = ρ′(t, x), w(t, x) =

√

ρ∞
P1

u′(t, x), z(t, x) =

√

P2ρ∞
P1P3

θ′(t, x),
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where

P1 =
Pρ(ρ∞, θ∞)

ρ∞
, P2 =

Pθ(ρ∞, θ∞)

ρ∞
, P3 =

θ∞Pθ(ρ∞, θ∞)

cνρ∞
,

the initial value problem (1.1)-(1.2) is reformulated into






σt + γ∇ · w = F1,

wt − µ1∆w − µ2∇∇ · w + γ∇σ + λ∇z = F2,

zt − κ̄∆z + λ∇ · w = F3,

(2.6)

with initial data

(σ, w, z)(0, x) = (σ0, w0, z0)(x) → (0, 0, 0) as |x| → ∞. (2.7)

Here, F1, F2, F3 are F ′
1, F

′
2, F

′
3 respectively in terms of (σ, w, z), and

(σ0, w0, z0)(x) =

(

ρ0(x) − ρ̃(x),

√

ρ∞
P1

u0(x),

√

P2ρ∞
P1P3

(θ0(x) − θ∞)

)

.

Use A to denote the following matrix-valued differential operator

A =





0 γdiv 0

γ∇ −µ1∆ − µ2∇div λ∇

0 λdiv −κ̄∆



 .

Then the corresponding semigroup generated by the linear operator −A is

E(t) = e−tA, t ≥ 0.

For simplicity of notations, set

U = (σ, w, z) and F (U) = (F1, F2, F3)(U).

Then the reformulated problem (2.6)-(2.7) can be written both as

Ut + AU = F (U) in (0,∞) × R
3, U(0) = U0 in R

3,

and the integral form

U(t) = E(t)U0 +

∫ t

0

E(t − s)F (U)(s)ds, t ≥ 0. (2.8)

To fully use the decay estimates of the semigroup E(t), the following Lp − Lq

estimates12 will be applied to the integral formula (2.13).

Lemma 2.1. Let l ≥ 0, m ≥ 0 be integers and 1 ≤ q ≤ 2 ≤ p < ∞. Then for any

t > 0, we have

‖∂m
t ∇lE(t)U0‖Lp ≤ C(m, l, p, q)(1 + t)−

3
2
( 1

q −
1
p )−m+l

2 ‖U0‖Lq

+C(m, l, p, q)e−ct
[

t−
n1
2 ‖σ0‖(2m+l−n1−1)+,p + ‖σ0‖l,p

]

+C(m, l, p, q)e−ct
[

t−
n2
2 ‖(w0, z0)‖(2m+l−n2)+,p + ‖(w0, z0)‖(l−1)+,p

]

,



June 22, 2006 17:33 WSPC/INSTRUCTION FILE DUYZ-M3AS

Optimal Convergence Rates for Navier-Stokes Equations 9

where n1 ≥ 0 and n2 ≥ 0 are integers, c > 0 is a positive constant, and (k)+ = k if

k ≥ 0 and 0 otherwise. In particular, it holds that

‖∇lE(t)U0‖ ≤ C(l)(1 + t)−
3
4
− l

2 (‖U0‖L1 + ‖U0‖l),

and

‖∂tE(t)U0‖ ≤ C(1 + t)−
5
4

[

‖U0‖L1 +
(

1 + t−
1
2

)

‖U0‖1

]

.

For later use and clear reference, some Sobolev inequalities1,2 are listed as fol-

lows.

Lemma 2.2. Let Ω ⊂ R
3 be any domain with smooth boundary. Then

(i) ‖f‖C0(Ω̄) ≤ C‖f‖W m,p(Ω), for f ∈ Wm,p(Ω), (m − 1)p < 3 < mp.

(ii) ‖f‖Lp(Ω) ≤ C‖f‖H1(Ω), for f ∈ H1(Ω), 2 ≤ p ≤ 6.

Lemma 2.3. Let Ω ⊂ R
3 be the whole space R

3, or half space R
3
+ or the exterior

domain of a bounded region with smooth boundary. Then

(i) ‖f‖L6(Ω) ≤ C‖∇f‖L2(Ω), for f ∈ H1(Ω).

(ii) ‖f‖C0(Ω̄) ≤ C‖f‖W 1,p(Ω) ≤ C‖∇f‖H1(Ω), for f ∈ H2(Ω).

Lemma 2.4. For Ω defined in Lemma 2.3, we have

(i) |
∫

Ω f · g · h dx| ≤ ε‖∇f‖2 + C
ε ‖g‖

2
1‖h‖

2 for ε > 0, f, g ∈ H1(Ω), h ∈ L2(Ω).

(ii) |
∫

Ω
f · g · h dx| ≤ ε‖g‖2 + C

ε ‖∇f‖2
1‖h‖

2 for ε > 0, f ∈ H2(Ω), g, h ∈ L2(Ω).

Finally, the following elementary inequality will also be used.

Lemma 2.5. If r1 > 1 and r2 ∈ [0, r1], then it holds that

∫ t

0

(1 + t − s)−r1(1 + s)−r2ds ≤ C1(r1, r2)(1 + t)−r2 , (2.9)

where C1(r1, r2) is defined by

C1(r1, r2) =
2r2+1

r1 − 1
. (2.10)

Proof. The integral in (2.9) is estimated by

(

∫ t
2

0

+

∫ t

t
2

)

(1 + t − s)−r1(1 + s)−r2ds = I + II. (2.11)

For the second part, it is easy to see

II ≤

(

1 +
t

2

)−r2
∫ t

t
2

(1 + t − s)−r1ds ≤
1

r1 − 1

(

1 +
t

2

)−r2

. (2.12)
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For the first part, when r2 6= 1, it holds that

I =

(

1 + t
2

)−r1

1 − r2

[

(

1 +
t

2

)1−r2

− 1

]

=

(

1 +
t

2

)−r2
(

1 + t
2

)1−r1
−
(

1 + t
2

)r2−r1

1 − r2
.

Define an auxiliary function

G(x) =
(1 + x)1−r1 − (1 + x)r2−r1

1 − r2
.

Direct calculations gives 0 ≤ G(x) ≤ G(x∗), where x∗ satisfies

1 + x∗ =

(

r1 − 1

r1 − r2

)
1

r2−1

.

Thus,

G(x∗) =
1

1 − r2

[

(

r1 − 1

r1 − r2

)

1−r1
r2−1

−

(

r1 − 1

r1 − r2

)

r2−r1
r2−1

]

=

(

r1 − 1

r1 − r2

)

r2−r1
r2−1 1

r1 − 1
≤

1

r1 − 1
,

where we have used the inequality

(

r1 − 1

r1 − r2

)

r2−r1
r2−1

≤ 1

because r1 > 1 and 0 ≤ r2 ≤ r1. Thus for the first part, it also holds that

I ≤
1

r1 − 1

(

1 +
t

2

)−r2

. (2.13)

Hence putting (2.12) and (2.13) into (2.11) yields (2.9). This completes the proof

of the lemma.

3. Basic estimates

In this section, we shall prove two basic inequalities for the proof of the optimal

convergence rates in Section 4. One inequality is based on the Lp − Lq estimates

of solutions to the linearized equations, while the other comes from the use of the

energy method.

Lemma 3.1. Let U = (σ, w, z) be the solution to the problem (2.6)-(2.7). Under

the assumptions of Theorem 1.1, we have

‖∇U(t)‖ ≤ CE0(1 + t)−
5
4 + Cǫ

∫ t

0

(1 + t − s)−
5
4 ‖∇U(s)‖2ds, (3.1)
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where E0 = ‖U0‖H3∩L1 is finite by (1.8) and (1.9).

Proof. From (2.8) and Lemma 2.1, we have

‖∇U(t)‖ ≤ CE0(1 + t)−
5
4

+C

∫ t

0

(1 + t − s)−
5
4 (‖F (U)(s)‖L1 + ‖F (U)(s)‖1) ds, (3.2)

where F (U) given in (2.3)-(2.5) has the following equivalence properties:

F1 ∼ ∂iσwi + σ∂iw
i + ∂iρ̄wi + ρ̄∂iw

i,

F j
2 ∼ wi∂iw

j + σ∂i∂iw
j + σ∂j∂iw

i + σ∂jσ + z∂jσ + σ∂jz + z∂jz

+ρ̄∂i∂iw
j + ρ̄∂j∂iw

i + ρ̄∂jσ + σ∂j ρ̄ + z∂j ρ̄ + ρ̄∂jz,

F3 ∼ wi∂iz + σ∂i∂iz + σ∂iw
i + z∂iw

i + σΨ(w) + Ψ(w)

+ρ̄∂i∂iz + ρ̄∂iw
i + ρ̄Ψ(w).

And Ψ(w) is given by (1.3). Thus, it follows from the Hölder inequality, Proposition

1.1, Lemma 2.2, (2.1) and (1.14) that

‖F (U)(t)‖L1 ≤ C(‖U(t)‖ + ‖ρ̄‖)‖∇U(t)‖1 + C‖∇ρ̄‖L6/5‖U(t)‖L6

+C(‖∇σ(t)‖1 + ‖∇ρ̄‖1)‖∇w(t)‖2

≤ Cǫ‖∇U(t)‖1, (3.3)

and

‖F (U)(t)‖1 ≤ C(‖U(t)‖W 1,∞ + ‖ρ̄‖W 1,∞)‖∇U(t)‖2 + C‖∇ρ̄‖1‖U(t)‖L∞

+C‖σ(t)‖W 1,∞‖∇w(t)‖L∞‖∇w(t)‖1

≤ C(‖∇U(t)‖2 + ‖∇ρ̄‖2)‖∇U(t)‖2 + C‖∇ρ̄‖1‖∇U(t)‖1

+C‖∇σ(t)‖2‖∇
2w(t)‖1‖∇w(t)‖1

≤ Cǫ‖∇U(t)‖2. (3.4)

Putting (3.3) and (3.4) into (3.2) yields (3.1) and hence this completes the proof of

the lemma.

Lemma 3.2. Let U = (σ, w, z) be the solution to the problem (2.6)-(2.7). Under

the assumptions of Theorem 1.1, if ǫ > 0 is sufficiently small, then it holds that

dH(t)

dt
+
(

‖∇2σ(t)‖2
1 + ‖∇2(w, z)(t)‖2

2

)

≤ Cǫ‖∇U(t)‖2, (3.5)

where H(t) is equivalent to ‖∇U(t)‖2
2, that is, there exists a positive constant C2

such that

1

C2
‖∇U(t)‖2

2 ≤ H(t) ≤ C2‖∇U(t)‖2
2, t ≥ 0. (3.6)
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Proof. For each multi-index α with 1 ≤ |α| ≤ 3, by applying ∂α
x to (2.6), multi-

plying it by ∂α
x σ, ∂α

x w, ∂α
x z respectively and then integrating it over R

3, we have

from (2.6)1-(2.6)3 that

1

2

d

dt
‖∂α

x U(t)‖2 + µ1‖∇∂α
x w(t)‖2 + µ2‖∇ · ∂α

x w(t)‖2 + κ̄‖∇∂α
x z(t)‖2

= 〈∂α
x σ(t), ∂α

x F1(t)〉 + 〈∂α
x w(t), ∂α

x F2(t)〉 + 〈∂α
x z(t), ∂α

x F3(t)〉

= I1(t) + I2(t) + I3(t), (3.7)

where Ii(t), i = 1, 2, 3, are the corresponding terms in the above equation which

will be estimated as follows.

Firstly, for I1(t), it holds that

I1(t) ≤ C
{

|〈∂α
x σ(t), ∂α

x (∂iσwi)(t)〉| + |〈∂α
x σ(t), ∂α

x (σ∂iw
i)(t)〉|

+|〈∂α
x σ(t), ∂α

x (∂iρ̄wi)(t)〉| + |〈∂α
x σ(t), ∂α

x (ρ̄∂iw
i)(t)〉|

}

≤ C|〈∂α
x σ(t), ∂α

x ∂iσ(t)wi(t)〉|

+C
∑

|β|≤|α|−1 Cβ
α |〈∂

α
x σ(t), ∂β

x ∂iσ(t)∂α−β
x wi(t)〉|

+C
∑

|β|≤|α| C
β
α |〈∂

α
x σ(t), ∂β

x σ(t)∂α−β
x ∂iw

i(t)〉|

+C
∑

|β|≤|α| C
β
α |〈∂

α
x σ(t), ∂β

x ∂iρ̄∂α−β
x wi(t)〉|

+C
∑

|β|≤|α| C
β
α |〈∂

α
x σ(t), ∂β

x ρ̄∂α−β
x ∂iw

i(t)〉|. (3.8)

For the first term on the right hand side of (3.8), Lemma 2.3 and Proposition 1.1

give

|〈∂α
x σ(t), ∂α

x ∂iσ(t)wi(t)〉| = 1
2 |〈(∂

α
x σ(t))2, ∂iw

i(t)〉|

≤ C‖∂iw
i(t)‖L∞‖∂α

x σ(t)‖2 ≤ C‖∇2w(t)‖1‖∂
α
x σ(t)‖2

≤ Cǫ‖∂α
x σ(t)‖2.

Furthermore, for the second term, it follows from Lemma 2.4 and Proposition 1.1

that
∑

|β|≤|α|−1

|〈∂α
x σ(t), ∂β

x ∂iσ(t)∂α−β
x wi(t)〉|

=
{

∑

|β|=0 +
∑

1≤|β|≤|α|−1

}

|〈∂α
x σ(t), ∂β

x ∂iσ(t)∂α−β
x wi(t)〉|

≤ 2ǫ‖∂α
x σ(t)‖2 + C

ǫ ‖∇∂iσ(t)‖2
1‖∂

α
x wi(t)‖2

+C
ǫ

∑

1≤|β|≤|α|−1 ‖∇∂α−β
x wi(t)‖2

1‖∂
β
x∂iσ(t)‖2

≤ Cǫ
∑

1≤|α|≤3 ‖∂
α
x σ(t)‖2 + Cǫ

∑

1≤|α|≤4 ‖∂
α
x w(t)‖2.

The other terms on the right hand side of (3.8) can be estimated similarly. Thus,

I1(t) ≤ Cǫ
∑

1≤|α|≤3

‖∂α
x σ(t)‖2 + Cǫ

∑

1≤|α|≤4

‖∂α
x w(t)‖2. (3.9)
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Moreover, I2(t) and I3(t) can be estimated similarly by using Lemma 2.4:

I2(t) + I3(t) ≤ Cǫ
∑

1≤|α|≤3

‖∂α
x σ(t)‖2 + Cǫ

∑

1≤|α|≤4

‖∂α
x (w, z)(t)‖2. (3.10)

Hence (3.7) together with (3.9) and (3.10) yields

d

dt

∑

1≤|α|≤3

‖∂α
x U(t)‖2+

∑

1≤|α|≤3

‖∇∂α
x (w, z)(t)‖2

≤ Cǫ
∑

1≤|α|≤3

‖∂α
x σ(t)‖2 + Cǫ

∑

1≤|α|≤4

‖∂α
x (w, z)(t)‖2. (3.11)

Next we shall estimate ‖∇∂α
x σ(t)‖2 when 1 ≤ |α| ≤ 2. Since (2.6)2 gives

γ∇σ = −wt + µ1∆w + µ2∇(∇ · w) − λ∇z + F2,

we have that for 1 ≤ |α| ≤ 2,

γ‖∇∂α
x σ(t)‖2 = −〈∂α

x wt(t),∇∂α
x σ(t)〉 + µ1〈∂

α
x ∆w(t),∇∂α

x σ(t)〉

+µ2〈∂
α
x∇(∇ · w)(t),∇∂α

x σ(t)〉 − λ〈∂α
x ∇z(t),∇∂α

x σ(t)〉

+〈∂α
x F2(t),∇∂α

x σ(t)〉. (3.12)

On the other hand, it follows from (2.6)1 that

d

dt
〈∂α

x w(t),∇∂α
x σ(t)〉

= 〈∂α
x wt(t),∇∂α

x σ(t)〉 + 〈∂α
x w(t),∇∂α

x σt(t)〉

= 〈∂α
x wt(t),∇∂α

x σ(t)〉 − γ〈∂α
x w(t),∇∂α

x ∇ · w(t)〉 + 〈∂α
x w(t),∇∂α

x F1(t)〉. (3.13)

Adding (3.12) and (3.13) gives

γ‖∇∂α
x σ(t)‖2 +

d

dt
〈∂α

x w(t),∇∂α
x σ(t)〉

= µ1〈∂
α
x ∆w(t),∇∂α

x σ(t)〉 + µ2〈∂
α
x∇(∇ · w)(t),∇∂α

x σ(t)〉

−γ〈∂α
x w(t),∇∂α

x ∇ · w(t)〉 − λ〈∂α
x ∇z,∇∂α

x σ(t)〉

+〈∂α
x w(t),∇∂α

x F1(t)〉 + 〈∇∂α
x σ(t), ∂α

x F2(t)〉,

which implies

γ

2
‖∇∂α

x σ(t)‖2 +
d

dt
〈∂α

x w(t),∇∂α
x σ(t)〉

≤ C(‖∂α
x ∇

2w(t)‖2 + ‖∂α
x∇ · w(t)‖2 + ‖∂α

x∇z(t)‖2)

+C|〈∂α
x w(t),∇∂α

x F1(t)〉| + C|〈∇∂α
x σ(t), ∂α

x F2(t)〉|. (3.14)

Similar to the estimation on I1(t), we have

|〈∂α
x w(t), ∇∂α

x F1(t)〉| + |〈∇∂α
x σ(t), ∂α

x F2(t)〉|

≤ Cǫ
∑

1≤|α|≤3

‖∂α
x σ(t)‖2 + Cǫ

∑

1≤|α|≤4

‖∂α
x (w, z)(t)‖2. (3.15)
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Putting (3.15) into (3.14) gives that for 1 ≤ |α| ≤ 2,

γ

2

∑

1≤|α|≤2

‖∇∂α
x σ(t)‖2 +

d

dt

∑

1≤|α|≤2

〈∂α
x w(t),∇∂α

x σ(t)〉

≤ C
∑

1≤|α|≤2

(‖∂α
x∇w(t)‖2

1 + ‖∂α
x∇z(t)‖2)

+Cǫ
∑

1≤|α|≤3

‖∂α
x σ(t)‖2 + Cǫ

∑

1≤|α|≤4

‖∂α
x (w, z)(t)‖2. (3.16)

Define

H(t) = D1

∑

1≤|α|≤3

‖∂αU(t)‖2 +
∑

1≤|α|≤2

〈∂α
x w(t),∇∂α

x σ(t)〉.

By choosing D1 sufficiently large and ǫ > 0 sufficiently small, (3.11) and (3.16) give

dH(t)

dt
+ D2

(

‖∇2σ(t)‖2
1 + ‖∇2(w, z)(t)‖2

2

)

≤ Cǫ‖∇U(t)‖2,

where D2 is a positive constant independent of ǫ. And this completes the proof of

the lemma.

4. Optimal convergence rates

The optimal convergence rates will be proved by first improving the estimates given

in Lemmas 3.1 and 3.2 to the estimates on the L2-norms of solutions to higher power

and then letting the power tend to infinity. By the inequality (3.1), we have the

following lemma.

Lemma 4.1. Let U = (σ, w, z) be the solution to the problem (2.6)-(2.7). Under

the assumptions of Theorem 1.1, if ǫ > 0 is sufficiently small, then for any integer

n ≥ 1, we have

∫ t

0

(1 + s)k‖∇U(s)‖2nds ≤ (CE0)
2n + (Cǫ)2n

∫ t

0

(1 + s)k‖∇2U(s)‖2n
1 ds, (4.1)

where k = 0, 1, · · · , N = [5n/2− 2] and the constant E0 is given in Lemma 3.1.

Proof. Fix any integer n ≥ 1. By taking (3.1) to power 2n and multiplying it by

(1 + t)k, k = 0, 1, · · · , N , the integration over [0, t] gives

∫ t

0

(1+ τ)k‖∇U(τ)‖2nds ≤ (CE0)
2n

∫ t

0

(1 + τ)−( 5
2

n−k)dτ

+(Cǫ)2n

∫ t

0

(1 + τ)k

[∫ τ

0

(1 + τ − s)−
5
4 ‖∇U(s)‖2ds

]2n

dτ. (4.2)
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It follows from the Hölder inequality that
[∫ τ

0

(1+ τ − s)−
5
4 ‖∇U(s)‖2ds

]2n

≤

[∫ τ

0

(1 + τ − s)−r1(1 + s)−r2ds

]2n−1

×

∫ τ

0

(1 + τ − s)−
4
3 (1 + s)k‖∇U(s)‖2n

2 ds, (4.3)

where

r1 =

(

5

4
−

2

3n

)

2n

2n− 1
and r2 =

k

2n − 1
.

Since 7/6 ≤ r1 ≤ 5/4 and r2 ∈ [0, r1] for n ≥ 1 and 0 ≤ k ≤ N , Lemma 2.5 gives
∫ τ

0

(1 + τ − s)−r1(1 + s)−r2ds ≤ C1(r1, r2)(1 + τ)−r2 ≤ C(1 + τ)−r2 , (4.4)

where C1(r1, r2) given by (2.10) is bounded uniformly for n ≥ 1. Hence, (4.2)

together with (4.3) and (4.4) implies
∫ t

0

(1 + τ)k‖∇U(τ)‖2ndτ

≤ (CE0)
2n 1

5n/2 − k − 1

+(Cǫ)2n

∫ t

0

(1 + s)k‖∇U(s)‖2n
2

∫ t

s

(1 + τ − s)−
4
3 dτds

≤ (CE0)
2n + (Cǫ)2n

∫ t

0

(1 + s)k‖∇U(s)‖2n
2 ds

≤ (CE0)
2n + (Cǫ)2n

∫ t

0

(1 + s)k(‖∇U(s)‖2n + ‖∇2U(s)‖2n
1 ) ds. (4.5)

Here we have used

5n

2
− k − 1 ≥

5n

2
−

(

5n

2
− 2

)

− 1 = 1.

Thus if ǫ > 0 is sufficiently small such that (Cǫ)2n ≤ 1/2 in the final inequality of

(4.5), then (4.5) gives (4.1). The proof of the lemma is complete.

Based on the inequality (3.5), the following lemma is about the estimates on

H(t)n weighted with the function (1 + t)k.

Lemma 4.2. Let U = (σ, w, z) be the solution to the problem (2.6)-(2.7) and H(t)

be defined in Lemma 3.2. Under the assumptions of Theorem 1.1, if ǫ > 0 is suffi-

ciently small, then for any integer n ≥ 1, it holds that

(1 + t)kH(t)n + n

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds

≤ 2H(0)n + (C3E0)
2n + 10C2n

∫ t

0

(1 + s)k−1H(s)n−1‖∇2U(s)‖2
1ds, (4.6)
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where k = 0, 1, · · · , N = [5n/2− 2], C2 is defined in Lemma 3.2 and C3 is indepen-

dent of ǫ and n.

Proof. Multiplying (3.5) by n(1 + t)kH(t)n−1 for k = 0, 1, · · · , N and integrating

it over [0, t] give

(1 + t)kH(t)n+ n

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds

≤ H(0)n + Cǫn

∫ t

0

(1 + s)kH(s)n−1‖∇U(s)‖2ds

+k

∫ t

0

(1 + s)k−1H(s)nds. (4.7)

For the second term on the right hand side of (4.7), by the Young inequality and

(3.6), we have that for any δ > 0,

ǫn

∫ t

0

(1 + s)kH(s)n−1‖∇U(s)‖2ds

≤ ǫn

∫ t

0

(1 + s)k

[

n − 1

n
δH(s)n +

1

n

1

δn−1
‖∇U(s)‖2n

]

ds

≤ ǫnC2δ

∫ t

0

(1 + s)kH(s)n−1(‖∇U(s)‖2 + ‖∇2U(s)‖2
1)ds

+ǫδ1−n

∫ t

0

(1 + s)k‖∇U(s)‖2nds,

which together with Lemma 4.1 implies that

ǫn

∫ t

0

(1 + s)kH(s)n−1‖∇U(s)‖2ds

≤ ǫnC2δ

∫ t

0

(1 + s)kH(s)n−1‖∇U(s)‖2ds

+ǫnC2δ

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds

+ǫδ1−n

[

(CE0)
2n + (Cǫ)2n

∫ t

0

(1 + s)k‖∇2U(s)‖2n
1 ds

]

≤ ǫδ1−n(CE0)
2n + ǫnC2δ

∫ t

0

(1 + s)kH(s)n−1‖∇U(s)‖2ds

+ǫnC2δ

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds

+ǫδ1−n(Cǫ)2nCn−1
2

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds. (4.8)
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Choose δ = 1
2C2

in (4.8). We have

ǫn

∫ t

0

(1 + s)kH(s)n−1‖∇U(s)‖2ds

≤ 2ǫ(2C2)
n−1(CE0)

2n

+ǫn

[

1 +
2

n
(Cǫ)2n(2C2

2 )n−1

]∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds

≤ ǫ(CE0)
2n + ǫn

[

1 + (Cǫ)2n
]

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds. (4.9)

Thus, if ǫ > 0 is sufficiently small such that Cǫ ≤ 1 in (4.9), then (Cǫ)2n ≤ 1 for

any n ≥ 1. And (4.9) gives

ǫn

∫ t

0

(1 + s)kH(s)n−1‖∇U(s)‖2ds

≤ (CE0)
2n + 2ǫn

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds. (4.10)

Similar to the proof of (4.8), the third term on the right hand side of (4.7) can be

estimated by:

k

∫ t

0

(1 + s)k−1H(s)nds

≤ kC2

∫ t

0

(1 + s)k−1H(s)n−1(‖∇U(s)‖2 + ‖∇2U(s)‖2
1)ds

≤ kC2δ

∫ t

0

(1 + s)k−1H(s)nds + kC2δ
1−n

∫ t

0

(1 + s)k−1‖∇U(s)‖2nds

+kC2

∫ t

0

(1 + s)k−1H(s)n−1‖∇2U(s)‖2
1ds, (4.11)
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where δ > 0 is to be determined later. By Lemma 4.1, (4.11) gives

k

∫ t

0

(1 + s)k−1H(s)nds

≤ kC2δ

∫ t

0

(1 + s)k−1H(s)nds + kC2δ
1−n(CE0)

2n

+kC2δ
1−n(Cǫ)2n

∫ t

0

(1 + s)k‖∇2U(s)‖2n
1 ds

+kC2

∫ t

0

(1 + s)k−1H(s)n−1‖∇2U(s)‖2
1ds

≤ kC2δ
1−n(CE0)

2n + kC2δ

∫ t

0

(1 + s)k−1H(s)nds

+kC2(Cǫ)2n

(

C2

δ

)n−1 ∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds

+kC2

∫ t

0

(1 + s)k−1H(s)n−1‖∇2U(s)‖2
1ds. (4.12)

By taking δ = 1
2C2

again, (4.12) gives

k

∫ t

0

(1 + s)k−1H(s)nds

≤ 2kC2(2C2)
n−1(CE0)

2n

+2kC2(Cǫ)2n(2C2
2 )n−1

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds

+2kC2

∫ t

0

(1 + s)k−1H(s)n−1‖∇2U(s)‖2
1ds

≤ (CE0)
2n + nǫ(Cǫ)2n−1

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds

+2kC2

∫ t

0

(1 + s)k−1H(s)n−1‖∇2U(s)‖2
1ds. (4.13)

Therefore, (4.7) together with (4.10) and (4.13) gives

(1 + t)k H(t)n + n

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds

≤ H(0)n + (CE0)
2n + 2kC2

∫ t

0

(1 + s)k−1H(s)n−1‖∇2U(s)‖2
1ds

+nǫ
[

C + (Cǫ)2n−1
]

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds. (4.14)

By choosing ǫ > 0 sufficiently small such that for any n ≥ 1,

ǫ
[

C + (Cǫ)2n−1
]

≤
1

2
,
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we have from (4.14) that

(1 + t)k H(t)n + n

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds

≤ 2H(0)n + (C3E0)
2n + 4kC2

∫ t

0

(1 + s)k−1H(s)n−1‖∇2U(s)‖2
1ds.

This implies (4.6) because k ≤ N ≤ 5n/2 and then it completes the proof of the

lemma.

Proof of Theorem 1.1. First, let ǫ > 0 be sufficiently small such that Lemma

4.2 holds for any n ≥ 2. The proof of the theorem can be given in two steps.

Step 1. For any fixed integer n ≥ 2, Lemma 4.2 implies that the inequality (4.6)

holds for any k = 0, 1, · · · , N . When k = 1, (4.6) becomes

(1 + t)H(t)n+ n

∫ t

0

(1 + s)H(s)n−1‖∇2U(s)‖2
1ds

≤ 2H(0)n + (C3E0)
2n + 10C2n

∫ t

0

H(s)n−1‖∇2U(s)‖2
1ds. (4.15)

By (1.7) in Proposition 1.1, it holds that

∫ t

0

H(s)n−1‖∇2U(s)‖2
1ds ≤

[

sup
s≥0

H(s)

]n−1 ∫ t

0

‖∇2U(s)‖2
1ds

≤ (C2C0ǫ
2)n−1C0ǫ

2 ≤ (C2C0ǫ
2)n. (4.16)

Thus (4.15) and (4.16) imply

(1 + t)H(t)n+ n

∫ t

0

(1 + s)H(s)n−1‖∇2U(s)‖2
1ds

≤ 2H(0)n + (C3E0)
2n + n(10C2)(C2C0ǫ

2)n. (4.17)

For 1 ≤ k ≤ N , the following estimate can be proved by induction.

(1 + t)kH(t)n + n

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds

≤
[

2H(0)n + (C3E0)
2n
]

k
∑

l=1

(10C2)
l−1 + n(10C2)

k(C2C0ǫ
2)n. (4.18)
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In fact, suppose that (4.18) holds for 1 ≤ k ≤ N −1. Then it follows from (4.6) that

(1 + t)k+1H(t)n + n

∫ t

0

(1 + s)k+1H(s)n−1‖∇2U(s)‖2
1ds

≤ 2H(0)n + (C3E0)
2n + 10C2n

∫ t

0

(1 + s)kH(s)n−1‖∇2U(s)‖2
1ds

≤
[

2H(0)n + (C3E0)
2n
]

+10C2

{

[

2H(0)n + (C3E0)
2n
]

k
∑

l=1

(10C2)
l−1 + n(10C2)

k(C2C0ǫ
2)n

}

≤
[

2H(0)n + (C3E0)
2n
]

k+1
∑

l=1

(10C2)
l−1 + n(10C2)

k+1(C2C0ǫ
2)n. (4.19)

Thus, (4.19) together with (4.17) shows that (4.18) holds for any 1 ≤ k ≤ N . In

particular,

(1 + t)NH(t)n ≤
[

2H(0)n + (C3E0)
2n
] (10C2)

N − 1

10C2 − 1
+ n(10C2)

N (C2C0ǫ
2)n.

Since

5n

2
− 3 ≤ N =

[

5n

2
− 2

]

≤
5n

2
− 1,

we have

(1 + t)
5
2
n−3H(t)n ≤ C

5n
2

[

H(0)n + E2n
0 + ǫ2n

]

,

which implies

H(t)
1
2 ≤ C

[

H(0)n + E2n
0 + ǫ2n

]
1
2n (1 + t)−

5
4
+ 3

2n . (4.20)

Notice that H(0), E0 and ǫ are independent of n. Hence,

[

H(0)n + E2n
0 + ǫ2n

]
1
2n → max

{

√

H(0), E0, ǫ
}

,

as n tends to infinity. Thus, taking n → ∞ in (4.20) gives

H(t)
1
2 ≤ C max

{

√

H(0), E0, ǫ
}

(1 + t)−
5
4 ,

that is,

‖∇U(t)‖2 ≤ C max
{

√

H(0), E0, ǫ
}

(1 + t)−
5
4 .

This together with Lemma 2.2 gives (1.11) and (1.12).



June 22, 2006 17:33 WSPC/INSTRUCTION FILE DUYZ-M3AS

Optimal Convergence Rates for Navier-Stokes Equations 21

Step 2. To estimate (1.10), the integral formula (2.8) and Lemma 2.1 yield

‖U(t)‖ ≤ CE0(1 + t)−
3
4 + C

∫ t

0

(1 + t − s)−
3
4 (‖F (U)(s)‖L1 + ‖F (U)(s)‖)ds

≤ CE0(1 + t)−
3
4 + Cǫ

∫ t

0

(1 + t − s)−
3
4 ‖∇U(s)‖1ds

≤ CE0(1 + t)−
3
4 + Cǫ

∫ t

0

(1 + t − s)−
3
4 (1 + s)−

5
4 ds

≤ C(1 + t)−
3
4 ,

where (1.12) was also used. Thus, for any 2 ≤ p ≤ 6, (1.10) holds by the interpo-

lation. For (1.13), first, the boundedness of ‖∂tU(t)‖ is directly from (2.6). Then,

again by Lemma 2.1, we have for t ≥ 1,

‖∂tU(t)‖ ≤ CE0(1 + t)−
3
4 + C

∫ t

0

(1 + t − s)−
5
4 ‖F (U)(s)‖L1ds

+C

∫ t

0

(1 + t − s)−
5
4

[

1 + (t − s)−
1
2

]

‖F (U)(s)‖1ds

≤ CE0(1 + t)−
3
4 + Cǫ

∫ t

0

(1 + t − s)−
5
4 (1 + s)−

5
4 ds

+Cǫ

∫ t

0

(1 + t − s)−
5
4

[

1 + (t − s)−
1
2

]

(1 + s)−
5
4 ds

≤ C(1 + t)−
5
4 .

Thus, (1.13) is proved and this completes the proof of the theorem.
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