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Abstract: In this paper, we establish the existence theory for general system of hyper-
bolic conservation laws and obtain the uniform L1 boundness for the solutions. The
existence theory generalizes the classical Glimm theory for systems, for which each
characteristic field is either genuinely nonlinear or linearly degenerate in the sense of
Lax. We construct the solutions by the Glimm scheme through the wave tracing meth-
od. One of the key elements is a new way of measuring the potential interaction of the
waves of the same characteristic family involving the angle between waves. A new anal-
ysis is introduced to verify the consistency of the wave tracing procedure. The entropy
functional is used to study the L1 boundedness.

1. Introduction

Consider the Cauchy problem for a general system of hyperbolic conservation laws

ut + f (u)x = 0, (1.1)

u(x, 0) = u0(x), (1.2)

here u = u(x, t) = (u1(x, t), . . . , un(x, t)) and f (u) are n-vectors.
The system is assumed to be strictly hyperbolic, that is, the eigenvalues of the n× n

matrix f ′(u) are real and distinct:

f ′(u)ri(u) = λi(u)ri(u),

li(u)f
′(u) = λi(u)li(u),

li(u) · rj (u) = δij , i, j = 1, 2, . . . , n,
λ1(u) < λ2(u) < · · · < λn(u).

(1.3)
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By a linear transformation, if necessary, we may assume that the ith component ui

of the vector u is strictly increasing in the direction of ri . This can be done at least for
a small neighborhood of a given state. In the following we will use ui to measure the
wave strength of an i-wave.

It is well-known that, because of the dependence of the characteristics λi(u) on the
dependent variables u, waves may compress and smooth solutions in general do not exist
globally in time. One therefore considers the weak solution:

Definition 1.1. A bounded measurable function u(x, t) is a weak solution of (1.1), (1.2)
if and only if∫ ∞

0

∫ ∞

−∞
[φtu+ φxf (u)](x, t)dx dt +

∫ ∞

−∞
φ(x, 0)u0(x)dx = 0 (1.4)

for any smooth function φ(x, t) of compact support in
{
(x, t)|(x, t) ∈ R2}.

As a consequence of the weak formulation, a discontinuity (u−, u+) in the weak
solution with speed s satisfies the Rankine-Hugoniot (jump) condition

s(u+ − u−) = f (u+)− f (u−), (1.5)

where u− and u+ are the left and right states of the discontinuity respectively.
This prompts the introduction of the Hugoniot curves H(u0) passing through a given

state u0 as follows:

H(u0) ≡ {u : σ(u0 − u) = f (u0)− f (u)}, (1.6)

for some scalar σ = σ(u0, u).
The Rankine-Hugoniot condition says that u+ ∈ H(u−) and that s = σ(u−, u+). It

follows easily from the strict-hyperbolicity of the system that in a small neighborhood
of a given state u0, the set H(u0) consists of n smooth curves Hi(u0), i = 1, 2, . . . , n,
through u0, such that σi(u0, u) tends to λi(u0) as u moves along Hi(u0) toward u0. Here
we use the notation σi(u0, u) to denote the scalar σ(u0, u) in Hi(u0). A discontinuity
(u−, u+), u+ ∈ Hi(u−), is called an i-discontinuity.

In general, weak solutions to the initial value problem (1.1) and (1.2) are not unique.
A certain admissibility condition, the entropy condition, needs to be imposed on the
weak solution to rule out non-physical discontinuities as follows.

Definition 1.2 (Liu, [20]). A discontinuity (u−, u+) is admissible if

σ(u−, u+) ≤ σ(u−, u), (1.7)

for any state u on the Hugoniot curve H(u−) between u− and u+.

If a characteristic field of the system (1.1) is genuinely nonlinear, [14], in the sense
that

∇λi(u) · ri(u) �= 0. (g.nl.), (1.8)

then the entropy condition is reduced to Lax’s entropy condition

λi(u+) < σi(u−, u+) < λi(u−). (1.9)
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If a characteristic field of the system (1.1) is linearly degenerate, i.e.

∇λi(u) · ri(u) ≡ 0. (l.dg.), (1.10)

then the entropy condition is reduced to the one for linear waves

λi(u+) = σi(u−, u+) = λi(u−). (1.11)

When each characteristic field is either genuinely nonlinear or linearly degenerate,
there is the classical existence theory of James Glimm, [12]. An important physical ex-
ample of such a system is the Euler equations in gas dynamics. Other physical systems,
such as those in elasticity and magneto-hydrodynamics, for instance, are not necessarily
genuinely nonlinear or linearly degenerate.

The goal of the present paper is to study, particularly to establish the existence tho-
ery, for such a general system. Thus for a given characteristic field λi(u), we allow the
linearly degenerate manifold LGi ≡ {u : ∇λi(u) · ri(u) = 0} to be neither the empty
space, as in the case of genuine nonlinearity, nor the whole space, as in the case of linear
degeneracy.

Theorem 1.1. Suppose that system (1.1) is strictly hyperbolic with flux function f (u) ∈
C3, and that for each characteristic field λi(u) the linear degeneracy manifold LDi ei-
ther is the whole space or consists of a finite number of smooth manifolds of codimension
one, each transversal to the characteristic vector ri(u). Then for the initial data (1.2)
with sufficiently small total variation T .V ., there exists a global weak admissible solu-
tion u(x, t) to the Cauchy problem (1.1) and (1.2) satisfying total variation u(·, t) =
O(1)T .V..

Remark 1.1. In this paper, we only prove the existence of the weak solution to (1.1) and
(1.2). The admissibility of the weak solution has been established in [19]. It is shown,
cf. Theorem 15.1 in [19], that there exist subsets "1 and "2 of {(x, t) : −∞ < x <

∞, t ≥ 0} with the following properties. "1 consists of countable Lipschitz con-
tinuous curves and "2 consists of countable points. Each curve # in "1 represents a
curve of jump discontinuity in the weak solution satisfying the entropy condition (1.7)
except for countable points. Each point in "2 represents a point of interaction in the
weak solution. And outside "1 ∪"2, the weak solution is continuous. In fact, for each
shock wave in the weak solution, there exists a corresponding approximate shock wave
in the approximate solution when the mesh sizes are sufficiently small. Consequently,
the admissibility of the shock waves in the weak solution follows from the admissibility
of the shock waves in the approximate solutions as the consequence of the design of the
scheme.

The Glimm theory for systems with genuinely nonlinear or linearly degenerate fields
is based on the study of the interactions of elementary waves in the solutions of the
Riemann problems solved by Peter Lax, [14]. The random choice method, the Glimm
scheme, is introduced to construct the general solutions using the Riemann solutions as
building blocks. A nonlinear functional, the Glimm functional F [u], is constructed to
bound the total variation of the approximate solutions. The functional yields a global
measure of the total wave interactions, [13], and allows for the consistency study of the
wave tracing method, [19].

For systems, which are not necessarily genuinely nonlinear or linearly degener-
ate, there are richer phenomena for nonlinear wave interactions, [19]. We adopt the
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Glimm quadratic functional for the interaction of waves in different families. How-
ever, for the interaction between waves of the same family, the quadratic functional
in general does not exist, and a cubic functional is needed. A cubic functional was
introduced in [19], which, however, fails to take into account some aspects of wave
interactions. Here we revise the cubic functional in [19] so that it depends global-
ly on the wave patterns in the solution. It is defined by the product of the strengths
of two waves times the angle between them, when that angle is negative. This is so
that such a pair of waves of the same family will interact in general at a later time.
This new cubic functional is an effective measure of the wave interactions in that the
functional decreases only due to the interaction of the waves next to each other and
that the decrease is exactly of the same order of the waves produced by the interac-
tion.

With the present existence theory and the qualitative theory of regularity and large-
time behavior of solutions in [19], there is the open problem of the L1 stability of the
solutions with respect to the initial data. We study the stability problem here, but only
for the stability of the constant solutions. For the stability analysis we make use of the
classical entropy functional, which is shown to yield the estimate to control the bifur-
cation of the Hugoniot curve from the rarefaction wave curve in the general setting. To
construct a generalized entropy functional, as for the case when each characteristic field
is either genuinely nonlinear or linearly degenerate, to control the estimates of the same
cubic order as mentioned above would be the main task to study the stability of the weak
solution to this general system.

In the next section we sketch the construction of the solution to the Riemann problem
and some basic estimates on the Hugoniot curves. These estimates allow us to study the
local wave interactions in Sect. 3. In Sect. 4 we study the nonlinear functional and there-
by establish the convergence of the approximate solutions. The wave tracing mechanism
of [17, 19] is refined here. Previous consistency analysis, [17], requires the boundedness
of the quadratic functional. For a non-genuinely nonlinear system, a quadratic functional
for interactions of waves of the same characteristic family does not exist in general. Our
consistency analysis for the wave tracing method here uses only the estimates resulting
from the cubic functionals. The cubic estimates are weaker and there is a new, interesting
consistency analysis here.

In the last section of this paper, we study the L1 stability of constant state solutions to
the system (1.1). There has been much progress on the well-posedness, in L1 topology,
problem when each characteristic field in the system is either genuinely nonlinear or
linearly degenerate. There are two approaches. One starts with [4] on the comparison
of infinitesimally close solutions, see [5] and [6]; the other approach [22] is based on
the construction of the robust functional, see also [7, 23]. For the more general system
(1.1), there is the recent result for the case of one reflection point in [1]. To our knowl-
edge, there is no general well-posedness theory without assuming genuine nonlinearity
or linear degeneracy on characteristic fields, beyond that of [1].

The purpose of Sect. 6 is to study the L1 stability of the constant state solutions of
the general systems. We adopt the general approach of [22] and construct a new time-
decreasing nonlinear functional H(t) = H [u(·, t)], which is equivalent to ||u||L1 of a
weak solution u(x, t). It also depends explicitly on the wave pattern of this solution. The
functional H [u(·, t)] consists of three parts: the first part is the product of the Glimm’s
functional and a linear functional L(t); the second part is a quadratic functional Qd(t);
and the third part is the convex entropy functional. Here L(t) represents the L1-norm of
u(x, t). Qd(t) registers the effect of nonlinear coupling of waves in different families
on ||u(x, t)||L1(x) by making use of the strict hyperbolicity of the system, and E(t)
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captures the nonlinearity of the characteristic fields. The existence of such a functional
immediately yields the following theorem.

Theorem 1.2. Suppose that the total variation of the initial data is sufficiently small and
is in L1, then the L1 norm of the weak admissible solution to the Cauchy problem (1.1)
and (1.2) constructed by the Glimm scheme is bounded by a constant times the L1 norm
of the initial data.

2. Riemann Problem

The solution to the Riemann problem

u(x, 0) =
{
ul, x < 0,
ur , x > 0, (2.1)

for the general system (1.1) was solved in [16, 19]. We enclose the following lemmas
on the properties on wave curves in [19] for the self-containedness of the paper.

The i-rarefaction wave curve from a state u0, denoted by Ri(u0), is the integral curve
of the right eigenvector ri passing through u0, i = 1, 2, . . . , n. In general the Hugoniot
curve Hi(u0) and the rarefaction wave curve Ri(u0) have second order contact at the
initial state u0, [14]. In general no higher-order contact is expected when the charac-
teristic field is genuinely nonlinear. However, as we will see in the following lemmas,
the situation is more interesting for non-genuinely nonlinear characteristic fields. The
following lemmas are needed for the construction of the wave curve Wi(u0) through the
state u0. As mentioned before, the strength of the i-wave is measured by the difference
of the parameter ui between the right and left states.

Lemma 2.1. For any u ∈ Hi(u0) in a small neighborhood of u0, we have
(i) λi(u) > σ(u0, u) (or λi(u) < σ(u0, u)) if and only if

d

dui
σ (u0, u) > 0, (or

d

dui
σ (u0, u) < 0);

(ii) Hi(u0) is tangent to Ri(u) at u on Hi(u0) if σ(u0, u) = λi(u).

Proof. Let

u− u0 =
n∑

j=1

αj rj (u),

du

dui
=

n∑
j=1

βj rj (u).

Then for weak waves the second order contact between Hi(u0) and Ri(u0) implies

αiβi > 0 for u �= u0,
|αj |

|u−u0|2 is bounded f or j �= i.
(2.2)

By differentiating
σ(u0, u)(u0 − u) = f (u0)− f (u),
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with respect to ui , we have

αj
d

dui
σ (u0, u) = (λj (u)− σ(u0, u))βj , j = 1, 2, . . . , n. (2.3)

Thus (i) follows from (2.2) and (2.3)i . Sinceσ(u0, u) is close toλi , by strict hyperbolicity
and (2.3)j , we have (ii). ��

The following lemma gives an estimate on the interaction of two shock waves in the
same direction and shows that the interaction of two admissible shock waves yields an
admissible shock plus a cubic order error term.

Lemma 2.2. Suppose that (u0, u1) and (u1, u2) with ui2 > ui1 > ui0 are two admissible
i-shocks with strengths α1 and α2 and speeds σ1 and σ2 respectively, cf. Definition 1.2.
Let u∗ ∈ Hi(u0) be the state with ui2 = ui∗, then
(i) (u0, u∗) is admissible;
(ii) |u2 − u∗| = 0(1)α1α2(σ1 − σ2);
(iii) σα = σ1α1 +σ2α2 +0(1)α1α2(σ1 −σ2), where α and σ are the strength and speed
of the admissible shock (u0, u∗) respectively. The same estimate holds for the case when
ui0 > ui1 > ui2.

Proof. Set
σ̃ α ≡ σ1α1 + σ2α2,

where α = α1 + α2. Then by using the Hugoniot conditions for (u0, u1), (u1, u2) and
(u0, u∗), we have

σ̃ (u
j
2 − u

j
0)− [f j (u2)− f j (u0)]

= σ̃ (u
j
2 − u

j
0)− [σ2(u

j
2 − u

j
1)+ σ1(u

j
1 − u

j
0)]

= (σ̃ − σ1)(u
j
2 − u

j
1)+ (σ̃ − σ2)(u

j
1 − u

j
0). (2.4)

Choose ũ0 and ũ2 on the straight line through u1 with tangent ri(u1) such that

ũi0 = ui0, ũi2 = ui2.

Then we have

|ũ0 − u0| = 0(1)α2
1, |ũ2 − u2| = 0(1)α2

2,

(ui2 − ui1)(u
j
1 − ũ

j
0) = (ũ

j
2 − u

j
1)(u

i
1 − ui0). (2.5)

Combining (2.4) and (2.5) yields

σ̃ (u
j
2 − u

j
0)− [f j (u2)− f j (u0)]

= (σ̃ − σ2)(α)
−1[−(ui2 − ui1)(u

j
1 − u

j
0)+ (u

j
2 − u

j
1)(u

i
1 − ui0)]

= 0(1)(σ̃ − σ2)α2(α1 + α2)

= 0(1)(σ1 − σ̃ )α1(α1 + α2).

By (2.5) again, we have

σ̃ (u2 − u0)− [f (u2)− f (u0)] = 0(1)α1α2(σ1 − σ2). (2.6)



Weak Solutions of General Systems of Hyperbolic Conservation Laws 295

By comparing the jump condition of the ith components for (u0, u2) and (u0, u∗), we
have

σ − σ̃ = 0(1)α1α2(α1 + α2)
−1(σ1 − σ2),

and (iii) follows. From (2.4), (2.6) and the Hugoniot condition for (u0, u∗), we have

σ̃ (u∗ − u2) = f (u∗)− f (u2)+ 0(1)α1α2(σ1 − σ2). (2.7)

Notice that σ̃ is close to λi . By considering u∗ − u2 in the rj direction, j �= i, strict
hyperbolicity implies (ii).

Finally we prove that the discontinuity (u0, u∗) is admissible. If σ1 = σ2, then clear-
ly u∗ = u2 and (u0, u2) is admissible. If σ1 > σ2, then the admissibility is proved by
contradiction as follows. Since

σ2 ≤ σ ≤ σ1,

we assume, without loss of generality, that σ − σ2 ≥ σ1 − σ . Under the condition that
(u0, u1) is admissible, and assuming that (u0, u∗) is not admissible, then there exists a
state ũ with ui1 ≤ ũi < ui∗ = ui2, such that σ(u0, ũ) = σ . Thus ũ ∈ Hi(u∗). By (ii), for
the state ū ∈ Hi(u2) with ũi = ūi , we have

σ(u2, ū)− σ(u∗, ũ) = 0(1)α1α2(σ1 − σ2). (2.8)

Since (u1, u2) is admissible, we have

σ2 ≥ σ(u2, ū). (2.9)

Combining (2.8) and (2.9) yields

σ2 − σ ≥ 0(1)α1α2(σ1 − σ2). (2.10)

Since all the wave strengths are small, (2.10) contradicts the assumption that σ − σ2 ≥
1
2 (σ1 − σ2). Hence (u0, u∗) is admissible and this completes the proof. ��

For the interaction of a rarefaction wave and a shock of the same family, we have the
following lemma. To obtain the precise interaction estimates, we introduce a new infinite
step approach by replacing the rarefaction wave by small rarefaction shocks. By doing
this, we can apply Lemma 2.2 and show that the limit exists. Without any ambiguity, for
any discontinuity wave γ = (u−, u+), we denote its speed by σ(γ ) = σ(u−, u+) from
now on.

Lemma 2.3. Suppose that (ul, u1) is an i-rarefaction wave, (u1, ur) is an admissible
i-discontinuity, and uil < ui1 < uir . Then there exists u∗ ∈ Ri(ul) with uil ≤ ui∗ ≤ ui1,
and ũ∗ ∈ Hi(u∗) with ũi∗ = uir such that

(i) |ũ∗−ur | = 0(1)α2
∫ ui1

ui∗
(λi(u)−σ(u1, ur))du

i , where the integral is along theRi(u∗)
curve, and α2 = uir − ui1.

(ii) σ(u∗, ũ∗)β = λ̂α1 + σ(α2)α2 + 0(1)α2
∫ ui1

ui∗
(λi(u) − σ(u1, ur))du

i , where α1 =
ui1 − ui∗, β = α1 + α2, and λ̂ is the average speed of the centered rarefaction wave
(u∗, u1):

λ̂ ≡ λ̂(u∗, u1) ≡ 1

ui1 − ui∗

∫ ui1

ui∗
λi(u)du

i.

(iii) (u∗, ũ∗) is admissible.
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Proof. If σ(u1, ur) = λi(u1), then the lemma holds trivially because the linear super-
position of the two Riemann solutions yields the solution to the Riemann data (ul, ur).
When σ(u1, ur) < λi(u1), for any state u ∈ Ri(ul) between ul and u1, let ũ ∈ Hi(u)

with ũi = uir . Set θ(u) ≡ λi(u)− σ(u, ũ). Then we have θ(u1) > 0.
Suppose that (u, ũ) is admissible and θ(u) > 0. We claim that for w ∈ Ri(ul) with

ui −wi positive and sufficiently small, then θ(w) < θ(u) and (w, w̃) is also admissible.
In fact, by Lemmas 2.1 and 2.2, we know that when ε = ui − wi is sufficiently small,

(α + ε)σ (w, w̃) = ασ(u, ũ)+ ελi(u)+ 0(1)εαθ(u)+ 0(1)ε2, (2.11)

where α ≡ ũi − ui > 0. By using λi(w) < λi(u) and the entropy condition λi(u) >

σ(u, ũ), (2.11) implies θ(w) < θ(u).
That (w, w̃) is admissible can be proved by contradiction. Suppose that (w, w̃) is not

admissible, then there exists ŵ ∈ Hi(w̃) such that σ(ŵ, w̃) = σ(w, w̃). If ŵi < ui ,
then we let w ≡ ŵ and ε ≡ ui − ŵi . Otherwise, we choose û ∈ Hi(ũ) with ŵi = ûi .
When ε is sufficiently small, we have

σ(û, ũ) = σ(ŵ, w̃)+ 0(1)|ui − ũi |θ(u)ε. (2.12)

Since (u, ũ) is admissible, the entropy condition yields

σ(ũ, û) ≤ σ(u, ũ). (2.13)

Combining (2.11), (2.12) and (2.13) yields

0(1)θ(u)εα ≥ ε[θ(u)+ ε],

which is a contradiction to the assumption that θ(u) > 0, given that ε and the wave
strength are weak.

Now we are ready to prove (i) and (ii). We first divide the rarefaction wave α1 into
small rarefaction waves with each strength less than ε, ε a given small positive number.
And then we replace each small rarefaction wave by a small rarefaction shock. Denote
all these rarefaction shocks from left to right by α1,k ≡ u1,k−1 − u1,k , k = 1, 2, . . . , m,
with speed

σ(α1,k) = 1

2
(λi(u1,k−1)+ λi(u1,k)), k = 1, 2, . . . , m.

Obviously, u1,k ∈ Ri(u1), u1,0 = u1 and u1,m = u∗. Now we consider the sequence of
interactions between βk ≡ (u1,k−1, ũ1,k−1) and α1,k . By using the fact that the Hugoniot
curve and the rarefaction curve have second order contact, an application of Lemma 2.2
yields the following estimate for the interaction of βk and α1,k:

σ(u1,k, ũ1,k)βk+1 = σ(u1,k−1, ũ1,k−1)βk + α1,kσ (α1,k)

+ 0(1)βkα1,kθ(u1,k−1)+ 0(1)ε2, (2.14)

|ũ1,k − ũ1,k−1| = 0(1)βkα1,kθ(u1,k−1)+ 0(1)ε2.

By summing up (2.14) with respect to k from k = 1 to m, we have

σβ = σ2α2 +
m∑

k=1

α1,kσ (α1,k)+ 0(1)
m∑

k=1

βkα1,kθ(u1,k−1)+ 0(1)α1ε,
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|ũ∗ − ũ| = 0(1)
m∑

k=1

βkα1,kθ(u1,k−1)+ 0(1)α1ε, (2.15)

where β = βk+1 = (u∗, ũ∗).
Now we estimate the term

∑m
k=1 βkα1,kθ(u1,k−1).

We denote
E l
k = βlα1,kθ(u1,l−1), 1 ≤ l ≤ k,

Ek = Ek
k = βkα1,kθ(u1,k−1).

For E l
k , noticing that each |α1,k| ≤ ε, we have the following estimate:

E l
k = E l−1

k + α1,k[βl−1(θ(u1,l−1)− θ(u1,l−2))+ (βl − βl−1)θ(u1,l−1)]

= E l−1
k + α1,kβl−1(λi(u1,l−1)− λi(u1,l−2))

−α1,k[βl−1(σ (βl)− σ(βl−1))+ α1,l−1(σ (βl)− λi(u1,l−1))]

≤ E l−1
k + 0(1)α1,kEl + 0(1)ε3. (2.16)

Hence we have

El ≤ E0
l + 0(1)α1,k

l∑
i=1

Ei + 0(1)ε2.

Using the fact that
∑m

k=1 α1,k ≤ α1 is small, we have

m∑
l=1

El ≤ 0(1)
m∑
l=1

E0
l + 0(1)ε.

Therefore, by letting ε tending to zero, (2.15) and (2.17) imply (i) and (ii). ��
We next construct the i-wave curve from a state ul , i = 1, 2, . . . , n, with the property

that any state u ∈ Wi(ul) can be connected to ul on the left by i-waves. That is, we will
construct a curve Wi(ul) through ul such that it passes through a single state u on each
hyperplane with fixed ui in a small neighborhood of ul . For definiteness, we consider
the case uil < ui . The case when uil > ui can be discussed similarly. First we find a
unique state u1 with the following properties:

(i) uil ≤ ui1 ≤ ui ;
(ii) (ul, u1) is an admissible discontinuity such that ui1 − uil is maximum.

If ui1 = ui , then we are done withu = u1. If not, by Lemma 2.2, there is no admissible
discontinuity with left state u1 and the ui component of the right state lies in (ui1, u

i].
Therefore, according to Lemma 2.1, we have ∇λi · ri(u1) ≥ 0, and ∇λi · ri(u) > 0 for
states u ∈ Ri(u1) near u1 with the ith component larger than ui1. Thus, there exists a
unique state u2 ∈ Ri(u1) with the following properties:

(i) u1 and u2 are connected by i-rarefaction wave and ui1 < ui2 ≤ ui .
(ii)ui2 is the maximum in the sense that there is no stateu∗ ∈ Ri(u1)with the property that
there exists admissible discontinuity (u∗, u∗∗) with ui1 < ui∗ < ui2 and ui∗ < ui∗∗ ≤ ui .

If ui2 = ui , then u = u2 and we are done. If not, the above procedure can be continued
until we finally reach the state u on the curve Wi(ul) with the given ui . Thus (ul, u)



298 T.-P. Liu, T. Yang

forms an elementary i-wave described above when u ∈ Wi(ul). The wave curves are
Lipschtz continuous, but have the following basic stability property:

Lemma 2.4. Wave curves Wi(ū0) and Wi(ũ0) through different initial states have the
following C2-like property: Given a state ū on Wi(ū0), there exists a state ũ on Wi(ũ0)

such that
ū− ũ = ū0 − ũ0 +O(1)|ū0 − ũ0||ū− ū0|.

Proof. We first remark that for a genuinely nonlinear field, the wave curve Wi consists
of Hugoniot and rarefaction curves. For linearly degenerate field the wave curve is the
rarefaction curve, which is the same as the Hugoniot curve, [12]. In either case, the depen-
dence of a wave curve on its initial state is C2, [12], and the lemma follows immediately
by mean value theorem. However, this may not be the case when the ith characterisitic
field in not genuinely nonlinear or linearly degenerate, as in the case we are interested
in. For the general case, an i-wave in the Riemann solution may contain both shock
and rarefaction waves of the same ith characteristic family, called a composite i-wave.
From the above description, the i-wave curve consists of a finite number of Hugoniot,
rarefaction, and a new type of “mixed” curves. A mixed curve Mi(u0) is a collection
of states u∗, which is related to a fixed rarefaction curve Ri(u0) with the following
properties: (i) u∗ ∈ Hi(u) for a state u on Ri(u0); (ii) σ(u, u∗) = λi(u); (iii) (u, u∗)
satisfies the entropy condition (E); (iv) at the initial state u0 where the mixed curve and
the rarefaction wave meet the characteristic is linearly degenerate ∇λi · ri(u0) = 0;
and (v) the wave curve contains Ri(u0) and Mi(u0), which meet at u0. These properties
are used to construct a wave pattern which contains the rarefaction wave followed by a
one-sided contact discontinuity (u, u∗). As the one-sided contact discontinuity (u, u∗)
grows in strength, the rarefaction waves weaken as its end state u moves away from u0
along Ri(u0).

We first show that the aforementioned two curves Mi(u0) and Ri(u0) are of second
order tangency at u0. Differentiate the jump condition σ(u∗ − u) = f (u∗)− f (u) with
respect to the arc length of Ri(u0):

σ ′(u∗ − u) = (f ′(u∗)− σ)u′∗ − (f ′(u)− σ)u′.

Note that u′ = r(u). Evaluating the above at u = u∗ = u0, using (iv) above, which
implies that σ ′ = 0, and that σ = λi there, we have

(f ′ − λi)u
′
∗ = (f ′ − λi)ri = 0.

Thus u′∗ is parallel to ri(u) at u∗ = u = u0. Set u∗′ = cri(u). Next, we differentiate the
jump condition twice to yield

σ ′′(u∗ − u)+ 2σ ′(u′∗ − u′) = f ′′(u∗)u∗′u∗′ − f ′′(u)u′u′

+(f ′(u∗)− σ)u′′∗ − (f ′(u)− σ)u′′.

And we evaluate this, again at u = u∗ = u0,

(c2 − 1)f ′′riri + (f ′ − λi)u∗′′ = (f ′ − λi)ri
′.

We now differentiate f ′ri = λiri along ri(u) at u = u0 and use (iv) above, λi ′ = 0,

f ′′riri = (λi − f ′)ri ′.

Since ri
′ = u′′, the last two identities yield
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(f ′ − λi)u∗′′ = c2(f ′ − λi)u
′′

at u = u∗ = u0. Recall that u∗′ = cri and c �= 1 in general. Thus we need to renormalize
the differentiation along Mi(u0) to be with respect to the arc length as follows:

u̇∗ ≡ 1

c
u∗′.

We have

ü∗ = c2u∗′′ + 1

c

(
1

c

)′
u∗′,

and so from the previous identity we have, at u = u∗ = u0,

(f ′ − λi)ü∗ = (f ′ − λi)u
′′.

Thus ü∗ = u′′ except for a multiple of ri . On the other hand, both u̇∗ and u′ are unit
vectors and so ü∗ and u′′ are perpendicular to u̇∗ = u′ = ri . We therefore conclude that

ü∗ = u′′

at u = u∗ = u0. Thus Mi(u0) and Ri(u0) are of second order contact at u0.
On the other hand, a wave curve is in general only Lipschitz when two mixed curves

meet. This corresponds to the vanishing of the rarefaction wave between two discon-
tinuities to form a single discontinuity. We now concentrate on proving our lemma for
this key case. Thus we assume that two wave curves are very close and one of them is a
single Hugoniot curve Hi(u0) corresponding to an admissible shock β = (u0, u1) with
one-sided contact discontinuity σ(β) = λ(u1), λ ≡ λi . The other nearby wave curve
correspond to a shock α = (u2, u3) followed by a rarefaction wave δ = (u3, u4). Let u5
and u6 be states on Hi(u3) and Hi(u2), respectively, and denote by β̄ = (u2, u6), see the
picture below. We assume that the states u1, u4, u5 and u6 are on the same hyperplane
transversal to the ith curves, as do the states u0 and u2. Thus we have

u1 ∈ H(u0); u3 ∈ H(u2); u6 ∈ H(u2);
u5 ∈ H(u3); u4 ∈ R(u3),

σ (β) = λ(u1), σ (α) = λ(u3).

We want to show that
ε3 ≤ ε1 +O(1)ε1(α + δ),

where ε3 ≡ |u1 − u4|, ε1 ≡ |u1 − u2|. We have

ε3 ≤ |u1 − u6| + |u6 − u5| + |u5 − u4|.

u0

u1

u3

u4

u5

u6
u2

β

β̄

ε1

ε2

ε3

δ

α
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For simplicity in notation we denote by f ′′(u) ≡ ∇λ·r(u) the change of λ ≡ λi along
the characteristic direction r ≡ ri . This measures the degree of genuine nonlinearity at
the state u. The Hugoniot and rarefaction curves are close to each other if f ′′ is small:

|u5 − u4| = 0(1)|f ′′(u3)|δ3.

From the second-order contact of Hugoniot and rarefaction curves and our analysis of
Hugoniot curves before,

|u1 − u6| = ε1 + 0(1)ε1(α + δ),

|u6 − u5| = 0(1)δα|σ(α)− σ(δ)| = 0(1)δα|λ(u3)− σ(δ)| = 0(1)|f ′′(u3)|δ2α.

Thus we have

ε3 ≤ ε1 + 0(1)ε1(α + δ)+ 0(1)|f ′′(u3)|δ2(α + δ). (2.17)

With this clearly our estimate ε3 ≤ ε1 + 0(1)ε1(α + δ) follows if we can show that
Claim.

|f ′′(u3)|δ = 0(1)(ε1 + ε3).

To prove the Claim we have from above that

|f ′′(u3)|δ ≡ 0(1)|λ(u4)− λ(u3)|
≤ 0(1)(|λ(u4)− λ(u1)| + |λ(u1)− λ(u3)|)
= 0(1)ε3 + 0(1)|σ(β)− σ(α)|
≤ 0(1)(ε3 + |σ(β)− σ(β̄)| + |σ(β̄)− σ(α)|)
= 0(1)[(ε3 + ε1)+ |σ(β̄)− σ(α)|].

To finish the proof of the Claim we note from simple scalar consideration that

|σ(β̄)− σ(α)| = 0(1)
δ2

α + δ
|f ′′(u3)| � |f ′′(u3)|δ.

This completes the proof of the lemma. ��

Theorem 2.1 (Liu [16]). Under the same hypotheses as in Theorem 1.1, the Riemann
problem (1.1) and (2.1) has a unique solution in the class of elementary waves satis-
fying the entropy condition, cf. Definition 1.2, provided that the states are in a small
neighborhood of a given state.

Proof. The i-waves, i = 1, 2, . . . , n, are the building blocks for the solution of the
Riemann problem. The i-waves take values along the wave curves Wi . Since the wave
curves Wi have tangent ri at the initial state, it follows from the independency of the
vectors ri, i = 1, 2, . . . , n, and the inverse function theorem that the Riemann problem
can be solved uniquely in the class of elementary waves. ��
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3. Wave Interaction

In this section the relation of the waves before the interaction and the scattering data for
the completed interaction is studied for the interaction of two sets of solutions of the
Riemann problem.

For an i-wave α to the left of an i-wave β, we define6(α, β) to represent the effective
angle between them:

6(α, β) ≡ θ+α + θ−β +
∑

θγ . (3.1)

Here θ+α represents the value of λi at the right state of α minus its wave speed. It is
negative if α is a shock and is set zero if it is a i-rarefaction wave. Similarly the term θ−β
denotes the difference between the speed of β and the value of λi at its left end state. θγ is
the value of λi at the right state of the wave γ minus that at the left state. It is positive if γ
is a rarefaction wave and is negative if it is a shock. The sum

∑
θγ is over the i-waves γ

between α and β. Subject to wave interactions of distinct families, −6(α, β) represents
the angle between α and β when waves of other characteristic families between them
propagate away. When 6(α, β) is positive, the two waves will not be likely to meet and
should not be included in the potential wave interaction functional. When 6(α, β) is
negative, the two waves may eventually meet and interact. In this case |α||β||6(α, β)|
reflects accurately the potential interactions of waves of the same characteristic family.

To obtain the estimate for the interaction of two Riemann solutions, we need the
following lemmas from [19]. Let (ul, ur) be an i-discontinuity, set

Di(ul, ur) ≡ {u : (u− ul)σ (ul, ur)− (f (u)− f (ul))

= c(u)ri(u) f or some scalar c(u)}.
The following lemma is similar to Lemma 2.2, its proof is therefore omitted.

Lemma 3.1. For ul and ur close, Di(ul, ur) is a smooth curve through ul and ur in a
small neighborhood of ur . Moreover, if a state ũ satisfies

(ũ− ul)σ − (f (ũ)− f (ul)) = c̃ri(ũ)+K,

for some scalar c̃ and some vector K , then there exists a vector u on Di(ul, ur) such
that

|u− ũ| = 0(1)|K|.
To express the stability of a wave pattern in the next lemma, we need the following

definition on partition of waves.

Definition 3.1. Letur ∈ Wi(ul) so thatul is related tour by i-discontinuities (uj−1, uj ),
and i-rarefaction waves (uj , uj+1), j odd, 1 ≤ j ≤ m − 1, u0 = ul and um = ur . A
set of vectors {v0, v1, . . . , vp} is a partition of (ul, ur) if

(i) v0 = ul , vp = ur , vik−1 ≤ vik , k = 1, 2, . . . , p,
(ii) {u0, u1, . . . , um} ⊂ {v0, v1, . . . , vp},

(iii) vk ∈ Ri(uj ), j odd, if uij < vik < uij+1,

(iv) vk ∈ Di(uj−1, uj ), j odd, if uij−1 < vik < uij .

We set
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(v) yk ≡ vk − vk−1,
(vi) λi,k ≡ λi(vk−1) and

[λi]k ≡ [λi](vk−1, vk) ≡ λi(vk)− λi(vk−1) > 0

if (iii) holds, and
(vii) λi,k ≡ σ(uj−1, uj ) and [λi]k ≡ [λi](vk−1, vk) ≡ 0 if (iv) holds.

A partition {wr} is finer than another partition {vk} if {vk} is a subset of {wk}. The
important factor of interaction between waves of the same family is the angle between
these waves, that is, the difference of the wave speeds. In the following discussion, we
will partition rarefaction waves into small rarefaction shocks, hence both rarefaction
wave and shock are treated similarly.

Lemma 3.2. Suppose that ur ∈ Wi(ul), ūr ∈ Wi(ūl), with uir − uil = ūir − ūil ≡ α > 0,
and |ul − ūl | ≡ β. Then there exist partitions {v0, v1, . . . , vp} and {v̄0, v̄1, . . . , v̄p}
for the i-waves (ul, ur) and (ūl, ūr ) respectively such that v̄ik − v̄i0 = vik − vi0, k =
1, 2, . . . , p, and the following holds:
(i)
∑p

k=1 |yk − ȳk| = 0(1)αβ,
(ii) |λi,k − λ̄i,k| = 0(1)β, k = 1, 2, . . . , p,
(iii) Let 6+(ul, ur) represent the value of λi at the right state ur minus the wave speed of
the right-most i-wave in (ul, ur).A similar definition holds for6−(ul, ur). |6−(ul, ur)−
6−(ūl, ūr )| + |6+(ul, ur)−6+(ūl, ūr )| = 0(1)αβ.

Moreover, {1, 2, . . . , p} can be written as a disjoint union of subsets I, II and III such
that
(iv) for k ∈ I corresponding to rarefaction waves, both vk and v̄k are of type (iii) of
Definition 3.1 and ∑

k∈I
|[λi]k − [λ̄i]k| = 0(1)αβ,

(v) for k ∈ II corresponding to discontinuities, both vk and v̄k are of the type (iv) of
Definition 3.1,
(vi) for k ∈ III corresponding to mixed types, vk and v̄k are of different types and∑

k∈III
|[λi]k + [λ̄i]k| = 0(1)αβ.

Here 6+(ul, ur) represents the value of λi at the right state ur minus the wave speed of
the righmost i-wave in (ul, ur). Similar definition holds for 6−(ul, ur).

Proof. The proof is based on a continuity argument and the partition of the waves (ul, ur)
and (ūl, ūr ). For definiteness, we consider the partitions of an ith discontinuity (uj−1, uj )

in (ul, ur) and its corresponding discontinuity (ūj−1, ūj ) in (ūl, ūr ). For β sufficiently
small, (uj−1, uj ) and (ūj−1, ūj ) are isolated in the sense that there exist wk and w̄k ,
k = 1, 2, 3, 4, which form part of the partitions for (ul, ur) and (ūl, ūr ) respectively,
{wi

k − wi
l , k = 1, 2, 3, 4} = {w̄i

k − w̄i
l , k = 1, 2, 3, 4} = {ūij−1 − uil , u

i
j−1 − uil , ū

i
j −

uil , u
i
j − uil }, and (uj−1, uj ) and (ūj−1, ūj ) are the only discontinuities in (w1, w4) and

(w̄1, w̄4) respectively. We will prove the lemma by induction. We first assume that it
holds for the partitions for (ul, w1) and (ūl, w̄1). Now we show it also holds for the
partitions for (ul, w4) and (ūl, w̄4). Thus by the induction hypothesis, we have

|w1 − w̄1| = 0(1)β. (3.2)
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For definiteness, we consider the case when σ(w2, w4) = λi(w2) and σ(w̄1, w̄3) =
λi(w̄1) = λi(w̄3). Choose two states w∗ ∈ Hi(w1) and w̄∗ ∈ Hi(w̄1) with wi∗ = w̄i∗ =
wi

4. Using the argument in the proof of Lemma 2.3, we have

(wi
4 − wi

1)σ (w1, w∗) = (wi
4 − wi

2)σ (w2, w4)+ (wi
2 − wi

1)λ̂i(w1, w2)

+ 0(1)|wi
4 − wi

1||wi
2 − wi

1|(λi(w2)− λi(w1)), (3.3)

(w̄i
4 − w̄i

1)σ (w̄1, w̄∗) = (w̄i
3 − w̄i

1)σ (w̄3, w̄1)+ (w̄i
4 − w̄i

3)λ̂i(w̄3, w̄4)

+ 0(1)|wi
4 − wi

1||wi
4 − wi

3|(λi(w̄4)− λi(w̄3)). (3.4)

By continuity, we have

σ(w1, w∗)− λi(w1) = σ(w̄1, w̄∗)− λi(w̄1)+ 0(1)β|wi
4 − wi

1|,
σ (w1, w∗)− λi(w4) = σ(w̄1, w̄∗)− λi(w̄4)+ 0(1)β|wi

4 − wi
1|.

(3.5)

Summing up (3.3) and (3.4) and using (3.5), we have from direct calculations,

(wi
4 − wi

2)(λi(w2)− λi(w1))+ (w̄i
3 − w̄i

1)(λi(w̄4)− λi(w̄3)) = 0(1)|wi
4 − wi

1|2β.

For small β, we may assume that |wi
4 − wi

1| ≤ 0(1)|wi
3 − wi

2|. Thus

λi(w2)− λi(w1)+ λi(w̄4)− λi(w̄3) = 0(1)|wi
4 − wi

1|β, (3.6)

which implies (iv). As a consequence of (3.3), (3.4) and (3.6), we have

σ(w1, w∗) = σ(w2, w4)+ 0(1)|wi
4 − wi

1|β,
σ (w̄1, w̄∗) = σ(w̄1, w̄3)+ 0(1)|wi

4 − wi
1|β,

|w∗ − w4| + |w̄∗ − w̄4| = 0(1)|wi
4 − wi

1|β.
(3.7)

(iii) follows from (3.6) and (3.7) by the continuity argument:

σ(uj−1, uj )− λi(uj ) = σ(ūj−1, ūj )− λi(ūj )+ 0(1)|wi
4 − wi

1|β. (3.8)

For (i) and (ii), we only need to show that for w on Di(w2, w4) and w̄ on Di(w̄1, w̄3),
with wi − wi

l = w̄i − w̄i
l and w taking values between wi

2 − wi
l and wi

3 − wi
l , then

w − w1 = w̄ − w̄1 + 0(1)|wi − wi
1|β. (3.9)

Other cases can be discussed similarly. To verify (3.9), we consider the state ŵ on
Di(w1, ŵ3) and w̄ on Di(w̄1, w̄3), with ŵi = w̄i and ŵ3 ∈ Hi(w1). By continuity, we
have

ŵ − w1 = w̄ − w̄1 + 0(1)|w̄i − w̄i
1|β. (3.10)

Thus it remains to estimate |w − ŵ|. By Lemma 3.1 this is can be done by estimating

(ŵ − w2)σ (w2, w4)− (f (ŵ)− f (w2)).

By (3.6), (3.7) and continuity, we have

(ŵ − w2)σ (w2, w4)− (f (ŵ)− f (w2))

= cri(ŵ)+ 0(1)|wi − wi
1||wi

4 − wi
1|β, (3.11)

where c is a scalar. Hence (3.9) follows from (3.11) and Lemma 3.1.
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A similar argument applies to other cases for sufficiently small β. If β is not small
enough, we divide it into the sum of small increments and apply the above procedure
repeatedly to each increment. This completes the proof of the lemma. ��

For any two functions, u and v, we set

(u− v)+ =
{
u− v, u ≥ v,

0, u < v,
(u− v)− =

{
0, u ≥ v,

v − u, u < v.

If αi is a composite of i-subwaves αi,k ≡ (ui,k−1, ui,k), k = 1, 2, . . . , m from left to
right, then we set

η(αi) =
m∑

k=1

η(αi,k),

where η(αi,k) = αi,kσ (αi,k) if αi,k is a shock; and

η(αi,k) =
∫ ui,k

ui,k−1

λi(u)du
i,

if αi,k is a rarefaction wave and λi(u) takes value along Ri(ui,k−1).
The Glimm scheme through the wave tracing method is based on the study of the

wave interaction between two Riemann solutions. By using Lemmas 2.2, 2.3 and 3.2,
the interaction estimate can be summarized as follows.

Theorem 3.1 (Liu [16]). Let ul, um, and ur be three nearby states and the elementary
i-waves in the solutions of the Riemann problems (ul, um) and (um, ur) be (ui−1, ui) and
(vi−1, vi), i = 1, 2, . . . , n, respectively. Then the solution (wi−1, wi), i = 1, 2, . . . , n,
of the Riemann problem (ul, ur) is the linear superposition of the above two solutions
modulo the nonlinear effect of the order Q(ul, um, ur)= Q(W), the degree of interaction
for the wave pattern W consisting of the solutions of the Riemann problems (ul, um)

on the left and (um, ur) on the right, and δC(ul, um, ur) = δC(W), the product of the
variation δ = |um − ul | + |ur − um| and the cancellation. In other words,

γi = αi + βi +O(1)(δC(ul, um, ur)+Q(ul, um, ur)), (3.12)

η(γi) = η(αi)+ η(βi)+O(1)(δC(ul, um, ur)+Q(ul, um, ur)), (3.13)

αi =
nαi∑
k=1

αi,k, and βi =
nβi∑
k=1

βi,k,

αi ≡ ui − ui−1, βi ≡ vi − vi−1, γi ≡ wi − wi−1,

C(ul, um, ur) ≡
n∑

i=1

Ci(ul, um, ur) = 1

2
||γi | − |αi | − |βi ||,

for some constants nαi and nβi , i = 1, 2, . . . , n. Each αi,k = (ui,k−1, ui,k) and βi,k =
(vi,k−1, vi,k) is either a shock or a rarefaction wave. C(ul, um, ur) measures the amount
of cancellation. The measure of wave interaction is

Q(ul, um, ur) = Qs(ul, um, ur)+Qh(ul, um, ur), (3.14)
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where Qh measures the coupling of different characteristic families:

Qh(ul, um, ur) ≡
∑
i>j

|αi ||βj |,

and

Qs(ul, um, ur) ≡
n∑

i=1

Qi
s(ul, um, ur), Qi

s(ul, um, ur) ≡
nαi∑
k=1

nβi∑
l=1

Qi
s(αi,k, βi,l),

measures the interaction potential of the same characteristic family and is defined as
follows:
(i) Both αi,k and βi,l are shocks. Set

Qi
s(αi,k, βi,l) = |αi,k||βi,l |max{0,−6(αi,k, βi,l)};

(ii) One of αi,k and βi,l is a shock and the other is a rarefaction wave. For definiteness,
we let αi,k be a shock and βi,l be a rarefaction wave and set

Qi
s(αi,k, βi,l) = |αi,k|

∫ vii,l

vii,l−1

(λi(v)− λi(vi−1)+ λi(ui)− σ(αi,k))−dvi,

where λi(v) takes value along Ri(vi,l−1).
(iii) Both αi,k and βi,l are rarefaction waves. Set

Qi
s(αi,k, βi,l) =

∫ ui,k

ui,k−1

∫ vi,l

vi,l−1

(λi(v)− λi(vi−1)+ λi(ui)− λi(u))−duidvi,

where λi(u) and λi(v) take values along the curves Ri(ui−1) and Ri(vi−1) respectively.
In (3.12) and (3.13) O(1) is a bounded function which depends only on the flux f (u).

Proof. The proof is done in steps. We first consider the data with Qs(ul, um, ur) = 0.
Thus we assume that there exists k, 1 ≤ k ≤ n, such that there is no wave faster (or
slower) than k-waves to the right (or left): α1 = · · · = αk = 0, βk+1 = · · · = βn = 0.
We have

Qh(ul, um, ur) = |α||β|, |α| ≡
∑
i

|αi |, |β| ≡
∑
i

|βi |.

If α (or β) is zero then wi = vi (or wi = ui) and the solution of the Riemann problem
(ul, ur) is the same as that of (um, ur) (or (ul, um)) and the theorem holds trivially with
Q(ul, um, ur) = 0. We need to show that the deviation from the linear superposition is
O(1)αβ = O(1)Qh(ul, um, ur). This follows from the C2-like property of Lemma 2.4.

We next consider the interaction of waves of the same family. Let |αj | = |βj | = 0
for all j �= i and both |αi | and |βi | are not zero. Then we have the following cases.

Case 1. (uii − uii−1)(v
i
i − vii−1) > 0. For definiteness, we assume uii − uii−1 > 0, vii −

vii−1 > 0. The proof is based on a limiting process and Lemma 3.2 on the stability of the
wave pattern. First we divide each rarefaction wave into small rarefaction shocks, each
with strength less than ε, where ε is chosen to be a small positive number. We consider
the interaction of αi and βi as follows: We consider the interaction of the first right wave
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of αi and the first left wave of βi , and it gives an i-wave and a cubic error term. By
Lemma 3.2, we can shift the error term to the left of the wave patterns of the i-waves
and consider the interaction of the produced shock wave and the nearest i-wave with the
largest interaction angle. The total error thus caused is the sum of the cubic error in the
interaction which is therefore summable.

The above procedure can be continued and we claim that the interaction potential Qs

of the wave patterns of the remaining i-waves will approach zero as the number of the
interaction times j tends to infinity. Furthermore, the estimates (3.12) and (3.13) hold.
Therefore the final result is the solution to the Riemann problem (ul, ur) with small
perturbation Qs . To prove this claim, we construct the following functionals:

Fj ≡
∑
γ j

|γ j | + k1Q
i,j
s ,

Gj ≡
∑
γ j

η(γ j )+ k1Q
i,j
s ,

(3.16)

where {γ j } is the family of i-waves after the j th interaction. We will show that both Fj

and Gj are decreasing functions of j when k1 is appropriately chosen, and limj→∞Q
i,j
s

= 0.
Let ξl and ξr be the two waves interacting at the j th step. And let ξ be any remaining

wave in the i-wave pattern before interaction. By Lemma 2.2 and Lemma 2.3, we have

ξ̄ = ξl + ξr + 0(1)ξlξr (σ (ξl)− σ(ξr)),

η(ξ̄ ) = η(ξl)+ η(ξr)+ 0(1)ξlξr (σ (ξl)− σ(ξr)),
(3.17)

where ξ̄ is the i-wave after interaction. SinceQi,j
s has a term ξlξr (σ (ξl)−σ(ξr)), which is

not inQ
i,j+1
s . By using Lemma 3.2, there exists a constant 0(1) K1 such thatFj+1 < Fj

and Gj+1 < Gj .
It remains to show that limj→∞Q

i,j
s = 0. According to our assumption and the

construction of {γ j } in (3.16), we know that the strength of the shock wave increases
after interaction at each step. Since in each step we choose the interaction of the two
i-waves with largest interaction angle, under the assumption that each rarefaction shock
is of order ε except those at the edge of the centered rarefaction waves, it takes at most
two more steps so that the decrease of Qi,j

s is of the order of ε2Q
i,j
s after the j th step,

i.e.
Q

i,j+2
s −Q

i,j
s ≤ −0(1)ε2Q

i,j
s ,

for some positive constant 0(1). Furthermore, since Q
i,j
s is decreasing in j , it will

approach zero as j tends to infinity. By letting ε tend to zero, we have the estimate
(3.12) and (3.13).

Case 2. (uii − uii−1)(v
i
i − vii−1) < 0. For this case, we also divide the rarefaction wave

into small rarefaction shocks with each strength less than ε.
The main difference between this case and Case 1 is that new ith rarefaction waves

may be created after wave interaction. From the construction of the wave curves Wi ,
Wi is tangent at each point to either an Hi or Ri curve. By a continuity argument, the
strength of the new created ith rarefaction waves can be controlled by the cancellation of
the i-wave. The strength of the new created j -wave, j �= i, and the change of the product
of the wave strength and its speed can be controlled by the product of the cancellation
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of the i-wave and the total strength of the waves. Notice that the term δC(ul, um, ur)

appears on the right hand sides of (3.12) and (3.13). Thus by the continuity argument
both (3.12) and (3.13) hold.

The general interaction is reduced to a series of interactions of the above two types
plus interaction with waves of strength of the order Q(ul, um, ur), cf. [12, 19, 23]. ��

4. Glimm-Type Functional

Nonlinear interaction of weak waves can be controlled globally and solutions of general
initial-value problems can be constructed using as building blocks the elementary waves
studied in the last section. This has been done in the fundamental paper of Glimm, [12],
for the system (1.1) under the assumption that each characteristic field is either genuinely
nonlinear or linearly degenerate, and that the initial data have small total variation T V :

u(x, 0) = u0(x), T V ≡ variation−∞<x<∞ u0(x). (4.1)

The Glimm scheme is a finite difference scheme involving a random sequence ai, i =
0, 1, . . . , 0 < ai < 1. Let r = >x, s = >t be the mesh sizes satisfying the (C-F-L)
condition

r

s
> 2|λi(u)|, 1 ≤ i ≤ n, (4.2)

for all statesu under consideration. The approximate solutionsu(x, t) = ur(x, t) depend
on the random sequence {ak} and is defined inductively in time as follows:

u(x, 0) = u0((h+ a0)r), hr < x < (h+ 1)r, (4.3)

u(x, ks) = u((h+ ai)r − 0, ks − 0), hr < x < (h+ 1)r,
k = 0,±1,±2, . . . . (4.4)

Thus the approximate solution is a step function for each layer t = ks, k = 1, 2, . . . .
Between the layers it consists of elementary waves by solving the Riemann problems at
grid points x = hr, h = 0,±1, . . . . Due to the C-F-L condition (4.2) these elementary
waves do not interact within the layer. Thus the approximate solution is an exact solu-
tion except at the interfaces t = ks, k = 1, 2, . . . . The numerical error depends on the
random sequence. In fact, as shown by Glimm [12] for the case when each characteristic
field is either genuinely nonlinear or linearly degenerate, we have the following theorem.

Theorem 4.1. Suppose that the initial data u0(x) is of small total variation T V . Then
the approximate solutions u(x, t) are of small total variation O(1)T V in x for all time
t . Moreover, for almost all random sequences {ak}∞k=1, the approximate solutions tend to
an exact solution for a sequence of the mesh sizes r, s tending to zero with r/s fixed and
r, s satisfying the C-F-L condition. The exact solution u(x, t) is of bounded variation in
x for any time t ≥ 0:

variation−∞<x<∞ u(x, t) = O(1)T V,

and is continuous in L1(x)-norm:∫ ∞

−∞
|u(x, t1)− u(x, t2)|dx = O(1)|t1 − t2|, t1, t2 ≥ 0.
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Proof. The proof is done in three steps:

The first step is to prove the uniform boundedness of the total variation of the ap-
proximate solutions. The main idea is to generalize the Glimm functional to approximate
solutions for the general system. The functional F(J ) is defined on spacelike curves J .
It consists of a linear part L(J ), measuring the total variation, a quadratic part Qh(J )

and a cubic part Qs(J ), measuring the potential wave interaction. The curve J incor-
porates the scheme and consists of line segments connecting points ((h± ak)r, ks) and
(hr, (k ± 1/2)s). The elementary waves issued from the grid points (hr, ks) will cross
the line segments. These functionals are defined as follows:

L(J ) ≡∑{|α| : α any wave crossing J },
Qh(J ) ≡

∑{|α||β| : α and β interacting waves of distinct
characteristic families crossing J },

Qs(J ) ≡
∑n

i=1 Q
i
s,

Qi
s ≡

∑{|α||β|max{−6(α, β), 0} : α and β i − waves crossing J,

α to the left of β},
Q(J ) ≡ Qh(J )+Qs(J ),

F (J ) ≡ L(J )+MQ(J).

(4.5)

Here M is a sufficiently large constant to be chosen later. In the above definition of
Qh(J ), an i-wave to the left of a j -wave is interacting if i > j .

The main estimate is that, for any curves J1 and J2, J2 lies toward larger time than
J1,

F(J2) ≤ F(J1), (4.6)

provided that the total variation T V of the initial data is small and that M is chosen
sufficiently large. It suffices to prove (4.6) when J2 is an immediate successor of J1,
meaning that J1 and J2 differ only at one grid point, say J1 goes through (hr, (k−1/2)s);
while J2 goes through (hr, (k + 1/2)s) and they sandwich a diamond > = >h,k with
vertices ((h − 1 + ak)r, ks), ((h + ak)r, ks), (hr, (k − 1/2)s) and (hr, (k + 1/2)s).
The waves entering > are part of the solutions of the Riemann problems issued from
(hr, (k− 1)s) and either from ((h− 1)r, (k− 1)s) or (h+ 1)r, (k− 1)s), depending on
whether ak−1 ≤ 1/2 or ak−1 > 1/2. The wave leaving > is the solution of the Riemann
problem issued from (hr, ks). Thus the situation is the same as that dealt with in the last
section. We denote by (ul, um), (um, ur) the Riemann problems corresponding to the
waves entering > and (ul, ur) that leaving >. The amount of interaction within > is

Q(>) ≡ Qh(ul, um, ur)+Qs(ul, um, ur), (4.7)

and, for later use, the amount of interaction in a region " is denoted by

Q(") ≡
∑

{Q(>i,j ) : (ir, js) ∈ "}. (4.8)

The same notations apply to

C(>) ≡ C(ul, um, ur), D(>) ≡ C(>)+Q(>).

For the first curve J0 between t = 0 and t = s, the functional is dominated by the total
variation T V of the initial data:

F(J0) = O(1)T V,
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which is assumed to be small. To prove (4.6) by induction we assume

F(J1) ≤ F(J0) = O(1)T V .

The waves crossing J1 and J2 are the same outside > and, around >, waves crossing J1
are the solution of the Riemann problems (ul, um) and (um, ur); while those crossing
J2 are the solution of the Riemann problem (ul, ur). These waves are related according
to Theorem 3.1, whence we have

L(J2) ≤ L(J1)− 2C(>)+O(1)(Q(>)+ T VC(>)).

There are two considerations for the difference of the wave interaction functionalsQ(J1)

and Q(J2): Due to the changes of wave strengths and speeds after interaction, there is
a change in the nonlinear functional of the order O(1)D(>) times the total strength,
which is O(1)T V , of waves crossing the common part of J1 and J2. On the other hand,
and this is the key point, waves entering > are interacting with the measure of inter-
action Q(>); while those leaving > are the solution of a Riemann problem and are
therefore non-interacting. For the quadratic wave interaction measure Qh the above two
considerations yield

Qh(J2)−Qh(J1) ≤ O(1)T V ·D(>)−Qh(>).

The cubic measure Qs requires some computations, which differs in a basic way from
the genuinely nonlinear case of Glimm [9], where the measure Qs can be chosen to be
quadratic. We consider Qk

s when the two k-waves before interaction are shocks, denoted
by αk and βk , with speeds σ1 and σ2, respectively. The k-wave after interaction is denot-
ed γk with speed σ . Since the case of cancellation can be discussed easily, we assume
that αk and βk are in the same direction. We now study the interaction potential of these
waves with a k-wave δk , which is located to the right of the diamond >. Assume that
these waves are interacting in the sense that the angle 6 between them is negative. The
other case when some of them are interacting and the others are not can be discussed
similarly. Then the potential interaction measure between δk and the k-waves entering
> is

|αk||βk|(σ1 − σ2)+ (|αk|(σ1 − σ2)+ (|αk| + |βk|)|6(βk, δk)|)|δk|.
From Theorem 3.1, this equals

|αk||βk|(σ1 − σ2)+ (|γk|σ − (|αk| + |βk|)σ2

+ (|αk| + βk|)|6(βk, δk)|)|δk| +O(1)D(>)|δk|.
The interaction measure between δk and the k-waves γk leaving > is

|γk||6(γk, δk)||δk| = |γk|(σ − σ2 + |6(βk, δk)|)|δk|.
Since |γk| = |αk| + |βk| +O(1)D(>) the difference of interaction measures after and
before the interaction is:

−|αk||βk||σ1 − σ2| +O(1)D(>)|δk|.
With the above analysis, we have

Q(J2)−Q(J1) = −Q(>)+O(1)T V ·D(>). (4.9)
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We conclude from the above estimates that, for T V sufficiently small and M chosen
suitably large,

F(J2)− F(J1) ≤
(
O(1)− M

2

)
Q(>)+ (0(1)MT V − 2)C(>) ≤ −D(>),

(4.10)

whence we have (4.6). For later uses we have, by summing up these estimates over a
region " bounded by two curves J− and J+,

D(") ≤ F(J−)− F(J+). (4.11)

The second step, the convergence of the approximate solutions follows easily from
the boundedness of the total variation of the approximate solutions already shown in the
first step. In fact, it follows easily from Helly’s theorem that there exists a sequence of
mesh sizes tending to zero such that the approximate solutions tends to a limit function
u∗(x, t). This is done first for rational times and then we use the fact that the approximate
solutions are continuous in t in the L1(x) topology:∫ ∞

−∞
|u(x, t2)− u(x, t1)|dx = O(1)|t2 − t1|. (4.12)

This is a consequence of the finite speed of propagation of the scheme and that the
solution changes due to the wave interactions, which are bounded, (4.11). Thus

|u(x, t2)− u(x, t1)| = O(1)variationy{u(y, t1) : |x − y| ≤ L|t2 − t1|}.
Equation (4.12) follows from integrating this in x and the change of the order of inte-
grations.

The final step is to show that the limit function u(x, t) is a weak solution of the initial
value problem (1.1), (1.2). This can be done as in [12]. ��

As in [17], we are going to make the Glimm scheme deterministic, i.e., to show that
the scheme is consistent if and only if the random sequence is equidistributed.

To illustrate that the scheme is consistent only if the random sequence is equidistrib-
uted, we consider the example of the propagation of a single shock with positive speed
σ :

u0(x) =
{
u−, x < 0,
u+, x > 0.

The shock is located at x = σs at t = s − 0. According to (4.4), at t = s it is located at

x =
{

0, if a1r > σs,

r, if a1r ≤ σs.

Given a fixed time T = Ks the location of the shock in the approximate solution is

x = A(K, I)r, I ≡ (0, σ
s

r
).

Here, for a given subinterval I of (0, 1) and positive integer N , A(N, I) denotes the
number of k, 1 ≤ k ≤ N, such that ak ∈ I . When the meshes r, s, r/s fixed, are refined
we have K → ∞ and the shock location becomes exact at x = σT if

A(K, I)r → σT ; or,
A(K, I)

K|I | → 1, as K → ∞.
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Here |I | = σs/r is the length of the interval I . In other words, the shock location is
exact in the limit if the random sequence is equidistributed:

Definition 4.1. A sequence {ak}∞k=1 in (0, 1) is equidistributed if

B(N, I) ≡
∣∣∣A(N,I)

N
− |I |

∣∣∣→ 0, as N → ∞,

for any subinterval I of (0, 1). Here A(N, I) denotes the number of k, 1 ≤ k ≤ N,

such that ak ∈ I , and |I | is the length of I .

To show that equidistributedness is sufficient, we need the wave tracing method to
be discussed in the next section. We will therefore put off the consistency analysis in
deterministic version till then.

5. Wave Tracing Method

The local nonlinear superposition of waves has been expressed in Theorem 3.1. We now
describe a bookkeeping scheme of subdividing the elementary waves in the approximate
solution to obtain global nonlinear superposition. This is the idea of wave tracing, [17].
Here, however, we introduce a new analysis of consistency, in the L1 topology, of the
method. New analysis is needed because we have only the cubic measure of Qs , rather
than the quadratic measure, which exists for the genuinely nonlinear fields.

We illustrate the basic notion of the partitioning of waves by considering first the
scalar equation. Take the example of two shocks (u1, u2), (u2, u3), u1 > u2 > u3, of
speed σ1, σ2, respectively, combining into a single shock (u1, u3) of speed σ3. We divide
(u1, u3) into the superposition of the original two shocks. The result of the interaction
is then viewed as that both of the original shocks keep their identities but only with a
change of their speed. This is compared with the linear superposition of two shocks with
their original speeds kept. The time change of the error in L1(x) after the interaction is
the product of the wave jump and the change in the wave speed:

|α1||σ1 − σ3| + |α2||σ2 − σ3| = |α1|[σ(α1)] + |α2|[σ(α2)],
α1 ≡ u2 − u1, α2 ≡ u3 − u2.

Consequently the time change of the error is
∑

α |α|[σ(α)], where [σ(α)] denotes the
variation of speed σ(α) at that time.

Consider next the cancellation of a wave (u1, u2) and another stronger wave (u2, u3),
u2 > u1 > u3. After the interaction, (u1, u2) is cancelled, so does a portion of (u2, u3).
We divide the wave (u2, u3) into subwaves (u2, u1) and (u1, u3). The nonlinear interac-
tion is then viewed as the wave (u1, u2) and the subwave (u2, u1) cancelling each other;
while the subwave (u1, u3) surviving. Notice here that all the waves may be composite
waves. Denote by C ≡ |u1 − u2| the amount of wave cancellation. In terms of the time
change of theL1(x) norm again, the error is bounded by the amount of wave cancellation
O(1)C = O(1)|u1 − u2|.

We may perform this partition of waves in an approximate solution as follows: Fix
a small time t1 = N>t and consider the approximate solution u(x, t) = ur(x, t) in
the time zone 0 < t < t1. Waves interact and cancel in the time zone in a way that
is not easily foreseen because of the nonlinearity and the randomness of the scheme.
The wave partition is a posteriori bookkeeping scheme. Given a shock at time t = 0
we partition it into subshocks sufficiently fine that each subshock is either cancelled
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completely or surviving as a shock or a rarefaction wave with strength unchanged in the
zone. The situation is the same for a rarefaction wave: In addition to the cancellation,
a rarefaction wave could become part of a shock wave, or it could be split when the
random number ak times r = >x equals >t times one of the characteristic speeds of the
rarefaction wave. Nevertheless we may keep refining a partition of a wave so that each
subwave is either completely cancelled or propagating intact as a single wave, either
shock or rarefaction wave, in the zone. Furthermore, since we divide each rarefaction
wave into small rarefaction shocks with each strength less than ε, from now on we treat
both rarefaction wave and shock in the same way.

Notice that how fine a given wave needs to be partitioned and which subwaves survive
depends on the random sequence as well as the time zone. This is expected as the waves
behave nonlinearly.

Next we turn to the system. In addition to wave combining and cancelling, wave
interaction may alter the wave states and produce new waves. Thus we have three cate-
gories of waves, surviving ones, cancelled ones, and those produced by interactions. We
have the following theorem on wave partition.

Theorem 5.1. Let δ be a constant with 0 < δ < 1. The waves in an approximate so-
lution in a given a time zone "l = {(x, t) : −∞ < x < ∞, (l − 1)Ns ≤ t < lNs},
can be partitioned into subwaves of categories I , II or III with the following properties:

(i) The subwaves in I are surviving. Given a subwave α(t), (l − 1)Ns ≤ t < lNs,

in I , write α ≡ α((l − 1)Ns) and denote by |α(t)| its strength at time t , by [σ(α)] the
variation of its speed and by [α] the variation of the jump of the states across it over the
time interval (l − 1)Ns ≤ t < lNs. Then∑

α∈I
([α] + |α((l − 1)Ns)|[σ(α)]) = O(1)(D("l)(Ns)−δ + T .V .N1+δsδ + ε).

(ii) A subwave α(t) in II has positive initial strength |α((l − 1)Ns)| > 0, but is
cancelled in the zone "l , |α(lNs)| = 0. Moreover, the total strength and variation of
the wave speed satisfy∑

α∈II
([α] + |α((l − 1)Ns)|[σ(α)]) ≤ 0(1)(D("l)(Ns)−δ + T .V .N1+δsδ + ε).

(iii) A subwave in III has zero initial strength |α((l − 1)Ns)| = 0, and is created
in the zone "l , |α(lNs)| > 0. Moreover, the total variation satisfies∑

α∈III
([α] + |α(t)|) = O(1)(D(")+ ε), (l − 1)Ns ≤ t < lNs.

Remark 5.1. The theorem differs from the similar ones in previous works in that the error
estimate is made for the interaction of relatively strong and weak waves separately. This
accounts for the errors O(1)(D("l)(Ns)−δ for strong waves and T .V .N1+δsδ for weak
waves in (i) and (ii) above. This analytical refinement is necessary because of the third
order estimateQs , and not quadratic estimate, that is available for general non-genuinely
nonlinear systems.

Proof. For the case when each characteristic field is either genuinely nonlinear or linear-
ly degenerate, the summation of the wave strength time the variation of its wave speed in



Weak Solutions of General Systems of Hyperbolic Conservation Laws 313

each time zone "l is of the order of D("l)+ ε, where Qs is quadratic. This is no longer
true for the general system because Qs is cubic and waves may split due to cancellation.
To overcome this difficulty we consider the wave interaction in more detail to use the
cubic wave interaction potential to control the variation of the wave speed.

Now we choose a positive constant δ < 1 and consider a waveα(t) in"l . It is obvious
that |α((l − 1)Ns)|[σ(α)] at time t can be controlled by D("l)(t) if wave interaction
is between waves of different families or cancellation. Thus we only need to consider
the interaction of α(t) with waves of the same family and direction, denoted by αi with
speed σi . For simplicity of presentation, we can assume that all the waves are from a
scalar conservation law and that α(t) is on the left of αi for all i. If we denote the wave
after interaction by ᾱ with wave speed σ̄ , then we have

α(t)(σ (α(t))− σ̄ ) =
∑
i

αi(σ̄ − σi) ≤
∑
i

αi(σ − σi),

where σ(α(t)) > σ̄ and σ̄ > σi for all i. Hence if
∑

i |αi | > (Ns)δ , then∑
i

|α(t)||αi |6(α(t), αi) ≥
∑
i

|αi ||α(t)|[σ(α)](t) ≥ (Ns)δ|α(t)|[σ(α)](t),

where [σ(α)](t) represents the variation of the speed σ(α) at time t . Otherwise, we have

|α(t)|[σ(α)](t) ≤ 0(1)|α(t)|(Ns)δ.

Since waves propagate at finite speeds, the number of times of wave interactions with
α(t) in "l is of order N . Therefore by summing all the above terms over α(t) and the
time steps in "p, we have∑

α

|α((l − 1)Ns)|[σ(α)] ≤ 0(1)(Qs("l)(Ns)−δ + T .V .N(Ns)δ).

Thus Theorem 5.1 is true for the waves of a scalar conservation law. As for the system in
general, we just add to the above estimate the term Qh for interaction between waves in
different families, cancellation C and the error 0(1)ε due to dividing rarefaction waves
into rarefaction shocks. The rest of the proof is similar to the case when each character-
istic field is either genuinely nonlinear or linearly degenerate, [23]. This completes the
proof of the theorem. ��

As an application of the theorem, we prove the “consistency” part of Theorem 4.1 as
follows.

Proof. Theorem 4.1. Consistency. As we have seen for the propagation of a single shock
that the limit function u∗(x, t) can not be a weak solution of (1.1) and (1.2) for any
choice of the random sequence, which is not equidistributed. The error is accumulated
at t = ks, k = 0, 1, . . . :∫ ∞

−∞

∫ ∞

0
(uφt + f (u)φx)(x, t)dx dt +

∫ ∞

−∞
(uφ)(x, 0)dx

=
MN∑
k=0

∫ ∞

−∞
(u(x, ks + 0)− u(x, ks − 0))φ(x, ks)dx. (5.1)
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Here φ(x, t) is the test function with compact support, φ(x, t) = 0, t > T = MNs.

(The choice of the form MNs is for later convenience when we let M,N → ∞ as
s → 0.) We will show that this error term will approach zero as the mesh sizes tend to
zero due to the equidistributedness of the random sequence.

For illustration, we now calculate out the measure of consistency (5.1) for the simple
example of one shock studied in the paragraph immediately before Definition 4.1. By
our study of shock location then, we know that the limiting function in this case is a weak
solution if the random sequence is equidistributed. Denote by x = x(k)r the location of
the shock at time t = ks. We have∫ ∞

−∞
(u(x, ks + 0)− u(x, ks − 0))φ(x, ks)dx

=
{∫ x(k)r+σs

x(k)r
(u+ − u−)φ(x, ks)dx, if akr > σs,∫ (x(k)+1)r

x(k)r+σs
(u− − u+)φ(x, ks)dx, if akr < σs.

If we simplify the situation by assuming that the test function is a constant φ0 then the
(5.1) becomes, for the interval I = (0, σ s/r),

∑MN
k=0

∫∞
−∞(u(x, ks + 0)− u(x, ks − 0))φ(x, ks)dx

= φ0(u+ − u−)(A(MN, I)(r − σs)− A(MN, Ic)σ s

= φ0(u+ − u−)T (A(MN, I)( r
s
− σ)− (MN − A(MN, I))σ ) 1

MN

=
(
A(MN,I)

MN
− σ s

r

)
r
s
,

which tends to zero as MN → ∞ when the random sequence is equidistributed, Defini-
tion 4.1. To deal with the non-constancy of the test function φ(x, t), we divide the time
zone 0 ≤ t < T = MNS into small time zonesN(l−1)s ≤ t < Nls, l = 1, 2, . . . ,M .
The test function is close to a constant in each time zone. The closeness is of the order
O(1)LNs = O(1)LT/M , L the Lipschitz constant of φ(x, t), and tends to zero as
M → ∞. In each time zone the random sequence becomes increasingly equidistrib-
uted as N becomes large. Thus the above analysis applies and we have established the
consistency for the propagation of a singe shock as M,N → ∞.

For a general solution, we first partition each wave according to Theorem 5.1. Since
a subwave α has varying speed, the analysis given above for a single shock does not
apply directly. Nevertheless, the scheme (4.4) can determine the location of α up to the
variation of its speed in the time zone. The variation of the speed has been discussed
in Theorem 5.1, which shows that for a surviving wave α, its strength |α| times the
variation of its speed in a time zone "l is of the order of D("l)(Ns)−δ +N1+δsδ|α| up
to the error caused by dividing the rarefaction waves into rarefaction shocks. Thus the
new error contributed by surviving subwaves to the measure of consistency in a given
time zone "l is O(1)(Q("l)(Ns)−δ + T .V .N1+δsδ + ε)Ns. The total new error of this
kind over 0 ≤ t < T is then E1 = O(1)(Q(t ≥ 0)(Ns)1−δ + T .V .N1+δsδT + εT ).

Now if we choose M = N2 and 1
2 < δ < 1, then

E1 = 0(1)

(
Q(t ≥ 0)

(
T

M

)1−δ

+ T .V .T
4+δ

3 s
2δ−1

3 + εT

)
,

which tends to zero as M → ∞ and ε → 0.
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The error contributed by the cancelled subwaves in 0 ≤ t ≤ T is

E2 = O(1)

(
C(t ≥ 0)

T

M
+Q(t ≥ 0)(Ns)1−δ + T .V .N1+δsδT + εT

)
,

and is dealt with similarly. Thus the total error is of the form

E = E1 + E2

= O(1)

[
(A(N, I)/N − |I |)T + εT + C(t ≥ 0)

T

M

+Q(t ≥ 0)

(
T

M

)1−δ

+ T .V .T
4+δ

3 s
2δ−1

3

]
,

which tends to zero as M,N → ∞ and ε → 0.
Notice that in the above we have made use of the boundedness of the total cancella-

tions and interactions in {(x, t) : x ∈ R, t ≥ 0}, (4.11), and also that the wave partition
is done independently for each time zone "l, l = 1, 2, . . . ,M . An one-time partition
for the entire region {(x, t) : x ∈ R, t ≥ 0} would be too crude and does not yield the
vanishing factor T/M to a positive power in the above error estimate.

This completes the proof of the Theorem 4.1. ��
Another application of the wave tracing is that it is useful for the study of the evolution

of the L1(x)-norm of a weak solution, Sect. 6. The approximate solutions, and thereby
the exact solution, can be approximated locally in time with a wave pattern ū(x, t) of
linear superposition of nonlinear waves constructed as follows, [23]: First, since the so-
lution is of bounded variation, within any degree of accuracy, e.g. T .V .ε, in the L1-norm
and wave strength, we may ignore the waves near x = ±∞, say |x| > E, and consider
only a finite number of subwaves in a given time zone "p ≡ {(x, t) : −∞ < x <

∞, (p− 1)Ns ≤ t < pNs}. We number the surviving i-waves by αi
1, α

i
2, . . . , α

i
K . As-

sociated with each i-wave αi
k we assign an approximate i-wave ᾱk

i with the same states
as αi

k((p− 1)Ns) at time t = (p− 1)Ns and propagating along the straight line joining
the end positions of the wave (xk(αi

k((p−1)Ns)), (p−1)Ns) and (xk(α
i
k(pNs)), pNs)

of αi
k . The resulting speed is denoted by λ∗(ᾱi

k). The non-surviving waves also propa-
gate along lines with end states unchanged in the wave pattern ū(x, t). Their speeds are
defined arbitrarily so long as they are finite and no waves of the same family in ū interact
in the time zone "p. Each surviving rarefaction wave is assumed to be partitioned into
subwaves of strength less than ε, and viewed as a rarefaction shock. This introduces
another error of the order ε. We can summarize this in the following theorem.

Theorem 5.2. There exists a wave pattern ū(x, t) consisting of linear superposition of
a finite number of nonlinear waves K = {ᾱ} and a large constant E such that:

(i) There exists a one-to-one correspondence α → ᾱ between the surviving waves I
in |x| < E of Theorem 5.1 and a subset L of K such that:∑

α

|α − ᾱ| = O(1)D("p)+ ε,

∑
α

|α||λ(α)− λ∗(ᾱ)| = O(1)(D("p)(Ns)−δ + T .V .N1+δsδ + e + ε).
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Here the function e measures the equidistributedness of the random sequence {ai}, where
(p − 1)N ≤ i < pN for 1 ≤ p ≤ M:

e = sup
I,p

∣∣∣∣Ap(N, I)

N
− |I |

∣∣∣∣ ,
for any sub-interval I of (0, 1). As in Definition 4.1, Ap(N, I) denotes the number of k,
(p − 1)N ≤ k < pN such that ak ∈ I .

(ii)
∑

ᾱ∈K−L |ᾱ| = O(1)D("p).
Moreover,

(iii) ū(x, (p − 1)Ms)− u(x, (p − 1)Ms) = 0 for |x| < E.
(iv)

∫
|x|>K

|ū(x, (p − 1)Ms) − u(x, (p − 1)Ms)|dx + ∑{|α| : α ∈ u(x, (p −
1)Ms), |x| > E} < T.V .ε.

(v)

∫ ∞

−∞
|ur(x, t)− ū(x, t)|dx = O(1)(D("p)(Ns)1−δ+T .V .N2+δs1+δ+(e+ε)Ns),

(p − 1)Ns ≤ t < pNs, p = 1, 2, . . . ,M. (5.2)

6. Lbf1 Stability of Constant States

In this section, we are going to study the uniform boundedness of the L1 norm for weak
solutions to the general hyperbolic system (1.1), that is, the L1 stability of constant state
solutions. Without loss of generality, we take the constant state to be zero.

As for the system studied in [22, 23] in which each characteristic field is either
genuinely nonlinear or linearly degenerate, there are two natural ways, i.e., by using rar-
efaction wave curves and Hugoniot curves, to measure the distance between two states
in the phase plane. In the following, we are going to use rarefaction wave curves to mea-
sure the distance. The advantage of this measurement is that we only need to control the
error caused by the bifurcation of the Hugoniot curve from the rarefaction wave curve
besides the nonlinear coupling of waves in different families. But the disadvantage is
that the relation between this kind of bifurcation needs to be considered in two weak
solutions. When one solution is a constant state, this kind of error can be controlled by
the time derivative of the integral of any convex entropy when the characteristic fields in
the system are either genuinely nonlinear or linear degenerate, cf. [21]. In this section,
we are going to show that this is also true in the general case.

Consider a general scalar conservation law

ut + f (u)x = 0. (6.1)

By choosing the particular convex entropy η(u) = u2

2 with entropy flux q(u) =∫ u
sf ′(s)ds, we have the following entropy estimate.

Lemma 6.1. Let u(x, t) be a weak solution to the scalar conservation law (6.1) consist-
ing of countable many admissible shocks, denoted by {αi}. Then we have

d

dt

∫
u2(x, t)dx = −2

∑
αi

A(αi),
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where the integral is over R. Here, for any admissible shock α = (u−, u+), A(α) de-
notes the area bounded by the curve y = f (u) and the straight line segment connecting
the end points (u−, f (u−)) and (u+, f (u+)) in the u− y plane.

Proof. If the solution is smooth, then it is obvious that d
dt

∫
u2(x, t)dx = 0. Without

loss of generality, we consider the contribution of a single shock to this derivative. Let
αi = (u−, u+) be an admissible shock located at x = x(t). We have

d

dt

∫
u2

2
(x, t)dx = 1

2
ẋ(t)(u−2 − u+2)− q(u−)+ q(u+)

+ other terms not related to (u−, u+),

where q ′ = uf ′ is the corresponding entropy flux. The term on the right hand side of
the above equality can be calculated as follows:

1

2
ẋ(t)(u−2 − u+2)− q(u−)+ q(u+)

= 1

2
(f (u−)− f (u+))(u− + u+)− f (u−)u− + f (u+)u+ +

∫ u−

u+
f (t)dt

= 1

2
(u+ − u−)(f (u+)+ f (u−))−

∫ u+

u−
f (t)dt

= −A(αi).

Summing the terms for all shocks gives the proof of this lemma. ��
Now we are going to show that this entropy estimate is closely related to the error

caused by the bifurcation of the Hugoniot curve from the rarefaction wave curve in the
general system.

Consider the general system of conservation laws (1.1). For illustration, we con-
sider the wave of the first family and waves of the other families can be dealt with
similarly. As before, we assume that u1 is a non-singular parameter along the 1-wave
curve. For simplicity, we choose the right eigenvector corresponding to λ1 as r1(u) =
(1, ξ2, ξ3, . . . , ξn).

For any state u = (u1, u2, . . . , un) along the rarefaction wave curve R1(u
−) through

u−, we write

u = u− +
∫ u1

u−,1
r1(s)ds =

(
u1

g(u1)

)
, (6.2)

for a smooth (n−1)-vector functiong(u1). Similarly, for any stateu = (u1, u2, . . . , un)∈
H1(u

−), we write u = (
u1

h(u1)

)
, for a smooth function h(u1).

Let α = (u−, u+) be an admissible 1-shock to the system, and, without loss of gen-
erality, we assume that u−,1 < u+,1. Then we have s(u+ − u−) = f (u+) − f (u−)
for some scalar s = σ(u−, u+). For any u = (u1, u2, . . . , un) ∈ H1(u

−), we denote
sl(u1) = σ(u−, u). Then by the entropy condition for the system, we have

sl(u1) > s for u−,1 < u1 < u+,1. (6.3)
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If we consider the scalar conservation law

u1
t + f 1

x (u
1, h(u1)) = 0, (6.4)

then both the Rankine-Hugoniot condition and the Oleinik entropy condition [24] hold
for the discontinuity (u−,1, u+,1). That is, α1 = (u−,1, u+,1) is an admissible shock of
(6.4). In the following lemma, we will compare the values maxu−,1≤u1≤u+,1 |g(u1) −
h(u1)| and A(α1) defined for α1 as an admissible shock to the scalar conservation law
(6.4) and show that they are in fact of the same order.

Lemma 6.2. Based on the above notations, we have

max
u−,1≤u1≤u+,1

|g(u1)− h(u1)| = 0(1)A(α1). (6.5)

Proof. First we have the following expression for A(α1):

A(α1) =
∫ u+,1

u−,1
(f 1(t, h(t))− f 1(u+,1, h(u+,1))− s(t − u+,1))dt

=
∫ u+,1

u−,1
(s − sr (t))(u+,1 − t)dt,

(6.6)

where sr (t) satisfies

sr (t)(t − u+1 ) = f 1(t, h(t))− f 1(u+1 , h(u
+
1 )).

By the entropy condition for the scalar conservation law (6.4), we have

sr (t) < s for u−1 < t < u+1 .

Similarly, we have

A(α1) =
∫ u+,1

u−,1
(sl(t)− s)(t − u−,1)dt. (6.7)

For any state ū = (u1, u2, . . . , un) ∈ R(u−), we now denote the (n − 1)-vector
function along the Hugoniot curve through ū by hū(u

1). Then, we let

d = max
u−,1≤ū1≤u+,1,ū1≤u1≤u+,1

|hū(u1)− g(u1)|.

We are going to prove that d = 0(1)A(α1), which immediately implies the lemma.
Let ū ∈ R(u−) with u−,1 < ū1 < u+,1 and du be a small variation along R(u−).

We consider the Hugoniot curves through ū and ũ = ū+ du. By Lemma 2.2, we have

|hū(u+,1)− hũ(u
+,1)| = c(u+,1 − u1)(λ1(ū)− σ1)du

1

= c((u+,1 − u1)(λ1(ū)− sr (u1))+ d)du1,
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where c is a 0(1) constant, σ1 = σ(ū, ū+) with ū+ ∈ H1(ū) and ū+,1 = u+,1. For
simplicity, we denote λ1(u

1) = λ1(ū). Therefore, we have

d = c

∫ u+,1

u−,1
(u+,1 − u1)(λ1(u

1)− sr (u1))du1 + cd

∫ u+,1

u−,1
du1

= c

∫ u+,1

u−,1
(u+,1 − t)(λ1(t)− sr (t))dt + c|u+,1 − u−,1|d,

(6.8)

where λ1(t) is taken value along R1(u
−).

Now we let B(α1) = ∫ u+,1

u−,1 (u
+,1 − t)(λ1(t) − sr (t))dt , where λ1(t) is evaluated

along R1(u
−). Then by (6.6) we have

A(α1)− B(α1) =
∫ u+,1

u−,1
(u+,1 − t)(s − λ1(t))dt.

To study the right-hand side of the above equality, we introduce a notation, D(u1) =∫ u1

u−,1(s − λ1(t))dt , where λ1(t) again is evaluated along R1(u
−). From the choice of

r1(u), we have

D(u1) = (s − sl(u1))(u1 − u−,1)+ sl(u1)(u1 − u−,1)−
∫ u1

u−,1
λ1(t)dt

= (s − sl(u1))(u1 − u−,1)+ f 1(u1, h(u1))− f 1(u−,1, h(u−,1))

−
∫ u+,1

u−,1
�f 1(t) · r1(t)dt

= (s − sl(u1))(u1 − u−,1)+ f 1(u1, h(u1))− f 1(u1, g(u1))

= (s − sl(u1))(u1 − u−,1)+ 0(1)|h(u1)− g(u1)|
= (s − sl(u1))(u1 − u−,1)+ 0(1)d.

Now we can estimate A(α1)− B(α1) as follows,

A(α1)− B(α1) =
∫ u+,1

u−,1
(u+,1 − t)dD(t)

= (u+,1 − t)D(t)

∣∣∣∣
u+,1

u−,1
+
∫ u+,1

u−,1
D(t)dt

=
∫ u+,1

u−,1
(s − sl(t))(t − u−,1)dt + 0(1)

∫ u+,1

u−,1
ddt

= −A(α1)+ 0(1)|u+,1 − u−,1|d.
Thus

A(α1) = B(α1)

2
+ 0(1)|u+,1 − u−,1|d. (6.9)
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By combining (6.8) and (6.9), we get

d = cB(α1)+ 0(1)|u+,1 − u−,1|d = 2cA(α1)+ 0(1)|u+,1 − u−,1|d.
Therefore, when |u+ − u−| is sufficiently small, we have d = 0(1)A(α1) which
completes the proof of the lemma. ��

We are now ready to define the time-decreasing nonlinear functional H [u(x, t)].
Given a solution u(x, t) of the system (1.1), we define the pointwise distance along the
rarefaction wave curves: solve the Riemann problem (u(x, t), 0) by waves:

u0 = u(x, t), ui ∈ Ri(ui−1), i = 0, 1, . . . , n, un = 0.

We set

qi(x, t) ≡ (ui − ui−1)
i , λi(qi(x, t)) ≡ µi(u

i
i−1, u

i
i), (6.10)

where µ(uii−1, u
i
i) is the average speed of waves in the Riemann problem with states

(uii−1, u
i
i) to the scalar conservation law defined along Ri(ui−1), i.e.,

uit + f i
x (u) = 0, u ∈ Ri(ui−1).

This way of assigning the distance is convenient in that ui is a conservative quantity and
so it satisfies simple wave interaction estimates. For an i-wave αi in the solution u(x, t),
we denote by x(αi) = x(αi(t)) its location at time t , and q±j (αi) for qj (x(αi)±, t),

1 ≤ j ≤ n. For j = i we also use the abbreviated notations q±(αi) = q±i (αi). The
linear part L[u] of the nonlinear functional H [u] is equivalent to the L1(x)-norm of the
solution:

L[u(·, t)] ≡∑n
i=1 Li[u(·, t)],

Li[u(·, t)] ≡
∫∞
−∞ |qi(x, t)|dx. (6.11)

Without any ambiguity, we will use u to denote the approximate solutions in the
Glimm scheme and also the corresponding weak solution when the mesh sizes tend
to zero. We will use the notations J to denote the waves in the solution u at a given
time. Moreover, αi denotes an i-wave in J . The other two components of the nonlin-
ear functional H [u], the quadratic Qd(t) and the convex entropy E(t), are defined as
follows:

Qd(t) ≡ Qd [u(·, t)] =∑
αi∈J Qd(α

i),

Qd(α
i) = |αi |(∑j>i

∫ x(αi )

−∞ |qj (x, t)|dx +∑
j<i

∫∞
x(αi )

|qj (x, t)|dx
)
,

(6.12)

E(t) ≡ E[u(·, t)] =
n∑

i=1

Ei(t) =
∫ ∞

−∞
|qi(x, t)|2dx. (6.13)

For any given time T = MNs in the Glimm scheme through the wave tracing method,
we define the main nonlinear functional H(t) as follows:

H(t) ≡ H [u(·, t)] ≡ (1 +K1F(p − 1)Ns))L(t)+K2(Qd(t)+ E(t)),
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for t ∈ ((p − 1)Ns, pNs), p = 1, . . . ,M . Notice here that the Glimm functional
F = F(u) is valued at the end time t = (p − 1)Ns. The jump of the functionals L(t),
Qd(t) and E(t) at each time step t = pNs, p = 1, 2, . . . ,M due to wave interaction
can be controlled by 0(1)[F(pNs)− F((p − 1)Ns)]L(pNs), and the L1 error due to
the replacement of the simplified wave pattern approaches zero as shown in Theorem
5.2.

Now we are going to estimate d
dt
H(t) inside each region (p−1)Ns < t < pNs. By

the property of the rarefaction wave curves, we immediately have the following lemma.

Lemma 6.3. Let ū ∈ G, ξ, ξ ′ ∈ R, ξξ ′ > 0, k ∈ {1, . . . , n}. Define the states and the
wave speeds

u = Rk(ξ)(ū), u′ = Rk(ξ
′)(u),

µ = µk(ū, u), µ′ = µk(u, u
′), µ′′ = µk(ū, u

′),

where µ(u1, u2) denotes the average speed of the waves in the Riemann problem with
the states u1 and u2 to the scalar conservation law defined along the rarefaction wave
curve Rk(ū), i.e. the scalar conservation law

ukt + f k
x (u) = 0, u ∈ Rk(ū).

Then we have

(ξ + ξ ′)(λ′′ − λ′)− ξ(λ− λ′) = 0.

Lemma 6.4. If the values ξ, ξj , ξ ′j , j = 1, 2, . . . , n, satisfy

Rn(ξn) ◦ · · · ◦ R1(ξ1)(u) = Rn(ξ
′
n) ◦ · · · ◦ R1(ξ

′
1) ◦ Ri(ξ)(u),

then
|ξi − ξ ′i − ξ | +

∑
j �=i

|ξj − ξ ′j | = O(1)|ξ |
∑
j �=i

|ξ ′j |.

And if the values ξ, ξj , ξ ′j , j = 1, 2, . . . , n, satisfy

Rn(ξn) ◦ · · · ◦ R1(ξ1)(u) = Rn(ξ
′
n) ◦ · · · ◦ R1(ξ

′
1) ◦Hi(ξ)(u),

where Hi(ξ)(u) is an admissible i-shock, then

|ξi − ξ ′i − ξ | +
∑
j �=i

|ξj − ξ ′j | = O(1)


d + |ξ |

∑
j �=i

|ξ ′j |

 ,

where d = |Hi(ξ)(u)− Ri(ξ)(u)|.
By Lemma 6.2, if we let αi = (u−, u+) be an admissible i-shock in u with jump

[αi] ≡ (u+ − u−)i , then∣∣q+(αi)− q−(αi)− [αi]
∣∣+∑

j �=i

|q+j (αi)− q−j (αi)|

= O(1)(|αi |
∑
j �=i

∣∣q−j (αi)
∣∣+ A(αi))

= O(1)(|αi |
∑
j �=i

∣∣q+j (αi)
∣∣+ A(αi)), (6.14)
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whereA(αi) denotes the area corresponding to the shock wave (u−,i , u+,i ), still denoted
by αi , to the scalar conservation law

uit + f i
x (u) = 0, u ∈ Hi(u

−).

Notice here that even though the distance is measured along rarefaction curves, (6.10),
and not along the Hugoniot curves, the above estimates still hold with A(αi) the area
defined by the shock, because the difference is of higher order. If αi = (u−, u+) is an
i-rarefaction wave in u with strength [αi] ≡ (u+ − u−)i , then∣∣q+(αi)− q−(αi)− [αi]

∣∣+∑
j �=i

|q+j (αi)− q−j (αi)| = O(1)|αi |
∑
j �=i

∣∣q−j (αi)
∣∣

= O(1)|αi |
∑
j �=i

∣∣q+j (αi)
∣∣. (6.15)

Now we are ready to estimate the derivative of the nonlinear functionalH(t) and prove
the main theorem in this section. According to the construction of the simplified wave
patterns of the approximate solutions, the open time interval Ip ≡ ((p − 1)Ns, pNs)

is the union of two disjoint sets Ip ≡ I cp ∪ I dp , where I dp are the countable interaction
times. H(t) is differentiable for t ∈ I cp; and is merely continuous for t ∈ I dp . For the
change of H(t) when t ∈ I cp, p = 1, . . . ,M , we have the following lemma.

Lemma 6.5. Suppose that the total variation T .V . of the initial data of the solution is
sufficiently small, and that u0(x) ∈ L1(R). Then, for t ∈ I cp,

d

dt
H(t) ≤ C(Q("p)+ C("p)+ T .V .(e + ε))+ η(t), p = 1, 2, . . . , N, (6.16)

for some choices of the constants K1 and K2. Here η(t) represents that the error comes
from the replacement of the simplified wave pattern, and satisfies∫ T

0
η(t)dt=0(1)

(
eT +εT +C(t≥0)

T

M
+Q(t≥0)

(
T

M

)1−δ

+T .V .T
4+δ

3 s
2δ−1

3

)
→ 0,

as s → 0 as shown in Theorem 5.2. The function e measures the equidistributedness of
the random sequence and ε is the strength of each approximate rarefaction shock, cf.
Theorem 5.1.

Proof. Without any ambiguity, we can assume that all the waves propagate at the exact,
rather than approximate, speeds in "p. This is true up to the error of the order of

e("p) = (Q("p)+ C("p)+ T .V .(e + ε))Ns +
∫ pNs

(p−1)Ns

η(t)dt,

cf. [23]. We first estimate d
dt
L(t). This will be used in the estimation of Qd(t).

A straightforward calculation gives

d

dt
L(t) =

n∑
j=1

∑
αi∈J

ẋ(αi)(|q−j (αi)| − |q+j (αi)|)

=
n∑

j=1

∑
αi∈J

(|q+j (αi)|(λ+j (αi)− ẋ(αi))− |q−j (αi)|(λ−j (αi)− ẋ(αi))
)
, (6.17)
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where we have used λ±j (α
i) = λj (q

±
j (αi)), cf. (6.10), and the obvious identity

∑
αi∈J

|q−j (αi)|λ−j (αi) =
∑
αi∈J

|q+j (αi)|λ+j (αi), j = 1, 2, . . . , n.

Based on Lemmas 6.3 and 6.4, each term in (6.17) can be estimated as in [23] for the
cases i = j and i �= j separately. For brevity, we omit the details. This gives

d

dt
L(t) ≤ 0(1)

∑
αi∈J

(A(αi)+ |αi |
∑
j �=i

|q+j (αi)| + e("p))

= 0(1)
∑
αi∈J

(A(αi)+ |αi |
∑
j �=i

|q−j (αi)| + e("p)), (6.18)

where A(αi) ≡ 0 if αi is not an admissible shock.
Now we estimate d

dt
Qd(α

i) of (6.12) for each i-wave αi ,

d

dt
Qd(α

i) =
∑
j>i

|αi | d
dt

∫ x(αi )

−∞
|qj (x, t)|dx +

∑
j<i

|αi | d
dt

∫ ∞

x(αi )

|qj (x, t)|dx.

According to the discussion of d
dt
L(t), both

∫ x(αi )

−∞ |qj (x, t)|dx, j > i, and
∫∞
x(αi )

|qj (x, t)|dx, j < i have the same error terms as d
dt
L(t) plus an extra term coming

from the difference between the wave speeds ẋ(αi) and λ±j (α
i). By the strict hyperbo-

licity of the system (1.3), we know that there exists a positive constant C2 such that

λ−j (α
i)− ẋ(αi) > C2 for j > i; λ+j (α

i)− ẋ(αi) < −C2, for j < i.

This and the assumption that the total variation of the solutions is sufficiently small yield

d

dt
Qd(t) ≤ −C2

∑
αi∈J

|αi |
∑
j �=i

|q+j (αi)| +O(1)T .V .
∑
αi∈J

A(αi)+ 0(1)e("p)

= −C2

∑
αi∈J

|αi |
∑
j �=i

|q−j (αi)| +O(1)T .V .
∑
αi∈J

A(αi)+ 0(1)e("p). (6.19)

Finally we estimate d
dt
E(t) as follows:

d

dt
E(t) =

n∑
j=1

∑
αi∈J

ẋ(αi)(|q−j (αi)|2 − |q+j (αi)|2)

=
n∑

j=1

∑
αi∈J

ẋ(αi)(|q−j (αi)|2 − |q+j (αi)|2 − φi(u(x(αi)−, t))

+ φi(u(x(αi)+, t)), (6.20)

where φi(ũ) denotes the entropy flux corresponding to the convex entropy (ui)2 of the
scalar conservation law

uit + f̃ i
x (u) = 0,
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with f̃ i (u) = f i(u) and u ∈ Ri(ũ). The terms in (6.20) with i �= j can be discussed as
in the case for d

dt
L(t) by using Lemmas 6.3 and 6.4. We only need to consider the case

when i = j .
Let αi = (u−, u+) be an admissible i-shock. We also use αi to denote the admissible

shock (u−,i , u+,i ) to the scalar conservation law

uit + f̄ i
x (u) = 0,

where f̄ i (u) = f i(u) and u ∈ Hi(u
−). By using Lemma 6.3 and, according to the

calculation in Lemma 6.1, we have

ẋ(αi)(|q−i (αi)|2 − |q+i (αi)|2)− φi(u(x(αi)−, t))+ φi(u(x(αi)+, t))

= (u+,i − u−,i )(f̃ i(u+)− f̃ i (u−))− 2
∫ u+,1

u−,1
f̃ (t)dt

+ 0(1)T .V .


|αi |

∑
j �=i

|q±j (αi)| + A(αi)




= (u+,i − u−,i )(f̄ i(u+)− f̄ i (u−))− 2
∫ u+,1

u−,1
f̄ (t)dt

+ 0(1)T .V .


|αi |

∑
j �=i

|q±j (αi)| + A(αi)




= (0(1)T .V .− 2)A(αi)+ 0(1)T .V .|αi |
∑
j �=i

|q±j (αi)|. (6.21)

If αi is a rarefaction shock with strength not greater than ε, then the above discussion
yields

ẋ(αi)(|q−i (αi)|2 − |q+i (αi)|2)− φi(u(x(αi)−, t))+ φi(u(x(αi)+, t))

= 0(1)T .V .|αi |
∑
j �=i

|q±j (αi)|. (6.22)

Under the assumption that the total variation T .V . is sufficiently small, we have, by
putting back the error e("p),

d

dt
E(t) ≤ −C3

∑
αi∈J

A(αi)+ 0(1)T .V .


|αi |

∑
j �=i

|q±j (αi)| + e("p)


 , (6.23)

where C3 is a positive constant.
The lemma follows by combining (6.18), (6.19) and (6.23), making use of the small-

ness of T .V . again. ��
For the jump of the functional H(t) crossing the times t = pNs, p = 1, . . . ,M ,

we have the following lemma, showing that the difference vanishes as the mesh size s

tends to zero.
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Lemma 6.6. Under the hypotheses of Lemma 6.5, we have, for each 1 ≤ p ≤ M ,

H(pNs+)−H(pNs−) ≤ Ce("p). (6.24)

Proof. According to the definition of the simplified wave pattern and Theorem 5.2, up
to the error of order T .V .ε, the difference between the wave patterns at time t = pNs+
and pNs− is the appearance of the waves which are either cancelled or newly created
in "p. Since the wave propagates at finite speed, the error thus caused is of the order of
D("p)Ns. This completes the proof of the lemma. ��

Now we can state and prove the main theorem in this section.

Theorem 6.1. Suppose that the total variation T .V . of the initial data of the solution
is sufficiently small, and that u0(x) ∈ L1(R). Then, for the exact weak solution u(x, t)

of (1.1) constructed by Glimm’s scheme, there exists a constant G independent of time
such that

‖u(x, t))‖L1 ≤ G‖u(x, s))‖L1 ,

for any s, t , 0 ≤ s ≤ t < ∞.

Proof. Without loss of generality, we will show that ‖u(x, T )‖L1 ≤ G‖u(x, 0)‖L1 for
any time T . By integrating (6.16) in Lemma 6.5, we have

H(pMs−)−H((p − 1)Ms+) ≤ Ce("p), p = 1, 2, . . . ,M. (6.25)

We sum up (6.24) and (6.25) with respect to p from 1 to M to yield

H(T ) ≤ H(0)+ C

M∑
p=1

(Q("p)+ C("p))Ns + CT .V .(e + ε)T + C

∫ T

0
η(t)dt,

where
∫ T

0 η(t)dt → 0 as s → 0. For any fixed T = MNs and M = N2, we have M ,
N → ∞ as the mesh size s tends to zero. By the definition of e and ε, we have e → 0
and ε → 0. We know that∑

p

(Q("p)+ C("p)) ≤ (Q+ C){0 ≤ t ≤ T } ≡ A(T ) < ∞. (6.26)

Thus, for any fixed T ,

M∑
p=1

(Q("p)+ C("p)+ T .V .(e + ε))Ns ≤ C

(
A(T )

T

M
+ T .V .(e + ε)T

)
→ 0

as s → 0.
Notice that for any fixed M and N , the functional H(t) is equivalent to the L1-norm

of the simplified wave pattern of u(x, t). For the approximate solution ur(x, t) in the
Glimm scheme, we can also define the corresponding functional H̄ (t) = H̄ [ur(·, t)]
which is equivalent to the L1(x)-norm of ur(x, t). By Theorem 5.1, we also have the
following estimate for H̄ (t):

H̄ (T ) ≤ H̄ (0)+ C

(
A(T )

T

M
+ T .V .(e + ε)T +

∫ T

0
η(t)dt

)
.
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According to Theorem 4.1, there exist subsequences of the approximate solutions
{ur(x, t)} which converge to the exact solution locally in the L1-norm. Consequent-
ly, there exists a constant G independent of T and s such that

‖u(x, T )‖L1 ≤ G‖u(x, 0)‖L1 .

This completes the proof of the theorem. ��

Acknowledgement. The authors wish to thank Fabio Ancona for interesting discussions on the Glimm-
type functional. After our paper was written, there is now a different approach to the theory for hyperbolic
conservation laws through the zero dissipation limit by Bianchini and Bressan, [3]. While this new ap-
proach yields a definitive well-posedness theory, our approach is natural for other studies, such as the
regularity and large-time behaviour of the solutions, cf. [19].
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