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Abstract: Although the decay in time estimates of the semi-group generated by the
linearized Boltzmann operator without forcing have been well established, there is no
corresponding result for the case with general external force. This paper is mainly concer-
ned with the optimal decay estimates on the solution operator in some weighted Sobolev
spaces for the linearized Boltzmann equation with a time dependent external force. No
time decay assumption is made on the force. The proof is based on both the energy
method through the macro-micro decomposition and the L p-Lq estimates from the
spectral analysis. The decay estimates thus obtained are applied to the study on the
global existence of the Cauchy problem to the nonlinear Boltzmann equation with time
dependent external force and source. Precisely, for space dimension n ≥ 3, the glo-
bal existence and decay rates of solutions to the Cauchy problem are obtained under
the condition that the force and source decay in time with some rates. This time decay
restriction can be removed for space dimension n ≥ 5. Moreover, the existence and
asymptotic stability of the time periodic solution are given for space dimension n ≥ 5
when the force and source are time periodic with the same period.
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1. Introduction

The Boltzmann equation for the hard-sphere gas in n-dimensional space under the
influence of an external force and a source takes the form

∂t f + ξ · ∇x f + F · ∇ξ f = Q( f, f ) + S. (1.1)

Here, the unknown function f = f (t, x, ξ) with (t, x, ξ) ∈ R × R
n × R

n is a non-
negative function standing for the number density of gas particles which have position
x = (x1, . . . , xn) ∈ R

n and velocity ξ = (ξ1, . . . , ξn) ∈ R
n at time t ∈ R. Here, the

external force field F = F(t, x) and the source term S = S(t, x, ξ) are assumed to be
some given time dependent functions. Q is the usual bilinear collision operator defined
by

Q( f, g) = 1

2

∫
Rn×Sn−1

( f ′g′∗ + f ′∗g′ − f g∗ − f∗g)|(ξ − ξ∗) · ω|dωdξ∗,

f = f (t, x, ξ), f ′ = f (t, x, ξ ′), f∗ = f (t, x, ξ∗), f ′∗ = f (t, x, ξ ′∗),
ξ ′ = ξ − [(ξ − ξ∗) · ω]ω, ξ ′∗ = ξ∗ + [(ξ − ξ∗) · ω]ω, ω ∈ Sn−1,

and likewise for g. Although the physical space is three dimensional, in this paper, we
consider the general space dimension n ≥ 3 to show how the space dimension plays in
the decay estimates.

Throughout this paper, we consider the perturbative solution near an absolute
Maxwellian. Without loss of generality, define the perturbation u = u(t, x, ξ) by

f = M + M1/2u,

where the absolute Maxwellian

M = 1

(2π)n/2 exp

(
−|ξ |2

2

)

is normalized to have zero bulk velocity and unit density and temperature. Then the
equation for the perturbation u is:

∂t u + ξ · ∇x u + F · ∇ξ u − 1

2
ξ · Fu = Lu + �(u) + S̃, (1.2)

where

Lu = M−1/2
(

Q(M, M1/2u) + Q(M1/2u, M)
)
, (1.3)

�(u, u) = M−1/2 Q
(

M1/2u, M1/2u
)
, (1.4)

S̃ = M−1/2S + M1/2ξ · F. (1.5)

There are extensive literatures on the existence theory for the Cauchy problem of the
Boltzmann equation without external force. The well-known result is the global existence
of the renormalized solution with large data proved by DiPerna-Lions [6] where the
uniqueness problem remains open. On the other hand, the existence is established in the
framework of small perturbation of an absolute Maxwellian [12–14,17,19,21,23,24,29],
or an infinite vacuum [2,9,15,16] where uniqueness can be justified. In particular, so far
there are two basic methods to deal with solutions near an absolute Maxwellian. One is



Boltzmann Equation with Force and Source 191

based on the spectral analysis of the linearized Boltzmann equation and the bootstrap
argument for the nonlinear equation initiated by Grad and developed by Ukai, cf. [19,23–
25], where the optimal convergence rate to the Maxwellian can be also obtained. Another
one is based on the direct energy method for the nonlinear problem through the macro-
micro decomposition which was initiated by Liu-Yu and developed by Liu-Yang-Yu [17]
and Guo [13] independently in two different ways. The former decomposition is around
a local Maxwellian while the latter is around an absolute Maxwellian. Here we use the
latter decomposition because we are concerned with the decay structure of the linearized
equation around the absolute Maxwellian.

One of the features of the convergence to the equilibrium for the Boltzmann equation
is the coupling of the conservative operator for the free transportation and the degenerate
dissipative operator on the velocity variables through the celebrated H-theorem. This
property can be found in many kinetic equations and it is now called “hypocoercivity”
[32]. For the problems in a torus or in a bounded domain, this property is well investigated
where an exponential or almost exponential convergence rate in time to the equilibrium
for both space and velocity variables can be obtained, cf. [33] and references therein.
However, for problems in the whole space, this property is not yet well understood
especially under the influence of some enternal force. And this is one of the motivations
of this paper to study the convergence to the equilibrium under the influence of the
external force in a general form.

To do this, the main part of the paper is concentrated on the decay in time properties
of the solution operator for the linearized Boltzmann equation corresponding to (1.2),
that is,

∂t u + ξ · ∇x u + F · ∇ξ u − 1

2
ξ · Fu = Lu.

The decay estimates are obtained in some Sobolev space weighted in velocity variables.
Our main result is stated in Theorem 2.2 in Sect. 2, where the obtained decay is optimal in
the sense that it is equal to the one for the linearized Boltzmann equation without external
force. The proof is a combination of the two methods mentioned above for perturbative
solutions. In fact, the energy estimate is first carried out for the linearized Boltzmann
equation with an error term determined by the space derivative of the macroscopic
component in the perturbation. It is then combined with the L p-Lq estimates from the
spectral analysis to yield the optimal decay in time estimates for the above linear solution
operator.

The optimal decay estimates on the solution operator to the linearized equation will
then be applied to the study on the existence of solutions to the Cauchy problem for
the original nonlinear equation. In particular, we will use it to prove the existence and
stability of the time periodic solution for some given time periodic force and source.
This problem is related to the generation and propagation of sound waves so that it has
its physical importance besides its mathematical interest. In fact, for the time periodic
solution, the existence and stability have been studied for the Navier-Stokes equaions, cf.
[1,10,30,31] and references therein. Recently, some results on this problem are obtained
for the nonlinear Boltzmann equation [26–28] in various function spaces when there is a
time periodic external source but no external force, for the space dimension n ≥ 3. Thus,
it is natural to study the problem under the influence of a time periodic external force.
We will show that there exists a time periodic solution if the force is small and time
periodic when the space dimension n ≥ 5. The physical case when the space dimension
n = 3 is still not known and will be pursued by the authors in the future.
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A lot of work has been done on the convergence rate estimation of the solutions for the
Boltzmann equation to the time asymptotic states. For example, the almost exponential
decay in time of the solution for the Cauchy problem was given by Desvillettes-Villani
[5] for general cutoff potential cases in either torus or smooth bounded domain under the
assumption of the existence of smooth global solutions, and also by Strain-Guo [22] for
the cutoff soft potentials in the torus for small pertubation of the absolute Maxwellian.
Notice that the convergence rate of the perturbative solution for the cutoff hard potentials
is exponential in a torus, [23]. For problems in the whole space, the convergence rate
should be algebraic and it depends on the space dimension because the low frequency
in the Fourier variable dominates the decay estimate, see [24,25]. For the Boltzmann
equation with a time independent potential force, the optimal convergence rate of the
solution to a local Maxwellian was obtained in [8], where the proof is motivated by the
study of the corresponding problems for the Navier-Stokes equations, cf. [7,18,20].

The rest of this paper is arranged as follows. In Sect. 2, we will first present a
decomposition of the linearized Boltzmann equation. Then, some basic estimates on
the communicators of the linearized collision operator L and the differential operator
will be derived. Based on these estimates, the optimal decay in time estimates on the
linear solution operator are proved in Theorems 2.1 and 2.2. In Sect. 3, we will apply
the estimates obtained in Sect. 2 to prove the global existence and convergence rate
of the solution to the Cauchy problem for the nonlinear Boltzmann equation. In addition,
the existence and asymptotic stability of the time periodic solution are also given. These
existence and stability results are summarized in Theorems 3.1, 3.2 and 3.3.
Notation. Throughout this paper, C denotes a general constant. If the dependence needs
to be specified, then the notations Ci , i = 1, 2, · · · are used. In addition, c > 0 also
denotes a positive constant which may vary from line to line and δ > 0 stands for a small
constant. 〈·, ·〉 is the inner product in the space L2(Rn

x × R
n
ξ ) with the norm denoted by

‖ ·‖. Sometimes, ‖ ·‖ also denotes the norm of the space L2(Rn
x ) without any ambiguity.

‖ · ‖L p
x,ξ

with 1 ≤ p ≤ ∞ denotes the norm in the Lebesgue space L p(Rn
x × R

n
ξ ). The

norm in the space Zq = L2
ξ (Lq

x ) is defined by

‖u‖Zq =
(∫

Rn

(∫
Rn

|u(x, ξ)|qdx

) 2
q

dξ

) 1
2

, u = u(x, ξ) ∈ Zq .

For the multiple indices α, β, γ with α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn), and
γ = (γ1, γ2, . . . , γn), we adopt the usual notations ∂

β
x ∂

γ
ξ = ∂

β1
x1 ∂

β2
x2 · · · ∂βn

xn ∂
γ1
ξ1

∂
γ2
ξ2

· · · ∂γn
ξn

,

and in particular ∂α
x,ξ = ∂

β
x ∂

γ
ξ when α = β + γ . The length of α is |α| =∑n

i=1 αi .

2. Decay Estimates on the Linearized Equation

2.1. Preliminaries.

(i) Linearized equation. In this section, we are concerned with the initial value problem
for the linearized Boltzmann equation corresponding to (1.1). More generally, for
some initial time s ∈ R, it is in the form

∂t u + ξ · ∇x u + E1 · ∇ξ u = Lu + ξ · E2u, t > s, x ∈ R
n, ξ ∈ R

n, (2.1)

u(t, x, ξ)|t=s = u0(x, ξ), x ∈ R
n, ξ ∈ R

n . (2.2)



Boltzmann Equation with Force and Source 193

Here u0(x, ξ) is given, denoting the same initial data for different initial time,
and Ei = Ei (t, x), i = 1, 2, are given vector-valued functions for generalization.
Formally the solution to the initial value problem (2.1)–(2.2) is written as

U (t, s)u0, −∞ < s ≤ t < ∞,

where U (t, s) is called the solution operator for the linear Eq. (2.1). We shall obtain
some basic decay in time estimates on U (t, s) in some Sobolev space weighted with
velocity functions

H 

(
R

n
x × R

n
ξ ; (1 + |ξ |)kdxdξ

)
, 
 ≥ 2, k ≥ 1,

which enable us to solve the nonlinear problem by the Duhamel formula and the
contraction mapping theorem.

(ii) Known properties of the linearized collision operator. For the linearized collision
operator L given by (1.3), one has

(Lu)(ξ) = −ν(ξ)u(ξ) + (K u)(ξ),

ν(ξ) =
∫

Rn×Sn−1
|(ξ − ξ∗) · ω|M∗ dωdξ∗,

(K u)(ξ) =
∫

Rn×Sn−1

[
−M

1
2 u∗ + (M′∗)

1
2 u′ + (M′)

1
2 u′∗
]
|(ξ − ξ∗) · ω|M

1
2∗ dωdξ∗

=
∫

Rn
K (ξ, ξ∗)u(ξ∗)dξ∗.

Moreover, the following well-known properties hold; see [3,4,11].
(a) There exists ν0 > 0 such that

ν0(1 + |ξ |) ≤ ν(ξ) ≤ ν−1
0 (1 + |ξ |);

(b) K is a self-adjoint compact operator on L2(Rn
ξ ) with a real symmetric integral

kernel K (ξ, ξ∗) which enjoys the estimate
∫

Rn
|K (ξ, ξ∗)|(1 + |ξ∗|)−βdξ∗ ≤ C(1 + |ξ |)−β−1, β ≥ 0; (2.3)

(c) the nullspace of the operator L is the space of collision invariants

N = K erL = span
{

M1/2; ξi M1/2, i = 1, 2, . . . , n; |ξ |2M1/2
}

;

(d) L is an unbounded, self-adjoint and non-positive operator on L2(Rn
ξ ) with the

domain

D(L) =
{

u ∈ L2(Rn
ξ )

∣∣∣ ν(ξ)u ∈ L2(Rn
ξ )
}

.

(iii) Macro-micro decomposition. Define P as a velocity projection operator from L2(Rn
ξ )

to N . Then any function u(t, x, ξ) for any fixed (t, x) can be uniquely decomposed
as the sum of the macroscopic component Pu and microscopic component {I−P}u:

u(t, x, ξ) = Pu + {I − P}u.
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With this notion, the linearized collision operator L satisfies

−
∫

Rn
uLu dξ ≥ c0

∫
Rn

ν(ξ)({I − P}u)2dξ, ∀ u ∈ D(L),

for some constant c0 > 0. Here for simplicity, throughout this section, one sets

u1 = Pu, u2 = {I − P}u.

Equation (2.1) is also decomposed as follows. The microscopic equation for u2 is
obtained by applying the microscopic projection I − P to (2.1):

∂t u2 − Lu2 = −{I − P} (ξ · ∇x u) − {I − P} (E1 · ∇ξ u − ξ · E2u
)
,

or,

∂t u2 − Lu2 = −ξ · ∇x u2 − E1 · ∇ξ u2 + ξ · E2u2

− ξ · ∇x u1 − E1 · ∇ξ u1 + ξ · E2u1

+ P
(
ξ · ∇x u + E1 · ∇ξ u − ξ · E2u

)
. (2.4)

In order to write the macroscopic equation, as in [13], one first expands u1 = Pu as

u1 =
{

a(t, x) +
n∑

i=1

bi (t, x)ξi + c(t, x)|ξ |2
}

M1/2.

Putting this expansion into the following equation:

∂t u1 + ξ · ∇x u1 + E1 · ∇ξ u1 − ξ · E2u1

= − {∂t u2 + ξ · ∇x u2 + E1 · ∇ξ u2 − ξ · E2u2 − Lu2
} := �, (2.5)

and then collecting the coefficients with respect to the basis

M1/2,
(
ξi M1/2

)
1≤i≤n

,
(
|ξi |2M1/2

)
1≤i≤n

,
(
ξiξ j M1/2

)
1≤i< j≤n

,
(
|ξ |2ξi M1/2

)
1≤i≤n

,

one has

M1/2 : ∂t a + E1 · b = �0, (2.6)

ξi M1/2 : ∂t bi + ∂i a − (aĒi − 2cE1i ) = �i
1, (2.7)

|ξi |2M1/2 : ∂t c + ∂i bi − Ēi bi = �i
21, (2.8)

ξiξ j M1/2 : ∂i b j + ∂ j bi − (Ēi b j + Ē j bi ) = �i j
22, (2.9)

|ξ |2ξi M1/2 : ∂i c − Ēi c = �i
3, (2.10)

where for simplicity, ∂i = ∂xi , ∂ j = ∂x j , and �0,�i
1,�i

21,�i j
22,�i

3 with 1 ≤ i 
= j ≤ n
are the corresponding coefficients of � with respect to the above basis, and Ē is defined
by

Ē = 1

2
E1 + E2.

Finally we list a basic fact for any function u = u(t, x, ξ).
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Proposition 2.1. Let m be a non-negative integer and k be any number. Then for any β

and γ , one has ∂m
t ∂

β
x Pu = P∂m

t ∂
β
x u with estimates

1

C

∥∥∥νk∂m
t ∂β

x ∂
γ
ξ Pu

∥∥∥ ≤ ∥∥∂m
t ∂β

x a
∥∥ +
∥∥∂m

t ∂β
x b
∥∥ +
∥∥∂m

t ∂β
x c
∥∥ ≤ C

∥∥∂m
t ∂β

x Pu
∥∥ ,

where C > 1 is some constant independent of u.

2.2. Estimates on commutators. In this subsection we study the functional properties
of commutators related to L:

[L, ξi ],
[
L, ∂ξi

]
,
[[

L, ∂ξi

]
, ξ j
]
,
[[

L, ∂ξi

]
, ∂ξ j

]
, 1 ≤ i, j ≤ n.

Let L denote this kind of commutator.

Lemma 2.1. L is a bounded linear operator from L2(Rn
ξ ) to itself, i.e., there is some

constant C such that

‖Lu‖ ≤ C‖u‖, (2.11)

for any u = u(ξ) ∈ L2(Rn
ξ ).

Proof. This lemma is proved by the following steps.
Step 1. The explicit expressions of ν and K are available:

ν(ξ) = Cn

∫
Rn

|ξ − ξ∗|M(ξ∗)dξ∗,

K (ξ, ξ∗) = K1(ξ, ξ∗) + K2(ξ, ξ∗)

K1(ξ, ξ∗) = −Cn|ξ − ξ∗| exp

(
−|ξ |2 + |ξ∗|2

4

)
,

K2(ξ, ξ∗) = Cn

|ξ − ξ∗|n−2 exp

(
−1

8

(|ξ |2 − |ξ∗|2)2

|ξ − ξ∗|2 − |ξ − ξ∗|2
8

)
,

where for simplicity Cn may be some different positive constants depending
only on the space dimension n. The proof for the case n = 3 is given in [11].
The general case n ≥ 3 can be obtained similarly.

Step 2. In this step, some preparations are made for the next step. First, from (2.13), one
can easily verify that ν(ξ) is a smooth function of ξ with bounded derivatives
of any order.
Next, for the integral kernels K1 and K2, set

K1(ξ, ξ∗) = K11(|ξ − ξ∗|)K12(ξ, ξ∗),
K2(ξ, ξ∗) = K21(|ξ − ξ∗|)K22(ξ, ξ∗),

where

K11(|ξ − ξ∗|) = −Cn|ξ − ξ∗|,
K21(|ξ − ξ∗|) = Cn

|ξ − ξ∗|n−2 exp

(
−|ξ − ξ∗|2

8

)
,

K12(ξ, ξ∗) = exp (V1) , V1 = −|ξ |2 + |ξ∗|2
4

,

K22(ξ, ξ∗) = exp (V2) , V2 = −1

8

(|ξ |2 − |ξ∗|2)2

|ξ − ξ∗|2 .
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Finally, for the simplicity of notions, we define velocity differential operators
∂̄i , i = 1, 2, . . . , n by ∂̄i = −{∂ξi + ∂ξi∗}.
Notice that ∂̄i h ≡ 0 for any radial function h = h(|ξ − ξ∗|), and moreover,

∂̄i V1 = V1i , V1i = ξi + ξi∗
2

,

∂̄i V2 = V2i , V2i = (ξi − ξi∗)
2|ξ − ξ∗|2 (|ξ |2 − |ξ∗|2),

∂̄ j V1i = ∂̄ j ∂̄i V1 = V1i j , V1i j = −δi j ,

∂̄ j V2i = ∂̄ j ∂̄i V2 = V2i j , V2i j = (ξi − ξi∗)(ξ j − ξ j∗)
|ξ − ξ∗|2 ,

where δi j is Kronecker’s symbol. Then one has

∂̄i K11 = ∂̄i K21 ≡ 0,

∂̄i K12 = K12V1i , ∂̄i K22 = K22V2i ,

∂̄ j (K12V1i ) = K12V1i V1 j + K12V1i j ,

∂̄ j (K22V2i ) = K22V2i V2 j + K22V2i j .

Step 3. This step is concerned with the computation of commutators. Set V0i = ξi∗−ξi ;
direct calculations yield

[L, ξi ]u =
∫

Rn
K (ξ, ξ∗)V0i u(ξ∗)dξ∗,

[
L, ∂ξi

]
u = ∂ξi νu +

∫
Rn

(K1V1i + K2V2i )u(ξ∗)dξ∗,
[[L, ∂ξi ], ξ j

] =
∫

Rn
(K1V1i + K2V2i )A j u(ξ∗)dξ∗,

[[L, ∂ξi ], ∂ξ j

] = −∂2
ξi ξ j

νu +
∫

Rn
[K1(V1i V1 j + V1i j )

+K2(V2i V2 j + V2i j )]u(ξ∗)dξ∗.

Step 4. Write Kc(ξ, ξ∗) as any one of the following integral kernels:

K V0i , K1V1i + K2V2i , (K1V1i + K2V2i )V0 j ,

K1(V1i V1 j + V1i j ) + K2(V2i V2 j + V2i j ).

Direct observations show that K1 can absorb any finite numbers of velocity
functions V0i , V1i and V1i j , while K2 can absorb any finite number of velocity
functions V0i , V2i and V2i j . This means that if one defines

K̃1(ξ, ξ∗) = Cn|ξ − ξ∗| exp

(
−|ξ |2 + |ξ∗|2

8

)
,

K̃2(ξ, ξ∗) = Cn

|ξ − ξ∗|n−2 exp

(
− 1

16

(|ξ |2 − |ξ∗|2)2

|ξ − ξ∗|2 − |ξ − ξ∗|2
16

)
,

then

|Kc(ξ, ξ∗)| ≤ K̃1(ξ, ξ∗) + K̃2(ξ, ξ∗) := K̃ (ξ, ξ∗).
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Since K̃ (ξ, ξ∗) satisfies the estimate (2.3) for β = 0 similar to K , it follows that
∫

Rn
|Kc(ξ, ξ∗)|dξ ≤ C,

∫
Rn

|Kc(ξ, ξ∗)|dξ∗ ≤ C,

which implies that
∥∥∥∥
∫

Rn
Kc(ξ, ξ∗)u(ξ∗)dξ∗

∥∥∥∥ ≤ C‖u‖.

Thus (2.11) is proved. This completes the proof of the lemma. ��
In general, for any positive integer N , define the iterative commutator L by

L = [· · · [[L, X1], X2] · · · , XN ],
where for each k ∈ {1, 2, . . . , N }, Xk denotes the velocity multiplier ξik or the velocity
differential operator ∂ξik

. Write L as the sum of two parts LI and LI I :

L = LI + LI I ,

LI = [· · · [[−ν(ξ), X1], X2] · · · , XN ],
LI I = [· · · [[K , X1], X2] · · · , XN ].

Then L has the same property as in Lemma 2.1.

Corollary 2.1. The following properties hold:

(i) LI is a bounded linear operator on L2(Rn
ξ ).

(ii) LI I is a compact operator on L2(Rn
ξ ) with the integral kernel Kc(ξ, ξ∗), which

satisfies that for any k ≥ 0, there is some constant C depending on k such that

‖νkLI I u‖ ≤ C‖νk−1u‖, (2.12)

for any u = u(ξ).
(iii) L is a bounded linear operator on L2(Rn

ξ ).

Proof. It is obvious that (iii) directly follows from (i) and (ii). Thus it suffices to prove
(i) and (ii). For the first part LI , in fact it is a velocity multiplier generated by ν(ξ), given
by

LI =
⎧⎨
⎩

(−1)N+1
(

N∏
k=1

Xk

)
ν(ξ) all Xk are ∂ξik

,

0 otherwise.

Thus (i) holds from the proof of Lemma 2.1. For the second part LI I , it can be written
as

(LI I u)(ξ) =
∫

Rn
Kc(ξ, ξ∗)u(ξ∗)dξ∗,

Kc(ξ, ξ∗) = K1(ξ, ξ∗)V1 + K2(ξ, ξ∗)V2,

where V1 is the linear combination of products of velocity multipliers V0i , V1i and V1i j ,
and similarly V2 is the linear combination of products of velocity multipliers V0i , V2i
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and V2i j . Hence, similar to the compact operator K , LI I is also a compact operator on
L2(Rn

ξ ) with the integral kernel Kc satisfying (2.3). Finally we claim that (2.3) implies
(2.12). In fact, for any k ≥ 0 and any u = u(ξ),

(LI I u)(ξ) ≤
{∫

Rn
|Kc(ξ, ξ∗)|ν−2k(ξ∗)dξ∗

}1/2 {∫
Rn

|Kc(ξ, ξ∗)|ν2k(ξ∗)u2(ξ∗)dξ∗
}1/2

≤ Cν−(2k+1)/2(ξ)

{∫
Rn

|Kc(ξ, ξ∗)|ν2k(ξ∗)u2(ξ∗)dξ∗
}1/2

,

which gives∫
Rn

ν2k(ξ)(LI I u)2(ξ)dξ ≤ C
∫

Rn
ν2k(ξ∗)u2(ξ∗)

∫
Rn

|Kc(ξ, ξ∗)|ν−1(ξ)dξdξ∗

≤ C
∫

Rn
ν2k−2(ξ∗)u2(ξ∗)dξ∗.

That is (2.12). This completes the proof of this lemma. ��
Finally, Corollary 2.1 directly gives

Corollary 2.2. Let γ , k be |γ | ≥ 1 and k ≥ 0. Then there is some constant C such that

‖[L, ∂
γ
ξ ]u‖ ≤ C

∑
0≤|γ ′|≤|γ |−1

‖∂γ ′
ξ u‖,

‖νk[K , ∂
γ
ξ ]u‖ ≤ C‖νk−1u‖,

for any u = u(ξ).

2.3. Energy estimates. From now on, we use the following notation of the index sets
for differentiations: Let 
 be any positive integer,

�0(β) = {0 ≤ |β| ≤ 
},
�1(β) = {1 ≤ |β| ≤ 
},
�2(β) = {0 ≤ |β| ≤ 
 − 1},

�i
3(β, γ ) = {|γ | = i, 0 ≤ |β| + |γ | ≤ 
}, i = 1, 2, . . . , 
,

�3(β, γ ) = {|γ | ≥ 1, 0 ≤ |β| + |γ | ≤ 
} = ∪

i=1�

i
3(β, γ ),

�
j
4(β, γ ) = {|γ | = j, 0 ≤ |β| + |γ | ≤ 
 − 1}, j = 1, 2, . . . , 
 − 1,

�4(β, γ ) = {|γ | ≥ 1, 0 ≤ |β| + |γ | ≤ 
 − 1} = ∪
−1
i=1�i

4(β, γ ).

(i) Assumptions and energy inequality. Throughout this subsection, the following
assumptions are made:
(A1) The integer 
 ≥ 2;
(A2) For the functions E1 and E2, there is δ > 0 such that

∑
�0(β)

∥∥(1 + |x |)∂β
x Ei (t, x)

∥∥
L∞

t,x
+
∑

�2(β)

∥∥(1 + |x |)∂t∂
β
x Ei (t, x)

∥∥
L∞

t,x
≤ δ,

where i = 1, 2.
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Under the above assumptions, our final goal of this subsection is to show that if
δ > 0 is small enough, then the energy inequality holds:

d

dt
H(t) + cD(t) ≤ C‖∇x u1‖2, (2.13)

where c > 0 is some positive constant, C is some constant, H(t) is a nonlinear
energy functional and D(t) is the corresponding dissipation rate. For the moment,
we would not like to expose the precise forms of H(t) and D(t), see Theorem 2.1,
but only point out some important characteristics for them:

• H(t) contains the microscopic component u2 and its derivatives with respect to
t, x , and ξ up to order of 
 ≥ 2, and also only the derivatives of the macroscopic
component u1 with respect to t and x ;

• In H(t), for the time derivatives, the differential order of time is at most one,
where there is not any weight function, but for others, the velocity function ν is
added.

• D(t) contains those terms corresponding to H(t) but the power of velocity
weight function is higher 1/2.

• There is some constant C such that H(t) ≤ C D(t) for any t ≥ 0.

(ii) Energy estimates on the microscopic part. Now we turn to the proof of the energy in-
equality in the form of (2.13). First consider the estimates on some energy functional
H1(t) which is a linear combination of the following terms:

‖u2‖2,
∑

�1(β)

∥∥∂β
x u
∥∥2

,
∑

�2(β)

∥∥∂t∂
β
x u
∥∥2

,
∑

�i
3(β,γ )

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
,
∑

�
j
4(β,γ )

∥∥∥∂t∂
β
x ∂

γ
ξ u2

∥∥∥2
.

For brevity, define the time dependent linear operator B(t) and D(t) by

B(t) = ξ · ∇x + E1 · ∇ξ − L,

D(t) = ξ · ∇x + E1 · ∇ξ − ξ · E2.

Using the above notations, (2.1) and (2.4) can be rewritten as

∂t u + B(t)u = ξ · E2u, (2.14)

and

∂t u2 + B(t)u2 = ξ · E2u2 + [P, D(t)]u, (2.15)

where [P, D(t)] is the commutator given by

[P, D(t)] = PD(t) − D(t)P.

In what follows, a series of lemmas are given. The first one is concerned with the
L2

x,ξ -estimate on the microscopic component u2. For this purpose, from the properties
of the linearized Boltzmann operator L, the smallness assumption we imposed on the

external forces E1, E2, and by using the Hardy inequality
∥∥∥ u1|x |

∥∥∥ ≤ C‖∇x u1‖, we have

by applying the standard energy method to (2.15) that

Lemma 2.2. If δ > 0 is small enough, then one has

d

dt
‖u2‖2 + c

∥∥∥ν1/2u2

∥∥∥2 ≤ C‖∇x u1‖2.
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The next lemma is on the L2
x,ξ -estimate on ∂

β
x u for β ∈ �1(β).

Lemma 2.3. If δ > 0 is small enough, then one has

d

dt

∑
�1(β)

∥∥∂β
x u
∥∥2

+ c
∑

�1(β)

∥∥∥ν1/2∂β
x u2

∥∥∥2 ≤ Cδ
∑

�1(β)

∥∥∂β
x u1
∥∥2

+ Cδ
∑

�3(β,γ )

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
.

(2.16)

Proof. Directly applying ∂
β
x with β ∈ �2(β) to (2.14) gives

∂t (∂
β
x u) + B(t)(∂β

x u) = ∂β
x (ξ · E2u) + [B(t), ∂β

x ]u. (2.17)

Further multiplying (2.25) by ∂
β
x u and then integrating over R

n
x × R

n
ξ , one has

1

2

d

dt
‖∂β

x u‖2 + c0

∥∥∥ν1/2∂β
x u2

∥∥∥2 ≤
2∑

i=1

Ii , (2.18)

where we have used the identity

{I − P}∂β
x u = ∂β

x {I − P}u = ∂β
x u2,

and Ii , i = 1, 2, denote the corresponding terms after taking the inner product with ∂
β
x u

for ones on the right-hand side of (2.17).
Next we estimate I1 and I2. To this end, from the smallness assumption we imposed

on E1 and E2, the Hardy inequality and the Cauchy-Schwarz inequality, we can deduce
that

I1 ≤ Cδ
∑

�1(β ′)

∥∥∥ν1/2∂β ′
x u2

∥∥∥2
+ Cδ

∑
�1(β ′)

∥∥∥∂β ′
x u1

∥∥∥2
,

and

I2 ≤ Cδ
∑

�1(β ′)

∥∥∥∂β ′
x u1

∥∥∥2
+ Cδ

∑
�3(β ′,γ ′)

∥∥∥∂β ′
x ∂

γ ′
ξ u2

∥∥∥2
.

Thus taking summation over β ∈ �1(β) for (2.18) and then collecting all estimates,
(2.16) follows if δ > 0 is small enough. This completes the proof of the lemma. ��

For the L2
x,ξ -estimate on ∂t∂

γ
x u(γ ∈ �2(β)), we have the following result

Lemma 2.4. If δ > 0 is small enough, then one has

d

dt

∑
�2(β)

∥∥∂t∂
γ
x u
∥∥2

+ c
∑

�2(β)

∥∥∥ν1/2∂t∂
γ
x u2

∥∥∥2

≤ Cδ

⎛
⎝∑

�1(β)

‖∂β
x u1‖2 +

∑
�2(β)

‖∂t∂
β
x u1‖2

⎞
⎠

+Cδ

⎛
⎝∑

�1(β)

∥∥∥ν1/2∂β
x u2

∥∥∥2
+
∑

�3(β,γ )

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
+
∑

�4(β,γ )

∥∥∥∂t∂
β
x ∂

γ
ξ u2

∥∥∥2

⎞
⎠ . (2.19)
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Proof. First it is easy to see that for β ∈ �2(β),

∂t (∂t∂
β
x u) + B(t)(∂t∂

β
x u) = ξ · ∂t∂

β
x (E2u) + [B(t), ∂t∂

β
x ]u,

which gives

1

2

d

dt
‖∂t∂

β
x u‖2 + c0

∥∥∥ν1/2∂t∂
β
x u2

∥∥∥2 ≤
2∑

i=1

Ii . (2.20)

For I1, one has

I1 ≤ δ

∥∥∥ν1/2∂t∂
β
x u
∥∥∥2

+ Cδ

∥∥∥ν1/2∂t∂
β
x (E2u)

∥∥∥2

≤ Cδ
∑

�2(β ′)

∥∥∥ν1/2∂t∂
β ′
x u2

∥∥∥2
+ Cδ

∑
�2(β ′)

∥∥∥∂t∂
β ′
x u1

∥∥∥2

+Cδ
∑

�1(β ′)

∥∥∥ν1/2∂β ′
x u2

∥∥∥2
+ Cδ

∑
�1(β ′)

∥∥∥∂β ′
x u1

∥∥∥2
.

For I2, noticing that

[B(t), ∂t∂
β
x ]u = −

∑
0≤|β ′|≤|β|−1

Cβ ′∂β−β ′
x E1 · ∇ξ ∂t∂

β ′
x u

−
∑

0≤|β ′|≤|β|
Cβ ′∂t∂

β−β ′
x E1 · ∇ξ ∂

β ′
x u,

one also has

I2 ≤ δ
∥∥∂t∂

β
x u2
∥∥2

+ Cδ
∑

�2(β ′)

∥∥∥∂t∂
β ′
x u1

∥∥∥2
+ Cδ

∑
�1(β ′)

∥∥∥∂β ′
x u1

∥∥∥2

+Cδ
∑

�3(β,γ )

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
+ Cδ

∑
�4(β,γ )

∥∥∥∂t∂
β
x ∂

γ
ξ u2

∥∥∥2
.

Thus taking summation over β ∈ �2(β) for (2.20) and then collecting all estimates,
(2.19) follows if δ > 0 is small enough. This completes the proof of the lemma. ��

As to the L2
x,ξ -estimate on ∂

β
x ∂

γ
ξ u2 for (β, γ ) ∈ �i

3(β, γ ), we can conclude that

Lemma 2.5. If δ > 0 is small enough, then one has

d

dt

∑
�i

3(β,γ )

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
+ c

∑
�i

3(β,γ )

∥∥∥ν1/2∂β
x ∂

γ
ξ u2

∥∥∥2

≤ C
∑

�1(β)

∥∥∂β
x u1
∥∥2

+ C
∑

�0(β)

∥∥∂β
x u2
∥∥2

+Ci,i−1

∑
�i−1

3 (β,γ )

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
+ δCi,i+1

∑
�i+1

3 (β,γ )

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
, (2.21)

where i = 1, 2, . . . , 
, and Ci,i−1, Ci,i+1 are some constants with additional conventions:

C1,0 = C
,
+1 = 0. (2.22)
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Proof. First apply ∂
γ
ξ with |γ | = i = 1, 2, . . . , 
 to (2.15) to get

∂t (∂
γ
ξ u2) + B(t)∂γ

ξ u2 = E2 · ∂
γ
ξ (ξu2) + ∂

γ
ξ [P, D(t)]u + [B(t), ∂γ

ξ ]u2

= ξ · E2∂
γ
ξ u2 + eγ · E2∂

γ−1
ξ u2 − eγ · ∇x∂

γ−1
ξ u2

+∂
γ
ξ [P, D(t)]u − [L, ∂

γ
ξ ]u2, (2.23)

where eγ denotes a constant vector, and for simplicity we used the notations

eγ · E2∂
γ−1
ξ u2 =

∑
|γ ′|=1

γ ∂
γ ′
ξ ξ · E2∂

γ−γ ′
ξ u2 =

∑
0≤|γ ′|≤|γ |−1

Cγ ′∂γ−γ ′
ξ ξ · E2∂

γ ′
ξ u2,

and

eγ · ∇x∂
γ−1
ξ u2 =

∑
|γ ′|=1

γ ∂
γ ′
ξ ξ · ∇x∂

γ−γ ′
ξ u2 =

∑
0≤|γ ′|≤|γ |−1

Cγ ′∂γ−γ ′
ξ ξ · ∇x∂

γ ′
ξ u2.

Further apply ∂
β
x with (β, γ ) ∈ �i

3(β, γ ) to (2.23) to obtain

∂t (∂
β
x ∂

γ
ξ u2) + B(t)(∂β

x ∂
γ
ξ u2)

=
∑

0≤|β ′|≤|β|
Cβ ′ξ · ∂β−β ′

x E2∂
β ′
x ∂

γ
ξ u2 +

∑
0≤|β ′|≤|β|

Cβ ′eγ · ∂β−β ′
x E2∂

β ′
x ∂

γ−1
ξ u2

−
∑

0≤|β ′|≤|β|−1

Cβ ′∂β−β ′
x E1 · ∇ξ ∂

β ′
x ∂

γ
ξ u2 − eγ · ∇x∂

β
x ∂

γ−1
x u2

+∂β
x ∂

γ
ξ [P, D(t)]u − [L, ∂

γ
ξ ]∂β

x u2. (2.24)

Multiplying (2.24) by ∂
β
x ∂

γ
ξ u2 and integrating it over R

n
x × R

n
ξ , one has

1

2

d

dt

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
+ c0

∥∥∥ν1/2{I − P}∂β
x ∂

γ
ξ u2

∥∥∥2 ≤
6∑

i=1

Ii . (2.25)

We estimate each term Ii as follows. For I1, I2 and I3, one has

I1 ≤ δ

∥∥∥ν1/2∂β
x ∂

γ
ξ u2

∥∥∥2
+ Cδ

∑
�i

3(β
′,γ ′)

∥∥∥ν1/2∂β ′
x ∂

γ ′
ξ u2

∥∥∥2
,

I2 ≤ δ

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
+ δCi,i−1

∑
�i−1

3 (β ′,γ ′)

∥∥∥∂β ′
x ∂

γ ′
ξ u2

∥∥∥2
+ δCδi1

∑
�0(β ′)

∥∥∥∂β ′
x u2

∥∥∥2
,

I3 ≤ δ

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
+ δCi,i+1

∑
�i+1

3 (β ′,γ ′)

∥∥∥∂β ′
x ∂

γ ′
ξ u2

∥∥∥2
,

where δi1 is the Kroneker symbol and we have set (2.22). In fact, if i = 
, �

3(β, γ )

means β = 0 and |γ | = 
, i.e. one has taken only the velocity derivative ∂
γ
ξ with |γ | = 
,
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which implies I3 = 0 for this special case. For I4, I5 and I6, similarly it holds that

I4 ≤ c0

6

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
+ Ci,i−1

∑
�i−1

3 (β ′,γ ′)

∥∥∥ν1/2∂β ′
x ∂

γ ′
ξ u2

∥∥∥2
+ Cδi1

∑
�0(β ′)

∥∥∥∂β ′
x u2

∥∥∥2
,

I5 ≤ c0

6

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
+ C

∑
�1(β ′)

∥∥∥∂β ′
x u1

∥∥∥2
+ C

∑
�1(β ′)

∥∥∥∂β ′
x u2

∥∥∥2
,

and

I6 = −
〈
[L, ∂

γ
ξ ]∂β

x u2, ∂
β
x ∂

γ
ξ u2

〉
≤ c0

6

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
+ C

∥∥∥[L, ∂
γ
ξ ]∂β

x u2

∥∥∥2

≤ c0

6

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
+ C

∑
�0(β ′)

∥∥∥∂β ′
x u2

∥∥∥2
+ Ci,i−1

∑
�i−1

3 (β ′,γ ′)

∥∥∥∂β ′
x ∂

γ ′
ξ u2

∥∥∥2
,

where Corollary 2.2 was used. Finally it is noticed that

∥∥∥ν1/2{I − P}∂β
x ∂

γ
ξ u2

∥∥∥2 ≥
∥∥∥ν1/2∂β

x ∂
γ
ξ u2

∥∥∥2 −
∥∥∥ν1/2P∂β

x ∂
γ
ξ u2

∥∥∥2

≥
∥∥∥ν1/2∂β

x ∂
γ
ξ u2

∥∥∥2 − C
∑

�0(β ′)

∥∥∥∂β ′
x u2

∥∥∥2
.

Putting all the above estimates into (2.25) and then taking summation over (β, γ ) ∈
�i

3(β, γ ) leads to (2.21), provided that δ > 0 is small enough. This completes the proof
of the lemma. ��

Finally for the L2
x,ξ -estimate on ∂t∂

β
x ∂

γ
ξ u2 ((β, γ ) ∈ �

j
4(β, γ ), j = 1, 2, . . . ,


 − 1), we have

Lemma 2.6. If δ > 0 is small enough, then one has

d

dt

∑
�

j
4(β,γ )

∥∥∥∂t∂
β
x ∂

γ
ξ u2

∥∥∥2
+ c

∑
�

j
4(β,γ )

∥∥∥ν1/2∂t∂
β
x ∂

γ
ξ u2

∥∥∥2

≤ C
∑

�2(β)

∥∥∂t∂
β
x u1
∥∥2

+ C
∑

�2(β)

∥∥∂t∂
β
x u2
∥∥2

+C j, j−1

∑
�

j−1
4 (β,γ )

∥∥∥∂t∂
β
x ∂

γ
ξ u2

∥∥∥2
+ δC j, j+1

∑
�

j+1
4 (β,γ )

∥∥∥∂t∂
β
x ∂

γ
ξ u2

∥∥∥2

+Cδ
∑

�0(β)

∥∥∂β
x u2
∥∥2

+ Cδ
∑

�3(β,γ )

∥∥∥∂β
x ∂

γ
ξ u2

∥∥∥2
, (2.26)

where j = 1, 2, . . . , 
−1, and Ci,i−1, Ci,i+1 are some constants with additional conven-
tions:

C1,0 = C
−1,
 = 0.
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Proof. Notice that (2.24) also holds for (β, γ ) ∈ �
j
4(β, γ ) with j = 1, 2, . . . , 
 −

1. Then further applying ∂t to it, multiplying the resulting identity by ∂t∂
β
x ∂

γ
ξ u2, and

integrating the final result over R
n × R

n , we have

1

2

d

dt

∥∥∥∂t∂
β
x ∂

γ
ξ u2

∥∥∥2
+ c0

∥∥∥ν1/2{I − P}∂t∂
β
x ∂

γ
ξ u2

∥∥∥2 ≤
7∑

i=1

Ii . (2.27)

First for I1, I2 and I3, one has

I1 =
∑

0≤|β ′|≤|β|
Cβ ′

〈
ξ · ∂β−β ′

x E2∂t∂
β ′
x ∂

γ
ξ u2 + ξ · ∂t∂

β−β ′
x E2∂

β ′
x ∂

γ
ξ u2, ∂t∂

β
x ∂

γ
ξ u2

〉

≤ δ

∥∥∥ν1/2∂t∂
β
x ∂

γ
ξ u2

∥∥∥2
+ Cδ

∑
�

j
4(β ′,γ ′)

∥∥∥ν1/2∂t∂
β ′
x ∂

γ ′
ξ u2

∥∥∥2

+Cδ
∑

�
j
3(β ′,γ ′)

∥∥∥ν1/2∂β ′
x ∂

γ ′
ξ u2

∥∥∥2
,

I2 =
∑

0≤|β ′|≤|β|
Cβ ′eγ ·

〈
∂β−β ′

x E2∂t∂
β ′
x ∂

γ−1
ξ u2 + ∂t∂

β−β ′
x E2∂

β ′
x ∂

γ−1
ξ u2, ∂t∂

β
x ∂

γ
ξ u2

〉

≤ δ

∥∥∥∂t∂
β
x ∂

γ
ξ u2

∥∥∥2
+ δC j, j−1

∑
�

j−1
4 (β ′,γ ′)

∥∥∥∂t∂
β ′
x ∂

γ ′
ξ u2

∥∥∥2

+δCδ j1

∑
�2(β ′)

∥∥∥∂t∂
β ′
x u2

∥∥∥2
+ δC j, j−1

∑
�

j−1
3 (β ′,γ ′)

∥∥∥∂β ′
x ∂

γ ′
ξ u2

∥∥∥2

+δCδ j1

∑
�0(β ′)

∥∥∥∂β ′
x u2

∥∥∥2
,

and

I3 = −
∑

0≤|β ′|≤|β|−1

Cβ ′
〈
∂β−β ′

x E1 · ∇ξ ∂t∂
β ′
x ∂

γ
ξ u2 + ∂t∂

β−β ′
x E1 · ∇ξ ∂

β ′
x ∂

γ
ξ u2, ∂t∂

β
x ∂

γ
ξ u2

〉

≤ δ

∥∥∥∂t∂
β
x ∂

γ
ξ u2

∥∥∥2
+ δC j, j+1

∑
�

j+1
4 (β ′,γ ′)

∥∥∥∂t∂
β ′
x ∂

γ ′
ξ u2

∥∥∥2
+ Cδ

∑
�

j+1
3 (β ′,γ ′)

∥∥∥∂β ′
x ∂

γ ′
ξ u2

∥∥∥2
.

Furthermore, it holds that

I4 = −eγ ·
〈
∇x∂t∂

β
x ∂

γ−1
x u2, ∂t∂

β
x ∂

γ
ξ u2

〉

≤ c0

6

∥∥∥∂t∂
β
x ∂

γ
ξ u2

∥∥∥2
+ C j, j−1

∑
�

j−1
4 (β ′,γ ′)

∥∥∥∂t∂
β ′
x ∂

γ ′
ξ u2

∥∥∥2
+ C

∑
�2(β ′)

∥∥∥∂t∂
β ′
x u2

∥∥∥2
,

I5 = −
〈
∂t∂

β
x ∂

γ
ξ [P, D(t)]u, ∂t∂

β
x ∂

γ
ξ u2

〉

≤ c0

6

∥∥∥∂t∂
β
x ∂

γ
ξ u2

∥∥∥2
+ C

∑
�2(β ′)

∥∥∥∂t∂
β ′
x u1

∥∥∥2
+ C

∑
�2(β ′)

∥∥∥∂t∂
β ′
x u2

∥∥∥2
,

I6 = −
〈
[L, ∂

γ
ξ ]∂t∂

β
x u2, ∂t∂

β
x ∂

γ
ξ u2

〉
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≤ c0

6

∥∥∥∂t∂
β
x ∂

γ
ξ u2

∥∥∥2
+ C

∑
�2(β ′)

∥∥∥∂t∂
β ′
x u2

∥∥∥2
+ C j, j−1

∑
�

j−1
4 (β ′,γ ′)

∥∥∥∂t∂
β ′
x ∂

γ ′
ξ u2

∥∥∥2
.

Finally,

I7 = −
〈
∂t E1 · ∇ξ ∂

β
x ∂

γ
ξ u2, ∂t∂

β
x ∂

γ
ξ u2

〉

≤ δ

∥∥∥∂t∂
β
x ∂

γ
ξ u2

∥∥∥2
+ Cδ

∑
�

j+1
3 (β ′,γ ′)

∥∥∥∂t∂
β ′
x ∂

γ ′
ξ u2

∥∥∥2
.

Inserting all the above estimates into (2.27) and then taking summation over (β, γ ) ∈
�

j
4(β, γ ) leads to (2.26), provided that δ > 0 is small enough. This completes the proof

of the lemma. ��
Putting all the above estimates together, we can obtain the following elementary

energy estimates, which follow directly from a proper linear combination of all the
energy inequalities obtained in Lemma 2.2–Lemma 2.6.

Corollary 2.3. Under Assumptions (A1)–(A2), if δ > 0 is small enough, then there is
an energy functional H1(t) and a corresponding dissipation rate D1(t) such that

d

dt
H1(t) + cD1(t) ≤ C

⎛
⎝∑

�1(β)

‖∂β
x u1‖2 +

∑
�2(β)

‖∂t∂
β
x u1‖2

⎞
⎠, (2.28)

where H1(t) and D1(t) is defined by

H1(t) ∼ ‖u2‖2 +
∑

�1(β)

‖∂β
x u‖2 +

∑
�2(β)

‖∂t∂
β
x u‖2

+
∑

�3(β,γ )

‖∂β
x ∂

γ
ξ u2‖2 +

∑
�4(β,γ )

‖∂t∂
β
x ∂

γ
ξ u2‖2,

D1(t) ∼ ‖ν1/2u2‖2 +
∑

�1(β)

‖ν1/2∂β
x u2‖2 +

∑
�2(β)

‖ν1/2∂t∂
β
x u2‖2

+
∑

�3(β,γ )

‖ν1/2∂β
x ∂

γ
ξ u2‖2 +

∑
�4(β,γ )

‖ν1/2∂t∂
β
x ∂

γ
ξ u2‖2.

(iii) Estimates on the macroscopic part. It should be pointed out that D1(t) is a lack of
the macroscopic dissipation rate. Then it is not true that there is a constant C such
that H1(t) ≤ C D1(t) for any t ≥ 0. However, except for the first order derivatives
of the macroscopic component, the higher order derivatives can be bounded by part
of the microscopic dissipation rate D1(t). Thus a proper further linear combination
makes the dissipation rate include the derivatives of the macroscopic component
of at least first order.
The following estimate is based on the macroscopic equations (2.6)–(2.10) satis-
fied by a, b, c.

Lemma 2.7. Under Assumptions (A1) and (A2), if δ > 0 is small enough, then it holds
that
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∑
�1(β)

∥∥∂β
x u1
∥∥2

+
∑

�2(β)

∥∥∂t∂
β
x u1
∥∥2

≤ C
d

dt

∑
1≤|β|≤
−1

〈
∂β

x a,∇x · ∂β
x b
〉
+ C‖∇x u1‖2 + C

∑
�2(β)

∥∥∂β
x �∥∥2

, (2.29)

where for any β, ‖∂β
x �‖2 is defined by

‖∂β
x �‖2 = ‖∂β

x �0‖2 + ‖∂β
x �1‖2 + ‖∂β

x �21‖2 + ‖∂β
x �22‖2 + ‖∂β

x �3‖2,

with ‖∂β
x �1‖2 =∑1≤i≤n ‖∂β

x �i
1‖2, and similarly for other terms.

Proof. First consider estimates on the pure space derivatives of a, b, c. We start with b j ,
which will satisfy a standard elliptic equation. In fact, for any fixed j ∈ {1, 2, . . . , n}
and |β| ≥ 0, by (2.8) and (2.9), direct calculations yield


∂β
x b j = −∂ j j∂

β
x b j −

∑
i 
= j

∂ j∂
β
x (Ēi bi ) +

∑
i 
= j

∂i∂
β
x (Ēi b j + Ē j bi ) + 2∂ j∂

β
x (Ē j b j )

−
∑
i 
= j

∂ j∂
β
x �i

21 +
∑
i 
= j

∂i∂
β
x �i j

22 + ∂ j∂
β
x � j

21.

Thus after multiplying by ∂
β
x b j and taking some integrations by part, it holds that

‖∇x∂
β
x b j‖2 + ‖∂ j∂

β
x b j‖2

≤ 1

2
‖∇x∂

β
x b j‖2 +

1

2

(
‖∂β

x (Ē ⊗ b)‖2 + ‖∂β
x �21‖2 + ‖∂β

x �22‖2
)

≤ 1

2
‖∇x∂

β
x b j‖2 + Cδ2

∑
0≤|β ′|≤|β|

‖∇x∂
β ′
x b‖2 + C

(
‖∂β

x �21‖2 + ‖∂β
x �22‖2

)
,

which implies

‖∇x∂
β
x b‖2 ≤ Cδ2

∑
0≤|β ′|≤|β|−1

‖∇x∂
β ′
x b‖2 + C

(
‖∂β

x �21‖2 + ‖∂β
x �22‖2

)
.

Furthermore, since δ > 0 can be small enough, by iteration, one has that for any |β| ≥ 0,

‖∇x∂
β
x b‖2 ≤ C

∑
0≤|β ′|≤|β|

(
‖∂β ′

x �21‖2 + ‖∂β ′
x �22‖2

)
, (2.30)

which, after taking summation over 0 ≤ |β| ≤ 
 − 1, gives
∑

�1(β)

‖∂β
x b‖2 ≤ C

∑
�2(β)

(
‖∂β

x �21‖2 + ‖∂β
x �22‖2

)
. (2.31)

For the pure space derivatives of c, it follows from (2.10) that for |β| ≥ 0,

‖∂β
x ∇x c‖2 ≤ ‖∂β

x (Ēc)‖2 + ‖∂β
x �3‖3

≤ Cδ2
∑

0≤|β ′|≤|β|
‖∂β ′

x ∇x c‖2 + ‖∂β
x �3‖2,

which, with δ > 0 small enough, implies
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‖∂β
x ∇x c‖2 ≤ C

∑
0≤|β ′|≤|β|

‖∂β ′
x �3‖2. (2.32)

Then, similar to obtaining (2.31), taking summation for (2.32) over 0 ≤ |β| ≤ 
 − 1
gives

∑
�1(β)

‖∂β
x c‖2 ≤ C

∑
�2(β)

‖∂β
x �3‖2. (2.33)

For the pure space derivatives of a, one has from (2.7) that for any |β| ≥ 0,

‖∇x∂
β
x a‖2 = d

dt

〈
∂β

x a,∇x · ∂β
x b
〉− 〈∂β

x ∂t a,∇x · ∂β
x b
〉

+
n∑

i=1

〈
∂i∂

β
x a, ∂β

x (aĒi − 2cE1i) + ∂β
x �i

1

〉

≤ d

dt

〈
∂β

x a,∇x · ∂β
x b
〉
+

1

2
‖∂β

x ∂t a‖2 +
1

2
‖∇x∂

β
x b‖2 +

1

2
‖∇x∂

β
x a‖2

+Cδ2
∑

0≤|β ′|≤|β|

(
‖∇x∂

β ′
x a‖2 + ‖∇x∂

β ′
x c‖2

)
+

1

2
‖∂β

x �1‖2. (2.34)

Notice that (2.6) together with (2.30) gives that for any |β| ≥ 0,

‖∂β
x ∂t a‖2 ≤ ‖∂β

x (E1 · b)‖2 + ‖∂β
x �0‖2

≤ Cδ2
∑

0≤|β ′|≤|β|

(
‖∂β ′

x �21‖2 + ‖∂β ′
x �22‖2

)
+ ‖∂β

x �0‖2. (2.35)

Putting (2.30), (2.32) and (2.35) into (2.34) and taking summation over 1 ≤ |β| ≤ 
−1,
one has

∑
1≤|β|≤
−1

‖∇x∂
β
x a‖2 ≤ C

∑
1≤|β|≤
−1

d

dt
〈∂β

x a,∇x · ∂β
x b〉 + Cδ2‖∇x a‖2

+C
∑

�2(β)

‖∂β
x �‖2. (2.36)

Next we estimate ‖∂t∂
β
x u1‖ with β ∈ �2(β). It directly follows from (2.35) that
∑

�2(β)

‖∂t∂
β
x a‖2 ≤ C

∑
�2(β)

‖∂β
x �‖2. (2.37)

In addition, (2.8) gives that for any |β| ≥ 0,

‖∂β
x ∂t c‖2 ≤ C

{
‖∇x∂

β
x b‖2 + ‖∂β

x (Ē · b)‖2 + ‖∂β
x �21‖2

}

≤ C
∑

0≤|β ′|≤|β|

(
‖∂β ′

x �21‖2 + ‖∂β ′
x �22‖2

)
,

which implies that
∑

�2(β)

‖∂t∂
β
x c‖2 ≤ C

∑
�2(β)

‖∂β
x �‖2. (2.38)
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Similarly (2.7) together with (2.33) and (2.36) gives

∑
�2(β)

‖∂t∂
β
x b‖2 ≤ C

∑
1≤|β|≤


(
‖∂β

x a‖2 + ‖∂β
x c‖2

)
+ C

∑
�2(β)

‖∂β
x �‖2

≤ C
∑

1≤|β|≤
−1

d

dt
〈∂β

x a,∇x · ∂β
x b〉 + C‖∇x a‖2 + C

∑
�2(β)

‖∂β
x �‖2.

Finally, collecting all estimates (2.31), (2.33), (2.36), (2.37), (2.38) and (2.39) yields
(2.29). This completes the proof of the lemma. ��
(iv) Combination of estimates on the macro-micro components. As in [13], from the

representation (2.5) of �, we can prove the following lemma.

Lemma 2.8. It holds that∑
�2(β)

‖∂β
x �‖2 ≤ C

∑
�0(β)

∥∥∂β
x u2
∥∥2

+ C
∑

�2(β)

∥∥∂β
x ∂t u2

∥∥2
. (2.39)

Thus the further linear combination of (2.28), (2.29) and (2.39) gives the following
result.

Corollary 2.4. Under Assumptions (A1)–(A2), if δ > 0 is small enough, then there is an
energy functional H2(t) and a corresponding dissipation rate D2(t) such that for any
t ≥ 0,

d

dt
H2(t) + cD2(t) ≤ C‖∇x u1‖2, (2.40)

and

H2(t) ≤ C D2(t),

where

H2(t) ∼ ‖u2‖2 +
∑

�1(β)

‖∂β
x u‖2 +

∑
�2(β)

‖∂t∂
β
x u‖2

+
∑

�3(β,γ )

‖∂β
x ∂

γ
ξ u2‖2 +

∑
�4(β,γ )

‖∂t∂
β
x ∂

γ
ξ u2‖2,

D2(t) ∼ ‖ν1/2u2‖2 +
∑

�1(β)

‖ν1/2∂β
x u2‖2 +

∑
�2(β)

‖ν1/2∂t∂
β
x u2‖2

+
∑

�3(β,γ )

‖ν1/2∂β
x ∂

γ
ξ u2‖2 +

∑
�4(β,γ )

‖ν1/2∂t∂
β
x ∂

γ
ξ u2‖2,

+
∑

�1(β)

‖∂β
x u1‖2 +

∑
�2(β)

‖∂t∂
β
x u1‖2.

(v) Further energy estimates on the microscopic part with velocity weight functions.
For later use, we shall make further energy estimates on the microscopic component
weighted by velocity functions ν(ξ). We remark that it is necessary to introduce this
velocity weight function to eliminate the time derivatives so that one can make use
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of the decay in time estimates for the linearized equation to deal with the nonlinear
problems in terms of the contraction mapping theorem.
For generality, we shall make the weighted energy estimates on w = w(t, x, ξ),
which is the solution to the following nonhomogeneous linear equation:

∂tw + νw + ξ · ∇xw + E1 · ∇ξw = φ + ξ · E2w, (2.41)

where φ = φ(t, x, ξ) is a given function.

Lemma 2.9. Under Assumptions (A1)–(A2), if δ > 0 is small enough, then for any k,
the solution w to Eq. (2.41) enjoys the following estimates:

d

dt
‖νkw‖2 + c‖νk+1/2w‖2 ≤ C‖νk−1/2φ‖2, (2.42)

d

dt

∑
�1(β)

‖νk∂β
x w‖2 + c

∑
�1(β)

‖νk+1/2∂β
x w‖2

≤ C
∑

�1(β)

‖νk−1/2∂β
x φ‖2 + Cδ

∑
�3(β,γ )
|β|≥1

‖νk−1/2∂β
x ∂

γ
ξ w‖2, (2.43)

and

d

dt

∑
�3(β,γ )

Cβ,γ ‖νk∂β
x ∂

γ
ξ w‖2 + c

∑
�3(β,γ )

‖νk+1/2∂β
x ∂

γ
ξ w‖2

≤ C
∑

�3(β,γ )

‖νk−1/2∂β
x ∂

γ
ξ φ‖2 + C

∑
�0(β)

‖νk−1/2∂β
x w‖2, (2.44)

where Cβ,γ with (β, γ ) ∈ �3(β, γ ) are some positive constants, and positive constants
c and C may depend on k. Furthermore, it holds that

d

dt

∑
0≤|α|≤


Cα‖νk∂α
x,ξw‖2 + c

∑
0≤|α|≤


‖νk+1/2∂α
x,ξw‖2

≤ C
∑

0≤|α|≤


‖νk−1/2∂α
x,ξ φ‖2, (2.45)

where Cα are also some positive constants.

Proof. For simplicity of presentation, denote the time dependent linear operator A(t)
by

A(t) = ν + ξ · ∇x + E1(t, x) · ∇ξ .

Then (2.41) is rewritten as

∂tw + A(t)w = φ + ξ · E2w.
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Since for each multi-index β and γ , one has

∂t (ν
k∂β

x ∂
γ
ξ w) + A(t)(νk∂β

x ∂
γ
ξ w)

= νk∂β
x ∂

γ
ξ φ + νkξ · ∂β

x ∂
γ
ξ (E2w) + eγ · νk∂β

x ∂
γ−1
ξ (E2w) − eγ · νk∇x∂

β
x ∂

γ−1
ξ w

−
∑

0≤|γ ′|≤|γ |−1

∂
γ−γ ′
ξ ννk∂β

x ∂
γ ′
ξ w −

∑
0≤|β ′|≤|β|−1

Cβ ′∂β−β ′
x E1 · νk∇ξ ∂

β ′
x ∂

γ
ξ w

+E1 · ∇ξ ν
k∂β

x ∂
γ
ξ w,

and (2.42)–(2.44) can be proved by mimicking the arguments used in the proof of
Lemma 2.5.

Finally (2.45) follows from the linear combination of (2.42)–(2.44). This completes
the proof of the lemma. ��

By applying the above result to the solutions of Eqs. (2.21) and (2.22), one has

Corollary 2.5. Under Assumptions (A1)–(A2), if δ > 0 is small enough, then for any k,
it holds that

d

dt

∥∥∥νku2

∥∥∥2
+ c
∥∥∥νk+1/2u2

∥∥∥2

≤ C ‖∇x u1‖2 + C

(∥∥∥ν(k−1/2)+−1u2

∥∥∥2
+
∥∥∥ν(k−1/2)+−1∇x u2

∥∥∥2
)

, (2.46)

d

dt

∑
�1(β)

‖νk∂β
x u‖2 + c

∑
�1(β)

‖νk+1/2∂β
x u‖2

≤ C
∑

�1(β)

‖∂β
x u1‖2 + C

∑
�1(β)

‖ν(k−1/2)+−1∂β
x u2‖2 + Cδ

∑
�3(β,γ )

‖νk−1/2∂β
x ∂

γ
ξ u2‖2,

(2.47)

and

d

dt

∑
�3(β,γ )

Cβ,γ ‖νk∂β
x ∂

γ
ξ u2‖2 + c

∑
�3(β,γ )

‖νk+1/2∂β
x ∂

γ
ξ u2‖2

≤ C
∑

�1(β)

‖∂β
x u1‖2 + C

∑
�0(β)

‖νk−1/2∂β
x u2‖2 + C

∑
�3(β,γ )

‖ν(k−1/2)+−1∂β
x ∂

γ
ξ u2‖2,

(2.48)

where (·)+ means that (m)+ = m if m ≥ 0 and 0 otherwise. Furthermore, for any k,
there is an energy functional H3,k(t) and a corresponding dissipation rate D3,k(t) such
that for any t ≥ 0,

d

dt
H3,k(t) + cD3,k(t) ≤ C

∑
�1(β)

‖∂β
x u1‖2 + C

∑
�0(β)

‖ν(k−1/2)−−1∂β
x u2‖2

+C
∑

�3(β,γ )

‖ν(k−1/2)+−1∂β
x ∂

γ
ξ u2‖2, (2.49)
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and

H3,k(t) ≤ C D3,k(t), (2.50)

where

H3,k(t) ∼ ‖νku2‖2 +
∑

�1(β)

‖νk∂β
x u‖2 +

∑
�3(β,γ )

‖νk∂β
x ∂

γ
ξ u2‖2, (2.51)

D3,k(t) ∼ ‖νk+1/2u2‖2 +
∑

�1(β)

‖νk+1/2∂β
x u‖2 +

∑
�3(β,γ )

‖νk+1/2∂β
x ∂

γ
ξ u2‖2. (2.52)

Proof. Notice that (2.14) and (2.15) can be rewritten as

∂t u + A(t)u = K u + ξ · E2u, (2.53)

and

∂t u2 + A(t)u2 = K u2 + [P, D(t)]u + ξ · E2u2. (2.54)

Thus one can apply the estimate (2.43) to Eq. (2.53) with φ = K u to obtain (2.47), where
(2.12) was used. Similarly by applying the estimates (2.42) and (2.44) to Eq. (2.54) with

φ = K u2 + [P, D(t)]u = K u2 + PD(t)u − D(t)u1,

one can obtain (2.46) and (2.48). Here we have used the following identities:

∂β
x ∂

β
ξ K u2 = K∂β

x ∂
β
ξ u2 − [K , ∂

β
ξ ]∂β

x u2,

and

PD(t)u = PD(t)u1 + PD(t)ν1−(k−1/2)+
{
ν(k−1/2)+−1u2

}
.

Finally (2.49) follows from the linear combination of (2.46)–(2.48). It is obvious that
(2.50) holds from the equivalent forms (2.51) and (2.52) of H3,k(t) and D3,k(t). This
completes the proof of the corollary. ��

So far, based on the energy estimates on the linearized Eq. (2.1) only, we can obtain
a standard energy inequality only with the first order derivatives of the macroscopic
component u1 as an error term. In fact, by a proper linear combination of (2.40) and
(2.49) with k = 1 yields

Theorem 2.1. Under Assumptions (A1)–(A2), if δ > 0 is small enough, then there is
an energy functional H(t) and a corresponding dissipation rate D(t) such that for any
t ≥ 0,

d

dt
H(t) + cD(t) ≤ C‖∇x u1‖2, (2.55)

and

H(t) ≤ C D(t), (2.56)
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where

H(t) ∼ ‖νu2‖2 +
∑

�1(β)

‖ν∂β
x u‖2 +

∑
�2(β)

‖∂t∂
β
x u‖2

+
∑

�3(β,γ )

‖ν∂β
x ∂

γ
ξ u2‖2 +

∑
�4(β,γ )

‖∂t∂
β
x ∂

γ
ξ u2‖2,

D(t) ∼ ‖ν3/2u2‖2 +
∑

�1(β)

‖ν3/2∂β
x u2‖2 +

∑
�2(β)

‖ν1/2∂t∂
β
x u2‖2

+
∑

�3(β,γ )

‖ν3/2∂β
x ∂

γ
ξ u2‖2 +

∑
�4(β,γ )

‖ν1/2∂t∂
β
x ∂

γ
ξ u2‖2

+
∑

�1(β)

‖∂β
x u1‖2 +

∑
�2(β)

‖∂t∂
β
x u1‖2.

It is noticed that in H(t), the power of the velocity weight function for the time
derivatives is one less than that for others. Thus one can eliminate those terms involving
the time derivatives by the equation. In fact, at first by u2 = u − u1, it holds that

∑
�4(β,γ )

‖∂t∂
β
x ∂

γ
ξ u2‖2 ≤

∑
�4(β,γ )

‖∂t∂
β
x ∂

γ
ξ u‖2 +

∑
�4(β,γ )

‖∂t∂
β
x ∂

γ
ξ u1‖2,

where it further follows that

∑
�4(β,γ )

‖∂t∂
β
x ∂

γ
ξ u1‖2 ≤

∑
�2(β)

‖∂t∂
β
x u1‖2 ≤

∑
�2(β)

‖∂t∂
β
x u‖2.

Then by Eq. (2.1), one has

∂t u = −ξ · ∇x u − E1 · ∇ξ u − νu2 + K u2 + ξ · E2u,

which implies that

∑
�2(β)

‖∂t∂
β
x u‖2 ≤ C‖νu2‖2 +

∑
�1(β)

‖ν∂β
x u‖2,

∑
�4(β,γ )

‖∂t∂
β
x ∂

γ
ξ u‖2 ≤ C‖νu2‖2 +

∑
�1(β)

‖ν∂β
x u‖2 +

∑
�3(β,γ )

‖ν∂β
x ∂

γ
ξ u2‖2.

Thus we have proved the following proposition.

Proposition 2.2. Under the assumptions of Theorem 2.1, H(t) has the equivalent form:

H(t) ∼ ‖νu2‖2 +
∑

�1(β)

‖ν∂β
x u‖2 +

∑
�3(β,γ )

‖ν∂β
x ∂

γ
ξ u2‖2

∼
∑

1≤|β|≤


‖∂β
x u1‖2 +

∑
0≤|α|≤


‖ν∂α
x,ξ u2‖2.
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2.4. Optimal decay rates. (i) Estimates based on the spectral analysis. Set

B = −ξ · ∇x + L.

Then from [27], one has

Proposition 2.3. The linear operator B generates a semigroup eBt which enjoys the
decay in time estimates

‖∇m
x eBt g‖ ≤ C(1 + t)−σq,m

(‖g‖Zq + ‖∇m
x g‖), (2.57)

for any integer m ≥ 0 and any function g = g(x, ξ), where q ∈ [1, 2] and the decay
rate is measured by

σq,m = n

2

(
1

q
− 1

2

)
+

m

2
. (2.58)

Note that in terms of the linear operator B, (2.1) can be rewritten as

∂t u = Bu − E1 · ∇ξ u + ξ · E2u.

Then the solution to the initial value problem (2.1) and (2.2), with s = 0 for brevity, can
be written in the mild form

u(t) = eBt u0 +
∫ t

0
eB(t−s) {−E1 · ∇ξ u + ξ · E2u

}
(s)ds. (2.59)

Based on the above mild form and Proposition 2.3, one has the following lemma.

Lemma 2.10. Assume that there is a constant δ > 0 such that

‖(1 + |x |)Ei (t, x)‖L∞
t,x

+ ‖|x |Ei (t, x)‖
L∞

t

(
L2q/(2−q)

x

) ≤ δ,

where i = 1, 2 and 1 ≤ q ≤ 2. Then it holds that

‖∇x u(t)‖ ≤ Cλ0(1 + t)−σq,1

+Cδ

∫ t

0
(1 + t − s)−σq,1(‖∇x u1(s)‖ + ‖ν∇x u2(s)‖ + ‖∇ξ∇x u2(s)‖)ds,

(2.60)

where λ0 is given by

λ0 = ‖u0‖Zq + ‖∇x u0‖. (2.61)

Proof. For simplicity, set

G = −E1 · ∇ξ u + ξ · E2u.

Then applying (2.57) to (2.59) yields

‖∇x u(t)‖ ≤ Cλ0(1 + t)−σq,1 + Cδ

∫ t

0
(1 + t − s)−σq,1

(‖G(s)‖Zq + ‖∇x G(s)‖) ds.
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Furthermore, one has

‖G(s)‖Zq ≤
∥∥∥∥∥‖|x |E1‖L2q/(2−q)

x

∥∥∥∥∇ξ u

|x |
∥∥∥∥

L2
x

+ Cν ‖|x |E2‖L2q/(2−q)
x

∥∥∥∥ u

|x |
∥∥∥∥

L2
x

∥∥∥∥∥
L2

ξ

≤ Cδ

(∥∥∇ξ∇x u(s)
∥∥

L2
ξ (L2

x )
+ ‖ν∇x u(s)‖L2

ξ (L2
x )

)

≤ Cδ
(‖∇x u1(s)‖ + ‖ν∇x u2(s)‖ + ‖∇ξ∇x u2(s)‖

)
.

Similarly it holds that

‖∇x G(s)‖ ≤
∥∥∥∥∥‖|x |∇x E1‖L∞

x

∥∥∥∥∇ξ u

|x |
∥∥∥∥

L2
x

+ ‖E1‖L∞
x

‖∇x∇ξ u‖L2
x

+Cν ‖|x |∇x E2‖L∞
x

∥∥∥∥ u

|x |
∥∥∥∥

L2
x

+ Cν ‖E2‖L∞
x

‖∇x u‖L2
x

∥∥∥∥∥
L2

ξ

≤ Cδ
(‖∇x u1(s)‖ + ‖ν∇x u2(s)‖ + ‖∇ξ∇x u2(s)‖

)
.

Thus (2.60) is proved. This completes the proof of the lemma. ��
(ii) Optimal decay rates. Combining Theorem 2.1 and Lemma 2.10 gives the optimal
decay rates.

Lemma 2.11. Assume

n ≥ 3, 1 ≤ q <
2n

n + 2
. (2.62)

Under the assumptions of Theorem 2.1 and Lemma 2.10, if δ > 0 is small enough, then
it holds that √

H(t) ≤ C(1 + t)−σq,1
{√

H(0) + ‖u0‖Zq

}
, (2.63)

and

‖u(t)‖ ≤ C(1 + t)−σq,0
{√

H(0) + ‖u0‖Zq∩L2

}
. (2.64)

Proof. Define

M(t) = sup
0≤s≤t

{
(1 + s)2σq,1 H(s)

}
. (2.65)

Notice that M(t) is non-decreasing and

‖∇x u1(s)‖ + ‖ν∇x u2(s)‖ + ‖∇ξ∇x u2(s)‖ ≤ C
√

H(s) ≤ C(1 + s)−σq,1
√

M(t)

(2.66)

for any 0 ≤ s ≤ t . Then (2.60) with (2.66) implies that for any t ≥ 0,

‖∇x u1(t)‖ ≤ ‖∇x u(t)‖
≤ Cλ0(1 + t)−σq,1 + Cδ

∫ t

0
(1 + t − s)−σq,1(1 + s)−σq,0 ds

√
M(t)

≤ C(1 + t)−σq,1
(
λ0 + δ

√
M(t)

)
, (2.67)
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since σq,1 > 1 from (2.58) and (2.62).
On the other hand, by the Gronwall inequality, (2.55) together with (2.56) gives

H(t) ≤ e−ct H(0) + C
∫ t

0
e−c(t−s)‖∇x u1(s)‖2ds,

for some constant c > 0. Then, further using (2.67) yields

H(t) ≤ e−ct H(0) + C
∫ t

0
e−c(t−s)(1 + s)−2σq,1 ds

(
λ2

0 + δ2 M(t)
)

≤ C(1 + t)−2σq,1
(

H(0) + λ2
0 + δ2 M(t)

)
.

Hence for any t ≥ 0,

sup
0≤s≤t

{
(1 + s)2σq,1 H(s)

}
≤ C

(
H(0) + λ2

0 + δ2 M(t)
)
,

i.e.,

M(t) ≤ C
(

H(0) + λ2
0 + δ2 M(t)

)
.

Then if δ > 0 is small enough, one has

M(t) ≤ C
(

H(0) + λ2
0

)
. (2.68)

Recalling the definitions (2.61) and (2.65) of λ0 and M(t), (2.68) gives (2.63).
Finally it follows from (2.57) and (2.63) that

‖u(t)‖ ≤ C(1 + t)−σq,0‖u0‖Zq∩L2 + C
∫ t

0
(1 + t − s)−σq,0‖G(s)‖Zq∩L2 ds

≤ C(1 + t)−σq,0‖u0‖Zq∩L2 + Cδ

∫ t

0
(1 + t − s)−σq,1

√
H(s)ds

≤ C(1 + t)−σq,0‖u0‖Zq∩L2

+Cδ

∫ t

0
(1 + t − s)−σq,0(1 + s)−σq,1 ds

(√
H(0) + ‖u0‖Zq

)

≤ C(1 + t)−σq,0
(√

H(0) + ‖u0‖Zq∩L2

)
.

Thus (2.64) is proved. This completes the proof of the lemma. ��
(iii) Decay estimates on the solution operator U (t, s). For any number k, define a norm
[[·]]0,k and a seminorm [[·]]1,k over the Sobolev space H 
(Rn

x × R
n
ξ ) by

[[u]]0,k =
∑

0≤|α|≤


‖νk∂α
x,ξ u‖, (2.69)

[[u]]1,k =
∑

1≤|β|≤


‖∂β
x Pu‖ +

∑
0≤|α|≤


‖νk∂α
x,ξ {I − P}u‖, (2.70)

where u = u(x, ξ). Notice that

[[u]]0,k ∼ [[u]]1,k + ‖u‖. (2.71)
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Theorem 2.2. Suppose that

(i) the integers n ≥ 3, 
 ≥ 2 and the number 1 ≤ q < 2n
n+2 ;

(ii) there a constant δ > 0 such that
∑

0≤|β|≤


∥∥(1 + |x |)∂β
x Ei (t, x)

∥∥
L∞

t,x
+

∑
0≤|β|≤
−1

∥∥(1 + |x |)∂t∂
β
x Ei (t, x)

∥∥
L∞

t,x
≤ δ,

and

‖|x |Ei (t, x)‖
L∞

t

(
L2q/(2−q)

x

) ≤ δ,

where i = 1, 2.

Then for any k ≥ 1, there exist constants δ0 > 0 and C0 > 0 such that for any
δ ≤ δ0, the linear solution operator U (t, s), −∞ < s ≤ t < ∞, corresponding to the
linear Eq. (2.1) satisfies the decay in time estimates

[[U (t, s)u0]]m,k ≤ C0(1 + t − s)−σq,m ([[u0]]m,k + ‖u0‖Zq ), m = 0, 1, (2.72)

for any u0 = u0(x, ξ), where the constant C0 depends only on n, 
, q, k and δ0.

Proof. It suffices to consider the case when s = 0. We now prove (2.87) by induction
for k ≥ 1. When k = 1, (2.72) follows from Proposition 2.2, Lemma 2.11 and (2.71).

Now suppose that (2.72) holds for some k ≥ 1. We claim that it also holds for k + ε

with any 0 ≤ ε ≤ 3/2. First consider the case of m = 0. Notice that u = U (t, 0)u0
satisfies

∂t u + νu + ξ · ∇x u + E1 · ∇ξ u = K u + ξ · E2u.

Then recalling Eq. (2.41) and then applying the estimate (2.45) with φ = K u, one has

d

dt

∑
0≤|α|≤


Cα‖νk+ε∂α
x,ξ u‖2 + c

∑
0≤|α|≤


‖νk+ε+1/2∂α
x,ξ u‖2

≤ C
∑

0≤|α|≤


‖νk+ε−1/2∂α
x,ξ K u‖2, (2.73)

where by Lemma 2.9 and the inductive assumption, it holds that
∑

0≤|α|≤


‖νk+ε−1/2∂α
x,ξ K u‖2 ≤ C[[u]]2

0,k ≤ C(1 + t)−2σq,0
([[u0]]0,k + ‖u0‖Zq

)2
.

(2.74)

Thus by the Gronwall inequality, (2.73) and (2.74) imply (2.72) with m = 0 for k + ε.
Next consider the case of m = 1. Notice that the following equivalent property also

holds:

[[u]]1,k ∼
∑

�1(β)

∥∥∥νk∂β
x u
∥∥∥ +
∥∥∥νk{I − P}u

∥∥∥ +
∑

�3(β,γ )

∥∥∥νk∂β
x ∂

γ
ξ {I − P}u

∥∥∥.

Thus from Corollary 2.5, similarly (2.72) with m = 1 holds for k + ε. The details of the
proof are omitted for brevity. Hence (2.72) with m = 0 or 1 holds for any k ≥ 1. This
completes the proof of the theorem. ��
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Remark 2.1. In the above theorem, the external force needs not to have time decay.
Rather, it may be time independent, time periodic, or even bounded in time, though it
should be small. In the case when the force is a small perturbation of some stationary
potential force, i.e. in the form

F(t, x) = −∇xφ(x) + E(t, x),

where φ(x) → 0 as |x | → ∞, we can have the same optimal decay estimates as (2.72)
for the linearized equation derived by setting

f = M̃ + M1/2u,

where

M̃ = ρ̃(x)M, ρ̃(x) = e−φ(x).

In this case, the linear equation is

∂t u + ξ · ∇x u + F · ∇ξ u − 1

2
ξ · Fu = ρ̃(x)Lu. (2.75)

If the same assumptions of Theorem 2.2 hold for F(t, x) and φ(x) itself is also small
in some Sobolev space, then the energy estimate similar to (2.13) still holds. For the
estimates on the macroscopic component u1, we consider Eq. (2.75) which can be
rewritten as

∂t u − Bu = −F · ∇ξ u +
1

2
ξ · Fu + (ρ̃ − 1)Lu,

where the right-hand side can be regarded as a source term. Thus the decay estimate
(2.72) is valid for the solution operator corresponding to (2.75) and can be used for the
nonlinear problem considered in Sect. 3.

3. Applications to the Nonlinear Equation

3.1. Basic estimates. First from the definition (2.69) of the norm [[·]]0,k , Corollary 2.2
and ∂

β
x ∂

β
ξ K u = K∂

β
x ∂

β
ξ u − [K , ∂

β
ξ ]∂β

x u, we have

Lemma 3.1. Let k be any number. For any u = u(x, ξ), it holds that

[[K u]]0,k ≤ C[[u]]0,(k−1)+,

where C is some constant.

Lemma 3.2. For any u = u(x, ξ) and v = v(x, ξ), it holds that

‖�(u, v)‖Z1 ≤ C (‖νu‖‖v‖ + ‖u‖‖νv‖) ,

where C is some constant.

The proof of the above lemma can be found in [28]. Finally we give a lemma on the
estimates on the nonlinear term � in the norm [[·]]0,k .
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Lemma 3.3. Let k ≥ 0 and k0 ≤ 1. Suppose that 
 ≥ [n/2]+2. Then for any u = u(x, ξ)

and v = v(x, ξ), it holds that

[[�(u, v)]]0,k−k0 ≤ C([[u]]0,k+1−k0 [[v]]0,k + [[u]]0,k[[v]]0,k+1−k0), (3.1)

where C is some constant.

Proof. Write

�(u, v) = 1

2
{�1(u, v) + �1(v, u) − �2(u, v) − �2(v, u)} ,

with

�1(u, v) =
∫

Rn×Sn−1
|(ξ − ξ∗) · ω|M1/2∗ u(ξ ′)v(ξ ′∗)dξ∗dω,

�2(u, v) =
∫

Rn×Sn−1
|(ξ − ξ∗) · ω|M1/2∗ u(ξ)v(ξ∗)dξ∗dω.

It is obvious that (3.1) holds if it does for each � j , j = 1, 2.
First consider �1. As in [14], after taking a change of variable z = ξ − ξ∗, �1 can be

rewritten as

�1(u, v)(ξ) =
∫

Rn×Sn−1
|z · ω|M1/2(ξ − z)u(ξ ′)v(z′)dzdω, (3.2)

where

ξ ′ = ξ − z‖, z′ = ξ − z⊥,

with z‖ = (z ·ω)ω, z⊥ = z − z‖. Applying ∂α
x,ξ = ∂

β
x ∂

γ
ξ with 0 ≤ |α| ≤ 
 and α = β +γ

to (3.2) yields

∂α
x,ξ�1(u, v)(ξ)=

∑
β1+β2=β

Cβ
β1

∂
γ
ξ

∫
Rn×Sn−1

|z · ω|M1/2(ξ − z)(∂β1
x u)(ξ ′)(∂β2

x v)(z′)dzdω

=
∑

β1+β2=β
γ1+γ21+γ22=γ

Cβ
β1

Cγ
γ1

Cγ−γ1
γ21

×
∫

Rn×Sn−1
|z · ω|∂γ1

ξ M1/2(ξ − z)(∂β1
x ∂

γ21
ξ u)(ξ ′)(∂β2

x ∂
γ22
ξ v)(z′)dzdω.

Notice that for any γ1,
∣∣∣∂γ1

ξ M1/2(ξ − z)
∣∣∣ ≤ CM1/4(ξ − z).

Then

|∂α
x,ξ�1(u, v)(ξ)| ≤ C

∑
α1+α2≤α

∫
Rn×Sn−1

|z · ω|M1/4(ξ−z)|∂α1
x,ξ u(ξ ′)| |∂α2

x,ξ v(z′)|dzdω.

(3.3)
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Without loss of generality, suppose |α1| ≤ |α|/2 in (3.3). Then by integrating (3.3) over
R

n
x with respect to the space variable and using the Sobolev inequality, one has

‖∂α
x,ξ�1(u, v)(ξ)‖L2

x
≤ C

∑
|α1|≤|α|/2

�α1(ξ), (3.4)

where

�α1(ξ) =
∫

Rn×Sn−1
|z · ω|M1/4(ξ − z)‖∇x∂

α1
x,ξ u(ξ ′)‖H1

x
‖∂α2

x,ξ v(z′)‖L2
x
dzdω.

Noting that for any k ≥ 0,

νk(ξ ′)νk(z′) = νk(ξ − z‖)νk(ξ − z⊥) ≥ Cνk(ξ), (3.5)

where the constant C > 0, then for each α1, one has

νk�α1(ξ) ≤ C
∫

Rn×Sn−1
|z · ω|M1/4(ξ − z)‖νk∇x∂

α1
x,ξ u(ξ ′)‖H1

x
‖νk∂

α2
x,ξ v(z′)‖L2

x
dzdω

≤ C

{∫
Rn×Sn−1

|z|2M1/2(ξ − z)dzdω

}1/2

×
{∫

Rn×Sn−1

[
‖νk∇x∂

α1
x,ξ u(ξ ′)‖H1

x
‖νk∂

α2
x,ξ v(z′)‖L2

x

]2
dzdω

}1/2

≤ Cν(ξ)

{∫
Rn×Sn−1

[
‖νk∇x∂

α1
x,ξ u(ξ ′)‖H1

x
‖νk∂

α2
x,ξ v(z′)‖L2

x

]2
dzdω

}1/2

.

Taking further integration over R
n
ξ with respect to the velocity variable gives

‖νk−k0�α1‖2
L2

ξ

≤ C
∫

Rn×Sn−1
ν2−2k0(ξ)‖νk∇x∂

α1
x,ξ u(ξ ′)‖2

H1
x
‖νk∂

α2
x,ξ v(z′)‖2

L2
x
dξdzdω

≤ C
∫

Rn×Sn−1

[
ν2−2k0(ξ ′) + ν2−2k0(z′)

]

×‖νk∇x∂
α1
x,ξ u(ξ ′)‖2

H1
x
‖νk∂

α2
x,ξ v(z′)‖2

L2
x
dξ ′dz′dω,

where we have used the inequality (3.5) since 2−2k0 ≥ 0 and taken change of variables
(ξ, z) → (ξ ′, z′), whose Jacobian is unity. Hence

∥∥∥νk−k0�α1

∥∥∥2

L2
ξ

≤ C
(
[[u]]2

0,k+1−k0
[[v]]2

0,k + [[u]]2
0,k[[v]]2

0,k+1−k0

)
. (3.6)

Thus combining (3.4) and (3.6) implies that (3.1) holds for �1.
Finally it is more straightforward to carry out the estimates on �2(u, v) in a similar

way. The details are omitted. This completes the proof of the lemma. ��
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3.2. Global existence for the Cauchy problem. In this subsection, we consider the
global existence and decay rates of the solution to the Cauchy problem for the non-
linear Boltzmann equation:

∂t u + ξ · ∇x u + F · ∇ξ u − 1

2
ξ · Fu = Lu + �(u) + S̃, (3.7)

u(t, x, ξ)|t=0 = u0(x, ξ), (3.8)

where u = u(t, x, ξ), (t, x, ξ) ∈ R
+ × R

n × R
n , and S̃ is given by (1.5).

The main result is stated as follows.

Theorem 3.1. Suppose that

(B1) The integers n ≥ 3, 
 ≥ [n/2] + 2.
(B2) The functions F = F(t, x), S = S(t, x, ξ) and u0 = u0(x, ξ) satisfy

F ∈ Ci
b

(
R

+
t ; H 
−i (Rn

x )
)
, i = 0, 1, S ∈ C0

b

(
R

+
t ; H 
(Rn

x × R
n
ξ )
)
,

u0 ∈ H 
(Rn
x × R

n
ξ ).

(B3) There are constants δ > 0, k ≥ 1 and κ > 1 such that F and u0 are bounded in
the sense that∑

0≤|β|≤


∥∥(1 + |x |)∂β
x F(t, x)

∥∥
L∞

t,x

+
∑

0≤|β|≤
−1

∥∥(1 + |x |)∂t∂
β
x F(t, x)

∥∥
L∞

t,x
+ ‖|x |F(t, x)‖L∞

t (L2
x ) ≤ δ, (3.9)

[[u0]]0,k+1/2 + ‖u0‖Z1 ≤ δ, (3.10)

and moreover, F and S decay in time in the sense that

‖F(t)‖H

x ∩L1

x
≤ δ(1 + t)−κ , (3.11)

[[M−1/2S(t)]]0,k−1/2 +
∥∥∥M−1/2S(t)

∥∥∥
Z1

≤ δ(1 + t)−κ . (3.12)

Then there are constants δ1 > 0 and C1 > 0 such that for any δ ≤ δ1, the Cauchy
problem (3.7)–(3.8) corresponding to (1.1) has a unique global classical solution

u ∈ Ci
b

(
R

+
t ; H 
−i (Rn

x × R
n
ξ )
)

, i = 0, 1, (3.13)

which satisfies

sup
t≥0

(1 + t)2κ0 [[u(t)]]2
0,k +

∫ ∞

0
[[u(s)]]2

0,k+1/2ds ≤ C2
1 , (3.14)

where C1 can be also taken as C1 = C ′
1δ for another constant C ′

1 independent of
δ, and κ0 is given by

{ 1
2 < κ0 < κ − 1

2 if σ1,0 ≥ κ − 1
2 ,

κ0 = σ1,0 if σ1,0 < κ − 1
2 .

(3.15)

Furthermore, it holds that
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∑
0≤|α|≤
−1

∥∥∥νk−1∂t∂
α
x,ξ u(t)

∥∥∥ ≤ Cδ(1 + t)−κ0 , (3.16)

for some constant C.

In order to prove the above theorem, we introduce a function set S(C1) by

S(C1) =
{

u = u(t, x, ξ)

∣∣∣ u ∈ C0
b

(
R

+
t ; H 
(Rn

x × R
n
ξ )
)

, |||u|||k,κ0 ≤ C1

}
,

where C1 > 0 is some constant to be determined later, and the norm ||| · |||k,κ0 is defined
by

|||u|||2k,κ0
= sup

t≥0
(1 + t)2κ0 [[u(t)]]2

0,k +
∫ ∞

0
[[u(s)]]2

0,k+1/2ds.

Clearly, S(C1) is a complete metric space with the metric induced by the norm ||| · |||k,κ0 .
Under some conditions, the solution to (3.7)–(3.8) will be obtained by applying the
contraction mapping theorem to find a fixed point in S(C1) for some nonlinear mapping
�, where � is defined by

�(u) = U (t, 0)u0 +
∫ t

0
U (t, s){�(u(s), u(s)) + S̃(s)}ds. (3.17)

Thus one has to estimate the time integral in (3.17) in terms of the norm ||| · |||k,κ0 .
For this, in what follows, given a function φ = φ(t, x, ξ), we will first consider the
estimate on the general time integral

(Tφ)(t, x, ξ) =
∫ t

0
U (t, s)φ(s, x, ξ)ds.

This time integral can be written as two parts again by Duhamel’s formula. In fact, define
the solution operator U1(t, s) for any 0 ≤ s ≤ t in the sense that for any v0 = v0(x, ξ),
v = v(t, x, ξ) = U1(t, s)v0 denotes the solution to the following initial value problem:

∂tv + νv + ξ · ∇xv + F · ∇ξ v − 1

2
ξ · Fv = 0,

v(t, x, ξ)|t=s = v0(x, ξ).

Note that L = −ν + K . Then again by Duhamel’s formula, the solution operator U (t, s)
can be rewritten as

U (t, s) = U1(t, s) + U2(t, s), 0 ≤ s ≤ t,

where

U2(t, s) =
∫ t

s
U (t, τ )KU1(τ, s)dτ.

Thus we further define

(T jφ)(t, x, ξ) =
∫ t

0
U j (t, s)φ(s, x, ξ)ds, j = 1, 2.

Then

Tφ = T1φ + T2φ.

The following estimates follow.
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Lemma 3.4. Suppose (3.9). If δ > 0 is small enough, then one has

(1 + t)2m[[T1φ(t)]]2
0,k +

∫ t

0
(1 + s)2m[[T1φ(s)]]2

0,k+1/2ds

≤ C
∫ t

0
(1 + s)2m[[φ(s)]]2

0,k−1/2ds, (3.18)

for any m ≥ 0 and any k, and

(1 + t)2m‖T1φ(t)‖2
Z1

+
∫ t

0
(1 + s)2m‖T1φ(s)‖2

Z1
ds

≤ C
∫ t

0
(1 + s)2m

(
[[φ(s)]]2

0,k−1/2 + ‖φ(s)‖2
Z1

)
ds, (3.19)

for any m ≥ 0 and any k ≥ 1/2.

Proof. For simplicity, write w = T1φ, which by the definitions of T1 and U1(t, s),
satisfies the following Cauchy problem with zero initial data:

∂tw + νw + ξ · ∇xw + F · ∇ξw − 1

2
ξ · Fw = φ, (3.20)

w(t, x, ξ)|t=0 = 0. (3.21)

By (2.45), one has the energy inequality

d

dt
J0,k[w(t)] + cJ0,k+1/2[w(t)] ≤ C[[φ(t)]]2

0,k−1/2, (3.22)

for any k, where to the end, the nonlinear functional J0,k[·] is defined by

J0,k[w(t)] ∼ [[w(t)]]0,k . (3.23)

After integration, (3.22) implies

J0,k[w(t)] +
∫ t

0
J0,k+1/2[w(s)]ds ≤ C

∫ t

0
[[φ(s)]]2

0,k−1/2ds. (3.24)

On the other hand, multiplying (3.22) by (1 + t)2m with m ≥ 0 and further integrating
it gives

(1 + t)2m J0,k[w(t)] + c
∫ t

0
(1 + s)2m J0,k+1/2[w(s)]ds

≤ 2m
∫ t

0
(1 + s)m−1 J0,k[w(s)]ds + C

∫ t

0
(1 + s)2m[[φ(s)]]2

0,k−1/2ds

≤ c

2

∫ t

0
(1 + s)m J0,k+1/2[w(s)]ds + C

∫ t

0
J0,k+1/2[w(s)]ds

+C
∫ t

0
(1 + s)2m[[φ(s)]]2

0,k−1/2ds. (3.25)

Then (3.25) together with (3.23) and (3.24) yields (3.18).
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Next consider the estimate (3.19) in the norm ‖ · ‖Z1 . It can be based on the explicit
form for the solution w from (3.20)–(3.21):

w(t, x, ξ) =
∫ t

0
e−ν(ξ)(t−s) {F · ∇ξw − ξ/2 · Fw + φ

}
(s, x − (t − s)ξ, ξ)ds,

which implies

‖w(t, ξ)‖L1(Rn
x ) ≤ C

∫ t

0
e−ν0(t−s)

(
‖∇ξ∇xw(s, ξ)‖L2(Rn

x )

+ν‖∇xw(s, ξ)‖L2(Rn
x ) + ‖φ(s, ξ)‖L1(Rn

x )

)
ds.

Further taking the norm ‖ · ‖L2(Rn
ξ ) gives

‖w(t)‖Z1 ≤ C
∫ t

0
e−ν0(t−s)G(s)ds, (3.26)

where for simplicity, we used the notion

G(s) = ‖∇ξ∇xw(s)‖ + ‖ν∇xw(s)‖ + ‖φ(s)‖Z1 . (3.27)

From (3.26), we claim that for any m ≥ 0,

(1 + t)2m‖w(t)‖2
Z1

+
∫ t

0
(1 + s)2m‖w(s)‖2

Z1
ds ≤ C

∫ t

0
(1 + s)2m G(s)2ds. (3.28)

In fact, on one hand, by the Hölder inequality, it is easy to see from (3.26) that

‖w(t)‖2
Z1

≤ C
∫ t

0
e−2ν0(t−s)(1 + s)−2mds

∫ t

0
(1 + s)2m G(s)2ds

≤ C(1 + t)−2m
∫ t

0
(1 + s)2m G(s)2ds. (3.29)

On the other hand, again by (3.26), one has

∫ t

0
(1 + s)2m‖w(s)‖2

Z1
ds ≤

∫ t

0
(1 + s)2m

[∫ s

0
e−ν0(s−τ)G(τ )dτ

]2

ds. (3.30)

By the Schwarz inequality, it holds that

[∫ s

0
e−ν0(s−τ)G(τ )dτ

]2

≤
∫ s

0
e−ν0(s−τ)(1 + τ)−2mdτ

∫ s

0
e−ν0(s−τ)(1 + τ)2m G(τ )2dτ

≤ C(1 + s)−2m
∫ s

0
e−ν0(s−τ)(1 + τ)2m G(τ )2dτ,
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which together with (3.30) gives

∫ t

0
(1 + s)2m‖w(s)‖2

Z1
ds ≤ C

∫ t

0

∫ s

0
e−ν0(s−τ)(1 + τ)2m G(τ )2dτds

= C
∫ t

0
dτ(1 + τ)2m G(τ )2

∫ t

τ

e−ν0(s−τ)ds

≤ C
∫ t

0
(1 + τ)2m G(τ )2dτ. (3.31)

Thus (3.28) follows from (3.29) and (3.31). Furthermore, notice from (3.27) and k ≥ 1/2
that

G(s)2 ≤ C
(
‖∇ξ∇xw(s)‖2 + ‖ν∇xw(s)‖2 + ‖φ(s)‖2

Z1

)

≤ C
(
[[w(t)]]2

0,k+1/2 + ‖φ(s)‖2
Z1

)
,

which by (3.18), implies

∫ t

0
(1 + s)2m G(s)2ds ≤ C

∫ t

0
(1 + s)2m

(
[[w(t)]]2

0,k+1/2 + ‖φ(s)‖2
Z1

)
ds

≤ C
∫ t

0
(1 + s)2m

(
[[φ(t)]]2

0,k−1/2 + ‖φ(s)‖2
Z1

)
ds. (3.32)

With the notion w = T1φ, combining (3.28) and (3.32) leads to (3.19). This completes
the proof of the lemma. ��

Lemma 3.5. Suppose (3.9). If δ > 0 is small enough, then one has

(1 + t)2m[[T2φ(t)]]2
0,k +

∫ t

0
[[T2φ(s)]]2

0,k+1/2ds

≤ C
∫ t

0
(1 + s)2m

(
[[φ(s)]]2

0,k−1/2 + ‖φ(s)‖2
Z1

)
ds, (3.33)

for any 1/2 < m ≤ σ1,0 and any k ≥ 1.

Proof. First fix some m and k with 1/2 < m ≤ σ1,0 and k ≥ 1. Set z = T2φ for
simplicity. By the definitions of Ti and Ui (t, s), i = 1, 2, note that

z(t) = T2φ(t) =
∫ t

0
U2(t, s)φ(s)ds =

∫ t

0
U (t, s)K T1φ(s)ds.
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Then by Theorem 2.2 and Lemma 3.4, it holds that

[[z(t)]]2
0,k ≤ C

∣∣∣∣
∫ t

0
(1 + t − s)−σ1,0

([[K T1φ(s)]]0,k + ‖K T1φ(s)‖Z1

)
ds

∣∣∣∣
2

≤ C

∣∣∣∣
∫ t

0
(1 + t − s)−σ1,0([[T1φ(s)]]0,k−1 + ‖T1φ(s)‖Z1)ds

∣∣∣∣
2

≤ C
∫ t

0
(1 + t − s)−2σ1,0(1 + s)−2mds

×
∫ t

0
(1 + s)2m

(
[[T1φ(s)]]2

0,k+1/2 + ‖T1φ(s)‖Z1

)2
ds

≤ C(1 + t)−2m
∫ t

0
(1 + s)2m

(
[[φ(s)]]2

0,k−1/2 + ‖φ(s)‖2
Z1

)
ds. (3.34)

On the other hand, z = z(t, x, ξ) is the solution to the following initial value problem
with zero initial data:

∂t z + νz + ξ · ∇x z + F · ∇ξ z − 1

2
ξ · Fz = K z + K T1φ,

z(t, x, ξ)|t=0 = 0.

This means that

z = T1(K z + K T1φ).

Use (3.18) with m = 0 to deduce∫ t

0
[[z(s)]]2

0,k+1/2ds ≤ C
∫ t

0
[[K z + K T1φ]]2

0,k−1/2ds

≤ C
∫ t

0
[[z(s)]]2

0,k−3/2ds + C
∫ t

0
[[T1φ(s)]]2

0,k−3/2ds,

where further, it holds from (3.34) that∫ t

0
[[z(s)]]2

0,k−3/2ds ≤
∫ t

0
[[z(s)]]2

0,kds

≤ C
∫ t

0
(1 + s)−2mds sup

0≤s≤t

∫ s

0
(1 + τ)2m

(
[[φ(τ)]]2

0,k−1/2 + ‖φ(τ)‖2
Z1

)
dτ

≤ C
∫ t

0
(1 + τ)2m

(
[[φ(τ)]]2

0,k−1/2 + ‖φ(τ)‖2
Z1

)
dτ,

and again from (3.18) with m = 0 that
∫ t

0
[[T1φ(s)]]2

0,k−3/2ds ≤
∫ t

0
[[T1φ(s)]]2

0,k+1/2ds ≤ C
∫ t

0
[[φ(s)]]2

0,k−1/2ds.

Then, ∫ t

0
[[z(s)]]2

0,k+1/2ds ≤ C
∫ t

0
(1 + s)2m

(
[[φ(s)]]2

0,k−1/2 + ‖φ(s)‖2
Z1

)
ds. (3.35)

Thus (3.33) follows from (3.34) and (3.35). This completes the proof of the lemma. ��
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Corollary 3.1. Suppose (3.9). If δ > 0 is small enough, then one has

(1 + t)2m[[Tφ(t)]]2
0,k +

∫ t

0
[[Tφ(s)]]2

0,k+1/2ds

≤ C
∫ t

0
(1 + s)2m

(
[[φ(s)]]2

0,k−1/2 + ‖φ(s)‖2
Z1

)
ds,

for any 1/2 < m ≤ σ1,0 and any k ≥ 1.

Now we are in a position to prove the global existence of the solution to the Cauchy
problem for the nonlinear Boltzmann equation.

Proof of Theorem 3.1. First we prove that there is a proper constant C1 > 0 such that
� is a contraction mapping from S(C1) to itself, and thus it has a fixed point in S(C1)

which is a unique solution to the Cauchy problem (3.7)–(3.8). For this purpose, we start
with a claim that there is a constant C such that for any u, v ∈ S(C1),

|||�(u)|||k,κ0 ≤ Cδ + C |||u|||2k,κ0
, (3.36)

|||�(u) − �(v)|||k,κ0 ≤ C |||u + v|||k,κ0 |||u − v|||k,κ0 . (3.37)

In fact, recall the definition (3.17) of �, and then it is straightforward to compute

|||U (t, 0)u0|||2k,κ0
≤ sup

t≥0
(1 + t)2κ0 [[U (t, 0)u0]]2

0,k +
∫ ∞

0
[[U (s, 0)u0]]2

0,k+1/2ds

≤ C sup
t≥0

(1 + t)2κ0−2σ1,0 [[u0]]2
0,k + C

∫ ∞

0
(1 + s)−2σ1,0 ds[[u0]]2

0,k+1/2

≤ C[[u0]]2
0,k+1/2 ≤ Cδ2, (3.38)

where we used (3.10), and the inequalities κ0 ≤ σ1,0 and 2σ1,0 > 1 since n ≥ 3.
Furthermore, noticing from (3.15) and n ≥ 3 that 1/2 < κ0 ≤ σ1,0, one can apply
Corollary 3.1 with m = κ0 to obtain

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ t

0
U (t, s)�(u(s), u(s))ds

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

k

≤ C
∫ ∞

0
(1 + s)2κ0

(
[[�(u(s), u(s))]]2

0,k−1/2 + ‖�(u(s), u(s))‖2
Z1

)
ds

≤ C
∫ ∞

0
(1 + s)2κ0 [[u(s)]]2

0,k+1/2[[u(s)]]2
0,kds

≤ C
∫ ∞

0
[[u(s)]]2

0,k+1/2ds sup
s≥0

(1 + s)2κ0 [[u(s)]]2
0,k

≤ C |||u|||2k,κ0
, (3.39)

where Lemma 3.3 was used. Since (3.11) and (3.12) together with (1.5) imply

[[S̃(s)]]0,k−1/2 + ‖S̃(s)‖Z1 ≤ Cδ(1 + s)−κ ,
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similarly applying Corollary 3.1 with m = κ0 yields

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ t

0
U (t, s)S̃(s)ds

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

k
≤ C

∫ ∞

0
(1 + s)2κ0

(
[[S̃(s)]]2

0,k−1/2 + ‖S̃(s)‖2
Z1

)
ds

≤ Cδ2
∫ ∞

0
(1 + s)2κ0−2κds

≤ Cδ2, (3.40)

where by (3.15), κ0 < κ − 1/2 was used. Thus by (3.17), combining (3.38), (3.39) and
(3.40) proves (3.36). For (3.37), notice that since � is bilinear,

�(u, u) − �(v, v) = �(u + v, u − v).

Then it holds that

�(u) − �(v) =
∫ t

0
U (t, s)�(u + v, u − v)(s)ds,

which similar to the proof of (3.39), implies (3.37).

Now suppose u, v ∈ S(C1). Then based on (3.36) and (3.37), it is easy to see that

�(u),�(v) ∈ C0
b

(
R

+
t ; H 
(Rn

x )
)
,

with estimates

|||�(u)|||k,κ0 ≤ Cδ + CC2
1 ,

|||�(u) − �(v)|||k,κ0 ≤ 2CC1|||u − v|||k,κ0 .

If δ ≤ δ1 with δ1 > 0 small enough, then there is a constant C1 > 0 depending only on
δ1 and C such that

Cδ + CC2
1 ≤ C1, 2CC1 < 1.

Thus �(u),�(v) ∈ S(C1) and

|||�(u) − �(v)|||k,κ0 ≤ µ|||u − v|||k,κ0 , µ = 2CC1 < 1.

Therefore � is a contraction mapping over S(C1). Thus there is a unique fixed point u
in S(C1) as a mild solution to the Cauchy problem (3.7)–(3.8). Then (3.13) with i = 0
and (3.14) are proved. In addition, it is obvious that C1 can be also taken as C1 = C ′

1δ

for another constant C ′
1 independent of δ.

Finally the time-differentiability (3.13) with i = 1 of the solution u and the estimate
(3.16) directly follow from the equation. This completes the proof of the theorem.
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3.3. Existence of time periodic solution. In this subsection, we are concerned with the
existence of the time periodic solution to the nonlinear Boltzmann equation

∂t u + ξ · ∇x u + F · ∇ξ u − 1

2
ξ · Fu = Lu + �(u) + S̃, (3.41)

where u = u(t, x, ξ), (t, x, ξ) ∈ R × R
n × R

n , and S̃ is given by (1.5).
Roughly speaking, our goal is to show that if the time dependent external force

F and source S are time periodic with period T , then Eq. (3.41) should have a time
periodic solution with the same period under some additional assumptions. When the
space dimension n ≥ 5, this can be achieved by making use of the decay in time property
of the linearized equation which is established in Sect. 2.

Precisely, the main result is stated as follows.

Theorem 3.2. Suppose that

(C1) the integers n ≥ 5, 
 ≥ [n/2] + 2;
(C2) the functions F = F(t, x) and S = S(t, x, ξ) are time periodic with period T ,

satisfying

F ∈ Ci
b

(
Rt ; H 
−i (Rn

x )
)

, i = 0, 1, S ∈ C0
b

(
Rt ; H 
(Rn

x × R
n
ξ )
)
;

(C3) there are constants δ > 0 and k ≥ 1 such that F and S are bounded in the sense
that

∑
0≤|β|≤


∥∥(1 + |x |)∂β
x F(t, x)

∥∥
L∞

t,x

+
∑

0≤|β|≤
−1

∥∥(1 + |x |)∂t∂
β
x F(t, x)

∥∥
L∞

t,x
+ ‖|x |F(t, x)‖L∞

t (L2
x ) ≤ δ, (3.42)

sup
t∈R

{
‖F(t)‖H


x ∩L1
x

+ [[M−1/2S(t)]]0,k−1/2 +
∥∥∥M−1/2S(t)

∥∥∥
Z1

}
≤ δ. (3.43)

Then there are constants δ2 > 0 and C2 > 0 such that for any δ ≤ δ2, Eq. (3.41)
corresponding to (1.1) has a unique time periodic solution

u∗ ∈ Ci
b

(
Rt ; H 
−i (Rn

x × R
n
ξ )
)
, i = 0, 1,

with the same period T , which satisfies

sup
0≤t≤T

[[u∗(t)]]2
0,k +

∫ T

0
[[u∗(t)]]2

0,k+1dt ≤ C2
2 , (3.44)

where precisely, C2 can be chosen as C2 = C ′
2δ with C ′

2 independent of δ. Fur-
thermore, it holds that

sup
0≤t≤T

[[u∗(t)]]0,k+1/2 + sup
0≤t≤T

∑
0≤|α|≤
−1

∥∥∥νk−1∂t∂
α
x,ξ u∗(t)

∥∥∥ ≤ Cδ, (3.45)

for some constant C.
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In order to prove Theorem 3.2, we shall use the arguments developed in [26] to deal
with the existence of the periodic solution. Define

�(u) =
∫ t

−∞
U (t, s){�(u(s), u(s)) + S̃(s)}ds.

Suppose that � has a unique fixed point ū(t). Then if S̃(t) is time periodic with period
T , so is ū(t) as in [26]. Furthermore, ū(t) is a desired time periodic solution provided
that it is differentiable with respect to time t . Thus it suffices to find the fixed point of �
in a proper complete metric space. We choose it as S(C2) defined by

S(C2) =
{

u = u(t, x, ξ)

∣∣∣∣∣
u is time periodic with period T ,

u ∈ C0
b

(
Rt ; H 
(Rn

x × R
n
ξ )
)

, |||u|||k,∗ ≤ C2

}
,

where C2 > 0 is some constant to be determined later, and

|||u|||2k,∗ = sup
0≤t≤T

[[u(t)]]2
0,k +

∫ T

0
[[u(s)]]2

0,k+1ds.

As before, we first consider some general estimates on a linear operator T∗ given by

T∗φ(t) =
∫ t

−∞
U (t, s)φ(s)ds,

for any φ = φ(t, x, ξ).

Lemma 3.6. Suppose that φ is time periodic with period T and

φ0 =
∫ T

0

(
[[φ(t)]]2

0,k + ‖φ(s)‖2
Z1

)
dt < ∞.

Under the assumptions of Theorem 3.2, if δ > 0 is small enough, then T∗φ is well-
defined, time periodic with the same period T , and the following estimate holds

sup
0≤t≤T

[[T∗φ(t)]]2
0,k+1/2 +

∫ T

0
[[T∗φ(t)]]2

0,k+1dt ≤ Cφ0. (3.46)

Proof. For simplicity, set w = T∗φ. By Theorem 2.2, it holds that

[[w(t)]]0,k ≤ C
∫ t

−∞
(1 + t − s)−σ1,0 G(s)ds = C

∞∑
j=0

I j (t), (3.47)

where

G(s) = [[φ(s)]]0,k + ‖φ(s)‖Z1 , (3.48)

I j (t) =
∫ t− jT

t−( j+1)T
(1 + t − s)−σ1,0 G(s)ds. (3.49)
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Since φ is time periodic with period T and so is G(s), one has from (3.49) that

I 2
j (t) ≤

∫ t− jT

t−( j+1)T
(1 + t − s)−2σ1,0 ds

∫ t− jT

t−( j+1)T
G2(s)ds

=
∫ T

0
(1 + ( j + 1)T − r)−2σ1,0 dr

∫ T

0
G2(r)dr

≤ C(1 + jT )−2σ1,0‖G‖2
L2(0,T )

,

which implies

∞∑
j=0

I j (t) ≤ C
∞∑
j=0

(1 + jT )−σ1,0‖G‖L2(0,T ) ≤ C‖G‖L2(0,T ), (3.50)

where σ1,0 = n/4 > 1 was used because n ≥ 5. Then it follows from (3.47), (3.48) and
(3.50) that

[[w(t)]]2
0,k ≤ C‖G‖2

L2(0,T )
≤ C

∫ T

0

(
[[φ(t)]]2

0,k + ‖φ(s)‖2
Z1

)
dt ≤ Cφ0. (3.51)

Next, the periodicity of w directly follows from

w(t + T ) =
∫ t+T

−∞
U (t + T, s)φ(s)ds

=
∫ t

−∞
U (t + T, s + T )φ(s + T )ds

=
∫ t

−∞
U (t, s)φ(s)ds,

where we have used that for any −∞ < s ≤ t < ∞,

φ(s + T ) = φ(s), U (t + T, s + T ) = U (t, s).

Finally consider the estimate (3.46). Notice that w satisfies the initial value problem

∂t + νw + ξ · ∇xw + F · ∇ξw − 1

2
ξ · Fw = Kw + φ,

w(t, x, ξ)|t=0 = 0.

Recalling Eq. (2.41) and the corresponding estimate (2.45), one has

[[w(t)]]2
0,k+1/2 + c

∫ T

0
[[w(t)]]2

0,k+1dt ≤ C
∫ T

0
[[Kw(t) + φ(t)]]2

0,kdt

≤ C
∫ T

0
[[Kw(t)]]2

0,kdt + Cφ0,

where further by Lemma 3.1 and (3.51), it holds that
∫ T

0
[[Kw(t)]]2

0,kdt ≤
∫ T

0
[[w(t)]]2

0,k−1dt ≤ CT sup
0≤t≤T

[[w(t)]]2
0,k−1 ≤ Cφ0.

Thus (3.46) holds. This completes the proof of the lemma. ��
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Proof of Theorem 3.2. Similar to the proof of Theorem 3.1, we first prove that there is a
constant C such that for any u, v ∈ S(C2) with some constant C2 to be determined later,

|||�(u)|||k,∗ ≤ Cδ + C |||u|||2k,∗, (3.52)

|||�(u) − �(v)|||k,∗ ≤ C |||u + v|||k,∗|||u − v|||k,∗. (3.53)

Notice that (3.43) implies

[[S̃(t)]]0,k + ‖S̃(t)‖Z1 ≤ δ,

for any t ∈ R. Thus based on Lemma 3.6, (3.52) and (3.53) are proved similarly as
before and the details are omitted for brevity. ��

Hence the contraction mapping theorem can be applied over the complete metric space
S(C2) for a proper constant C2 > 0, provided that δ ≤ δ2 with δ2 > 0 small enough.
Then there is a unique fixed point u∗ in S(C2) for the nonlinear mapping �. Notice that
it is obvious that C2 can be also chosen as C ′

2δ for some constant C ′
2 independent of δ.

Finally by u∗ = �(u∗), it follows from (3.46) and (3.52) that

sup
0≤t≤T

[[u∗(t)]]0,k+1/2 ≤ Cδ + C(C ′
2δ)

2 ≤ Cδ,

since δ ≤ δ2 with δ2 small enough. Further by the equation, the estimate (3.44) holds.
Thus this complete the proof of the theorem.

3.4. Asymptotic stability of time periodic solution. In order to study the stability of the
time periodic solution u∗, we shall consider the Cauchy problem

∂t u + ξ · ∇x u + F · ∇ξ u − 1

2
ξ · Fu = Lu + �(u) + S̃, (3.54)

u(t, x, ξ)|t=t0 = u0(x, ξ), (3.55)

for some t0 ∈ R, where u = u(t, x, ξ), (t, x, ξ) ∈ (t0,∞) × R
n × R

n . It it noticed that
the initial time t0 can be chosen arbitrarily. By putting

v = u − u∗,

the initial value problem (3.54) and (3.55) can be rewritten as

∂tv + ξ · ∇xv + F · ∇ξ v − 1

2
ξ · Fv = Lv + �(v, v) + 2�(u∗, v), (3.56)

v(t, x, ξ)|t=t0 = v0(x, ξ), (3.57)

where

v0(x, ξ) ≡ u0(x, ξ) − u∗(t0, x, ξ).

Then we have the following result.
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Theorem 3.3. Let all assumptions in Theorem 3.2 hold and u∗ be the corresponding
time periodic solution obtained. Moreover, suppose that u0 ∈ H 
(Rn

x × R
n
ξ ) and there

are constants δ > 0 and k ≥ 2 such that

[[v0]]0,k + ‖v0‖Z1 ≤ δ.

Then there are constants δ3 > 0 and C3 > 0 such that for any δ ≤ δ3, the Cauchy
problem (3.56)–(3.57) has a unique global solution

v ∈ Ci
b

(
[t0,∞); H 
−i (Rn

x × R
n
ξ )
)

, i = 0, 1, (3.58)

with bounds

sup
t≥t0

(1 + t − t0)
2κ1[[v(t)]]2

0,k +
∫ ∞

t0
(1 + s)2κ1[[v(s)]]2

0,k+1/2ds ≤ C2
3 , (3.59)

where κ1 is some constant with

σ1,0/2 ≤ κ1 < σ1,0 − 1/2, (3.60)

and C3 can be also chosen as C2 = C ′
3δ with C ′

3 independent of δ. Furthermore it holds
that

[[v(t)]]0,k ≤ Cδ(1 + t − t0)
−σ1,0 , (3.61)

for some constant C.

To prove the above theorem, as before we first consider the decay in time estimates on
the linear solution operator Ũ (t, t0), −∞ < t0 ≤ t < ∞ corresponding to the nonlinear
equation (3.56). Here Ũ (t, t0) is defined in the sense that for any w0 = w0(x, ξ), then
w = Ũ (t, t0)w0 denotes the solution to the following initial value problem:

∂tw + ξ · ∇xw + F · ∇ξw − 1

2
ξ · Fw = Lw + 2�(u∗, w), (3.62)

w(t, x, ξ)|t=t0 = w0(x, ξ). (3.63)

Lemma 3.7. Let all assumptions in Theorem 3.2 hold and u∗ be the corresponding time
periodic solution obtained. Moreover, let k ≥ 2. Then there exist constants δ4 > 0 and
C4 such that for any δ ≤ δ4, the linear solution operator Ũ (t, t0), −∞ < t0 ≤ t < ∞
satisfies the following decay estimates:

[[Ũ (t, t0)w0]]0,k ≤ C4(1 + t − t0)
−σ1,0

([[w0]]0,k + ‖w0‖Z1

)
, (3.64)

for any w0 = w0(x, ξ), where the constant C4 depends only on n, 
, k and δ4.

Proof. Without loss of generality, it suffices to prove this lemma for t0 = 0. By (2.45)
and (3.45), for Eq. (3.62) one has

d

dt
J0,k[w(t)] + cJ0,k+1/2[w(t)] ≤ C[[Kw(t) + 2�(u∗(t), w(t))]]0,k−1/2

≤ C[[w(t)]]2
0,k−3/2 + C[[u∗(t)]]2

0,k+1/2[[w(t)]]2
0,k+1/2

≤ C[[w(t)]]2
0,k−1 + Cδ2 J0,k+1/2[w(t)],
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where the nonlinear functional J0,k[·] is given by (3.23). Thus if δ > 0 is small enough,
then

d

dt
J0,k[w(t)] + cJ0,k+1/2[w(t)] ≤ C[[w(t)]]2

0,k−1. (3.65)

On the other hand, by the Duhamel’s principle, w can be written as the mild form

w(t) = U (t, 0)w0 +
∫ t

0
U (t, s){2�(u∗(s), w(s))}ds,

which from Theorem 2.2, (3.45) and k ≥ 2, implies

[[w(t)]]0,k−1 ≤ C
([[w0]]0,k−1 + ‖w0‖Z1

)
(1 + t)−σ1,0

+Cδ

∫ t

0
(1 + t − s)−σ1,0 [[w(s)]]kds. (3.66)

Since σ1,0 > 1 from n ≥ 5, then similar to the proof of Lemma 2.11, combining (3.65)
and (3.66) yields (3.64) with t0 = 0. This completes the proof of the lemma. ��

Furthermore, define the linear mapping T̃ by

T̃φ(t) =
∫ t

0
Ũ (t, s)φ(s)ds, (3.67)

for any φ = φ(t, x, ξ). Then similar to Corollary 3.1, we have the following estimates.

Lemma 3.8. Under the assumptions of Lemma 3.7, if further δ > 0 is small enough,
then one has

(1 + t)2m[[T̃φ(t)]]2
0,k +

∫ t

0
(1 + s)2m[[T̃φ(s)]]2

0,k+1/2ds

≤
∫ t

0
(1 + s)2m

(
[[φ(s)]]2

0,k−1/2 + ‖φ(s)‖2
Z1

)
ds, (3.68)

for any 0 ≤ m < σ1,0 − 1/2.

Proof. For simplicity, set z(t) = T̃φ(t). Fix some 0 ≤ m < σ1,0 − 1/2. Then similar to
the proof of (3.65) in Lemma 3.7, one has

d

dt
J0,k[z(t)] + cJ0,k+1/2[z(t)] ≤ C[[z(t)]]2

0,k−1/2 + C[[φ(t)]]2
0,k−1/2. (3.69)

Further applying Lemma 3.7 to (3.67) gives

[[z(t)]]0,k−1/2 ≤ C
∫ t

0
(1 + t − s)−σ1,0

([[φ(s)]]0,k−1/2 + ‖φ(s)‖Z1

)
ds. (3.70)

Since σ1,0>1 and 0 ≤ m < σ1,0 − 1/2, then similar to the proof of (3.28), it follows
from (3.70) that

(1 + t)2m[[z(t)]]2
0,k−1/2 +

∫ t

0
(1 + t)2m[[z(t)]]2

0,k−1/2

≤ C
∫ t

0
(1 + s)2m

(
[[φ(s)]]2

0,k−1/2 + ‖φ(s)‖2
Z1

)
ds. (3.71)

Finally similar to the proof of (3.25), combining (3.69) and (3.71) gives (3.68). This
completes the proof of the lemma. ��
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Now we are in a position to prove the asymptotical stability of the time periodic
solution.

Proof of Theorem 3.3. The proof is almost the same as that for Theorem 3.1. In fact,
Without loss of generality, it suffices to prove Theorem 3.3 for t0 = 0. The corresponding
integral equation to solve is v(t) = ϒ(v)(t) for any t ≥ 0, where the nonlinear mapping
ϒ is given by

ϒ(v)(t) = Ũ (t, 0)v0 +
∫ t

0
Ũ (t, s)�(v(s), v(s))ds.

By the contraction mapping theorem, the solution v will be obtained as a fixed point of
ϒ on the complete metric space

S(C3) =
{
v = v(t, x, ξ)|v ∈ C0

b

(
R

+
t ; H 
(Rn

x × R
n
ξ )
)

, |||v|||k,κ1 ≤ C3

}
,

where κ1 is given by (3.60) and the norm ||| · |||k,κ1 is defined by

|||v|||k,κ1 = sup
t≥0

(1 + t)2κ1[[v(t)]]2
0,k +

∫ ∞

0
(1 + s)2κ1[[v(s)]]2

0,k+1/2ds.

In fact, based on Lemma 3.7 and Lemma 3.8 with m = κ1, as before it is easy to show
that there is a constant C such that for any u, v ∈ S(C3) with some constant C3 to be
determined later,

|||ϒ(u)|||k,κ1 ≤ Cδ + C |||u|||2k,κ1
,

|||ϒ(u) − ϒ(v)|||k,κ1 ≤ C |||u + v|||k,κ1 |||u − v|||k,κ1,

where κ1 < σ1,0 − 1/2 was used. Thus if δ ≤ δ3 with δ3 > 0 small enough and C3 is
chosen properly, the unique fixed point v in S(C3) as a solution is found. Hence (3.58)
with i = 0 and (3.59) are proved. In addition, it is easy to see that the constant C3 can be
chosen as C ′

3δ for another constant C ′
3, and (3.58), and i = 1 follows from the equation.

Finally we consider the improved decay rate (3.61). From the mild form v = ϒ(v)

of the solution v, it follows that

[[v(t)]]0,k−1/2 ≤ Cδ(1 + t)−σ1,0 + C
∫ t

0
(1 + t − s)−σ1,0 [[v(s)]]0,k+1/2[[v(s)]]0,k−1/2ds

≤ Cδ(1 + t)−σ1,0 + C

{∫ t

0
(1 + t − s)−2σ1,0(1 + s)−4κ1ds

}1/2

×
{∫ t

0
(1 + s)2κ1[[v(s)]]2

0,k+1/2ds

}1/2

sup
s≥0

(1 + s)κ1 [[v(s)]]0,k

≤ Cδ(1 + t)−σ1,0 ,

since 4κ1 ≥ 2σ1,0 > 1. Furthermore, in terms of Eq. (3.56) satisfied by v, then similar
to the proof of (3.69), one has

d

dt
J0,k[v(t)] + c[[v(t)]]2

0,k+1/2 ≤ C[[v(t)]]2
0,k−1/2 + C[[�(v(t), v(t))]]2

0,k−1/2

≤ Cδ2(1 + t)−2σ1,0 + C[[v(t)]]2
k+1/2[[v(t)]]2

k−1/2

≤ Cδ2(1 + t)−2σ1,0 + Cδ2[[v(t)]]2
k+1/2,
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which implies

d

dt
J0,k[v(t)] + cJ0,k+1/2[v(t)] ≤ Cδ2(1 + t)−2σ1,0 ,

since δ ≤ δ3 with δ3 > 0 small enough. Thus by the Gronwall’s inequality, it holds that

[[v(t)]]2
0,k ≤ C J0,k[v(t)] ≤ Cδ2(1 + t)−2σ1,0 .

Hence (3.61) is proved. This completes the proof of the theorem.
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