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Abstract: For n • n systems of conservation laws in one dimension without source 
terms, the existence of global weak solutions was proved by Glimm [1]. Glimm 
constructed approximate solutions using a difference scheme by solving a class of  
Riemann problems. 

In this paper, we consider the Cauchy problem for the Euler equations in the 
spherically symmetric case when the initial data are small perturbations of the trivial 
solution, i.e., u - 0 and p =_ constant, where u is velocity and p is density. We show 
that this Cauchy problem can be reduced to an ideal nonlinear problem approxi- 
mately. I f  we assume all the waves move at constant speeds in the ideal problem, 
by using Glimm's scheme and an integral approach to sum the contributions of  the 
reflected waves that correspond to each path through the solution, we get uniform 
bounds on the Lo~ norm and total variational norm of the solutions for all time. 
The geometric effects of spherical symmetry leads to a non-integrable source term 
in the Euler equations. Correspondingly, we consider an infinite reflection problem 
and solve it by considering the cancellations between reflections of different orders 
in our ideal problem. Thus we view this as an analysis of  the interaction effects at 
the quadratic level in a nonlinear model problem for the Euler equations. Although 
it is far more difficult to obtain estimates in the exact solutions of the Euler equa- 
tions due to the problem of controlling the time at which the cancellations occur, 
we believe that this analysis of the wave behaviour will be the first step in solving 
the problem of existence of global weak solutions for the spherically symmetric 
Euler equations outside of fixed ball. 

1. Introduction 

We consider the Euler equations of the compressible gas dynamics in R n, 

p, + V �9 (p~) = O, 

( ;2) ,  + v �9 (pg |  ~ + P )  = 0,  (1) 
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here t E R, x E R n, p is the density, ff is the velocity, and P = P(p)  is the pressure. 
In particular, this models an isothermal gas, i.e., P(p)  = p which can be viewed as 
a model problem obtained by linearizing the pressure. We consider here spherically 
symmetric solutions of  (1) in three dimensions outside a ball of radius 1. As is well 
known, Glimm's method [1] applies in the case n = 1 ([9, 10, 11]), but when n > 1, 
there is no general existence theory for weak (shock wave) solutions of  (1) and there 
is only short time existence of classical solutions ([2, 3]). Recently, the authors in [4] 
proved that there exists a linear growth rate for a system of spherically symmetric 
solutions in Lagrangian coordinates. In the spherically symmetric case, Eqs. (1) can 
be reduced to one dimensional equations in the radial variable x, but there is a 
non-integrable source term of order 1Ix. As a result, it is an open problem to show 
that spherically symmetric solutions of (1) remain bounded for all time. It was 
observed in [12] that waves moving out to infinity will generate an infinite amount 
of wave strength due to the reflection of waves by the non-integrable source, and 
this occurs when the strength is measured in the norm that preserves the outgoing 
and incoming wave strengths to the leading order with respect to the amplitude of 
the perturbation. (The explicit definition of reflection will be given in Sect. 6.) 

In this paper we show that the above problem can be reduced to an ideal 
nonlinear problem approximately. To overcome the geometric effects in the Euler 
equations, we attempt the resolve an infinite reflection problem by taking a func- 
tional integral approach to summing the strengths of the reflected waves in the 
ideal problem. The idea is to reconstruct wave strengths at time t > 0 from the 
wave strengths at time zero by summing the contributions of  the reflected waves 
that correspond to each path through the solution. In this way we can account for 
the "sign" of reflected waves, and thus take account of  cancellations that occur 
due to mutiple reflections of  waves. This procedure is analogous to the Feynman 
path integral approach to quantum mechanics. Our result is that, assuming that the 
wave speeds are constants, the total wave strengths remain uniformly bounded for 
all time in the solutions of the ideal problem. Although this is just a model for 
wave propagation in spherically symmetric solutions of  (1), this analysis resolves 
the non-summability problem observed in [12] in the simplest setting where it oc- 
curs. Moreover, we believe that this gives a quantitative explanation for why the 
total wave strengths remain bounded for all time in the presence of a non-integrable 
source term. In particular, when the wave speeds are allowed to be nonlinear, it is 
difficult to obtain sharp estimates for the net cancellation of waves due to mutiple 
reflections because of the problem of controlling the time at which the cancellations 
occur. Ne%rtheless, although it is far more difficult to obtain estimates in the exact 
problem, we suggest that the underlying mechanism that bounds the wave strengths 
in the full nonlinear problem is essentially the same as in the model problem con- 
sidered here. Our analysis leads to an interesting new norm for the initial data in 
which the total variation of the approximate solutions is bounded by the initial data 
in this norm. 

Throughout this paper, we consider the case when n -- 3. How to prove a similar 
result for n :# 3 is still an open problem. But the 3-dimensional case is interesting by 
itself because we know that Huygen's principle holds for wave equations in three 
dimensions. Furthermore, it is pointed out in [13] that n = 3 is a critical value when 
we consider the asymptotic behaviour as time tends to infinity. That is, the nonlinear 
effects will dominate the geometric ones for n < 3 and shocks form at algebraic 
rates in asymptotic analysis. But for n > 3, the geometric effects are so strong that 
they will smooth out the nonlinear sigularities in the asymptotic states. While at 
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the critical value n = 3, shocks form at an exponential rate asymptotically, Another 
reason why we choose n = 3 is that when we calculate the reflected wave, there is a 

factor ~ in the strength of  the reflected wave. Thus the factor becomes (e@)i  for 
an / - t imes  reflected wave. Since we are going to calculate the cancellation between 
/-times reflected waves and those reflected i 4- 2 times, it is easier to let ~ 2  = 1, 
i.e. n = 3 .  

Under the assumption of  spherical symmetry, Eqs. (1) can be rewritten as 

(ap)t 4- (apu)x = O, 

(apu)t + (apu 2 + ap)x ' x = = a p ,  > 1, t >  1, (2) 

with initial and boundary data 

u(x, O) = uo(x), p(x, O) = po(x), x > 1, 

u(1, t) = 0, t > 0 ,  (3) 

w h e r e a = x  2, x >  1. 
We linearize the pressure by assuming p = ~y2p. Without loss of  generality, we 

assume the sound speed a = 1. I f  a = constant, (2) can be rewritten as 

Pt + (pU)x = O, 

(pu), + (pu 2 + P)x = 0 ,  (4) 

and for smooth solutions, (2) be rewritten as 

o r  

(ap)t + (apu)x = O, 

u t + ( ~ + l n p )  = 0 ,  
x 

2pu 
Pt + (pU)x -- 

X 

x 

(s) 

By (5), we know that the strength of  the source is o f  order l/x, and the L1 norm 
of  this strength is infinite as x tends to infinity. Thus the method used in [5, 6] does 
not apply to this case. 

R emark  1. By splitting variables, Eqs. (5) imply some kind of  exponential growth 
locally for p. Actually, we can prove that there exist a lower bound CT I~ r and 
an upper bound Ce r for the total reflections at time T, if  we do not consider the 
cancellations between them, where C is a constant independent of  T. Thus we 
believe that because of  the boundary conditions we choose, the uniform bound for 
the sum of  the total reflections is a global property, and this problem can not be 
localized. 

We will show that the Cauchy problem (2) and (3) can be reduced to an ideal 
nonlinear problem approximately. To do this, we will solve the following generalized 
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Riemann problems, i.e., Eqs. (2) with initial data 

f (ul ,  pl, al), x < O ,  
(u, P, a )  / (u~, p~, at) ,  x > 0 ,  (6) 

where Pi, ui and a i i = l, r are constants. It is straightforward to check that when 
a = constant, Eqs. (2) have two eigenvalues 2i = -4-1 + u with corresponding eigen- 

vectors Y/i ( ( 1 + 2 2 )  -1 2 ! . = 2,)~i(1 + J~i ) -2  ),t = 1, 2 respectively. Thus for small lul, 
(2) is strictly hyperbolic and genuinely nonlinear in the sense of  Lax, i.e., 21 < 22 
and ~ �9 V2i + 0, i = 1, 2 respectively. It is well known that there exist two fami- 
lies o f  hyperbolic waves in the solutions of  the Riemann problems. From here on, 
we call the waves corresponding to 2 i as  hyperbolic waves of  the i th family. 

The solutions to the Riemann problem (2) and (6) will be constructed in Sect. 4. 
In the construction, we modify a(x) by a family of  step functions as a duct modified 
by discontinuous diameters. To resolve the jump of  a(x) in the Riemann problem 
at x = 0, we need following definitions. 

Definition 1. We define a standing wave at x = 0 with strength lur - ull to be a 
solution o f  the Riemann problems (2) and (6), satisfying 

in the weak sense, i.e., 

(apu)x = O, 

( ~ + l n p )  = 0 ,  
x 

a t P t U I  = a r P r U r ,  

2 2 

ul + In Pl = 
U r 

~- ~- + lnpr  �9 

As shown in [7], we can solve the Riemann problem by hyperbolic waves on 
x < 0 and x > 0, and standing waves at x = 0. Since we assume lul is small, it 
was proved in [7] that the solution is unique. 

Throughout this paper, we use a new norm to measure hyperbolic waves. It was 
shown in [12] that this norm preserves the strengths of  the outgoing and incoming 
waves to the leading term with respect to the amplitude of  the perturbation. 

Def in i t ion  2. For any hyperbolic wave y sitting on a(x) = x 2 with left state (ul, pl)  
and right state (u~,pr), we define the norm o f  y by 

II ll = I x ( u r  - u l ) l ,  

while f o r  any way'e, Glimm's strength is define d by 

= lur  - u l l  . 

In this paper, we consider a model problem for (2) and (3) in which the 1 st 
and 2 nd family of  hyperbolic waves move at - ~  and ~ respectively, where ( is a 
positive constant. We introduce the following norm: 

Ill,Ill = l {var[~,oo){y~(y)}} Ll(1,oo) ' 
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for any function ~b(x) for which IIIq~lll is defined, where the variation is taken in 
the interval Ix, oc). 

Now we can state the main theorem in this paper. 

Theorem 1. For our model problem, there exist positive constants ~ and 6 such 
that f o r  x >-_ 1, i f  

Ipo(x)  - tsI < 3, 

Ixuo(x)l < 3, 

Illuo(x)lll < 3, 

Var{po(x)} < (~, 

Var{xuo(x)} < c5, 

IIIpo(x)lll < 3, (A) 

Iluo(x)lnxl[L~(1,~) < 3, 

where 6 is sufficiently small, such that within the leading term o f  6 we have 

[p(x, t ) - P l  < G& [xu(x, t)l < G6, 

Var{p( �9 , t)}, Var{u( �9 , t)} < G6,  

for  all x > 1 and t > O, where G is a positive constant independent o f  time. 

(B) 

R emark  2. Actually, we can assume the hyperbolic waves of  the 1 st family move at 
spe ed -~ l  and those of  the 2 na family at 42, where ~.1 and ~2 are positive constants. 

a I f  [~.1- ~2[ = 0 ( 3 )  and the random sequence { j}j=l is equidistributed, then we 
can follow the proof  in this paper and get the same result as Theorem 1. 

R emark  3. The conditions (A) and (B) are reasonable in the following sense. I f  
there exist only standing waves initially in the difference scheme for x > 1, then 

c for some constant c > 0, x > 1. The condition within the leading term uo(x) = 

(A) and (B) are obviously true in this case when c is small. For sufficiently small 
3, condition (A) and (B) give a small perturbation of  this case. 

Now we consider a case when there exists only a hyperbolic wave 7 of  the 
1 st family emitting from (x0, 0). As shown in [12], the total norm of  the reflected 
waves of  7 created by crossing the standing waves is 11711 in x0 if  time is large 
enough. This family of  waves will be defined as the 1 st reflection of  7 in Sect. 7. 
In this case, the initial data uo(x) can be chosen as 

. ( x ,  o)  = 

for some constant c > 0. We have 

0, 1 ~ x  ~ x o ,  
cx~ 
x-g- ~ X ~ X 0 , 

XoC2 lnx0. 

dx 

Since 11711 = O ( x o c 2 ) ,  then by condition (A) and (B), we have 

11711 lnxo ~ 0 ( 6 ) .  
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Note 1. Throughout this paper, we use O(b) to denote IO(b)l < Kb, where K is a 
positive constant independent of  N, m, i and Ax which will appear later. 

Thus under condition (A) and (B), we can conclude that the first reflection of  a 
hyperbolic wave of  the 1st family is bounded in the norm defined in Definition 2. As 
we will see later, the higher order reflections are bounded due to the cancellations 
between reflections of  different orders. 

2. Definition of the Ideal Problem 

In this section, we define an ideal nonlinear problem. And we will prove that the 
Cauchy problem (2) and (3) can be reduced to it approximately in Sect. 5. 

The ideal problem is an implicit hyperbolic system 

P(a(x) ,u(x,  t) ,p(x,  t))  = O, x > 1, t > O. (7) 

Any Riemann problem with (u, p) components of  the left and fight states lying in a 
small neighborhood of  a constant state (u0, P0) can be solved uniquely. The solution 
consists of  three families of  waves: the 1 st family moves at negative speed, while 
the 3 rd family moves at positive speed, and the 2 nd family moves at zero speed. 
As usual, the waves of  the 1 st and 3 rd families are called as hyperbolic waves, 
i.e. rarefaction waves and shocks; and the waves of  the 2 na family are called as 
standing waves. For a hyperbolic wave, we define a norm to measure its strength, 
denoted by II" II. 

The waves interaction satisfies the following conditions. We use 7 ] (7 2 ) to denote 
the waves of  the 1 st (3 rd) family and 7 ~ for the 2 nd family, and use 

72 ~- 70-}- 7 ] --+ ~7 ] @ ~70 ~-5 2 

to denote that the interaction o f  7is, i = 0, 1, 2, will create three new waves 5i s, 
i = 0, 1, 2. Then for a standing wave 7 o with a component o f  the left and right 
states being a(xl)  and a(xr), we have 
s 

70 + 71 __+ 371 _~_ ~0 + ~72 , 

I1 ]11 = il7'11, l i52il_ x -X, l lr  
Xl 

Furthermore, i f  7 ] is a rarefaction wave (shock), then ]1 and ~7 2 are rarefaction 
waves (shocks). 

72 + y 0  ____+ 51 + 50 + 52 , 

115211 = 117211, 117111_ xr-xzl17211 " 
Xl 

Furthermore, if  7 2 is a rarefaction wave (shock), then ~72 is a rarefaction wave 
(shock) and 5 ] is a shock (rarefaction wave). 
�9 Hyperbolic waves of  different families can cross each other with their norms and 

families unchanged. 
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�9 For any hyperbolic wave 71 of  the 1 st family impinging on the boundary x = 1, 
the rebounded wave 72 is o f  2 nd family which is shock (rarefaction wave) if 71 
is shock (rarefaction wave), and 

ll~2[I = II~lll . 

Remark 4. In this paper, we choose a "solid wall" boundary condition on x = 1. 
Under this condition, we have t o  consider the cancellation between reflected waves 
of  a same original wave. We may choose other boundary conditions, but the analysis 
here applies only to the one we choose. 

Actually, we will solve such an ideal problem corresponding to the model prob- 
lem in Theorem 1. That is, we solve a model problem for the Cauchy problem (2) 
and (3). 

3. Derivation of Equations (2) 

In this section, we will derive Eqs. (2) in two physical models: The first model is a 
compressible fluid flow in a variable duct, and the second is a fluid flow in spher- 
ically symmetric gas dynamics. As pointed out in [12], Eqs. (2) are approximate 
conservation laws of  mass and momentum for fluid flows in a variable area duct 
with the area of  the cross section being a(x), which satisfies Id(x)[ << 1. And they 
are exact conservation laws of  mass and momentum for spherically symmetric flow 
in R 3 

The following derivation is borrowed from [12]. 
Firstly, we consider fluid flow in a variable area duct. In particular, we assume 

the boundary o f  the duct is a revolution of  a curve y = R(x) about x axis, see 
Fig. 1. Since the area a(x) is no longer constant, the pressure at the duct wall 
exerts a force normal to the wall onto the fluid. And this gives a contribution to 
the momentum in the central axis direction. 

Let R(x) E C 2 be the radius of  the cross section, a(x) = rcR2(x) be the area of  
the cross section. For any fixed x0, we denote the disk bounded by the duct and 
the plane x = x0 by Dx0. Then for any point on the boundary of  Dx, we can use F~ 
to denote the x component of  the force exerted by the wall on the fluid in the x 
direction. It 's easy to see it does not depend on which point we choose. Similarly, 

J 

J 

Fig. 1. 



614 T. Yang 

the x component of the unit normal vecto G is also well defined on the boundary 
of Dx. By simple calculation, we have 

ff = (R'(1 + (R ' )2 ) - �89  + (R')2)- �89 

and so we get 
G = G p  

= R'(1 + (R')2)-�89 

Further, the total force acting on the boundary of the disk Dx is given by 

27cRFx = 2~RR'(1 + (R')2)-�89 p 

= a' (1  + (R')2)-~ p.  (8) 

Keeping these in mind, we can now derive the equations for the conservation 
of mass and momentum. For any xl < x2, consider the mass in the region bounded 
by Dxl and Dx2. By conservation of mass, we have 

dX2 
Si, J pa dx = - {  (pua)lx 2 - (pua )lx ~ } 
dtx 1 

x2 

= f(pua)xdx,  
xl 

where ( �9 )Ix0 denotes the value of " . "  at x = x0. Since xl and X 2 are arbitrary, we 
have 

(pa)t + (pua)x = 0,  (9) 

in the weak sense. 
By the conservation of momentum and (8), we have 

d ~ p u a d x  x2 
x~ = -{(pu2a + pa)lx2 - (pu2a + Pa)lx' } +xlfpd(1 + (R')Z)-�89 

x2 

= - f { ( p u 2 a  + pa)x - pa'(1 + (R')2)-�89 } dx ,  
Xl 

o r  

(pua)t + (pu2 a + pa)x - pal(1 + ( R t ) 2 )  - 1  = 0,  (10) 

in the weak sense. 
Now if we assume that R'(x) is sufficiently small, we have (1 + (R')2) -�89 ~ 1, 

then Eqs.(9) and (10) are Eqs.(2) when a ( x ) = x  2, i.e., R(x) '=x.  Since when 
R(x) =x ,  the assumption of R~(x) being sufficiently small is violated. That is, 
Eqs. (2) are not good mathematical approximations for this physical model. 

Now we consider spherically symmetric flow in R 3. As we will show later, 
Eqs. (2) are exact conservation laws of mass and momentum in this case. Here 
spherical symmetry means that the scalar quantities (pressure, density, etc.) are 
functions of radius r and time t only, while the velocity ff points radially outwards 
or inwards. 

In order to derive the equations easily, we consider the fluid in a region D 
bounded by two co-centered hemispheres with radii rl and r2 respectively and x-y  
plane, where rl < r2. Without loss of  generality, we assume this region is above 
the x-y  plane. Let p be the density function of the gas; by the conservation of 
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mass, we have 

+ HpudA- H udA : 0 ,  
~ D $2 S1 

where dV and dA are volume element and the area element respectively S,. is the 
surface of  the hemisphere with radius rg, i = 1, 2. By the spherical symmetry, we 
have 

r2 

f{ (p r2 ) t  + (pur2)r} dr  = 0.  
rl 

Since rl and r2 are arbitrary, we have 

( r2 p )t + ( r2 pU )r = O, 

in the weak sense. And this is the first equation of  (2). 
Now we consider the conservation of  the momentum. By spherical symmetry,  

we can only need to consider the conservation of  its z component. For any radial 
vector V, let 0 be the angle between V and z axis. For any point in the region D, 
the z component of  the momentum is pu cos 0, 0 _< 0 _ < 3- ~ Thus we have 

d 
f f f p u  cos OdV + f f ( p u  cos 0 .  u + p cos 0) dS 

D S2 

- f f (pu cos 0 .  u + p c o s  0 ) d S -  f f  pdS = O, 
S 1 B 

where B is the base of  D on the x-y  plane. Since p, u and p are independent of  
0, and f f s i  cos 0 dS = ~zr 2, i = 1, 2, we have 

r2 r2 
f { (r2 pu)t q- (r2 pu 2 + r2 p)r } dr = f 2rp dr.  
rl r 1 

Since rl and r2 are arbitrary, we have 

( r2pu) t  q- ( r2pu  2 q- r 2 p ) r  = 2rp , 

in the weak sense. This is the 2 nd equation of  (2). 
Thus Eqs. (2) are just the conservation laws of  mass and momentum for the 

spherical symmetric flow in R 3. 

4. Solutions to Generalized Riemann Problem 

In this section, we will construct solutions to the generalized Riemann problem (2) 
and (6) when ]u] is sufficiently small and p(p) = p. The solutions for general cases 
were discussed in [7], and the following construction follows from [7] also. 

Before solving generalized Riemann problem (2) and (6), we review some basic 
results about Riemann problems when a(x) is constant, i.e., Eqs. (4) with initial data 
given by 

(ut, pl), x < O ,  

( u , p ) =  (Ur, pr), X > 0 .  
(11) 
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By transforming (u, p)  to the Riemann invariants (r(u, p) ,  s(u, p) ) ,  which are 
defined by ~ 2  ~ V r  = 0 and ~1 �9 Vs  = 0, we have 

rt + 2~rx = O, 

st + )CZSx = 0 ,  

u-In p u+~n p and ~ i ,  2i are defined in Sect. 1, i = 1, 2. where r -  2 , s -  2 

By the definition of  rarefaction wave, we can define the 1 st and 2 nd rarefaction 
wave curves as follows: 

Rl(ut,  Pz) = {(u,P)lr  ~ rz, s = s z } ,  

R2(ur, mr) = { (u ,p ) l r  = r~, s __< s t ) ,  

where (r, s)  = (r(u, p) ,  s (u ,p ) ) ,  (ri, si) = (r(ui, Pi), s(ui, Pi)) with i = l, r. Here 
Rl(uz,  Pz) is the set of  states (u, p)  which can be connected to the left state (ul, Pl) 
by rarefaction waves of  the 1 st family, and R2(ur, Pr) is the set of  states (u, p)  
which can be connected to the right state (u~, pr)  by rarefaction waves of  the 2 nd 

family. 
I f  (u, p)  is connected to (u0, P0) by a single shock, by Rankine-Huguniot  jump 

condition, we have 

[pu] = ~(u, ~)[p],  

[pu 2 + p] = cr(u, p)[pu] , 

where [ �9 ] denote the difference between value " �9 " on the fight of  the shock and 
the one o f  the left and a(u, p )  is the speed of  the shock. To satisfy the entropy 
condition, we have to ensure that the ith characteristics enter the shocks of  the 
ith family from both sides, i.e., 2i(u~, p~) < a(u, p)  < 2i(ul, Pl) for the ith shock, 
i = 1, 2. Thus, we can define the 1 st and 2 nd shock curves as follows: 

Sl(ul, pl)  = 

&(ur,  pr) = 

u , p  u l - u =  - , Pl < P 

u , p  u - u r =  - , p~ <= p , 

where Si( �9 , �9 ) has similar meaning as Ri( �9 , �9 ), i = 1, 2. To solve the Riemann 
problem (4) and (11), we define 

Tl(Ul, p l )  = Rl(Ul, pl)�9 p l ) ,  

T2(ur, Pr) = R2(ur, Pr)US2(ur,  Dr). 

It is well  known that T1 and T2 are C 2 contact at points (ut, Pl)  and (ur, Pr) 
respectively, and Ti defines In p as a monotonic function o f  u for i = 1, 2. Further- 
more, the T2 curves are reflections of  the T1 curves with respect to axis u = 0, and 
any T1 curve always intersects any T2 curve precisely once. Thus solution for the 
Riemann problem (4) and (11) is well defined and it consists of  two hyperbolic 
waves (including waves with zero strengths). 
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Now we come back to the generalized Riemann problem (2) and (6). In order 
to construct solutions to (2) and (6), we need to consider smooth stationary flow, 
i.e., (u, p, a)  satisfies 

(apu)x = O, 

o r  

_-o, 
x 

lna  + lnp  + In lul = constant, 

U 2 
~- + in p = constant. 

Keeping the area and state at x_ = 0 -  being al and (ul, Pl); at x+ = 0 + being 
a~ and (ur, p~), we vary the area smoothly and monotonically between al and at. 
And we construct a smooth stationary flow between x_ and x+. A straightforward 
computation shows that smooth stationary flow cannot become sonic, i.e., ] u l ] <  1 
if and only if  ]Ur] < 1. NOW if we define J(ul, Pl, al; a) as the set of  states (u, p)  
that can be connected to (ul, Pl) by a smooth stationary flow with a(x) = a, we 
have 

( lnp + In [u[ + lna )  - ( lnpl  + In luzl + lnat)  = o ,  

( l n p  + ~ ) -  ( l n p l  + ~ ) = 0 .  

It is easy to show that J(ul, Pl, al; a) is a curve which can be parametrized by a 
in the range (a ~ oc), where 

a ~ = exp lnal  + In lull + - -  �9 

As a tends to a ~ lul tends to 1. As a tends to infinity, lul tends to zero if luzl < 1 
and it tends to infinity if lull > 1. 

Since our discussion is valid irrespective of  how close x_ and x+ are, in our 
generalized Riemann problem, the standing wave can be defined as x+ - x _  tends 
to zero of  the solution corresponding to a smooth monotonic interpolation of  a. 
Based on the above discussion, we define the 1 st wave curve Cl(ul Pz) as a curve 
in the phase plane ( u -  ln p plane), which consists of  a continuous succession of  
components with increasing speeds. The components would be the l st shock curve 
$1,1 st rarefaction wave curve R1 and standing wave curve J .  Any state on Cl(ul, Pl) 
can be connected ot (ul, Pl) by hyperbolic waves of  the 1 st family or standing waves 
or both. The 2 na wave curve C2(ur, pr) can be defined analogously. 

To solve the generalized Riemann problem is equivalent to finding the intersec- 
tion o f  Cl(ut, Pl) and C2(u~,pr), i.e., to find the set {(urn, Pro)} such that 

{(Urn, t i m ) }  = Cl(Ul, D1) ['1C2(ur, Pr ) . 

In order to locate the standing wave, the following rule must be satisfied: if Um > 0 
the standing wave curve is on the l st wave curve, and if Um< 0 it is on the 2 nd 
wave curve, and it vanished for Um= O. 
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Throughtout this paper, we assume [u I is sufficiently small and al < a~. The 
we only need to find Cl(ul, Pl) when Ul < 1,az < a~, and C2(u~, p,.) when u~ > 
-1,  az < ar. It is easy to see such C2(ur, p~) curves are reflections of  Ca(ut, Pl) 
curves when Ul < 1 and at > a~ with respect to axis u = 0. So we only need to 
find Cl(Ul, Pl) for two cases. 

Firstly, we consider the case when ut < 1 and al > a~. It was proved in [7] 
that Cl(ul, Pl) consists of  three parts, i.e., Q1, Q2 and Q3, where 

Qi(ul, Pl) = {(u, p)l(u, p) E T,(ul, p l )w i thu  < 0} ,  

Qz(Ul, Pl) = {(u, p)l(u, p) =J(u_,  p_, al; a~)wi th0 < u_ =< ~} ,  

Q3(ut, Pl) ----- {(u, p)l(u, p) E r l (1 ,  p l ) w i t h u  > 1},  

here (u_, p_), (~, -fi) E T~(ul, Pl) and (1, Pl)  = J ( u ,  P, al; a~). Figure 2 shows an 
example for this case. It is straightforward to prove that Cl(Ul, Pl) defines In p as 
a monotonically decreasing function of  u. 

Similarly, for the case when ul < 1, al < a~, the curve Cl(ul, PZ) consists of  
four parts, i.e., Q1, Q2, Q3 and Q4, where 

Ql(Ul, pl) = {(u, p)l(u, p) E Tl(Ul, Pl) withu < 0} ,  

Qz(Ul, pl) = {(u, p)l(u, p) =J(u_,  p_, al; ar) with0 < u_ -< 1,u < 1},  

Q3(ul, pt) = {(u, p)[(u, p) = J (u+,  p+, a; at) withal  < a < a~},  

Q4(ul, pl)  = {(u, p)l(u, p)  ~ r,(u ~, p~) withu > u ~ } ,  

where (u_, p_) E Tl(UZ, pl ) (1 ,  p,) E Tl(Ul, Pl), (u, P) = J ( 1 ,  p, ,  at; a)  with at < 
a < a~, (u+, p+)  = S~ fi) with t7 > 1, (u r, p-~) = J(1 ,  Pl, az; a~), (ur+, pr+) = 
S~ pr) and S~ Po) denotes the state (u, p)  which can be connected to the 
left state (u0, P0) by a shock of  the 1 st family with zero speed. Figure 3 shows an 
example for this case. 
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It can be proved that Cl(ul, Pt) defines lnp as a monotonically decreasing func- 
tion o f  u. For lud and lurl being small, it can be shown that any Cl(ut, p~) 
when ul < 1, at < ar and any C2(ur, pr) when u~ > - 1 ,  az < a~ always inter- 
sect precisely once. Thus the Riemann problem can be solved by two hyperbolic 
waves and one standing wave. An example of  this construction is shown in Figs. 4 
and 5. 
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Now we can restate a theorem from [7]. 
Given two states (ut, Pt, az) and (ur, Pr, a~), if al < a~ and (ui, Pi) is in a 6 

neighborhood of  constant state (0, P0) for a small constant 6, i = l, r. Then the 
Riemann problem of  (2) and (6) can be solved by two hyperbolic waves, and one 
standing wave uniquely. 

Theorem 2. Given two states (Ul, Pt, at) and (ur, p~, a~), if  at < a~ and (Ui, P i )  

is in a 6 neighborhood of  constant state (0, Po) for a small constant 6, i = l, r. 
Then the Riemann problem of (2) and (6) can be solved by two hyperbolic waves 
and one standing wave uniquely. 

5. Reduction to the Ideal Problem 

In this section, we will prove that the problem (2) and (3) can be reduced to the 
ideal problem diefined in Sect. 2 within the leading term of  6. As shown in Sect. 4, 
the Riemann problem (2) and (6) can be solved uniquely by three waves, i.e., two 
hyperbolic waves and one standing wave. Thus we only need to prove that the wave 
interaction satisfies those conditions for the ideal problem. By the definition of  the 
standing wave, we can estimate its Glimms's strength. I f  we assume two states of  
the Riemann problem (2) and (6) are connected by only one standing wave and 

a t = x  2, a~=(xo+ Ax) 2, 

6 and Ax are sufficiently small, within the leading term with respect to 6 and Ax, 
we have 

Pl  = Pr  , 

2Ax 
i u r  - u t l  = u r  . xo 

As shown in Sect. 4, the hyperbolic waves are defined in the usual sense. Within 
the leading term with respect to 6, we have 1 st wave curve given by 

S = S I ,  

and the 2 na wave curve given by 

r = r l ,  

where r and s are the Riemann invariants defined in Sect. 4 and the subscript "l"  
denotes the left state of  the wave. By the entropy condition, when u > ut we have 
rarefaction waves while when u < ut we have shocks. 

Now we can estimate the results when a hyperbolic wave interacts with a stand- 
ing wave. 

We consider a standing wave 7 0 sitting at x = x0 with 

~ x  2, x < x o  
a ( x )  = 

[. ( x  O q- a x )  2, x > x O . 

The following theorem was proved in [12]. 
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Theorem 3. Within the leadin9 term with respect o f  6 and Ax, i f  there is a hy- 
perbolic wave o f  the 1 st family 71 on the right o f  7 ~ after interaction we have 

70 + ~1 _+ 521 + ~o + 522, 

11~711[ = 117111, 117211 = AZ-x[17111. 
X0 

Similarly, i f  there is a hyperbolic Wave of  the 2 nd family 7 2 on the left o f  7 ~ after 
the interaction, we have 

72 _}_ ~0 ___> 71 -t- 520 -Jr- 7 2 , 

11721[ = 117211, 117111 = 1x1[7211. 
X0 

Proof  The proof  is based on a case by case study; here we give a p roof  o f  one 
case for illustration. 

Consider a rarefaction wave of  the 1 st family 71 interacting a standing wave 7 ~ 
we have 

•0 -t- 71 ~ 71 -~- 70 -~- 72 . 

Since all the estimates are within the leading term, as shown by Fig. 6, we have 

2Ax 
I ~ ~  = l u r  - u m l  - -  - -  xo + Ax uz , 

2Ax 
I ~ ~  = 1 . 2  - . 1 1  - - -  xo -J- Ax ul " 

Then 

i.e., 

170 - W~ I = 21W21 = 2171 - ~11, 

I~11- I ~ 1 -  _ _  
A x  m z lx  

xo + Ax luz - Ul I xo + Amy L~II' 

(xo + Ax)l~'l =xo1711, 

I1~ 111 =ll~ 111- 
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Since 

then 

Ax 
if21 = if1 _ 7 1 l  _ xo  + A x  Ifl l '  

llf2N = ~ tlflfl = --Axllgl[Ix0 . QED 

T. Yang 

N o t e  2. All the equalities are within the leading term by assuming 6 and Ax being 
small. 

N o t e  3. It was pointed out in [12] that shocks (rarefaction waves) of the 2nd fam- 
ily reflect rarefaction waves (shocks) of the 1 st family, while shocks (rarefaction 
waves) of  the 1 st family reflect shocks (rarefaction waves) of the 2 nd family. Thus 
the cancellation will occur due to the reflected waves of a same wave. And this 
kind of cancellation might overcome the generation of the reflected waves grow- 
ing logarithmically. And we will prove that this is true under the assumptions of 
Theorem 1. 

Since we assume u(1, t) _= 0 for t > 0, in [8] the unchanged strength of the 
rebounded wave was proved in Lagrangian coordinates. It 's easy to see that this 
is true for Euler coordinates by the symmetry of the shock curves with respect to 
u = 0 for Eqs. ( 4 ) .  And it is obviously true when we consider the leading term 
with respect to & Thus, we have shown that the Cauchy problem (2) and (3) can 
be reduced to the ideal problem within the leading term of 8. 

6. The Difference Scheme 

In order to get a tmiform bound for the solutions of the ideal problem, we will 
repose the problem in Glimm's scheme by solving a class of  generalized Riemann 
problems (7) and (6). In this section, we define Glimm's scheme which can be 
used to construct solutions for the ideal problem. By assuming that the hyperbolic 
waves move at constant speeds, we can modify Glimm's scheme such that the 
cancellations between reflections are easier to calculate. 

We assume that the absolute values of the speeds of the hhyperbolic waves 
lie between [~l, ~2]. Let h be a mesh length in x, and let k = 7oo be the corre- 

sponding mesh length in t, co > ~2. Let a be any equidistributed sample sequence, 
St--  {aj}j~176 , 0 < aj < 1. For t = 0 ,  we define 

pho(O, X) = po(mh)  , 

uho(O,x) = uo(mh),  l + ( m - 1 ) h  < x  < l + ( m + l ) h ,  

Uho(t, 1) =- 0 ,  t > 0 ,  

a(x)  = ( l + ( m + l ) h )  2, l + ( m - 1 ) h  < x  < l + ( m + l ) h ,  

where m > 1 is any odd integer. At mesh points (1 + (m + 1)h, O) and (1, 0), we 
can solve the Riemann problem by hyperbolic waves and the standing wave. 



Shock Wave Solutions of Euler Equations 623 

Assume for induction that (ph(x, t), uh(x, t)) has been defined for t < ik, when 
i + m is odd, we define 

(ph, uh)(x, ik) =- (ph, uh)(2mh + aih, i k - ) ,  

l + 2 m h  < x  < l + ( 2 m + 2 ) h ,  

(ph, uh)(x, ik) =- (ph, uh)(2mh _ aih, i k - ) ,  

l + ( 2 m + 2 ) h  < x  < l + ( 2 m + 4 ) h ,  

and 

uh(1, t ) = - 0 ,  ik < t <  ( i + l ) k ,  

where in is any integer such that i-4-m is odd and x -> 1. 
By the above construction of  the approximate solution, we have the following 

lemmas. 

L e m m a  1. I f  all the hyperbolic waves are sittin9 at (1 + 2mh,(i - 1)k) for m > 0 
when i-4-m is odd, then we have 

�9 i f  ai c (0, 1 - vl ), then every nonvanishin9 hyperbolic wave will cross the cor- 
respondin9 standin9 wave and reflect another hyperbolic wave. 

�9 ifai E (1 - v2, 1], then the strengths andpositions of all the waves in [1, oo) x 
[ik, (i + 1)k) are the same as those in [1, oo) x [ ( i -  1)k, ik), 

where Vl = Uo and V 2 = 7"0" A similar statement holds when i + m is even. 

L e m m a  2. I f  we denote the hyperbolic wave of the 1 st (2 ha) family sittin 9 at 
(1 +mAx, O) by 7~,0(72 0), where Ax = 2 h ,  then under the conditions (A) and 
(B) we have, for any fixed n > O, when Ax << 1, 

, II m+t, oll < 8 ,  
m = o l + m A x  t=l m = o l + m A x  l=1 = 

and 

tl~,ollln(1 § mAx) <= 8, 
rtl=O 

(DO 

Ily~,ollln(1 +mAx)  <= 8,  
m=O 

where cg = 0(6) .  

The Gl imm's  scheme given above can be used to prove the case correpsonding 
to the one mentioned in Remark 2. And we suggest that it may be useful when 
we consider the full nonlinear problem. But for the ideal problem correpsonding to 
our model problem in Theorem 1, we can use a simplifed scheme: I f  we denote 
the mesh length in the x direction by Ax and the one in the t direction by At, then 
for any hyperbolic wave sitting at (1 + max, iAt), it will move to (1 + (m + 1)Ax, 
(i + 1)At) at the next time step if it is of  the 2 nd ( |s t)  family. That is, all hyperbolic 
waves o f  the I st family move at speed -Ax/At ,  and those of  the 2 nd family move 
at speed Ax/At. We will use this simplified scheme in the following discussion. 
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7. Analysis of Cancellation in Reflections 

In this section we consider an ideal problem defined in Sect. 2 corresponding to 
the model problem in Theorem 1, and we will derive a formula showing how the 
hyperbolic waves on T = NAt depends on those t = 0. In order to define reflections 
clearly, we introduce the concept of  path in the solutions of  our model problem. 
From now on, we use (m,i)'to denote the mesh point (1 + m A x ,  iAt) in the simpli- 
fied scheme. We assume N can be arbitrarily large but fixed and we consider the 
region 0 <_ t < NAt, x > 1. Now we give the following definitions. 

Definition 3. We define two kinds of elementary timelike paths, denoted by z+ 
and t_, where i-- are straight lines connecting (m, i) and (m + 1, i + 1). And we 
denote the end points and starting points of  l• by 

(l+)~ = (m,i),  (z• = (m-4-1, i + 1 ) .  

Definition 4. An ordered sequence of elementary paths z = [lq]qL 1 is called a time- 
like path i f  

(zq)0=(Zq+l) ~ q =  1,2 . . . . .  p - 1 .  

l p The product of  [ q ] q = l  d e n o t e d  by t or q �9 12"" lp is a polygonal line by connect- 
ing lqS at their common points. We define 

( 1 )  0 = ( / 1 )  0, (1)0  = ( l p )  0 . 

Obviously, the product o f  an ordered sequence of  timelike paths can be defined 
similarly. 

Definition 5. For any timelike path t, we define the degree of 1 by 

if 

d(O = d ,  

1 = 11 �9 1 2 ' ' "  l d+  1 , 

where lq is a timelike path consisting of  the same kind of elementary timelike 
paths, but tq and lq+l consist of  different kinds. Also we define (lq)O as the qth 
turning point of  l, denoted by Tq(z), q = 1,2 . . . . .  d, and 

d 

vO) = U v~o). 
q=l 

Now we can define the reflections of  any hyperbolic wave. And we will classify 
all the reflections by their orders according to the degrees of  the paths to which 
they correspond. 

Definition 6. For any hyperbolic wave 7 emitting from the mesh point (m, i), and 
any timelike path 1 with 

(~)o = (re, i ) ,  (0o  = ( ~ , 7 ) ,  
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i f  

d(1) = d and 

625 

d 
T(t) = U(mq, iq), 

q=l 

then we define a wave R(7, t ) at (rh,[) with norm being { I ~ = 1  ~x ,+ dx}llTII as a 
d th reflection of  7 corresponding to the path t. I f  td+l = [z+] ([t_]), then R(7, z) 
is of  the 2 "a (1 st family. Further, if  7 is a rarefaction wave (shock) o f  the 1 st 
family, then R(7, 1) is a rarefaction wave (shock) when d is odd, and it is a shock 
(rarefaction wave) when d is even. Similarly, if  7 is a rarefaction wave (shock) of  
the 2 ~a family, then R(7, l) is a shock (rarefaction wave) when d is odd, and it is 
a rarefaction wave (shock) when d is even. "d" is also called as the order of  the 
reflection R(7, O. 

To classify reflections of a hyperbolic wave, we need the following definitions. 

Definition 7. For any hyperbolic wave 7 emitting from the mesh point (m, i), we 
define 

U U 
{z:d(0=q} {r:d(r)=q} 

and 
qT 

II(R,) ll = IIR( ,r)ll, 
{r:d(0=q} 

where the unions and the sum are taken over all timelike paths t and T, with 
(t)~176 = (m,i) and (7)0 = (rh, i-) in the region bounded by x >= 1 and 0 < t 
< Nk. 

Definition 8. For any hyperbolic wave 7 emitting from the mesh point (m, i) and 
any mesh point (rfi, i ), we define 

~q,q+2 q 
~,; = max{I] (Rr)a I I - [I ( Rq+2)~ll, 0}. 

Then at the mesh point (th, t), we define (Rq\Rq+2)~ as a hyperbolic wave which 
qT 

is o f  the same family and same kind as (R~)~, and 

q q+2 i- vq, q+2 
II(RT\R7 ),~11 -- - -~,~ �9 

And we define 

Rq\ Rq+2 U (Rq\ Rq+2"~{ 
= \ 7\ 7 ]m 

(~,i) 

for aH possible (r~, [). 
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Definition 9. For any hyperbolic wave 7 emitting f rom (m, i), we define 

RT~ = E II(Rq~eq+2~LI, 
q,j>O 

RTI(~) Z R q Rq+2 N = I I ( , \  7 )~ l l ,  
q,n>O 

where the sum is over all (Rq\R q+2~N IS! 7 \ ~ ~n are o f  the family,  and 

RT2(7) Rq q+2 N = Z l I (  , \ n ~  )n II, 
q,n 

(R q \ T q+ 2 ,N where the sum is over all ~ \ ~ )n is o f  the 2 nd family,  and the sums are taken 
over all possible q , j  and n. 

Now we assume that there is only one hyperbolic wave 7 in the simplified 
scheme for the ideal model problem initially. Since we consider the behaviour 
of  7 and its reflections for any time, the orders o f  reflections due to 7 can be 
arbitrarily large. As pointed out in Remark 1, the sum of  the total reflection cannot 
be bounded unless cancellations between reflected waves are taken into account. In 
order to calculate this kind of  cancellation, we will introduce reflection potential. In 
fact, the estimation o f  the reflection potential is crucial to prove the following main 
lemma. 

Lemma 3. We consider a hyperbolic wave 7 emitting f rom mesh point (re, O) in 
the simplified scheme. For any given N > O, i f  Ax << 1 and 7 is a hyperbolic wave 
o f  the 2 nd family,  then 

RTi( ) GII II, i = 0, 1,2.  

I f  7 is a hyperbolic wave o f  the 1 st family,  then 

RT~(7) <= G{2 + ln (1  + mAx)}[]7]l, i = 0, 1,2,  

where G > 0 is a constant independent o f  N, m and Ax. 

Before defining the reflection potential, we give two more remarks on the can- 
cellation. 

Remark  5. For any hyperbolic wave emitting from t = 0, we consider the reflected 
shocks and rarefaction waves separately. Since they will cancel each other if they 
reach a same mesh point, we can estimate the remainder of  this kind of  cancellation. 
That is, we estimate how much strength of  shocks and rarefaction waves can reach 
t = Nk, x > 1 and 0 <_ t <- Nk, x = 1 after cancellation. 

Remark  6. We notice that the i th reflected shocks (rarefaction waves) will make 
cancellation with the (i + 2) nd reflected rarefaction waves (shocks) of  a same orig- 
inal wave, if they meet at a same mesh point. We will prove the upper bounds for 
the remainders of  this kind of  cancellation due to a 2 nd hyperbolic wave form a 
geometrical series. Thus the sum can be bounded uniformly. 

We consider a hyperbolic wave 7 of  the 2 nd family emitting from the mesh 
point (m, 0) initially, where m > 0 is any integer. In order to estimate the reflection 
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of  higher order, we define reflection potential at any mesh point (m, i) on which 
1 3 i RT\R 7 will reflect again. H(RT\RT)m]]+O. It represents how strongly 1 3 

Definition 10. I f  the hyperbolic wave 7 is of  the 2 nd family, we define the reflection 
potential of  7 by P(7), where 

P(~)  = 
AN 1 3 i  1 3 i  

i,m>_2_ 1 § m a x  II(RT\RT)"II + ~i ' 

here m >_ O and O <- i <_ N. 

We are going to prove P(7)  --< r/117]] for some constant q < 1, where t/ is inde- 
pendent of  N and Ax. Now we prove some lemmas first. 

L e m m a  4. I f  7 emits from the mesh point (0, 0), when Ax << 1, we have 

pAx < 0.9, 

where p sup{i: 1 3 i = II(R~\R,~)all*O},  

Proof Let ep E R(7, to) be the hyperbolic wave of  the 1 st family with d00 ) = 1, 
(p3  @P-- 1 Tl(tO) = ( p , p )  and 00)0 = (1 ,2p  - 1). We divide ~-7Jl into two families: 

�9 The first family consists of  those R(7, t) with T2(1) = (0, �9 ). We denote the total 
norm of  this family by Ip~,O[[7[]- 

�9 The second family consists o f  those R(y, t) with T20) -- ( j ,  �9 ), j > 1. The total 
norm of  this family is denoted by Ip2 0[[7[ [. 

We have 

I1,0 : p l - -  ( Ax  ) 2 

,--1= (1 +jAx)(1 + ( p - j ) A x )  

2 + pax  1 + iAx 

2Ax 
- -  ln(1 + pAx) § O(Ax) 2 , (12) 

2 + pax 

I2,0 = ~P 1 Ax j-l~ (Ax)2  

j=2 l + j A x . =  ( l + i A x ) ( l + ( p + i - j ) A x )  

p-1 (Ax)2 Ax  P-~ Ax  

> i=2 ~ (1 + ( p -  i)Ax)(1 + iAx) - 1 + ( p -  1)Ax i~=2 1 + iAx 

2Ax Ax 
> 2 x p A  - l n ( l +  + pAx) 1 + pAx ln(1 + pAx) + O(Ax) 2 . (13) 
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Combining (12) and (13), we have 

II~pll/ll~ll - Ipl,O - / ~ , o  < - -  

T. Yang 

Ax 4Ax 
- - l n ( 1  + pax)  

1 + pax  2 + pax  

Ax 
+ 1 + p A ~  ln(1 + pax)  + O(Ax) 2 . (14) 

We can check that when pAx > 0.9, Ax << 1, the right-hand side of (14) is less 
than -e lAx,  where el > 0 is a constant independent of N and Ax. Thus, we can 
choose pax  = 0.9. QED 

Lemma 5. When Ax << 1, 1 3 i I I ( R T \ R w ) m I ]  - o for (re, i) E f2':, where 

f 2 - - { ( x , t ) ' 0  <- t < 2 p A t ,  1 <_x <_ l + [ T t j A x  

or t > 2pAt, 1+ - 2 p  Ax < x < 1+ Ax , 

p is defined in Lemma 4, [ �9 ] denotes the largest integer less than . . . .  and f2 c 
is the complement of  f2. 

Proof  For n => p, we calculate the cancellation between ~ E R(7, to), with 
d(to) = 1,Tl(to) = (n,n) and (lo)o = (n - p + 1,n + p - 1), and le3a,+p-I As in \*'7 ]n--p+l �9 

�9 �9 3 n+p--1 the proof of Lemma 4, we also dwlde (R~),_p+l into two families, with their norms 

denoted by I2,111711 and I~2,1 llYll. The meaning of I~, 1 and I,~2,1 are similar as 1~, o and 
I~2,o in Lemma 4 respectively. 

p--1 (Ax)2 

12'1 = i=1 ~ (1 + iAx)(1 + (n -- i)Ax) 

- 2 + n A ~  l + i A ~  + l + ( n - - i ) A x  

Ax { ln( l  + p A x ) + l n {  1_ +_nAx ~ 1 0 ( A x ) 2  (15) 
> 2 + n A ~  l + ( n - p ) A x J J  + l + n A ~  ' 

I~2,1 
p-I Ax j - I  (Ax)2 

j=2 l + j A x  .= ( l + i A x ) ( l + ( n + i - j ) A x )  

n - 1  A x  p - 1  (Ax)2 

+ ~ 1 + j A x  ~ (1 +iAx)(1 + ( n + i - j ) A x )  j = p  "= 

n-1 (Ax)2 j-1 Ax 

= E 1 7J~X ~ (1 4- iAx)(1 + (n + i - j ) A x )  j=n--  p+ 2 "= 

p- 2 ( Ax )2 Ax , -  lx_, Ax 

z.., 1 § iAx > i=1 ~ (1 + (n - i)Ax)(1 § iAx) 1 § (n - 1)Ax i=n--p+2 
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> - -  ++ i+n + }} 
2 + nAx 1 +(n--- p )Ax  

Ax { l + nAx } l 
1 ~2nA7 In 1 +-(~ 2 p ) A x  + 1 + nA~ O(Ax)2" (16) 

Let 

Ln(nAx) = It~ll/ll?ll - 11,1 - -  In2,1 

< +x 2++ l + n + +  )} 
1 + nAx 2 4- nAx 1 +-(n - -p )Ax  

+ - -  
Ax { l + nAx } l 

1 ~  In 1 +-(n2p)Ax + 1 +nA~ O(Ax)2 

= s 

To prove the lemma is equivalent to prove that L,(nAx) < 0 for n > p and 
--e2Ax Ax << 1. By calculation, we can prove that 5~,(nAx) < ~ for n > p, where 

e2 > 0 is a constant independent of  N and Ax. QED 

Since we have proved that 1 3 [I(R~\R~)~II - 0 for (m,i) E 0 c. Thus P(7) is equal 
to the total norms of  the set of  hyperbolic waves reflected by the nonvanishing 

1 3 R?\R,/ in ~2. 

Firstly, we estimate 1 3 R~\R? at each point in O. 

Lemma 6. For any mesh point (m,2i - m) C Q, and Ax << 1, we have 

A x  1 3 2i m [I(R~\R,~)m II < = (1 + iAx)(1 +qAx)  II?[l' 

3Ax 1 3 2i--m ]](R7\RT)m II < 
4(1 + iAx)(1 + qAx) 

as 0 < qAx _ < 0.5, 

I1711, as 0.5 ~ qAx < 0.9,  

where q = i -  m. 

Proof For 0 < qAx < 0.5, 

1 3 2i--m ]I(R?\R?)m II/Ib'll < 
Ax K_ (Ax) 2 

1 + iAx j~-I (1 + jAx)(1 + (i - j  + 1)Ax) 

Ax q( Ax ) 2 
< 

1 + iAx (1 + iAx)(1 + qAx) 

Ax 
z 

(1 + qAx)(1 + iAx) " 
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For 0.5 < qAx < 0.9, we have to consider the cancellation from all R~ not just 
from the rebounded waves. By (15) and (16), we have 

1 3 II(R~ \R~ )~-mll/ll~ll 

Ax 2Ax 
< 

1 + iAx 2 + iAx 
In(1 + qAx) + In { 1 

1 + iAx 

Ax { l + iAx } l 
+ ~ l n  l + ( i - q ) A x  + ~  O(Ax)2 

Ax 2Ax 

1 + iAx 2 + iAx 
- - l n ( 1  + qAx) - 

i( Ax ) 2 f 
(1 + iAx)(2 + iAx) m 

1 

1 + iAx 

Ax 
< 

1 + iAx 

O( Ax ) 2 

2Ax 
2 + iAx In(1 + qAx) + O(Ax) 2 

< 
Ax 

1 + iAx 

2.5q( Ax ) 2 

(2 + iAx)(1 + qAx) 

< (1.25 + 0.75iAx)Ax 

(1 + iAx)(2 + iAx)(1 + qAx) 

< 
3Ax 

4(1 + iAx)(1 + qAx) " 

1 + iAx "[ 

f 1 + (i - q)Ax 

Now we can use the above lemmas to estimate P(7)- 
QED 

Lennna 7. There exists a constant 0 < t 1 < 1 which is independent of  N and Ax 
such that the reflection potential of  ? emitting from the mesh point (0,0) is less 
than r/l]yl] when Ax << 1. 

Proof. We calculate P(7) by two parts, denoted by B~llVll and B2[1711 the corre- 
sponding total norms. B1 I1~[I denotes the reflection potential due to those (R71 \R~3)l,i 
and B211Wll denotes the reflection potential due to those (R~\R~3)mi with m => 2. Let 
pAx = 0.9, qAx = 0.5, we have 

P A x  p-1  j (AN)2 
B1 < ~ ~ ~ (1 +iAx)(1 + ( j - i +  1)Ax) = D I ,  i=1 1 + iAx j=l i=~ 
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q-2 AX J Ax 
/~2< ~2 j=~ l + ( j +  1)Ax .= ( l + i A x ) ( l + U - i +  1)Ax) 

Ax q-~ Ax 
+ ~ l + ( j + l )  Axe/-1 (l + iAx)(l + U -  i + l)Ax) j=q--1 "= 

3 p-2  Ax  J z~x 

+ ~ j~  1 + U + 1)~x i~ (1 + iAx)(1 + U - i+  1)Ax) 

3 ~ Ax P-~ Ax 
+ 

4 j=~-i l + U +  1)Ax i~ (1 +iAx~(1 + U - i +  1)~x) 

= D 2  , 

q-1 Ax 
D2 < ~ 1 + iAx i=1 - -  + 4 1 + iAx 

< ln(l + qAx) + ~ln { I + pAx } l + qAx + O(Ax)2 

< 0.583, 

when Ax << 1. Thus 

B1 + B 2  < D1 + D 2  

where 

p--lx -~ ~J  (Ax)2 
In 1.9 § 0.583 < 

z_~ z~ (1 + iAx)(1 + ( j  - i +  1)Ax) j=l i=1 

= in 1.9 + 0.583 - J ,  

Xs 2In{1 + ( i -  1)Ax} 
J O( Ax ) 2 > + 

i=2z-" 2 + iAx 

0.9 ( '  + x )  
> 2 f l n  dx + O(Ax) 2 . 

o \~T~xJ 

Thus when Ax << 1, we have 

B1 + B2 < lnl.9 § 0.583 - 0.23 

= 0.995, 

i.e. we can choose t / =  0.995. 

631 

Note 4. I t 's  not important what exactly B1 + B2 is. What is important is that B1 + 
B2 < t / <  1. 

Now we will give a technical estimation of  the reflection potential for 7 emitting 
from the mesh point (m, 0). 
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Lemma 8. There exists a constant q < 1 which is independent of  N, m and Ax 
such that the reflection potential for a 2 na hyperbolic wave 7 emitting from the 
mesh point (re, O) is also less than ttlb, tt when Ax << 1. 

Proof Consider the mesh point (m + n - l, n + l), where 0 < l < m, we have 

n--1 AN 3 n+l JJ(R~ ).,+._~J)/JJ~,JJ = 
j=o 1 + (m + j )Ax)  

1-1 (dx)2 

x i=o ~ ( l + ( m + i + j - l ) A x ) ( l + ( m + n + i - l ) A x )  

n-l (Ax)2 lj { { l +(m+j)Ax } 
> ~ In 

j=O 1 + (m + j ) A x  (n - )Ax 1 + (m + j  7 ~ x  

1 + (m + n)Ax 1 
- l n  {1 21-(m--+-n - ~-Ax } } + l  + m A x  O(Ax)2 " 

Now we need the following lemma. 

Lemma 9. When m and n are fixed, 0 < x < nAx, 

~'~(x)-- l+mAx+X{ln{l+mAx+X}-ln{ l+x l+nAx- JJ 

is a decreasing function of  x. 

Proof 

~,(x)=l+(n+m)Ax{ (l+mAx+x) {l+(m+n)Ax~; 
(nAx - x) 2 in i - ~ x  J - In i + ~ x x  J j 

max 
( n A x -  x)(1 + x )  

Let 

fl(x)=ln( l+mAx+x)i~-x ] - ln{ 1 + (m + n)Ax "~ 

i ~  j -  (~ 
mAx(nAx - x) 

+ (m + n)Ax)(1 + x )  ' 

then 

fl'(x) = (mAx)2(nAx - x) 
(1 + x)2(1 + (m + n)Ax)(1 + mAx + x )  

Since 0 < x < nAx, then fl'(x) > 0. Since limx~n~xfi(x) = 0, then fi(x) < 0, 
i.e., ~ ( x )  < 0. QED 
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Now we come back to the proof of Lemma 8. Since 

1 { { l + ( m + n - 1 ) A x  -- { l + ( m + n ) A x  ; ;  
lira In i ~ x  - In 

Ax~oAx l + ( m + n  1 ~--~ ~- n--- ~-Ax J J 
lAx 

(1 + (m + n)Ax)(1 + (m + n - l)Ax) ' 

then we have 

II(R~)C',_zlI/II~II 
lAx(1 + ( m + n -  1)Ax) "v"l (Ax)2 > 

(1 + (m + n)Ax)(1 + (m + n - 1)Ax) x ~ (1 + (m + i)Ax) 2 

ln( Ax ) 3 1 
(1 + mAx)(1 + (m + n)Ax)(1 + (m + n - l)Ax) + 1 + mA-----~ O(Ax)2 

> 
Q 

If we choose N(Ax)  2 < (Ax)�89 since n < N we have 

1 3 m+n 
t I ( R ~ \ R ~ ) ,  II 

Ax (R3 ]m+n = , ~  -II~lll  - , _ . ~ , ,  
1 + (m + n)zJx 

Ax nm(Ax) 3 < 
= 1 + (m + n)Ax (1 + mAx)(1 + (m + n)Ax)(1 + nAx) 

, 1 - ~ - O ( A x )  2 ~ 11711 
4 1 • mzJx j 

AK + O(~x)~ "~ 
= (1 ~-mSxS-dTXAx) J Ilwll, (17) 

1 3 n+l [I(Rv \R~ )m+,-zl] 

Ax nl(Ax) 3 < 
= 1 § (m + n)Ax (1 § max)(1 § (m § n)Ax)(1 + (m + n - l)Ax) 

-~ l + ~ x O ( d x ) Z }  lly[[ 

S (1 + (m - l )Ax)Ax 
/ (1 + mAx)(1 + (m + n - I)Ax) 



634 T. Yang 

We estimate the reflection potential P(7) by two parts, denoted by Pai(7), 
i = 1, 2, where 

{(x,t): 0 < t < mat  and t Q1 > mAt, 

( E } 1 +  L At j Ax <_ x <_ 1+ m +  -~ Ax , 

~22- [(x,t):  t >= mAt, 1 < x <- 1+ Ax n 

1 1 By (17) and (l+a)(l+b) < l+(a+b~ for a,b > 0, it is easy to prove that the reflec- 

tion potential in g22 due to 7 is tess than the reflection potential of a 2 nd hyperbolic 

wave '7 emitted from the mesh point (0,m) with the norm being ~ j l[711- 

Since all the lemmas are true for arbitrary time, by Lemma 7 we have 

~(1 + O(Axfi ) } 
P~=(~) ~ [ f ~ _ ~  II~ll. (19) 

By (18) we have 

P~,(Y) < k ~ (1 
1=0 n=0 

(1 + ( m -  l)Ax)(Ax) 2 

+ max)(1 + (m + n - l)Ax) 2 
1 3} 

+ 1 + m A x  O(Ax) 11711 

< 
(1 + (m - l)Ax)(Ax) 2 

+ mAx)(1 + (m + n - l)Ax) 2 1=0 1 + Ax O(Ax)3 

,=01 + mA~ + O(Ax)= I1~11 

_ {  _ _ m A x  i }  
1 + max + O(Ax)X I1~,11 �9 (20) 

But (19) and (20) are not sufficient to prove that the reflection potential is less 
than t/llTll for some fixed q < 1. Because the constant in front of I]yl] in (20) will 
tend to 1 as m tends to infinity. In order to get a q < 1 which is independent of 
N, m and Ax, we have to refine the estimate of P~1(7)" Now we need the following 
lemmas. 

Lemma 10. For l > 4mAx, max >_ 100, Ax << 1, there exists constants D and 
ql > 0 which are independent of  N, m and Ax, such that i f  w > Din, 0 <<_ n < m, 

l + (m + n)Ax ~ln~  l + (m + n)Ax ~ _ 
t + ( w - - n ) A x  L L 1 7 t - ( m ~ - n - l ) A x J  

lAx 

I n (  l + (m + w)Ax 

> ( 1 +  rh) 
1 + ( m  + w - l)Ax 
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Lemma 11. There exists a constant q2 > 0 such that i f  l >= ( 1 -  ~/2)m, n > 
Din, max > 100 and Ax << 1, we have 

1 3 )n+l I . II( RT \R~ m+n--I  ~- 0 ( 2 1 )  

The proofs for Lemma 10 and 11 are omitted. Thus when mAx >= 100, we have 

Pf~l  (~  ) 

<= E 
1 + m A x  w=Dm Z:( 2)m(l +mAx)(1  + ( m + w -  l)Ax) 2 t-O(Ax)I flail 

{mAx } <  3+O(Ax) 1 II ll �9 ( 2 2 )  
= 1 +mAx  

where /'13 > 0 is a constant independent of  N,m and Ax. By (19) and (22), we 
know that when Ax << 1, there exists a constant 1/ < 1 such that 

where q is independent of  N, m and Ax. QED 

Now we can conclude the proof of  Lemma 3. Before doing this, we give the 
following definitions. 

Definition 11. For any hyperbolic wave 7 o f  the 2 "a family emitting f rom the mesh 
point (re, O), we define 

i i i+2 i i+2 N 
[I(RT\R7 )~a , U~n(R,/\R7 ) = E II 

and 
[ j~2j- 1 \p2j-t-1 ~i W(R2s-I\R  j+l) = E , - - ,  ,111 �9 / / I  \ ~  ~ ,  7 �9 

i 

Let 

and 

0 i i i i+2 = sup{Um(R,\R,  )/llwll}, 
m 

Oj j 2j-] 2i+1 = sup {Vim(R7 \R7 )/tlYI[), 
m 

O=sup{P(7)/ l ly l l]  for a l l y o n t = 0 ,  [[yl[+0}. 

By the above discussion, we know that ~ll~ll is a uniform upper bound for P(7),  
where 7 is any hyperbolic wave of  the 2 nd family in the simplified scheme and in 
the region 0 < t < NAt, x > 1. And it is easy to prove the following lemma. 

Lemma 12. There exists a constant 0 < ~ < 1 which is independent o f  N, m and 
Ax, such that 

01 , 01 < l n 2 + ~ ,  when A x < < l .  

Proof  o f  Lemma 3. Since i i i+2 vJtp2J-]\e2j+l U~,(R,e\R ~ ) and , mr"7 v'~ ) will approach zero 
when i approaches l , j  approaches [~] and Ax approaches 0, where l is defined by 
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RI+I _~ d), where q5 is the empty set. Then for any hyperbolic wave 7 of  the 2 nd 7 
family emitting from the mesh point (m, 0), we have 

and 

RTI(7)  ~ i i+2 N = II(R~\R~ )roll--< ~ O'[I/~l[, 
/=odd, m > 0 /=odd 

RT~(7) ~ ~ 0'11711. 
/=even 

By the reflection potential estimate in the last section, we have 

0 i+2 < ~0 i, 0 i+2 < ~ 0  i, i > O. 

Thus we have 

RTI(7) < ( l n 2  § ~) (~)i 1171P 

l n 2 +  
< ~ 7 .  (23) 

Since 2 2 4 U,~(R~\R~) is equal to the reflection potential o f  7, then 

^ 

RT2(7) < 1 _ ~  011711 . (24) 

Since the total norm of  the reflections on x = 1, 0 < t <- Nk is equal to the total 
norm of  the reflections approaching x --- 1, 0 <_ t < Nk, then 

[~]+1 ln2 + 
Rr~  < ~ O91171] < 1 - - }  11711. (25) 

j= l  

I f  7 is a hyperbolic wave of  the 1 st family emitting from the mesh point (m,0).  
When Ax << 0, it is straightforward to prove that 

_ l n 2 + ~  
RTI(7)  < {1 + ln(1 + mAx)  + O(Ax)}-i--2~llT] I 

< {2 + l n ( 1  + m A x ) } ~ [ I y l l ,  (26) 

^ 

RT2(7)  < {2 § ln(1 § mAx)}l--~llTll, (27)  

. l n 2 + ~  
RT~ < {2 + ln(1 + m~x)}-i~TII71l. (28) 

By (23) to (28), Lemma 3 is proved by choosing (~ - 2 1-4" 
Now we can derive the formula relating the hyperbolic waves on t = NAt and 

those on t = 0. Before stating the theorem in this section, we introduce some nota- 
tions: For our reduced model problem, we use 7 ) to denote the hyperbolic wave m,z 

of  the f h  family on the mesh point (m, i) in the simplified scheme, where j = 1,2. 
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Theorem 4. For the waves evolution in the simplified scheme, i f  Ax << 1, there 
exists a constant G1 which is independent o f  N and Ax, such that 

7 j 7 2 [I m,0][ + U re, oil} , (29) 2 II ~,~11 --< G~ 2 { { 2  + ln(1 + max)} y 1 
j~/n m 

7 2 = [I m,O[I + II re, oil} (30) ][ 0, i11 < G1 }-~{{2 + ln(1 + max)} 71 ~2 , 
i > 0  m 

where the sum are taken over all possible m, j  and i. 

Proof. By the simplified scheme, we have 

= 7 j ~2117~ NIl < ~ [I m,011 + 2 2(RI j  )N 
j ,m ' j ,m j,m,k i Yrn, O 

7 j (R i \Ri+2 )N I I m , 0 1 1 + ~ , ,  ~j , ~j ~,, 
j ,m j,m i,k m,O m,O 

7J 1 J 2 J 
2 II m,0]l + E {  RT (Tin, O) + R r  (Tin,0)} 
j ,m j ,m 

( 2 8 +  1 ) • { { 2 + l n ( 1  +mAx)}  71 2 II m, o l l +  IRTm, ol/} �9 
m 

~ 

Similarly, we have 

72 H o,,11 =< 
i > 0  m 

--<2 
m 

---<2 
/-// 

Let G1 = 2G + 1, we get 

1171,011 + E E(R~  )~; 
j ,m,i l 7m, O 

/ 1 l \  l + 2 i  1171.o1[+22 (Rj Rj )oll 
�9 j ,m l,i ?m, 0 7m, 0 

1171,oll + 2 RV~ o) 
j ,m 

( G + l ) 2 { { 2 + l n ( l + r n A x ) }  1 72 117m,011 + II m,011} �9 
m 

(29) and (30).QED 

8. Proof of  Theorem 1 

Now we can conclude the proof for Theorem 1. That is, we will prove that there ex- 
ists a uniform bound for the Loo norm and the total variation norm of  (u(x, t), p(x, t)) 
for and time, where (u(x,t), p(x, t)) is the solution for the model problem. 

Proof o f  Theorem 1. As shown in Sect. 2, the model problem in Theorem 1 can be 
reduced to the ideal model problem discussed in Sect. 7. Thus by Theorem 4 and 
Lemma 2, if Ax << 1, we have 

= 72 2 IlJm,NII < G26, 2 II o, ill --< G26, 
j ,m i 

I p ( 1 , T ) - p l  < 626,  

where G2 is a constant independent of  N, Ax and T = NAt. 
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By the definition of  standing waves, we know that p is constant and lul is 
decreasing while crossing a standing wave from left to right in the ideal model  
problem. Since u(1, t) - 0, the strengths of  the rebounded waves o f x  = 1 are equal 
to those of  the impinging waves. Thus we have 

]xu(x,T)l < a3(~ , [ p ( x , f ' ) - / ~ 1  < G3~ , x ~ 1 , 

where G3 is constant independent o f  N and Ax. 
Furthermore, i f  a left state (Pl, ul, al) and a right state (pr, ur, ar) are connected 

by only a standing wave 7 o in the solutions of  the Riemann problem, where al = Xo 2 
and ar = (xo -+ Ax) 2, the Gl imm's  strength of  ?0 satisfies 

2Ax 2G3 6Ax 
I ~ : x-- lxoul <= x02 

Since the L1 norm of  ~ is bounded when x C [1, co),  we have 

Var{u(x,t)},  Var{p(x, t)}  < G6, x > 1,  

where G is a constant independent of  N and Ax. Since N can be arbitrarily large, 
then the bounds obtained above are uniform with respect to any time. And the proof  
for Theorem 1 is completed. QED 
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