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COMPRESSIBLE FLOW WITH VACUUM AND PHYSICAL 
SINGULARITY* 

TAI-PING LlUt  AND TONG YANG* 

Abstract. In this paper, we will study the compressible flow with vacuum when the physical 
sigularity is prescribed at the vacuum boundary. The physical singularity at the boundary corre- 
sponds to the non-zero pressure effect on the evolution of the boundary and is the canonical behavior 
of the solution after finite waiting time. The local existence of solutions to both the systems of Euler 
equations with damping and the Euler-Poisson equations for gaseous stars are obtained by a coordi- 
nate transformation capturing this singular behavior at the vacuum. The local existence theorems 
with the physical boundary behaviour are new. The global existence and large time behavior are left 
to the future. 

1. Introduction. The study of compressible flow with physical vacuum bound- 
ary behaviour has been a basic key open problem of the subject. The main difliculty 
comes from coincidence of the characteristics at the vacuum boundary, which results 
in the singular behaviour of the gas flow near the vacuum. There are local existence 
theories when the singularity near vacuum is assumed to be mild. On the other hand, 
such a mild singularity can not last and a stronger, physical singularity will devel- 
opein finite time. This is known to occur naturally, for instance, in the evolution of 
the gaseous stars. The degeneracy of the Euler equations with the physical singularity 
prevents the application of the classical local existence theory for symmetric hyper- 
bolic systems. In this paper, we resolve this problem and illustrate our ideas for two 
models: the Euler equations for isentropic compressible flow with damping and the 
Euler-Poisson equations for gaseous stars. Local existence of solutions with physical 
singularity will be proved by using a coordinate transformation, which precisely cap- 
tures the singularity at the vacuum boundary. Similar analysis would apply to other 
physical systems. The global existence and large time behavior of solutions with the 
physical boundary is not in the scope of this paper and will be persued by authors in 
the future. 

Since the Euler equations for isentropic flow with vacuum fails to be strictly 
hyperbolic at the vacuum states, the classical analysis of strictly hyperbolic equations 
is not applicable to the present situation. In fact, most of the main problems on 
this system are still open. For instance, it would be interesting to study the singular 
evolution of the interface, that is, to give a detailed description of how the solution near 
the interface changes and how it becomes from being initally smooth to the canonical 
behavior after finite time. Another would be the study of the nonlinear stability of 
the travelling wave solutions and the class of special solutions corresponding to the 
Barenblatt's solutions for the porous media equation obtained in [11]. It will be also 
interesting and important to give the time asymptotic equivalence between the Euler 
equations with damping and the porous media equation when vacuum occurs. Such 
studies would help us to understand the singularity, evolution of vacuum boundary 
and other rich phenomena caused by the vacuum. It would also help the design of 
the numerical schemes for the computation of the evolution of the vacuum boundary. 
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Consider the one dimensional compressible Euler equations for isentropic flow 
with damping in Eulerian coordinates 

(1.1) pt + (pu)x = 0, 

put + puux +p(p)x = -kpu, 

where p, u and p(p) are density, velocity and pressure respectively. And the constant 
k > 0 is the frictional coefflcient. When the initial density function has compact 
support, the vacuum boundary T is defined as 

r = ci{(x, t) I p(x, t) > 0} n d{(x, t) I p(x, t) = o}. 

The main difficulty caused by vacuum is that the system becomes degenerate, that is, 
characteristics coincide. They become zero in the Lagrangian coordinates. Therefore, 
even though the system is symmetrizable, in general the coefficients do not satisfy the 
usual local existence theories. 

For Euler equations without damping and vacuum, the author in [22] gave a 
sufficient condition for the blowup of C1 solutions. The nonexistence of C1 solutions 
in [22] is related to the shock formation. However, the non-existence of global smooth 
solutions with vacuum is not so much related to the shock formation, but more to the 
developement of singularity at the vacuum. We therefore, in the following discussion, 
concentrate on the solutions containing no shocks. 

When there is no frictional damping, it was shown that the shock waves vanish 
at the vacuum and the singular, non-shock behavior at the vacuum is similar to that 
of the centered rarefaction waves, [14]. Under some special condition on the initial 
velocity, the authors in [7] give the existence of global smooth solutions of Euler 
equations for an isentropic perfect gas in the d-dimensional Euclidean space. 

When there is linear frictional damping and the solution is away from vacuum, the 
dissipative effect of damping prevents shock from forming. Since no other singularity 
emerges in the flow, it was shown that the system is time-asymptotically equivalent 
to the porous media equation, [8]. When the system contains both linear damping 
and vacuum, in [11], the author constructs a class of spherical symmetric solutions 
which converge to the self-similar solutions of the porous media equation, 

kpt =p(p)xx, 

p(p)x = -kpu. 

So far this kind of equivalence with vacuum was only proved for this class of special 
solutions. It is also conjectured in [11] that the general behavior of the solution near 
F satisfying 

(1.2) O<l^l<00' 

in the Eulerian coordinates after finite time, where c = J j^p(p) is the sound speed. 

A vacuum boundary is called physical if (1.2) is satisfied in a small neighborhood 
of the boundary. 

Notice that this singular behavior implies that the pressure has a non- 
zero bounded effect on the evolution of the vacuum boundary. This can be seen from 
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the equation for the evolution of the vacuum boundary which is given by the second 
equation of (1.1) as 

(1.3) ut + uux H -cl = -ku, 
7-1 

if the solution connects to vacuum continuously. When c^ = 0 at the vacuum bound- 
ary, (1.3) means that the evolution of the vacuum boundary is independent of the gas 
inside the region so that it can not hold for all time t. Under the condition (1.2), the 
vacuum boundary moves according to the pressure gradient built near the boundary 
when time becomes large. 

This also implies that if initial data (p, u)(x, 0) are smooth, then there is a waiting 
time, before which the boundary does not move. After that time, the boundary will 
move due to the effect of the pressure. In [11], a class of travelling wave solutions 
with infinite total mass is also constructed. To our knowledge, these two families of 
solutions are the only non-trivial global solutions to the Euler equations with vacuum 
and damping where the vacuum boundary is clearly presented. 

Along this direction, the authors in [13] show that the regular solutions can not 
be global if the density function has compact support. 

The local existence of solutions with 

dca 

—,        0<a<l, 
ax 

bounded away from zero across T is also proved. It is noticed that this kind of phe- 
nomenon exists and a remains the same locally in time. When the initial data connect 
to vacuum states discontinuously, local existence for Euler equations without damping 
was proved in [12] by a polygonal method introduced in [5] for scalar equations and 
generalized in [10] for p-system. 

When inf po(i?) = 0, the author in [18] proved the nonglobal existence of regular 
solutions by assuming that the initial data (po(x), UQ{X)) have compact support, 
where UQ (X) is the initial velocity. For the Euler-Poisson equations governing gaseous 
stars, the authors in [16] proved the nonglobal existence of tame solutions under the 
condition of spherical symmetry. This nonglobal existence result can be generalized 
to the boundary condition -^c2 = 0 instead of ^c = 0 at vacuum. Local existence 
of tame or regular solutions for these two systems was proved in [15, 17] by using 
the symmetrization and the fixed point theorem. Solutions thus obtained correspond 
to those of 0 < a < § or a = 1 if the solutions are in the space H2. Therefore, 
it does not include the stationary solution which can be explicitely described under 
the spherical symmetry condition. Using the same symmetrization, the author in 
[6] uses the paradifferential calculus of J.M. Bony, and the author in [3] uses the 
Gagliardo-Nirenberg inequality and Littlewood-Paley theory to obtain local existence 
of solutions without assuming the support of the initial density being compact. And 
these two results include the stationary solutions only when 7 = |. Here the pressure 
function is assumed to satisfy the 7-law for poly tropic gas, i.e., p(p) = a2pJ. 

Notice that the regular solutions defined in [13] is different from that in [17], 

where p7"1 G ^([(^T) x R3) instead of p2^1 e (^([O,?1) x R3) is required. Since 

c — a-^p 2 is a continuous function, the regular solution defined in [13] is more 
general than the one in [17], and thus the nonexistence theorem in [13] generalizes 
that of [17]. So far the proofs for the non-existence of global regular solutions either 
for invisid models given above or for the viscous models, cf. [13, 15, 16, 18, 23] etc., 
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are based on the analysis of the support of the density. As shown by the special 
class of global solutions obtained in [11], the support of the density there is infinite. 
Therefore, deeper understanding on the development of the singularity at the vacuum 
is desired. 

According to the above argument, the general behavior of the solutions near 
vacuum should be the one corresponding to a — 2. By introducing a coordinate 
transformation, we will prove the local existence theorem for this case in Section 2. 
Notice that this local existence theorem holds also for the situation without damping. 
However, it is well-known that the large time behavior of a solution for the Euler 
equations without damping can behave like a centered rarefaction wave, which does 
not satisfy (1.2) near the vacuum boundary. In fact, a = 1 in this case. Since the 
above coordinate transformation works only for a = 2, the local existence of solutions 
for 1 < a < 2 remains open. 

For the systems governing the evolution of the self-gravitating gaseous star, the 
Euler equation is coupled with the Poisson equation for the gravitational potential 
determined only by the density distribution of the gas. Under the assumption of 
spherical symmetry, a family of stationary solutions is found in [17] which satisfy (1.2) 
near the boundary. In Section 3, we will also apply the coordinate transformation to 
this system to obtain local existence which includes the stationary solutions. 

2. Euler equations. In this section, we will consider the one-dimensional Euler 
equations for isentropic flow with damping (1.1). For simplicity, we consider the 
system (1.1) with the following initial and boundary conditions, 

(2.1) p(x, 0) = po(x),    u(x, 0) = uo(x), 

u(0,*)=0,    0<a;<a, 

where a is a positive constant, po(x) > 0 when 0 < x < a and po(a) — 0. When the 
solution is regular, it is easy to see that the vacuum boundary is a particle path. In 
our case, the vacuum boundary is the particle path through x — a. 

The characteristics of this system are Ai = u-c, A2 = w+c, and the corresponding 
Riemann invariants are r = u - -f^c, s = u + 7^7c. The equations for (r, s) are 

(2.2) 
ft + Airs = -U, 

St + A2SX = -u, 

where we normalize the frictional constant k to be 1. 
To illustrate why the classical existence theory for hyperbolic systems fails under 

the assumption of physical singularity condition (1.2), we consider how the charac- 
teristics change near the boundary. 

For any point (77,0), 0 < 77 < a, we define the two characteristics lines through 
(77,0) as 

(23) ^^ - Mtifofa,*),*), c(sifa,*),i)), 

ZifoO) =77, i = l,2. 

To see how the characteristics change with respect to the initial location 77, we differ- 
entiate (2.3) with respect to 77 to yield 

d fdxi(ri,t)\      dXi(xi(r],t),t)dxi{r],t) 

dt V     drj     J dxi drj 
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i.e. 

(2 4) OXtW,*) =eJoiij eXi        
d^ 

dr) 

Here Z* = {(x,t)\x — Xi{r],t)}, i — 1,2, are the characteristic curves passing through 
(77,0). Since the vacuum boundary in this case is x = £2 (a, £), we consider the integral 
on the right hand side of (2.4) for x = £2(77, £) near x = ^(a, f) as follows. Under the 
assumption (1.2) on the solution, c(x2(ri,t),t) behaves like 0(1)y/x2(a, t) — £2(??, £) in 
a small neighborhood of the vacuum boundary. Therefore, if t^a; is bounded near the 
vacuum boundary, we have 

(25) ^^-^^^-OilW^a^-^t)), 

where 0(1) here is a positive quantity. The above equation immediately implies that 
the characteristics through rj will meet the vacuum boundary at finite time. If we 
denote this time by ^ then 

Jol* dx^ Jol* 
rtr, 

= 0(1) /    (tri-t)-1dt = oo. 

This singularity in the integral prevents the application of the classical local existence 
theory for one-dimensional hyperbolic systems by characteristic method. Further- 
more, if we linearize the system in a small neighborhood of a point at the vacuum 
boundary, then we will have a singular wave equation of the form 

(2.6) uu - yuyy - L(ut,Uy,u),    S < t < 5,    y > 0, 

where L(ut,Uy^u) represents the lower order term, y represents the horizontal distance 
from the vacuum boundary at that point, and 8 is a positive constant. The Cauchy 
problem for second order hyperbolic equations with degeneracy along a line has been 
studied by many authors, cf. [20] and reference therein. It has also been studied with 
the connection to Tricomi problem. However, the degeneracy in (2.6) along the line 
y = 0 is different from those in these studies and their local existence theory can not 
be applied here. 

In order to cope with the degeneracy of the characteristics along the vacuum 
boundary, we will first introduce a coordinate transformation to symmetrize the sys- 
tem and to have non-degenerate propagation speeds. This can be done under the 
condition (1.2) for physical singularity. Before doing this, it is convenient to rewrite 
the system (1.1) in the Lagrangian coordinates as follows to fix the vacuum boundary, 

(2.7) vt - ut = 0, 

where v = Ms the specific volume and £ = J* p(y,t)dy. Without loss of generality, 

we normalize the total mass /0
a p(x, 0)dx to be 1. Here the pressure function satisfies 

the 7-law, i.e., p(v) = G
2
V~

1', 7 > 1. Notice that the physical sigularity (1.2) in 
Eulerian coordinates corresponds to 0 < |p£(v)| < 00 in the Lagrangian coordinates. 
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In the following discussion, both the initial data and the solution satisfy this physical 
boundary condition. In order to capture this singular behavior of the solution near the 
vacuum and to symmetrize the system (2.1), we introduce the following coordinate 
transformation, 

Then system (2.1) can be rewritten as 

(2.8) <l>(v)t - puy = 0, 

where ^(v) =  y^7^"2^-, and 

(7-1)0-,       ^_,_2±i ,    _l.x2±l 
/*=      r    (vy-1)    2   =c(y V)^"1, 

for some positive constant c. Notice that near the vacuum boundary, both (j)(v)y and 
ft are bounded away from zero as a consequence of (1.2). 

In the following, we will apply the fixed point theorem to establish the local 
existence theorem for the system (2.8) using some energy estimates on the function 
<f>(v). That is, we will prove the following theorem. 

THEOREM 2.1.  Under the boundary condition 

(2.9) u(M)=0,        0(0,*) =0, 

if the initial data (u(y,0),^(y,0)) G il3([0,l]) with \\u(y,Q)\\H3, ||0(2/,O)||jy3 < MQ 

for some positive constant MQ, and Di < y~1(l)(y,0) < D2 for two positive constants 
Di and D2, then there exists a time T > 0 such that the system has a unique solution 
(u(y,t),<l>(y,t)) € Loo([0,T],^3([0,l]))nC([0,T],iJ2([0,l])) in the region (y,t) € 
[0,1] x [0,T]. Futhermore, 

(2.10) D1/2<y-1(i){y,t)<2D2,        0<t<T. 

Notice here that (2.10) implies that the physical boundary condition (1.2) holds 
at least in finite time [0,T]. 

To prove Theorem 2.1, we first reformulate the system (2.9) as 

(2.11) (rl<f>t)t - (^y)y + r1^ = 0. 

For this equation, we will prove the following theorem which immediately yields The- 
orem 2.1. Notice that by the boundary condition at y = 1, u{y,i) can be expressed 
as 

u = —       fj, 1(j)t(s^t)ds 
Jv 

THEOREM 2.2.   Under the hypothesis of Theorem 2.1, there exists a time T > 0 
such that there exists a unique solution 

<j>{y, t) € i^ao, n #3([o; i])) n c([o, n HWO, i])) 
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satisfying (2.10). 

Proof.  The proof is based on the fixed point theorem by deriving some energy 
estimates. We use the following notations. 

1110! -.02111, = sup{||0i - Ms : 0 < t < T}, 

for some fixed time T, where || * \\s denotes the H3([0, l])-norm and || • || = || • ||o for 
simplicity. When s - 0, we simplily use |||0i - 02III- 

Now we consider the linear equation for 0 with the boundary condition (2.9), 

(2.12) (A"1^)t - (fi$y)v + n~lk = 0, 

where p, = c(2/~10)^ defined in (2.8) for a function 0 in the following space: 

X = {0(tf,t) | 0 G L~([0,T],tf3([0,l])) nC([0,r];if2([0,l])) : 

HHIIs < coMo,     Mh) - 0(to)||2 < i(ti - to), 
D1/2<y-1$(y1t)<2D2,    0(0,0=0,    0,(l,t)=O}, 

where CQ is a positive constant defined later. We want to show that 0 € X and the 
mapping from 0 to 0 is contractive with respect to the metric defined below for a 
short time. Notice that the space X can be made into a complete metric space with 
the metric, cf. [9], 

d(01,02) = |||01-02|||2. 

We prove for a small time 0(y, t) € X first. Multipling (2.12) by 0 and integrating 
it over (y, t) in [0,1] x [0, t] yields 

j Jfr-^tU -1 j(M>v)v4> + JJ rlM = o, 

where, for simplicity, we have used the notation / / to denote /0 /0 dydt. We will 

also use / to denote f* dy without any ambiguity. By using the boundary condition 

0(0, t) = 0 and 0y(1, t) = 0, we have 

(2.13) j Ji-r'ti + P%) + I j H-1? = - j A-^t + \ J J(t-1)t4>2+ /, 
where / represents a generic constant depending only on the initial data and I = 0 if 
the initial data is zero. Similarly, multipling (2.12) by 0t and integrating it over (y, t) 
in [0,1] x [0, t) gives 

(2.14)      l- j{rl$ + til) + / jlr'tt + \{rlM2t - lifi-1)^] = i- 

For estimates on higher derivatives, we differentiate (2.12) with respect to t and 
integrate it by mutiplying 0^. Then after some calculations, we have 

(2.15) | J\fi-^i + ^2
yt] + / j[\{rlMl - |(A)t^ + A-1^] 

= -   / {P)t<i>yt<i>y + [{JJ)ttht^V - {W^ttMt] + I- 
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Notice that fit = ply"1 fa which is bounded because 0(0, £) = 0 and 0 e X. Here we 
use ' to denote the differentiation with respect to the variable y~l(j). As for (/x-1)**, 
we have 

{prl)tt = {pr1)'y-
14>u + {fi-1)"y-24>l 

Noticing that 0W and y"1^ are bounded, the right hand side of (2.15) is bounded by 

owj Jitft + ftt+ y-2($+ %)} + £ Jfiyt + owe-1 J4>2y +i 

< 0(1) I J{$$t + 4>lt + ^yy) + cl fa + OWe"1 J(% + ^) + /, 

where e is a small positive constant and we have used 

Jy-2<f>2t = -y'1^ \h +2 J y^Myt 

and 

fy~2^v = -y~l<t>2v IS +2 j y-'Mw 

Now we differentiate (2.12) with respect to t twice and integrate it by multiplying 
(f>ttt' Then we have 

(2.16) J JKr'htMm + Wfi-^ttMm + sir^ttm 

The last two terms in (2.16) can be estimated as follows. 

/    /  ^ytu{P^y)tt =    / [(P)tt<i>y<i>ytt + ^Pt^yt^ytt + /^tf] 

- /    / [(P)ttt4>y4>ytt + Hp)tt4>yt4>ytt + Zptftytt + M"^)*] 

=   / [g/2^ + {P)ttMytt + ^(P)t4>yt4>ytt] 

- j   j [Pttt4>y4>ytt + 3ptt<i>yt<f>ytt] + -f- 

And 

/     (fi-lj)t)tt4>ttt=      jlfi ^It + ifl  1)tt^tt + 2(/z  ^t^^m]. 
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Thus (2.16) yields 

(2.17) 1 Jir^lt + fifttt) + / / P'^lt 

= -   /    / [(p^tttMttt - ^{P'~1)tt^tt^ttt + fktt4>y4>ytt + Sfltt&yt&ytt 

-fHtMttt - 2(/i"1)t0tt0«t] -   / [Ptt4>y4>ytt - 2p>t<i>yt4>ytt\ + /• 

The terms in (2.17) can be estmated as before except for the terms involving (ft^ttt 
or jittt, which contains the terms 2/-30?, y~2(i)t(f)tt and y^fittt- 2/~30? is bounded 
because 0 G X and the terms with y~2(f)t(f>tt can be discussed as in (2.15). It remains 
to estimate the terms with y^fott- That is, we need to estimate J f y~1 <t>ttt{(i>t(l>tu + 
iy^ytt) as follows. 

(2.18) j fy-^tttiMm + 0y0y«) 

< \ 11 tin + / /(tf-20? + V1!^!)^ + tltt) 

for some constant C, where we have used the boundary condition (f>y(l,t) = 0. 
Combining (2.13), (2.14), (2.15) and (2.18) and using the equation (2.12), we have 

the estimate 

« (2.i9)     mKt) < cj\mi(8) + mi(8)]d8 + cjm\i + 

for some positive constants C and CQ. Here we have used the fact that (p G X. (2.19) 
immediately gives 

\\m<   Co o 
c2M0

2(l-eCT)+2- 

Therefore, there exists a small time T > 0 such that 

~   Is < COMQ. 

By using the equation and the above estimates, it is easy to see that ^H^lb < L 
for some constant L. Since <j>yt is bounded, (2.10) holds for T > 0 being sufficiently 
small. Hence the function 0 is also in the space X. 

Now we turn to prove that the mapping F from </) to </> is contractive with respect 
to the metric d. Let F map two functions fa in X to two functions fa G X respectively, 
i = 1,2. Let Sg = gi — p2 for any function g, and /i; = cty^fa)7^, i = 1,2. Then 
the equation for 54> is 

(2.20) (^r1 w)*)* - (fiiWMv+^mt 
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By multipling (2.20) by £0 + <$0t and integrating over the region [0,1] x [0,t], after 
some calculations we have 

(2.2i) imi^c fiimi + imivs, 
Jo 

where the constant C depending on |||0i|||3 and |||0i|||3, i = 1,2. 
By differentiating (2.20) with respect to t and multiplying it by 8fat, then the 

integration over the region [0,1] x [0,£] and combining with (2.21) give 

(2.22) \ml < C [\\\Sfa\l+ \\8fa\l]ds^ 
Jo 

Thus for small time, still denoted by T, we have from (2.22) that 

d{fa:fa) < Ad(0i,02), 

for some positive constant A < 1. 
Therefore, F is a contraction on X and so has a fixed point fay,i) G X. This 

completes the proof of Theorem 2.2. □ 

3. Euler-Poisson equations. In this section, we will apply the same coordinate 
tranformation to another physical system for the evolution of gaseous stars under the 
assumption of spherical symmetry. The local existence of solutions including the 
stationary solutions will be given. The Euler-Poisson equations in R3 can be written 
as 

(3.1) pt + V • {pu) = 0, 

put 4- pu - Vu -h Vp(p) + pV$ = 0, 

A$ = 47r/?, 

where p is the density, u is the velocity, p(p) = cr2p7 with 7 > 1 is the pressure, and 
$ is the gravitational potential. Under the assumption of spherical symmetry, (3.1) 
is reduced to 

2 
(3.2) pt + upr + pur + -pu — 0, 

r 
p(ut + uur) + p{p)r + p$r = 0, 

(r2$r)r = 47rr2p, 

where r — \x\ is the radius. 
When I < 7 < 2, there exist stationary solutions with spherical symmetry in the 

form of, cf. [17], 

where A is an arbitrary positive constant and 0(r) is the "Lane-Emden function" of 
index —^y satisfying, cf. [4], 

-^0 +—0 + 0^=0,    0(0) = 1,    ^-0(0) = 0. 
dr1        r dr dr 
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Furthermore, there exists R = R7 such that 0(r) > 0 when 0 < r < R and 6(R) = 0. 
And the solutions behaves like 

^(r) - C(R - r)^[l + P(R - r, (R - r)^)], 

when r -> i? - 0. Here C is a positive constant and P is a double power series with 
positive radii of convergence. Notice that this behavior is precisely the one stated 
in (1.2). The local existence result in [17] does not include this family of stationary 
solutions. For the rest of this paper, we will prove a local existence result which 
includes the stationary solutions outside a fixed ball. That is, we consider the system 
(3.2) when r > ro and u(ro,t) = 0. Here ro < Rj is a positive constant. 

First we also rewrite the system (3.2) in the Lagrangian coordinates. Let 

p = r2p,        x=       p(s,t)ds,    r > ro- 
Jrn 

By normalize the total mass /~ p(s,t)ds to be 1, the system (3.2) can be written as 

(3.3) pt + P2ux = 0, 

|      (j
2jpx     _ 2q27^-1 

Ut        pl-7r27-2   -       r27-l 

(r2$r)r = 47rp. 

We will consider the system with the following initial boundary conditions: 

(3.4) u(x, 0) = uo(x),    p{x, 0) = po(x),    0 < x < 1, 

ti(0,t) = 0,    p(l,*) = 0,    *r(0,t) = *o, 

where $0 is a constant. The boundary condition u(0,t) = 0 implies that 

a2jpx 2(j27p7-1 

P1"7^' 
27-2 27-1 U=o= *o. 

As for the Euler equations with damping, we first introduce the coordinate tran- 
formation 1 - x — y'^. Under this transformation, the system (3.3) can be written 
as 

(3.5) (j)t  - flUy   =  0, 

ci    _, C2     ,2      47rri        -2*-  ,  ^^On 

where 

cf>( v) =  /     fjL(s)ds,        fi(v) = ay^yv     ~,    v = p'1, 
JV 

and fi = c^-1^)^"1 > and Q are positive constants, i = 1,2. For the system (3.5), we 
will prove the following theorem. 

THEOREM 3.1.  Under the boundary condition 

u(l,t) = 0,        <£((),*) =0, 
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if the initial data (u(y,0),<l>(y,0)) E #3([0,1]) with \\u(y,0)\\H3, ||0(2/,O)||Hs < M0 

for some positive constant MQ, and Di < y~l(j)(y,{)) < D2 for two positive constants 
Di and D2, then there exists a time T > 0 such that the system has a unique solution 
(u(y,t),<l>(y,t)) e Loo([0,T],^3([0,l]))nC([0;r],^2([0,l])) in the region (y,t) G 
[0,1] x [0,T]. Futhermore, 

(3.6) A/2 < y'^iy, t) < 2D2,        Q<t<T. 

(3.6) implies that the physical boundary condition (1.2) holds at least in finite 
time[0,T]. 

For convenience, we also rewrite the system (3.3) into a scalar second order dif- 
ferential equation for 0, 

(3-7) O*-1*), - (^b^), = (^ZT4>2)y - (^y + (^(V^ - l))y, 

and u can also be defined as 

r1 

,t)ds, u(y,t) = - /   fj,  1(t)t{s,i 
JV 

by using the boundary condition on y = 1.   For this equation, the corresponding 
theorem to Theorem 3.1 can be stated as follows. 

THEOREM 3.2. Under the hypothesis of Theorem 3.1, there is a time T > 0 such 
that there exists a unique solution ^(y,t) G Loo([0,r],ff3([0, l]))nC([0,T],iJ2([0,1])) 
satisfying (3.6). 

Proof. The proof is also based on the fixed point theorem by deriving some 
energy estimates on the corresponding linear equation. For a small fixed time T to 
be determined later, we consider the function space, 

X = {fty, t) I ^ 6 L°°([0, T], H3([0,1])) n C([0, T]; H2([0,1])) : 

|3<CoMo,     ||Mi)-M))||2<£(*i-*o),    D1/2<y-1cj)(y,t)<2D2, 

m t) = 0,    -g^-<t>^<t>y + ^r^2 |p=i= $o}, 
ro ro 

where Co will be defined later. With the metric d(0i, ^2) = \\\<t>i ~ ^2!lb? the space X 
with d is a complete metric space. 

We are going to show that the mapping F from (f) G X to 0 given by the following 
linear equation is a contraction on X: 

(3.8)        (AT
1
^ - (-gzsMvh = i^ZT^v " C^rh + (f (^ - 1)),. 

with the boundary condition 

mt) = 0,     -gfL^^, + -^ft \y=l= *o. 

Here /2 and r in (3.8) are defined by (j). First we can also apply energy method to 
prove that 4> G X. The proof is similar to the one in Section 2 for Euler equations 
with damping except the discussion on the extra terms on the right hand side, the 
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non-homogeneous boundary condition on y = 1 and the differentiation on the radius 
r. We omit the details of the proof by giving the main difference between the proof 
here from the one in Section 2. 

Since 

■ r — ro + /   v(s,t)ds, 
Jo 

we have 

rx rv      7+1 rv 
(3.9) rt=/   vt(s,t)ds = 0{l)       (j)-^foxydy = 0(l)       fi^fady, 

Jo Jo Jo 
 2_      7 + 1 

Vy   =   VXy   =   0(l)(f)      7-17/7-1, 

ryt = O(l)y^0"^^ - (Kl)//-1^, 

yytt = O(l)(/i-1)^ + O(l)/i-10tt, 

which are all bounded because (j) € X. 
Now we discuss the boundary terms which come from the integration by parts at 

y = 1. It can be seen that it is equivalent to estimating the following 

I 
1       1     __      _     _ 1_~ 1     _~       ~ 
[(12^2 ^)(0 + 0t) + {-^zzo^y^tt + {-nZZo^yMttt] \y=i ds. ^-zrvyjw  '  vc/  '  \r21-2tM^y^^zz  '  ^r27-2 

Notice that at y = 1, the boundary condition and the equation (3.8) imply that both 
<j)ttt and <j)ytt can be expressed in terms of 0 and </> and their derivatives with order 
less than 2 with bounded coefficients due to (3.9). Therefore, the above error terms 
at the boundary y = 1 are bounded by 

(3.10)    0(1)^(1,t) + 0(1) / M2 + \~4>t\
2 +14|2 +1^|2 + i^i2 + \4>yy\2]ds 

Jo 

<Ce-1 Jfo+eJtfu + cJ Jml 

where e is a small constant. 
Now the energy method as in Section 2 can be applied with the estimates (3.9) 

and (3.10) and it gives the estimate 

(3.11)     iHi2(i) < cj\mi(s) + m&*)]ds + j\\<h 
r2M2 

|2   ,    C0IV10 
13 + —J—- 

for some positive constants C and CQ. (3.11) immediately implies that |||</>|||3 < CQMQ 

for a short time T > 0. The other estimates for </> can be obtained immediately so 
that (jl) e X. 

Now we turn to show that the mapping F is contractive in the metric d on X. 
We denote the right hand side of (3.8) by G((j),y). Let F map two functions ^ in X 
to two functions fa e X respectively, i = 1,2. Following the notations in Section 2, 
the equation for 6(j) is 

(3.12)   (fiiHWth-(^MiW)y)y = SG+m-^Mt-m^miy)v 
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By multipling (3.12) by 54> + Sfa and integrating over the region [0,1] x [0,£], after 
some calculations, we have 

(3.13) ll^llf <C A||^||; + ||<J0||?]da) 

where the constant C depends on |||</>i|||3 and |||0i|||3, i = 1,2. 
By differentiating (3.12) with respect to t and multiplying it by 5fat and then 

integrating over the region [0,1] x [0,£], we have from (3.13), 

(3.i4) \m22<c fiimt + miijds. 
Jo 

Thus for small time, still denoted by T > 0, we have 

d(fa,fa) < Adifaifc), 

for some positive constant A < 1. 
Therefore the mapping F is a contraction on X and there is a fixed point <f)(y, t) £ 

X which is the solution to the system (3.7). This completes the proof of the theorem. 
D 

REMARK 3.1. The space of (f) and u for both the systems of Euler equations with 
damping and Euler-Possion equations can be H3"f'5([0,1]) for any non-negative integer 
s.  The proof for the higher derivatives in this case will be similar to the estimates in 

ff3([o,i]). 

REMARK 3.2. When we consider the solutions which is a small perturbation of the 
family of special solutions in [11] for Euler equations with damping or the stationary 
solutions to the Euler-Possion equations with spherical symmetry, solutions for larger 
time interval can be obtained by deriving the a priori estimates on the solution and 
using the above local existence theorems. 
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