
Kinetic Equations:

Fluid Dynamical Limits and Viscous Heating

Claude Bardos
University Denis Diderot

Paris, France and
Laboratory Jacques Louis Lions, University Pierre et Marie Curie

75251 Paris Cédex 05, France
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Abstract

In the long-time scale, we consider the fluid dynamical limits for the kinetic equations when the fluctuation
is decomposed into even and odd parts with respect to the microscopic velocity with different scalings. It
is shown that when the background state is an absolute Maxwellian, the limit fluid dynamical equations
are the incompressible Navier-Stokes equations with viscous heating. This is different from the case when
the even and odd parts of the fluctuation have the same scaling where the standard incompressible Navier-
Stokes equations without viscous heating are obtained. On the other hand, when the background is a local
Maxwellian, it is shown that the above even-odd decomposition leads to a non-classical fluid dynamical
system without viscous heating which has been used to describe the ghost effect in the kinetic theory. In
addition, the above even-odd decomposition is justified rigorously for the Boltzmann equation for the former
case when the background is an absolute Maxwellian.
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1 Introduction

The first derivations of fluid dynamics from kinetic equations go back to Maxwell [Mx] and Boltzmann [Bl].
These early derivations rested on arguments as how the various terms in a kinetic equation balance each
other. These balance arguments seemed arbitrary to some extent. Hence, Hilbert [Hl] proposed that such
derivations should be based on a systematic expansion in a small non-dimensional parameter ε > 0, sometimes
called the Knudsen number, which is the ratio of microscopic to macroscopic time scales. A bit later Enskog
[En] proposed a somewhat different systematic expansion, now often called the Chapman-Enskog expansion,
in the same small parameter ε. With this parameter introduced, classical kinetic equations take the form

∂tF + v ·∇xF =
1
ε
C(F ) . (1.1)

Here F = F (t, x, v) is a nonnegative mass density of particles with position x in a smooth domain Ω ⊂
Rd and microscopic velocity v in Rd, while C(F ) is a collision operator that acts only on the v variable.
Either the Hilbert or Chapman-Enskog expansion yields the compressible Euler equations at leading order,
and the compressible Navier-Stokes equations, Burnett equations, and so-called super Burnett equations at
subsequent orders. Justifying these formal approximations has been proven difficult, in part because many
basic well-posedness and regularity questions are still mostly open for these fluid equations. Here we mention
only [C], [N], [UA] on the justification of the compressible Euler approximation.

Several papers [BGL, DMEL, BU, So] have therefore studied direct derivations of incompressible Navier-
Stokes equations, about which more is known. Denote the Maxwellian in space dimension d with density ρ,
bulk velocity u and temperature θ by

M(ρ, u, θ) =
ρ

(2πθ)
d
2

exp
(
− |v − u|

2

2θ
)
.

More specifically, they consider F to be a perturbation about an absolute Maxwellian M = M(v). By an
appropriate choice of a Galilean frame and choice of mass and velocity units, it can be assumed that M has
the form

M ≡M(1, 0, 1) =
1

(2π)d/2
exp(− 1

2 |v|
2) . (1.2)

It is assumed that any boundary conditions are consistent with M being either an exact stationary solution,
or a sufficiently good approximation of a stationary solution of (1.1). Because F is near M , it will therefore
evolve on a longer time scale than that appearing in (1.1). Upon introducing this longer time scale, these
papers considered a scaled kinetic equation of the form

ε ∂tF
ε + v ·∇xF ε =

1
ε
C(F ε) , (1.3)

where the phase space density F ε = F ε(t, x, v) is of the form

F ε = M + ε F̃ ε . (1.4)

Here F̃ ε = F̃ ε(t, x, v) denotes the fluctuation of the phase space density about M . The incompressible
Navier-Stokes equations are then derived from (1.3) and (1.4) in the limit of vanishing Knudsen number ε.
In this set-up, the Mach number and the Knudsen number are of the same order so as to obtain a nonzero
viscosity [BGL].

Here, we should mention that the recent major breakthrough to the Navier-Stokes limit of the Boltzmann
equation was made by Golse and Saint-Raymond, [GS]. Roughly speaking, this important result shows that
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the limits of suitably rescaled sequences of DiPerna-Lions renormalized solutions to the Boltzmann equation
are the Leray solutions to the incompressible Navier-Stokes equations. However, since we are concerned
with the formal derivations and the limit of “regular” solutions, we will not go into details in this direction.
Notice also that the fluid dynamical limits with viscous heating involve higher order corrections so that there
is no room for weak convergence, such as from renormalized solutions of the Boltzmann equation to weak
solutions of the Navier-Stokes equations, [BGL],[GS].

The associated fluid dynamical variables, mass density ρε, bulk velocity uε, and temperature θε, are defined
in terms of F ε by

ρε ≡
∫

Rd
F ε dv , ρεuε ≡

∫
Rd
v F ε dv , ρεθε ≡ 1

d

∫
Rd
|v − uε|2F ε dv . (1.5)

By the form (1.4) of F ε, these variables may be expressed in terms of their fluctuations as

ρε = 1 + ε ρ̃ε , uε = ε ũε , θε = 1 + ε θ̃ε . (1.6)

Then under certain hypotheses these fluctuations will converge as ε→ 0+ in a convenient topology:

ρ̃ε → ρ̃ , ũε → ũ , θ̃ε → θ̃ , (1.7)

where the limiting velocity fluctuation is governed by

∇x ·ũ = 0 , (1.8a)

∂tũ+ ũ·∇xũ+∇xp̃ = µ∗∆ũ , (1.8b)

while the limiting density and temperature fluctuations are governed by

ρ̃+ θ̃ = 0 , (1.9a)

d+2
2 (∂tθ̃ + ũ·∇xθ̃) = κ∗∆θ̃ . (1.9b)

Here (1.8) are the standard incompressible Navier-Stokes motion equations with viscosity µ∗, (1.9a) is the
Boussinesq relation between the density and temperature fluctuations, and (1.9b) is the temperature equation
with thermal conductivity κ∗. Both µ∗ and κ∗ are positive and have formulas in terms of the linearization
of the collision operator C about the absolute Maxwellian M .

These equations can also be derived from the compressible Navier-Stokes equations for an ideal gas.
Expressed in terms of ρε, uε, and θε and in terms of the same long-time scaling used in (1.3), these equations
are

ε ∂tρ
ε +∇x ·(ρεuε) = 0 (1.10a)

ρε
(
ε ∂t + uε ·∇x

)
uε +∇xpε = ε∇x ·[µεσε] (1.10b)

d+2
2 ρε

(
ε ∂t + uε ·∇x

)
θε −

(
ε ∂t + uε ·∇x

)
pε = ε 1

2µ
ε|σε|2 + ε∇x ·[κε∇xθε] . (1.10c)

Here the pressure pε is given by the ideal gas law as pε = ρεθε, the viscosity µε and thermal conductivity κε

are given as positive functions of ρε and θε denoted by µε = µ(ρε, θε) and κε = κ(ρε, θε), while the strain-rate
tensor σε is given by

σε ≡ ∇xuε + (∇xuε)T − 2
d∇x ·u

ε I , (1.11)

and |σε|2 ≡ tr(σε 2) = σε :σε. If one assumes that ρε, uε, and θε have the form given by (1.6) and that their
fluctuations converge as ε→ 0+ in a convenient topology as in (1.7), then their limiting fluctuations satisfy
(1.8) and (1.9).

3



There is however more than one incompressible limit for the compressible Navier-Stokes equations [BLP].
If one assumes that, rather than (1.6), the fluid variables may be expressed in terms of their fluctuations as

ρε = 1 + ε2ρ̃ε , uε = ε ũε , θε = 1 + ε2θ̃ε , (1.12)

and that these fluctuations converge as ε → 0+ in a convenient topology as in (1.7), then the limiting
velocity fluctuation is again governed by the Navier-Stokes motion equations (1.8), but the limiting density
and temperature fluctuations are now governed by

p̃ = ρ̃+ θ̃ , (1.13a)

d+2
2 (∂tθ̃ + ũ·∇xθ̃)− (∂tp̃+ ũ·∇xp̃) = 1

2µ
∗|σ̃|2 + κ∗∆θ̃ . (1.13b)

Here p̃ is the limit of the pressure fluctuation p̃ε defined by

p̃ε ≡ ρ̃ε + θ̃ε + ε2ρ̃εθ̃ε ; (1.14)

the limiting viscosity and thermal conductivity are given by µ∗ = µ(1, 1) and κ∗ = κ(1, 1). However, now
by virtue of (1.8a), σ̃ is a traceless tensor and one has:

σ̃ ≡ ∇xũ+ (∇xũ)T and 1
2 |σ̃|

2 =
∑
ij

( ∂ui
∂xj

∂uj
∂xi

)
+
∑
i

(∂ui
∂xi

)2 . (1.15)

Observe that, with the Navier-Stokes equation for ũ and the “Boussinesq relation” (1.13a), (1.13b) is also
equivalent to

∂t(
|ũ|2

2
+
d

2
θ̃ − ρ̃) +∇x ·

(
ũ(
|ũ|2

2
+
d+ 2

2
θ̃)
)

= µ∗∇x
(
u
(
∇xũ+ (∇xũ)T

)
+ κ∗∆θ̃ (1.13b′)

which describes the balance of internal energy with a left hand side written in conservation form.
Equations (1.13) differ from equations (1.9) in that they include the viscous heating term 1

2µ
∗|σ̃|2 and

driving terms involving the limiting pressure fluctuation p̃. These terms have clear antecedents in the
compressible Navier Stokes equations (1.10). They appeared in (1.13) because the scaling (1.12) gives a
balance that includes more physics at the leading order [cf. BLP].

One of the main purposes of the present paper is to show that the same type of scaling made at the level
of a kinetic equation will lead to the same limit equations. In particular, we show that the structure of
the limit equations depends on the collision operator (assumed to be in a “reasonable physical class”) only
through the viscosity and heat conduction defined by this operator. We again derive this incompressible
limit from the scaled kinetic equation (1.3), but we now decompose the fluctuation F̃ ε into its odd and even
parts as functions of v, denoted by F̃ εo and F̃ εe , and assume that

F ε = M + ε F̃ εo + ε2F̃ εe . (1.16)

Our formal derivation is universal in that it is valid not only for the genuine Boltzmann operator but also for
any collision operator C that retains certain basic abstract “physical” properties of the Boltzmann operator.
It is also moment-based, in the style of the derivation given in [BGL] of (1.8) and (1.9) from (1.3) and
(1.4). This approach captures the physical spirit of the balance arguments used by Maxwell and Boltzmann
while retaining the systematic mechanism provided by an asymptotic development in the small parameter
ε. This is manifest through its emphasis of the role of the leading order terms in weak formulations. It
thereby requires less control to establish the convergence of these quantities than to establish the validity of
expansion-based derivations.
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The incompressible limits thus obtained, however, are not the only limits of the scaled Boltzmann equation
(1.3). A second purpose of the present paper is to show that another asymptotic development for small
parameter ε leads to a non-classical system of fluid dynamical equations.

Even though the Boltzmann equation has close relation to the classical systems in fluid dynamics, it
provides more information in the mesoscopic level so that it describes some phenomena which can not
be modeled by using the classical systems of Euler and Navier-Stokes equations. This kind of interesting
phenomena, such as the thermal creep flow in a rarefied gas, was known already at the time of Maxwell. The
mathematical formulation and numerical computation on the basis of kinetic equations have been studied
since 1960’s, cf. [So2]. The explicit forms of the fluid dynamical equations derived there are reproduced in
(4.6) in Section 4. One of the main features is that they exhibit the “ghost effect”.

We will show that these non-classical equations can be derived again from the scaled Boltzmann equation
(1.3) but under the new scaling

F ε =M(ρε, εũε, θε) + εGε, (1.17)

whereM(ρε, εũε, θε) is the local Maxwellian determined by the solution F ε itself while Gε is the microscopic
component of the solution. When ε tends to zero, even though the bulk velocity approaches to zero, the
scaled flow velocity ũ as the limit of ũε appears in the equations governing the motion of the limit density
ρ and the limit temperature θ. The infinitesimal quantity ũ is not a “real-world” quantity and hence a
“ghost”. Thus, this fluid dynamical system describes a non-classical phenomenon such that the “real-world”
quantities ρ and θ are governed by the “ghost” ũ. Notice that the appearance of the “ghost effect” comes
through the boundary or from infinity in physics, see Remark 4.1. Moreover, this system does not contain
the viscous heating, see Remark 4.2.

Straightforward calculation shows that the above decomposition with scaling is equivalent to the following
even-odd decomposition

F ε =M(ρ, 0, θ) + ε F̃ εo + ε2F̃ εe , (1.18)

where ρ and θ are not constant, but functions of (x, t). In other words, M(ρ, 0, θ) is a local Maxwellian
which is different from the case in (1.16). Moreover, it is stressed that in contrast to (1.16), the odd-even
decomposition in (1.18) is a consequence of the setting of the scaling but not the assumption, see Theorem
4.1, where the formal derivation based on the decomposition (1.17) is given. The purpose there is to give a
systematic derivation of the non-classical fluid dynamical system. The well-posedness of the system and the
justification of the limit will not be discussed in this paper.

In the above, we saw that the same equation (1.3) has different limits if different scalings are introduced
to the solutions. This fact may be in analogy with the Weierstrass-Picard theorem on the behavior of
holomolphic functions near essential singularities: ε = 0 is something like an essential singularity of the
scaled Boltzmann equation (1.3) and different scalings result in different limits.

After the above formal derivations, we go on to show that the convergence can be established in the setting
of the Boltzmann equation for the hard sphere model and cutoff hard potentials in R3 when the background
is an absolute Maxwellian. How to justify the case for the non-classical fluid dynamic limit is not in the
scope of this paper and is left for future investigation. Our result parallels the convergence proof of Bardos
and Ukai [BU] for the formal moment-based derivation found in [BGL] of (1.8) and (1.9) from (1.3) and
(1.4). It works with classical solutions of the Boltzmann equation defined in certain Grad spaces.

Our paper is laid out as follows. In Section 2, we will identify the general class of collision operators C
for which our formal derivation holds. In this setting, we will develop identities that will play a central
role in the subsequent formal derivations. In Section 3, we will present the formal moment-based derivation
with even-odd decomposition of the fluctuation when the background is an absolute Maxwellian. When the
background is a local Maxwellian, the formal derivation of the non-classical fluid dynamic limit will be given
in Section 4. Section 5 establishes the limit for certain classical solutions of the Boltzmann equation for
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the hard sphere model and the cutoff hard potentials in R3 to justify the incompressible limit with viscous
heating derived in Section 3.

2 Properties of the Collision Operator

The collision operator C is assumed to be defined over a domain D(C) that is contained within the cone
of nonnegative functions of v with convenient decay at infinity. It is assumed that C enjoys the following
properties which relate to local conservation, local dissipation, Galilean invariance, and its expansion about
an equilibrium. These properties are shared by a wide range of classical collision operators. They are
expressed with the following notations. The integral of any scalar or vector-valued integrable function
f = f(v) over Rd will be denoted by 〈f〉, so that

〈f〉 =
∫
f(v) dv . (2.1)

All functions in this paper are understood to be measurable in all variables.

2.1: Basic Assumptions about the Collision Operator.

First, the operator C is assumed to have 1, v, and |v|2 as locally conserved quantities; this means

〈C(f)〉 = 0 , 〈v C(f)〉 = 0 , 〈|v|2C(f)〉 = 0 , for every f ∈ D(C) . (2.2)

Moreover, it is assumed that every locally conserved quantity is a linear combination of these three, so that
for any g = g(v) with convenient decay at infinity the following statements are equivalent:

i) 〈g C(f)〉 = 0 , for every f ∈ D(C) ;

ii) g ∈ E ≡ span{1, v1 , v2 , · · · , vd , |v|2}.
(2.3)

The relations (2.2) represent the physical laws of mass, momentum, and energy conservation during collisions
and (2.3) states that there are no other local conservation laws.

Second, the operator C is assumed to satisfy the local dissipation relation

〈log f C(f)〉 ≤ 0 , for every f ∈ D(C) . (2.4)

The quantity on the left of (2.4) is the so-called local entropy dissipation rate. The local equilibrium of C
are assumed to be characterized by the vanishing of the local entropy dissipation rate and to be given by
the class of Maxwellian densities, i.e., those of the form

f =M(ρ, u, θ) ≡ ρ

(2πθ)
d
2

exp
(
− |v − u|

2

2θ

)
, (2.5)

for some (ρ, u, θ) ∈ R+ ×Rd×R+. More precisely, for every f ∈ D(C) the following statements are assumed
to be equivalent:

i) 〈log(f) C(f)〉 = 0 ,
ii) C(f) = 0 ,

iii) f is a Maxwellian density given by (2.5).
(2.6)

These assumptions about C merely abstract some of the consequences of Boltzmann’s celebrated H-theorem.
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Third, the operator C is assumed to commute with the actions of translational and orthogonal transfor-
mations on v. Specifically, given any f = f(v), then for every vector u ∈ Rd and for every orthogonal matrix
O ∈ Rd×d define functions Auf and Aof by

Auf = Auf(v) ≡ f(v − u) , Aof = Aof(v) ≡ f(OT v) . (2.7)

It is assumed that if f is in D(C), then so are Auf and Aof with

AuC(f) = C(Auf) , AoC(f) = C(Aof) . (2.8)

These relations reflect the Galilean invariance of the microscopic collisional dynamics and implies that when
Ω = Rd, the kinetic equation (1.3) formally retains Galilean invariance.

Fourth, it is assumed that when acting on smooth functions with convenient decay at infinity, the collision
operator C is four times Fréchet differentiable, the first, second, and third derivatives being denoted by C′,
C′′, and C′′′. In particular for any given Maxwellian M of the form (2.5), the operator C has the formal
Taylor expansion

1
M
C
(
M(1 + ε g̃)

)
= −εLM g̃ + ε2QM(g̃, g̃) + ε3TM(g̃, g̃, g̃) +O(ε4) . (2.9)

with the identifications:

LM g̃ = − 1
M
C′(M)(Mg̃),

QM(g̃, g̃) =
1

2M
C′′(M)(Mg̃,Mg̃), (2.9’)

TM(g̃, g̃, g̃) =
1

3!M
C′′′(M)(Mg̃,Mg̃,Mg̃).

The linear and symmetric multi-linear operators LM , QM , and TM are defined by the relation (2.9’) in HM ,
the Hilbert space with the weighted inner product(

h̃ | g̃
)
M
≡ 〈h̃Mg̃〉 . (2.10)

They are assumed to be closed operators from HM into HM with domains D(LM), D(QM), and D(TM) which
contain the set of smooth functions g̃ with at most polynomial growth as |v| → ∞, and therefore, which are
dense in HM .

2.2: Some Consequences of the Basic Assumptions and Further Hypotheses.

The assumptions made in the previous section contain much more information on the structure of the
collision operator. Given any Maxwellian M = M(ρ, u, θ) of the form (2.5), many properties of LM , QM ,
and TM now follow directly from those of C.

First, combining the local conservation relations (2.2) with the definition (2.9) of LM , QM , and TM gives:

Proposition 2.1: Let ξ ∈ E, where E is the space of locally conserved quantities defined in (2.3). Then

〈ξMLM g̃〉 = 0 , for every g̃ ∈ D(LM) ; (2.11a)
〈ξMQM(g̃, g̃)〉 = 0 , for every g̃ ∈ D(QM) ; (2.11b)
〈ξMTM(g̃, g̃, g̃)〉 = 0 , for every g̃ ∈ D(TM) . (2.11c)

Second, combining the local dissipation relation (2.4) with the definition (2.9) of LM , QM , and TM and
the expansion

log
(
M(1 + ε g̃)

)
= log(M) + ε g̃ − 1

2ε
2g̃2 + 1

3ε
3g̃3 − · · · , (2.12)
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while using (2.9) with the fact log(M) ∈ E, gives:

Proposition 2.2: For every g̃ ∈ C∞(Rd) with at most polynomial growth as |v| → ∞, one has

0 ≤ −
〈

log
(
M(1 + ε g̃)

)
C
(
M(1 + ε g̃)

)〉
= ε2〈g̃MLM g̃〉 − ε3

(
1
2 〈g̃

2MLM g̃〉+ 〈g̃MQM(g̃, g̃)〉
)

+ ε4
(

1
3 〈g̃

3MLM g̃〉+ 1
2 〈g̃

2MQM(g̃, g̃)〉 − 〈g̃MTM(g̃, g̃, g̃)〉
)

+O(ε5) .

(2.13)

From the above expansion one deduces the relation

0 ≤ 〈g̃MLM g̃〉, (2.14)

or the fact that the “unbounded” operator LM is non-negative.

Let L†
M

denote the adjoint of LM over HM with its domain denoted by D(L†
M

). It will be assumed that
the domains of these two operators coincide

D(L†
M

) = D(LM) . (2.15)

With (2.14) and the classical Hilbertian theory (cf. Brezis [Br] ), the operators LM and L†
M

are maximal
positive, their spectra is contained in the half plane

Re λ ≥ 0,

and the present analysis relies, as usual, on the fact that 0 belongs to this spectra. Let N(LM) and N(L†
M

)
denote the null spaces of LM and L†

M
, and let R(LM) and R(L†

M
) denote their ranges. With the positivity,

one has g̃ ∈ N(LM + L†
M

) if and only if 〈g̃MLM g̃〉M = 0, which then implies

N(LM) = N(L†
M

) ⊂ N(LM + L†
M

) . (2.16)

Third, let Mε = M(ρε, uε, θε), where (ρε, uε, θε) is an arbitrary analytic parametrization that has an
expansion for small ε of the form

Mε =M
(

1 + εm(1) + ε2m(2) + ε3m(3) +O(ε4)
)
, (2.17)

then one can use (2.9) to expand the relation C(Mε) = 0 in ε, and thereby obtain:

Proposition 2.3: Given m(j) as defined in (2.17), one has

LMm(1) = 0 , (2.18a)

LMm(2) = QM(m(1),m(1)) , (2.18b)

LMm(3) = 2QM(m(1),m(2)) + TM(m(1),m(1),m(1)) . (2.18c)

The family of Maxwellians

Mε =M(1 + ε2ρ̃, ε ũ, 1 + ε2θ̃) =
1 + ε2ρ̃

(2π(1 + ε2θ̃))
d
2

exp
(
− |v − ε ũ|

2

2(1 + ε2θ̃)

)
(2.19)

is motivated for our application by the scaling in (1.12), in which the density and temperature fluctua-
tions are of order two while the velocity fluctuation of order one. It has the following Taylor expansion:

Mε = M
(

1 + εm(1) + ε2m(2) + ε3m(3) +O(ε4)
)

(2.20)
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with m(1), m(2), and m(3) given by:

m(1) = ũ·v ,

m(2) = ρ̃+ ( 1
2 |ũ|

2 + d
2 θ̃)

2
d ( 1

2 |v|
2 − d

2 ) + 1
2A(v)·(ũ ∨ ũ) ,

m(3) = ρ̃ũ·v + θ̃ũ·B(v) + 1
3C(v)·(ũ ∨ ũ ∨ ũ) .

(2.21)

In (2.21) the traceless symmetric matrix A(v), the vector B(v), and the symmetric three-tensor C(v)
are defined by

A = A(v) = v∨v − 1
d
|v|2I ,

B = B(v) =
(

1
2 |v|

2v − d+2
2 v
)
,

C = C(v) = 1
2 (v∨v∨v − 3I ∨ v) ,

(2.22)

where ∨ denotes the symmetric tensor product.
In particular, for M = M given by (1.2) one has the identities

L
M

(m(1)) = L
M

(ũ·v) = 0 , (2.23a)

L
M

(m(2)) =L
M

(ρ̃+ ( 1
2 |ũ|

2 + d
2 θ̃)

2
d ( 1

2 |v|
2 − d

2 ) + 1
2A(v)·(ũ ∨ ũ))

= Q
M

(ũ·v, ũ·v) .
(2.23b)

Since the parameters ρ̃, θ̃ and ũ are independent, the relation (2.23b) is equivalent to the relations

L
M

(ρ̃+ θ̃( 1
2 |v|

2 − d
2 )) = 0 (2.23c)

and
L
M

( 1
2A(v)·(ũ ∨ ũ))) = Q

M
(ũ·v, ũ·v) . (2.23d)

Eventually, the last equation of (2.22) can also be written as:

L
M

(m(3)) = 2Q
M

(ũ·v,m(2)) + T
M

(ũ·v, ũ·v, ũ·v) . (2.24)

Finally, fix a local equilibrium M =M(ρ, u, θ). Every orthogonal matrix O ∈ Rd×d defines the transfor-
mation Oo ≡ AuAoA−1

u where Au and Ao are defined by (2.7). It is easily checked that OoM =M and that
Oo is an orthogonal transformation over HM . Upon using (2.9) to expand the commutation relations (2.8)
about M, one obtains that the operators LM , QM , and TM commute with the orthogonal transformations
Oo:

Proposition 2.4: Let O ∈ Rd×d be an orthogonal matrix. If g̃ ∈ D(LM), then Oog̃ ∈ D(LM), and

OoLM g̃ = LMOog̃ and OoL†M g̃ = L†
M
Oog̃ . (2.25a)

If g̃ ∈ D(QM), then Oog̃ ∈ D(QM), and

OoQM(g̃, g̃) = QM(Oog̃,Oog̃) . (2.25b)

If g̃ ∈ D(TM), then Oog̃ ∈ D(TM), and

OoTM(g̃, g̃, g̃) = TM(Oog̃,Oog̃,Oog̃) . (2.25c)
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By specializing Proposition 2.4 to the case O = −I, the operators LM , QM , and TM are seen to respect
even and odd symmetries. For example, if g̃e and g̃o denote any functions that are even and odd in v − u
respectively, then these symmetries imply that LM g̃e, QM(g̃e, g̃e), and QM(g̃o, g̃o) are even functions of v−u,
while LM g̃o, QM(g̃o, g̃e), and TM(g̃o, g̃o, g̃o) are odd.

2.3: The Pseudo Inverse of the Linearized Collision Operator.

In order to carry out our formal calculations, we will need to make additional assumptions regarding the
linearization LM of the collision operator C about a Maxwellian M.

With the relation (2.11a) of Proposition 2.1, the space E of locally conserved quantities is a subset of
N(L†

M
). With the relations (2.23) it is also a subspace of N(L

M
). Eventually one has

E ⊂ N(LM) = N(L†
M

) ⊂ N(LM + L†
M

) . (2.26)

These properties of LM are not generally sufficient to carry out formal derivations of the Navier-Stokes
equations, so we now add two assumptions regarding LM to the basic assumptions in Section 2.1.

First, we shall assume that inclusions (2.26) are equalities. More precisely, for every g̃ ∈ D(LM) the
following statements are assumed to be equivalent:

i) 〈g̃MLM g̃〉 = 0 ,
ii) LM g̃ = 0 ,

iii) L†
M
g̃ = 0 ,

iv) g̃ ∈ E .

(2.27)

An important special case which includes all classical collision operators is when LM is self-adjoint (L†
M

=
LM). In this case (2.26) implies that (i), (ii), and (iii) in (2.26) are always equivalent, so the only assertion
in (2.27) is the equivalence of (iv) to the others.

Second, we assume that LM satisfies the Fredholm alternative R(LM) = E⊥. Specifically, this means we
are assuming that R(LM) is closed, a property that does not hold for all classical collision operators but does
hold for that of Boltzmann in the case of Maxwell molecules or hard potentials with an angular cutoff [Gr].
One could include the case of the soft potentials if the Fredholm assumption is replaced with the weaker one
that LM satisfies the Fredholm alternative in a space that is appropriately related to HM , but for simplicity
we will not do so here.

The Fredholm alternative implies that the equations

LM g̃ = h̃ and L†
M
g̃∗ = h̃ (2.28)

have a solution if and only if h̃ ∈ E⊥, in which case these solutions (g̃ and g̃∗) are unique in E⊥. Therefore,
the pseudo-inverse operators L−1

M
and (L†

M
)−1 are uniquely defined by the relations:

LML−1
M

= I − PM , L−1
M
LM ⊂ I − PM ,

L†
M

(L†
M

)−1 = I − PM , (L†
M

)−1L†
M
⊂ I − PM ,

(2.29)

where PM denotes the orthogonal projection of HM onto E explicitly given by the formula:

PM g̃ =
1
ρ

[
〈Mg̃〉+

(v − u) · 〈(v − u)Mg̃〉
θ

+
(
|v − u|2

2θ
− d

2

)
2
d

〈(
|v − u|2

2θ
− d

2

)
Mg̃

〉]
.

(2.30)
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The dissipation relation (2.14) ensures that the quadratic forms associated with LM and L−1
M

enjoy the
positivity properties:

〈g̃MLM g̃〉 = 〈g̃ML†
M
g̃〉 > 0 , for every nonzero g̃ ∈ E⊥ ∩D(LM) ,

〈g̃ML−1
M
g̃〉 = 〈g̃M(L†

M
)−1g̃〉 > 0 , for every nonzero g̃ ∈ E⊥ .

(2.31)

In the case that LM is self-adjoint this means that LM and L−1
M

are positive definite over E⊥.
Since the measure dv is invariant under action by any Oo, it follows from Proposition 2.4 that

〈g̃MLM g̃〉 = 〈Oo(g̃MLM g̃)〉 = 〈(Oog̃)MLMOog̃〉 ,
〈g̃ML−1

M
g̃〉 = 〈Oo(g̃ML−1

M
g̃)〉 = 〈(Oog̃)ML−1

M
Oog̃〉 ,

(2.32)

for every orthogonal matrix O ∈ Rd×d. This so-called orthogonal symmetry simplifies the evaluation of many
tensors that appear subsequently.

The tensor and vector-valued functions A(v) and B(v) belong to E⊥ = N(LM)⊥ (this can be proved by
direct computation or deduced from (2.18) and (2.19)), and therefore the functions

L−1
M
A , L−1

M
B , (L†

M
)−1A , (L†

M
)−1B ,

are well defined.
Due to its frequent appearance in the computations, the vector valued function (L†

M
)−1B is denoted by

B̃. The following formulas are obtained

〈AijM L−1
M
Akl〉 = 〈AijM (L†

M
)−1Akl〉

= 1
(d−1)(d+2) 〈A :M L−1

M
A〉
(
δikδjl + δilδjk −

2
d
δijδkl

)
, (2.33a)

〈BiM (L†
M

)−1Bj〉 = 〈BiM B̃j〉 = 1
d 〈B ·M B̃〉δij , (2.33b)

leading to the definition of two strictly positive numbers which represent the viscosity and the thermal
diffusivity:

µ∗ = 1
(d−1)(d+2) 〈A :M L−1

M
A〉 , (2.34a)

κ∗ = 1
d 〈B ·M B̃〉 . (2.34b)

In the analysis of the energy balance equation, two other tensor value functions appear:

〈AijMvkB̃l〉 and 〈(L−1
M

(A))ijMvkB̃l〉 .

They have the same symmetry properties as the tensor given by (2.33a). In particular, the following formulas
will be used:

〈AijM vkB̃l〉 − 〈AikM vjB̃l〉 =
2
d
κ∗
(
δikδjl − δijδkl

)
(2.35)

and

〈L−1
M

(A)ijMvkB̃l〉 =

1
(d−1)(d+2) 〈L

−1
M

(A) :Mv ⊗ B̃l〉
(
δikδjl + δilδjk −

2
d
δijδkl

)
.

(2.36)
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Proofs and comments:

To obtain the formulas (2.33a) and (2.33b), one uses the symmetries of the tensors A(v) and B(v), the
relation (2.30) for the operators and the fact that tr(A) = 0. The fact that the constants µ∗ and κ∗ are
strictly positive is a consequence of the strict positivity of the operator L−1

M
defined on E⊥ (use (2.14)).

To prove (2.35), we use the expression Aij(v) = vivj − |v|
2

d δij and observe that

〈vk( 1
d |v|

2)MB̃l〉 = 2
d 〈vk

( |v|2 − (d+ 2)
2

)
MB̃l〉 = 2

dκ
∗δkl .

To obtain the relation (2.36), we use the symmetry of B̃ deduced from the symmetry of B, the symmetry of
L−1(A) and the fact that this tensor has zero trace. With the form of the right hand side of (2.36) and the
incompressibility condition ∇x ·ũ = 0, the explicit value of the constant

〈L−1
M

(A)ijMvkB̃l〉

does not appear in our derivation.

2.4: A New Identity.

The derivation of the internal energy balance equation involves higher order terms and therefore it requires
one extra identity which is the object of the

Proposition 2.6. For any vector u ∈ Rd, one has that

2〈Q
M

(v ·u,L−1
M
A)MB̃〉+ 〈u·vAMB̃〉 = 〈(L−1

M
A)MAu〉 , (2.37)

or equivalently “component-wise”

2〈(Q
M

(viui, (L−1
M

(A))kl)MB̃j〉+ 〈uiviAklMB̃j〉 = 〈(L−1
M

(A))klMuiAij〉 (2.37’)

Proof: Rotational invariance has been used for the previous relation. In the present step the translational
invariance is also used.

For u ∈ Rd the functions:

Mu = AuM =
1

(2π)
d
2

exp
(
− |v − u|

2

2

)
,

Au = AuA = A(v − u)
Bu = AuB = B(v − u)

(2.38)

are introduced. The commutation relation (2.8) implies that one has:

L−1
Mu

Au = AuL−1
M A

and therefore, by parity reasons, for any u ∈ Rd and any s ∈ R one has

s 7→ h(s) = 〈L−1
Msu

(Asu),MsuBsu〉 = 0 . (2.39)

The proof of the identity (2.37) is done with the computation of the derivative of h(s) at s = 0.
First, one has the following trivial identities:

d

ds

(
M(su)

)
|s=0 = u·vM,

d

ds

(
(M(su))−1

)
|s=0 = −u·vM−1 ,

d

ds

(
Asu

)
|s=0 = −(v ⊗ u+ u⊗ v − 2

d
v ·uI) ,

d

ds

(
Bsu

)
|s=0 = −(Au+

d+ 2
d

(
|v|2 − d

2
u)) .

(2.40)
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Second, using the differentiability up to the order two of the collision operator, the derivative of LMsu at
s = 0 is given by

d

ds
LMsu

(g̃) = − d

ds

d

dε

( 1
Msu

C
(
Msu(1 + ε g̃)

))
|ε=0

= − d

dε

[( d
ds

( 1
Msu

))
C
(
Msu(1 + ε g̃)

)
+ (

1
Msu

)C′
(
Msu(1 + ε g̃)

)( d
ds
Msu(1 + ε g̃)

)]
|ε=0

= −
( d
ds

( 1
Msu

))
C′
(
Msu

)
(Msug̃)

− 1
Msu

C′
(
Msu

)
(
d

ds
Msug̃)

− 1
Msu

C′′
(
Msu

)(
(Msug̃), (

d

ds
Msu)

)
.

(2.41)

With s = 0 and ε = 0 in (2.41), the relations (2.40) and the Taylor expansion (2.9), one obtains the
formula:

d

ds
(LMsu

)s=0(g̃) = −(u·v)L
M
g̃ + L

M
(u·vg̃)− 2Q

M
(u·v, g̃) . (2.42)

Since the operator LMsu
is defined on the space E⊥ which is independent of s, one has

d

ds

(
L−1
Msu

)
= −L−1

Msu

d

ds

(
LMsu

)
L−1
Msu

. (2.43)

Since

〈BsuMsuL−1
Msu

(
d

ds
A(su))〉

= −〈(L†Msu
)−1BsuMsu

(
(v − su)⊗ u+ u⊗ (v − su)− 2

d
(v − su)·uI

)
〉 = 0 ,

(2.44)

the differentiation at s = 0 of the relation (2.39) gives:

0 = −〈(L−1
M
A)MAu〉+ 〈Bu·vML−1

M
A〉 − 〈(L†)−1BM(

d

ds
LMsu

)s=0(L−1A)〉 . (2.45)

For the last term on the right hand side of (2.45) the relation (2.42) is used so that the identity (2.37) is
obtained.
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3 Formal Derivation of the Incompressible System with Viscous
Heating

In this section, the formal convergence theorem is proven. The word “formal” refers to the fact that the
solutions of the rescaled equation are assumed to be bounded in a space of functions where all the convergence
results needed will be true. It is assumed that for any ε the solution of the scaled kinetic equation

ε ∂tF
ε + v ·∇xF ε =

1
ε
C(F ε) , (3.1)

fluctuates about an absolute Maxwellian according to the formula:

F ε = M(1 + ε G̃εo + ε2G̃εe) (3.2)

where G̃εo is v-odd and G̃εe is v-even.

Theorem 3.1: Let F ε(t, x, v) be a sequence of nonnegative solutions to the scaled kinetic equation
(3.1) such that, when written according to formula (3.2), the sequences G̃εo and G̃εe are bounded in a
convenient Banach subspace of C(R+

t (D(Rdv × Rdx)) where the following Taylor expansion

1
M
C
(
M(1 + ε G̃εo + ε2G̃εe)

)
= −εLG̃εo + ε2

(
− LG̃εe +Q(G̃εo, G̃

ε
o)
)

+ ε3
(
T (G̃εo, G̃

ε
o, G̃

ε
o) + 2Q(G̃εo, G̃

ε
e)
)

+Rε ,

(3.3)

with Rε = O(ε4), is uniformly valid.

Assume also that in the sense of distribution, i.e. in D(Rdv×Rdx), the functions G̃εo , G̃εe and Q(G̃εo, G̃
ε
o)

converge to the three corresponding functions G̃o, G̃e and Q(G̃εo, G̃
ε
o) as ε goes to zero. Finally, assume

for the moment that the following convergence in D(Rdx) holds:

(v|G̃εo)M → (v|G̃o)M , (vG̃εo|B̃)
M
→ (v G̃o|B̃)

M
,

(v∨v|G̃εe)M → (v∨v|G̃e)M , (vG̃εe|B̃)
M
→ (vG̃e|B̃)

M
,

and
{2(Q(G̃εo, G̃

ε
e)|B̃)

M
+ (T (G̃εo, G̃

ε
o, G̃

ε
o), B̃)

M
}

to
{2(Q(G̃o, G̃e)|B̃)

M
+ (T (G̃o, G̃o, G̃o), B̃)

M
} .

Assume also that the reminder term Rε in the formula (3.3) satisfies the estimate:

lim
ε→0

ε−2(Rε|B̃)
M

= 0 .

Then the limits G̃o and G̃e have the form

G̃o = v ·ũ , (3.4)

G̃e =
(
ρ̃+ ( 1

2 |ũ|
2 + d

2 θ̃)
2
d (
|v|2 − d

2
) + 1

2A(v) : (ũ ∨ ũ)
)
− L−1A(v) :∇xũ . (3.5)
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The velocity ũ is divergence free while the density and temperature fluctuations, ρ̃ and θ̃, satisfy the Boussi-
nesq relation:

∇x ·ũ = 0 , (3.6a)

p̃ = ρ̃+ θ̃ . (3.6b)

Moreover, the functions ρ̃, ũ, and θ̃ are weak solutions of the equations

∂tũ+ ũ·∇xũ− µ∗∆xũ = −∇xp̃ , ∇x ·ũ = 0 , (3.7)

and
∂t(d2 θ̃ + 1

2 |ũ|
2 − ρ̃) +∇x ·

(
ũ(d+2

2 θ̃ + 1
2 |ũ|

2)
)

= κ∗∆xθ̃ + µ∗∇x ·
(
ũ(∇xũ+ (∇xũ)T )

)
. (3.8)

Proof: With the expansion (3.2), the following “moment equations” are deduced from the local conser-
vation properties:

ε2∂t(1|G̃εe)M +∇x ·(v|G̃εo)M = 0 , (3.9a)

∂t(v|G̃εo)M +∇x ·(v∨v G̃εe)M = 0 , (3.9b)

ε2∂t(( 1
2 |v|

2 − d+2
2 )|G̃εe))M +∇x ·(v ( 1

2 |v|
2 − d+2

2 )|G̃εo)M = 0 . (3.9c)

Proposition 2.4 implies that LG̃e, Q(G̃o, G̃o), and Q(G̃e, G̃e) are v-even, while LG̃o, Q(G̃o, G̃e), and
T (G̃o, G̃o, G̃o) are v-odd. It is therefore possible to deduce from (3.2) and (3.3) the equations

ε2∂tG̃
ε
o + ε2v ·∇xG̃εe + LG̃εo = 2ε2Q(G̃εo, G̃

ε
e) + ε2T (G̃εo, G̃

ε
o, G̃

ε
o) +O(ε3) , (3.10)

and
ε2∂tG̃

ε
e + v ·∇xG̃εo + LG̃εe = Q(G̃εo, G̃

ε
o) +O(ε2) . (3.11)

From (3.10), one deduces that
G̃o = lim

ε→0
G̃εo

is an odd solution of the equation LG̃o = 0. Hence, one has

G̃o = ũ(x, t)·v , (3.12)

which with (3.9a) also implies the relation

0 = ∇x ·(v|G̃o)M = ∇x ·ũ , (3.13)

and proves the incompressibility. Equation (3.11) leads, for ε→ 0, to the relation:

G̃e = lim
ε→0

G̃εe

LG̃e = −v ·∇x(v ·ũ) +Q(ũ·v, ũ·v) . (3.14)

With the (2.21) and (2.23b) one has

Q(ũ·v, ũ·v) = 1
2L(A(v) : (ũ ∨ ũ)) .

Moreover with the incompressibility condition, the first term of the right side of (3.14) can also be written
as

v ·∇x(v ·ũ) = v∨v :∇xũ = (v∨v − 1
d |v|

2I) :∇xũ = A(v) :∇xũ , (3.15)
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which proves that G̃e is a solution of the equation:

LG̃e = −∇x(A(v) : ũ) + 1
2L(A(v) : (ũ ∨ ũ)) . (3.16)

The Fredholm property is used to uniquely determine, from the above equation, G̃e up to an even term
ze ∈ E = N(L

M
), which, in accordance with the expansion (2.20)−(2.21) of the Maxwellian

1 + ε2ρ̃

(2π(1 + ε2θ̃))
d
2

exp
(
− |v − ε ũ|

2

2(1 + ε2θ̃)

)
,

is written as

ze = ρ̃+ ( 1
2 |ũ|

2 + d
2 θ̃)

2
d (
|v|2 − d

2
) . (3.17)

Therefore, the macroscopic variables ρ̃ and θ̃ are introduced, and also mi denoting the (x, v, t) dependent
scalar functions given by (cf (2.21)):

m(1) = ũ·v ,

m(2) = ρ̃+ ( 1
2 |ũ|

2 + d
2 θ̃)

2
d ( 1

2 |v|
2 − d

2 ) + 1
2A(v)·(ũ ∨ ũ) = ze + 1

2A(v)·(ũ ∨ ũ)

m(3) = ρ̃ũ·v + θ̃ũ·B(v) + 1
3C(v)·(ũ ∨ ũ ∨ ũ) .

Eventually, one has:

G̃e =ze + 1
2 (A(v) : (ũ ∨ ũ))− L−1(A(v)) : ∇xũ

=m(2) − L−1(A(v)) : ∇xũ .
(3.18)

With ε→ 0+ the equation (3.9b) (conservation of macroscopic momentum) gives the Navier Stokes equation.
More precisely:

∂t(v|G̃o)M = −∇x ·(v ∨ v|G̃e)M = −∇x ·(A(v)|G̃e)M −∇x(
|v|2

d
|G̃e)M , (3.19)

inserting in (3.19) the expression of G̃o given by (3.12) and the expression of G̃e given by (3.18) leads to the
equation:

∂tũ =−∇x(A(v)|
(
ze + 1

2 (A(v) : (ũ ∨ ũ))− L−1(A(v)) : ∇xũ
)
)
M

−∇x(
|v|2

d
|
(
ze + 1

2 (A(v) : (ũ ∨ ũ))− L−1(A(v)) : ∇xũ
)
)
M

=∇x
(
(A(v) : (L−1(A(v))))

M
: ∇xũ

)
−∇x

(
1
2 (A(v) : A(v)))

M
: (ũ ∨ ũ

)
+ (
|v|2

d
|G̃e)M ,

(3.20)

where the notation (g(v))
M

= (g(v)|1)
M

is used. Explicit computations of moments give:

( 1
d |v|

2|G̃e))M = (
|v|2

d

(
ρ̃+ ( 1

2 |ũ|
2 +

d

2
θ̃)

2
d

(
|v|2 − d

2
)
)
)
M

=
|ũ|2

d
+ (θ̃ + ρ̃) (3.21)

and
1
2 (A(v) : (ũ ∨ ũ)))

M
= ũ ∨ ũ− 1

d |ũ|
2I . (3.22)

Therefore, the equation (3.20) becomes:

∂tũ−∇x
(
(A(v) : L−1A(v))

M
: ∇xũ

)
+∇x(ũ⊗ ũ) +∇x(θ̃ + ρ̃) = 0 . (3.23)
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On the other hand, with (2.33a) one has:

∇x((A(v) : L−1A(v))
M

: ∇xũ) = µ∗∇x
(
(∇xũ) + (∇xũ)T − 2

d
∇x ·ũ

)
;

( with the incompressibility)

= µ∗∆xũ . (3.24)

Therefore the Boussinesq relation (3.6b) and the Navier-Stokes equation (3.7) are proven.

To obtain the energy balance equation (3.8), we use (3.9c) in the following form:

∂t((
|v|2 − (d+ 2)

2
)|G̃εe)M +∇x · (G̃εo|

B(v)
ε2

)
M

= 0 . (3.25)

The first term on the left side of (3.25) converges to

(
|v|2 − (d+ 2)

2
|G̃e)M = (

|v|2 − (d+ 2)
2

|ze)M , (3.26)

which is easily computed to give:

lim
ε→0

(
|v|2 − (d+ 2)

2
|G̃εe)M = 1

2 |ũ|
2 + d

2 θ̃ − ρ̃ (3.27)

and corresponding to the time derivative in (3.8). For the derivation of the limit of the second term, write:

lim
ε→0

(G̃εo|
B

ε2
)
M

= lim
ε→0

(
1
ε2
LG̃εo|B̃)

M
(3.28)

and use the equation (3.10) to obtain:

lim
ε→0

(G̃εo|
B(v)
ε2

)
M

= −(∂tG̃o|B̃)
M
− (v ·∇xG̃e|B̃)

M

+ 2(Q(G̃o, G̃e)|B̃)
M

+ (T (G̃o, G̃o, G̃o)|B̃)
M
.

(3.29)

With B̃ ∈ E⊥ one has
(∂tG̃o, B̃)

M
= 0 .

Therefore,

lim
ε→0

(G̃εo|
B

ε2
)
M

= 2(Q(G̃o, G̃e)|B̃)
M

+ (T (G̃o, G̃o, G̃o)|B̃)
M
−∇x ·(v G̃e|B̃)

M
. (3.30)

For the computation of the first two terms on the right side of (3.30), write, using (3.12) and (3.18):

2(Q(G̃o, G̃e)|B̃)
M

+ (T (G̃o, G̃o, G̃o)|B̃)
M

= 2(Q(m(1),m(2))|B̃)
M

+ (T (m(1),m(1),m(1))|B̃)
M

− 2(Q(u·v,L−1(A(v)) : ∇xu)|B̃)
M
.

(3.31)

For the first two terms of (3.31) the relation (2.18c) can be used to give:

2(Q(m(1),m(2))|B̃)
M

+ (T (m(1),m(1),m(1))|B̃)
M

= (L(m(3))|(L†)−1(B))
M

= (
(
ρ̃ũ·v + θ̃B(v)·ũ+ 1

3C(v) · (ũ ∨ ũ ∨ ũ)
)
|B(v))

M

= ũ(d+2
2 θ̃ + 1

2 |ũ|
2) .

(3.32)
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Inserted in (3.28) and then in (3.25), the right hand side of (3.32) gives the advection term in (3.8).
Eventually, to conclude the proof of the formula (3.8) one has to show that:

∇x ·∇x ·(v G̃e|B̃)
M

+∇x ·
(
2(Q(u·v,L−1(A(v)) : ∇xu)|B̃)

M

=κ∗∆xθ̃ + µ∗∇x ·
(
ũ((∇xũ) + (∇xũ)T )

)
.

(3.33)

Inserting the expression of G̃e given by (3.14) in the first term of the right hand side of (3.33) gives:

∇x · (vG̃e|B̃)
M

=

∇x ·(v
[
ρ̃+ ( 1

2 |ũ|
2 +

d

2
θ̃)

2
d

(
|v|2 − d

2
) + 1

2 (A(v) : (ũ ∨ ũ))− L−1(A(v)) : ∇xũ
]
|B̃)

M

= ∇x ·(θ̃B|B̃)
M

+∇x ·(
|ũ|2

d
B|B̃)

M

+∇x ·( 1
2 (vA(v) : (ũ ∨ ũ))|B̃)

M
−∇x ·(vL−1(A(v)) : ∇xũ|B̃)

M
.

(3.34)

Therefore, the proof of (3.33) is reduced to the proof of the two following relations:

∇x ·∇x ·(vL−1(A(v)) : ∇xũ
)
|B̃)

M
= 0 (3.35)

and

2(Q(ũ·v,L−1(A(v)) : ∇xũ)|B̃)
M

+∇x ·( 1
2 (vA(v) : (ũ ∨ ũ))|B̃)

M
+∇x(κ∗

|ũ|2

d
) =

µ∗ũ
(
(∇xũ) + (∇xũ)T

)
.

(3.36)

For the relation (3.35), we can use

(L−1(viA(v))kl|B̃j)M = c
(
δikδjl + δilδjk −

2
d
δijδkl

)
,

(cf (2.36)) and the incompressibility (∇x ·ũ = 0).
The proof of (3.36) is done component-wise: The left hand side being a summation in i, k, l of terms in

the form:

2(Q(ũivi,L−1(A(v))kl|B̃j)M
∂ũk
∂xl

+ (vlAki|B̃j)M ũi
∂ũk
∂xl

+ 2κ∗

d ũi
∂ũi
∂xj

With the formula (2.35) and the incompressibility, one has:∑
i,k,l

(
(vlAki|B̃j)M − (viAkl|B̃j)M

)
ũi
∂ũk
∂xl

= 2κ∗

d

(∑
i,k,l

(δijδkl − δkiδlj)ũi
∂ũk
∂xl

)
= 2κ∗

d ũj
∑
k

∂ũk
∂xk
− 2κ∗

d

∑
i

ũi
∂ũi
∂xj

= − 2κ∗

d

∑
i

ũi
∂ũi
∂xj

.

(3.37)

With (3.37) the right hand side of (3.36) coincides with:

2(Q(ũivi,L−1(A(v))kl|B̃j)M
∂ũk
∂xl

+ (viAkl|B̃j)M ũi
∂ũk
∂xl

.
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Eventually, the “new identity” (2.37) can be used to give:

2(Q(ũivi,L−1(A(v))kl|B̃j)M
∂ũk
∂xl

+ (vlAki|B̃j)M ũi
∂ũk
∂xl

+ 2
dκ
∗ũi

∂ũi
∂xi

= 2(Q(ũivi,L−1(A(v))kl|B̃j)M
∂ũk
∂xl

+ (viũiAkl|B̃j)M
∂ũk
∂xl

= ũi(Aij |L−1(A(v))kl)M
∂ũk
∂xl

,

which, with (2.33a), coincides with
µ∗ũ

(
(∇xũ) + (∇xũ)T

)
,

and the proof of (3.36) is completed.

19



4 Formal Derivation of the Non-classical System

As stated in Introduction, the limits of the scaled Boltzmann equation (1.3) are not exhausted by the
incompressible limits (1.8), (1.9), and (1.13). The aim of this section is to show that a mere change from the
uniform Maxwellian to a local Maxwellian in the decomposition (1.4) of F ε gives rise to a different system
of fluid dynamical equations in the limit ε → 0+. More precisely, we will take the decomposition (1.17)
and derive a system of fluid dynamical equations which is different not only from (1.8),(1.9), and (1.13),
but also from any other classical systems including the Euler and Navier-Stokes equations, compressible or
incompressible.

This system of fluid dynamical equations exhibits the “ghost effect” mentioned in Section 1. Unlike
the incompressible limits, however, it does not contain the viscous heating. Furthermore, the even-odd
decomposition in velocity variables v like in (1.16) is a consequence of the setting but not the assumption,
and the counterparts of the hypothesis (1.6) and (1.12) on the asymptotic behavior of ρε and θε do not result
in any essential distinction. This means that the viscous heating appears only in a higher correction.

In contrast to Theorem 3.1, the formal convergence theorem will be established for the “genuine” Boltz-
mann equation for three space dimension and the convergence hypothesis will be stated in terms of the
asymptotic expansions of both macroscopic and microscopic quantities. The main result of this section is as
follows.

Theorem 4.1. Write the solution F ε(t, x, v) of the scaled Boltzmann equation

ε∂tF
ε + v · ∇xF ε =

1
ε
C(F ε, F ε), (4.1)

in the form of the micro-macro decomposition:

F ε =Mε + εGε, (4.2)

where

Mε =M(ρε, uε, θε) (4.3)

is a local Maxwellian determined by the solutions F ε themselves while

Gε ⊥ Eε (4.4)

is the microscopic component where Eε stands for the collision invariant subspace associated with the local
Maxwellian Mε. See [LY], [LYY] for details. And, C is the usual collision operator, which is given by (5.4)
in Section 5.

We assume that the following asymptotic expansions for small ε > 0 hold in sufficiently strong Banach
spaces which vary depending on the relevant quantities.

ρε = ρ+ ε2ρ̃+O(ε3),

uε = εũε, ũε = ũ+ εǔ+O(ε2),

θε = θ + ε2θ̃ +O(ε3),

Gε = Go + εGe +O(ε2).

(4.5)

Then, the leading parameters ρ, ũ, θ of the local Maxwellian Mε solve the “ghost effect” equations (4.6)
below while the microscopic first and second order components Go and Ge are odd and even functions of v
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respectively. The relevant equations are,

∇x(ρθ) = 0,
∂tρ+∇x · (ρũ) = 0,
∂t(ρũ) +∇x · (ρũ⊗ ũ) +∇xP ∗ = ∇x ·D(ũ, θ)−∇x · Σ(θ, ρ),
3
2∂t(ρθ) + 5

2∇x · (ρũ) = 5
2∇x · (κ(θ)∇xθ),

(4.6)

where P ∗ is a unknown scalar pressure while

κ(θ) = γ2(θ)
√
θ,

D(u, θ) = γ1(θ)
√
θ

(
∇xu+ (∇xu)T − 2

3
∇x · u I

)
,

Σ(θ, ρ) =
γ3(θ)
ρ

Σ1(θ) +
γ7(θ)
ρθ

Σ2(θ),

Σ1(θ) = ∇2
xθ −

1
3

∆xθ I,

Σ2(θ) = ∇xθ ⊗∇xθ −
1
3
|∇xθ|2 I,

where γj(θ) are positive functions of θ > 0 determined exclusively by the linearized collision operator LM
and the Burnett functions A(v) and B(v). Their explicit formulas can be found in [So1].

Remark 4.1. The system (4.6) implies that the infinitesimal (ghost) bulk velocity ũ governs the evolution
of the ”real-world” mass density ρ and temperature θ. This is the “ghost effect” introduced in [S]. Notice
that (4.6)a means that

the pressure P0 = 3
2ρθ may be a function of t but not of x.

Clearly, P0 is to be determined by the condition on the boundary or at infinity in the x-space but not by the
initial condition. Thus, the ghost effect is in action only through the boundary effect or the effect from the
infinity.

Remark 4.2. Suppose that ρ and θ are constant (both in t and x). Then, (4.6)a is a trivial equation while
(4.6)b,c reduce to the classical incompressible Navier-Stokes equations (1.8)a,b. Further, (4.6)d becomes trivial
but not the heat conductive equation (1.9)b. This means the latter is the first or higher order correction to
(4.6)d.

Also, the viscous heating does not appear in (4.6). Actually, it can be shown to be the third order correction,
although we do not go into it here.

Remark 4.3. The asymptotic expansions (4.5) do not contain the first order terms for ρε and θε. However,
the inclusion of them do not induce any essential change to (4.6). We will come back to this point in Theorem
4.2, after finishing the proof of the above theorem.

Proof of Theorem 4.1: Plugging the decomposition (4.2) into (4.1) yields

ε∂tMε + v · ∇xMε+ε2∂tGε + εv · ∇xGε = LMεGε + εC(Gε,Gε), (4.7)

where
LMεg = 2C(Mε, g)
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is the linearized operator of C around Mε. Under the hypothesis (4.5), as ε→ 0+, (4.7) has the limit

v · ∇xM = LGo, (4.8)

with
M =M(ρ, 0, θ), L = LM. (4.9)

If (4.8) is taken as an equation for Go, it requires the solvability condition v · ∇xM⊥ E or

∇x· < vφj(v)M >= 0, j = 0, · · · , 4. (4.10)

The inner products for j = 0, 4 are zero because M is even in v but vφj(v) are odd for such j, and for
i, j = 1, 2, 3, we have < vivj ,M >= δijρθ whence follows (4.6)a:

∇x(ρθ) = 0. (4.11)

Once the solvability condition (4.10) is satisfied, the solution of (4.8) is easily computed to give

Go =L−1
(
v · ∇xM

)
=

1√
θ
B̃
( v√

θ

)
· ∇xθ, B̃(v) = L−1B(v), (4.12)

which is odd in v because so is the Burnett function B(v), and L together with its inverse preserves the
parity.

Now, subtraction (4.7) from (4.8) yields

ε∂tMε+εv · ∇x(Mε −M) + ε2∂tGε + εv · ∇xGε (4.13)
= LεGε − LGo + εC(Gε,Gε).

Since (4.5) implies

Mε −M = εmo +O(ε2), mo =
1
θ
v · ũM, (4.14)

we have

LεGε − LGo = 2C(Mε −M,Gε) + 2C(M,Gε −Go)

= ε
{

2C(mo,Gε) + LGe

}
+O(ε2).

Thus (4.13), when divided by ε, is

∂tMε+v · ∇xmo + ε∂tGε + v · ∇xGε

= 2C(mo, G
ε) + LGe + C(Gε,Gε) +O(ε),

which yields in the limit

∂tM+v · ∇xmo + v · ∇xGo = 2C(mo,Go) + LGe + C(Go,Go). (4.15)

Put
H = ∂tM+ v · ∇xmo + v · ∇xGo,

and take (4.15) as an equation for Ge. Then, the solvability condition is H ⊥ E, that is,

< φj , H >= 0, j = 0, · · · , 4. (4.16)

22



Consider the case j = 0. Since Go ⊥ E as well as G by definition (4.2), we have

< φ0, H >= ∂t <M > +∇x· < vmo >= 0,

which gives, in particular by (4.14),
∂tρ+∇x · (ρũ) = 0, (4.17)

which is (4.6)b.
For j = 1, 2, 3, (4.16) reduces to

∇x· < (v ⊗ v)(mo + Go) >= 0, (4.18)

but this is a trivial equation because v⊗v is even in v while mo and Go are odd so that < (v⊗v)(mo+Go) >=
0.

Finally, for j = 4, we have

1
2
< |v|2M > = 3ρθ,

1
5
< v|v|2mo >= 5ρũθ

1
2
< v|v|2Go > =

1√
2θ

< v|v|2 ⊗ B̃
( v√

θ

)
> ∇xθ.

Then, (4.16) gives
3
2
∂t(ρθ) +

5
2
∇x · (ρu) =

5
2
∇x · (κ(θ)∇xθ), (4.19)

which is just (4.6)d.
It remains to derive (4.6)c. Unlike the equations (4.6)b,d, it comes from the second order terms of (4.13).

More precisely, we shall compute
ε−2 < v (4.13) >, (4.20)

and go to the limit ε→ 0+ to deduce (4.6)c. Firstly, since < vM >= 0, we get

ε−2∂t < vεMε >= ε−1∂t < v(Mε −M)} > (4.21)
= ∂t < vmo > +O(ε)→ ∂t(ρũ) (ε→ 0+).

Secondly, the expansion (4.14) can be strengthened as

Mε −M = εmo + ε2me +O(ε3), (4.22)

for an even function me. Then, since < v ⊗ vmo >= 0 due to even-odd combination, we have

ε−2∇x· < v ⊗ v(Mε −M) >

= ε−1∇x· < v ⊗ v(mo + εme) > +O(ε) (4.23)
→ ∇x· < v ⊗ vme > (ε→ 0+).

Since me is seen to be even in each vi and symmetric with respect to v1, v2, v3, we have

< v ⊗ vme >= p∗1I, (4.24)

with p∗1 =< v2
ime > which is independent of i.

Thirdly, notice that
< v ⊗ vGo >= 0
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due to even-oddness. Consequently, we get

ε−1 < v ⊗ v(Gε −G) >=< v ⊗ vGe > +O(ε) (4.25)

→< A(v)Ge > −
1
3
< |v|2Ge > I =< Ã,LGe > −p∗2I (ε→ 0+),

where A(v) is the Burnett function defined in (2.22), Ã(v) = L−1A(v), and p∗2 =< |v|2Ge > /3.
Plugging (4.21), (4.23), and (4.25) into (4.20) yields

∂t(ρũ) +∇xP ∗ = −∇x· < Ã,LGe > . (4.26)

To compute the last term, we now use (4.15) in the form,

LGe = (I −P)H − 2C(mo,Go)− C(Go,Go). (4.27)

Since (I − P)M = 0, the left hand side is determined exclusively by mo and Go, which includes, in turn,
quantities depending only on ρ, ũ, θ as seen by (4.14) and (4.12) respectively. After some manipulation, we
then have (4.6)c. This completes the proof of the theorem.

We conclude this section with the point raised in Remark 4.3.

Theorem 4.2. The reinforcement of (4.5) with the asymptotic expansions

ρε = ρ+ ερ1 + ε2ρ̃+O(ε3), θε = θ + εθ1 + ε2θ̃ +O(ε3),

does not change (4.6) at all formally but supplements it with the extra relation

∇x(ρθ1 + ρ1θ) = 0. (4.28)

Proof. First, (4.11) or (4.6)a does not change. The main difference is that mo and me in (4.14) and (4.22)
now have even and odd parts respectively. Elementary calculation yields

mo = moo +moe ≡
1
θ
v · ũM+

(ρ1

ρ
− ( 3

2 −
1
2

|v|2

θ
)
θ1
θ

)
M.

Notice that moo is the same as the old mo. On the other hand, < vmoe >= 0 and hence < vmo >=< vmoo >,
which recovers (4.17) and hence (4.6)b. Further, since

< vivjmoo >= 0, < vivjmoe >= (ρθ1 + ρ1θ)δij

hold, (4.18) is reduced to the extra equation (4.28). And, since
1
5
< v|v|2mo >=

1
5
< v|v|2moo >= 5ρũθ,

(4.19), i.e., (4.6)d, survives.
To deduce (4.6)c, we shall compute (4.20) with the new mo and me. We already know that (4.21) is true

with moo in place of mo. Write me of (4.22) as a sum of the even and odd parts:

me = mee +meo.

mee is not the same as the old me. Although < v⊗vmo >6= 0, (4.23) is still valid with the new me by virtue
of the extra relation (4.28), and so is (4.24) with mee, giving a different p∗1.

The equations (4.25), (4.26), and (4.27) are the same as before but with the new mo. As a consequence,
the only additional term we should compute for the inner product < Ã,LGe > is the inner product

< Ã, C(moe, Go) > .

And, this is zero because Ã is even and C(moe, Go) odd in v. Thus (4.6)c follows in the exactly same way as
before. This completes the proof of the theorem.
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5 Regularity Results and Convergence Proofs

In this section a complete proof of the validity of the formal Theorem 3.1 is proposed for the “genuine ”
Boltzmann equation. The analysis is done for the three-dimensional space. For the macroscopic quantities,
the Sobolev spaces H l(R3

x) are used with norms denoted by || · ||l. Furthermore, any solution of the equation

−∆xf = ∇x · g ;
∫

R3
f(x)dx = 0 , g ∈ H l(R3

x) (5.1)

can be represented as

f(x) = G(g)(x) = ((−∆x)−1∇x ·g)(x) = 1
4π

∫
R

x− y
|x− y|3

g(y)dy, (5.2)

with G defining a linear continuous operator from the space H l(R3
x) with value in the space H0

l+1:

H0
l = {f ∈ C(R3

x); ∇xf ∈ H l(R3
x)},

|f |l = ||f ||H0
l

= { sup
x∈R3

x

|f(x)|}+ ||∇xf ||l} . (5.3)

The collision operator is given by the formula

C(F ) =
∫∫

(F ′1F
′ − F1F )q(v1 − v, ω) dv1dω . (5.4)

The variable ω lies on the unit sphere S2 = {ω ∈ R3 : |ω| = 1} endowed with its rotationally invariant unit
measure. The F , F1, F ′ and F ′1 appearing in the integrand are understood to mean F (t, x, ·) evaluated at
the velocities v, v1, v′ and v′1 respectively, where the primed velocities are defined by

v′ = v + ω ω ·(v1 − v) , v′1 = v1 − ω ω ·(v1 − v) , (5.5)

for any given (v, v1, ω) ∈ R3 × R3 × S2.
The positive function q(v1− v, ω) is the cross section, and following [U1] one observes that the proof done

below applies for the hard sphere model

q(v1 − v, ω) = σ|(v1 − v) · ω|, (5.6)

and more generally for the inverse power law with angular cuttoff

q(v1 − v, ω) = |(v1 − v)|γ | (v1 − v) · ω
|(v1 − v)|

|−γ
′
Ξ((

(v1 − v) · ω
|(v1 − v)|

), (5.7)

with s > 4, γ = 1− 4
s , γ′ = 1 + 2

s and Ξ a smooth positive function which vanishes in a small neighborhood
of 0.

The definitions and notations introduced in the previous sections are systematically used. In particular
one has

C(F,G) =
1
2

∫∫
(F ′1G

′ +G′1F
′ − F1G−G1F )q(v1 − v, ω) dv1,

LMG = −2M−1C(M,MG),

Q(G̃, U) = M−1C(MG̃,MU). (5.8)
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The linearized operator, LM , can be decomposed as follows

LMu = ν(v)u+Ku, Ku(v) =
∫
Rd
M−1(v)K(v, v′)u(v′)dv′ (5.9)

with the function ν and the operator K satisfying the following relations:

0 < ν0 ≤ ν(v) ≤ ν1|v|γ ,
K(v, v′) = K(v′, v),∫

Rd
M−1(v)|K(v, v′)||v′|−βdv′ ≤ k0|v|−(β+1),∫

Rd
M−1(v)|K(v, v′)|2dv′ ≤ k1,

(5.10)

with suitable constants γ, β, k etc.. As a consequence, it satisfies the basic assumptions in Section 2. In
particular, its kernel is the five dimensional space

E = span {1, v, |v|
2 − 3
2
} (5.11)

The orthonormal projection on E is denoted by P and any function may be decomposed into its hydrodynamic
part and its non hydrodynamic part according to the formula and notations :

f = Pf + (I − P)f = Pf +⊥ Pf . (5.12)

It is well known that the incompressible Navier-Stokes equation (3.7) for initial data u0 in the Sobolev
space H l(R3

x) (with l > 3/2) do have a unique classical solution for 0 ≤ t ≤ T with T =∞ when ||u0|| is small
enough (in H l(R3

x)) with respect to the viscosity. Similar type of results have been established both for the
Boltzmann equation and for some macroscopic limits. Such macroscopic limits include both the Euler limit
(cf. [N], [U2], [UA] ) and the incompressible limit (cf. [BU].) In this setting, the natural counterpart of the
Sobolev spaces are the Grad spaces

Hl,β ≡ {f = f(·, v) | (1 + |v|β)M
1
2 (v)f ∈ L∞(R3

v;H
l),

sup
|v|>R

(1 + |v|β)||M
1
2 (v)f(·, v)||l → 0 (R→∞)},

(5.13)

where the corresponding norms are denoted by ||f ||l,β .
The fact that a large variety of formal macroscopic limits of the Boltzmann equation lead both to well

and ill posed problems (classical and non-classical equations including Burnett and Prandtl equations, and
“ghost effect” equations) justifies that complete proofs should be given.

On the other hand, the contribution of the present section involves higher order corrections. Therefore
there is no room for weak convergence, say from renormalized solutions of the Boltzmann equation to weak
solutions of the Navier-Stokes equation as in [BGL] and [GS], and the initial data will be assumed in the
space Hl,β with l and β large enough.

The relevance of the Grad spaces is mainly due to the following facts (cf. Theorem 2.1.3 of [U1]).
i) For l > 3/2 and β > 5/2, Q is a bilinear continuous operator in Hl,β :

||ν−1Q(f, g)||l,β ≤ C||f ||l,β ||g||l,β . (5.14)
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ii) The pseudo inverse L−1
M defined on E⊥ is continuous in any Grad space:

Pf = 0, LMf = g ⇒ ||f ||l,β ≤ C||g||l,β . (5.15)

In this context, a slightly weaker version of the following theorem was proven in [BU].

Theorem 5.1. Assume that the sequence G̃ε0 converges to a hydrodynamical fluctuation in the following
sense:

G̃ε0 = {ρ0 + ũ0 · v +
1
2

(|v|2 − d)θ0}+ εwε0, (5.16)

with ρ0, ũ0 and θ0 ∈ Hl(Rdx), and wε uniformly bounded in Hl,β (l > 3
2 , β >

5
2). Then, for the corresponding

solution of the rescaled Boltzmann equation

ε∂tG̃
ε + v ·∇xG̃ε +

1
ε
LM G̃ε = Q(G̃ε, G̃ε), G̃ε(x, v, 0) = G̃ε0 , (5.17)

there exists an ε-independent time T such that G̃ε is ε-uniformly bounded in

L∞(0, T ;Hl,β) .

Furthermore:
i) For any δ > 0 the sequence G̃ε converges in C([δ, T ];Hl,β) to an hydrodynamic fluctuation which is

solution of the incompressible Navier-Stokes, Boussinesq and the θ-linear heat diffusion equations:

lim
ε→0

G̃ε = {ρ(x, t) + ũ(x, t) · v +
1
2

(|v|2 − d)θ(x, t)}

∂tũ+ ũ·∇xũ+∇xp̃ = µ∗∆ũ ,
ρ(x, t) + θ(x, t) = 0 , ∇x · ũ = 0,

d+2
2 (∂tθ̃ + ũ·∇xθ̃) = κ∗∆θ̃ .

(5.18)

with initial data given by:

ũ(x, 0) = ũ0(x) + (∇xp0)(x), −∆xp0 = ∇x ·(ũ0 · ∇xũ0) ;

θ(x, 0) = 1
2 (θ0(x)− ρ0(x)) .

(5.19)

ii) The convergence of G̃ε holds in C([0, T ];Hl,β) if the initial data satisfy the “compatibility conditions”:

∇x ·ũ0 = 0, and ρ0 + θ0 = 0. (5.20)

iii) For ρ0, ũ0 and θ0 small enough in Hl(Rdx), T can be taken to be +∞.

In view of the adaptation to the present situation, the main steps of the proof are recalled below.
The operators

Bε = −εv · ∇x + LM (5.21)

are introduced and shown to be generators of contraction semigroups in any Grad spaces Hl,β . Then the
equation (5.17) is written according to the Duhamel principle

G̃ε = exp
tBε
ε2
G̃ε0 +

1
ε

∫ t

0

exp
(t− s)Bε

ε2
Q(G̃ε, G̃ε)(s)ds. (5.22)
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The spaces
Xl,β = L∞(0, T ;Hl,β), (5.23)

are introduced and their norm is denoted by |||.|||l,β .
For l > 3/2 and β > 3/2 + 1

Ψε(G̃, H̃) =
1
ε

∫ t

0

exp
(t− s)Bε

ε2
Q(G̃, H̃)(s)ds, (5.24)

defines a bilinear continuous map from Xl,β×Xl,β to Xl,β . With a detailed analysis of the spectral properties
of the semi-group exp tBε, one shows the validity of the following ε-uniform estimates:

|||Ψε(G̃, H̃)|||l,β ≤ CT |||G̃|||l,β |||H̃|||l,β , for T <∞,

|||Ψε(G̃, H̃)|||l,β ≤ C|||G̃|||l,β |||H̃|||l,β , for T =∞.
(5.25)

From (5.22) and (5.25), one deduces that:

(a) For T small enough with respect to ||G̃0
0||l,β , the sequence G̃ε is uniformly bounded in

L∞(0, T ;Hl,β).

(b) For ||G̃0
0||l,β small enough the sequence G̃ε is uniformly bounded in L∞(0,∞;Hl,β).

The Statement ii) of Theorem 5.1 concerns the initial layer which may appear in the term

exp
tBε
ε2
G̃ε0

of the Duhamel formula (5.22). Following classical spectral analysis of the linearized Boltzmann operator,
one writes (with Fx denoting the x Fourier transform):

exp
tBε
ε2
f = F−1

x e−tλ
ε
o(ξ)FxPof + F−1

x e−tλ
ε
e(ξ)FxPef

+ exp
tBε
ε2

(Pf − (Po + Pe)f) + exp
tBε
ε2

(f − Pf)
(5.26)

In (5.26) Po is the projection on the space of odd hydrodynamical fluctuations ũ(x) · v which satisfy the
divergence free condition, while Pe is the projection on the even hydrodynamical fluctuations ρ+ 1

2 (|v|2−d)θ
which satisfy the Boussinesq equation ρ+ θ = 0. Further, λεo(ξ) and λεe(ξ) are the eigenvalues of the Fourier
transform of the linearized Boltzmann operator associated with the projections Po and Pe respectively.
Eventually, they satisfy

Re(λεo(ξ)) ≤ −βo|ξ|2, Re(λεe(ξ)) ≤ −βe|ξ|2,

for some positive constants βo and βe respectively.
For any f in Hl,β the function exp tBε

ε2 (f − Pf) converges to zero in C([0, T ];Hl,β). On the other hand
using the stationary phase method in Fourier space, one shows that the function exp tBε

ε2 (Pf − (Po + Pe)f)
converges to zero in C([δ, T ];Hl,β) for any δ > 0. Therefore, G̃ε converges in C([δ, T ], Hl,β) for any δ > 0 to
a hydrodynamical fluctuation with initial value given by:

G̃(x, 0) =(P0 + Pe){ρ0(x) + ũ0(0, x) · v +
1
2

(|v|2 − 3)θ0(0, x)}

=ũ(x, 0) · v + θ(x, 0)
(1

2
(|v|2 − 3)− 1

) (5.27)
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with ũ(x, 0) and θ(x, 0) given by (5.19).
Eventually, one observes that

exp
tBε
ε2

(Pf − (Po + Pe)f)

converges to zero in C([0, T ];Hl,β) if and only if

Pf − (Po + Pe)f = 0 (5.28)

which is equivalent to
∇x ·ũ0 = 0 and ρ0 + θ0 = 0 . (5.29)

For the present derivation which involves higher order correction, the following class of “well prepared” initial
data is considered:

G̃ε0 = ũ0 · v + ε{ 1
2 (A(v) : (ũ0 ∨ ũ0))− L−1

M (A(v)) : ∇xũ0}

+ε{ρ̃0 + ( 1
2 |ũ0|2 + d

2 θ̃0) 2
d (
|v|2 − d

2
)}+ ε2wε0

(5.30)

In (5.30) the hydrodynamic functions ũ0, ρ̃0 and θ̃0 are assumed to satisfy the following regularity hypothesis:

ũ0 ∈ Hl+2, ρ̃0 ∈ Hl+1 and θ̃0 ∈ Hl+1,

||wε0||l+1,β+1 ≤ C, ε independently,
(5.31)

in the Sobolev space Hl+1 and wε ∈ E⊥ is assumed ε uniformly bounded in Hl+1,β+1. Extension of [BU]
leads to the following

Proposition 5.1. i) With well prepared initial data as given by (5.30), the solution G̃ε converges in
C([δ, T ];Hl+1,β+1) with δ = 0 if and only if the initial data satisfies the relation

∇x ·ũ0 = 0. (5.32)

Furthermore, for ũ0 and 0 < ε ≤ ε0 small enough, T can be taken equal to +∞.
ii) With the relation (5.32), the sequence ∂tG̃ε is uniformly bounded in

L∞(0, T ;Hl,β) ,

and converges in
C([δ, T ];Hl,β),

with δ = 0 if and only if the following supplementary compatibility condition is satisfied.

−∆x(θ̃0 + ρ̃0) =
∑
ij

∂ũ0j

∂xi

∂ũ0i

∂xj
. (5.33)

Proof: The point i) is a direct application of the results of [BU]. Furthermore, it is already clear that
∂tG̃ε converges in a weak sense to v · ∂tu which is a continuous function with initial data at t = 0 given by

v · ∂tu|t=0 = v · {µ∗∆xũ0 −∇x(ũ0 ⊗ ũ0)−∇xp0}, (5.34)

with p0 given by
−∆xp0 =

∑
ij

∂xi ũ0∂xj ũ0, (5.35)
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or
p0 =

1
4π

∫
R3

1
|x− y|

∑
ij

∂xi ũ0∂xj ũ0(y)dy . (5.36)

Therefore, the present issue is the uniform bound in L∞(0, T ;Hl,β) and the strong convergence in C([δ, T ];Hl,β)
of ∂tG̃ε.

Differentiation of (5.17) gives for ˙̃
Gε = ∂tG̃ε the following equation:

˙̃
G
ε

= exp
tBε
ε2

˙̃
G
ε

0 + 2Ψε(G̃ε, ˙̃
G
ε

)(t), (5.37)

and, in the same way as in [BU], the estimate:

||| ˙̃G
ε

|||l,β ≤ ||| exp
tBε
ε2

˙̃
G
ε

0|||l,β + C

∫ t

0

(t− s)−1/2|||G̃ε(s)|||l,β |||
˙̃
G
ε

(s)|||l,βds, (5.38)

which is a linear Gronwall-type estimate with respect to the function ˙̃
G
ε

(s). Therefore, ||| ˙̃G
ε

|||l,β is uniformly
bounded in L∞(0, T ;Hl,β) if the first term of the right hand side of (5.38) remains bounded. The initial

value of ˙̃
G
ε

0 is deduced from the equation (5.17) and the relation (5.30) (well prepared initial data) :

˙̃
G
ε

0 = − 1
ε v ·∇xG̃

ε
0 − 1

ε2LM G̃
ε
0 + 1

εQ(G̃ε0, G̃
ε
0)

= W ε
1 +W ε

2 +W ε
3 ,

(5.39)

where

W ε
1 = −1

ε
{v ·∇xũ0 · v + LM ( 1

2 (A(v) : (ũ0 ∨ ũ0))

− L−1
M

(
A(v)) : ∇xũ0) +Q(ũ0 · v, ũ0 · v)

)
},

W ε
2 = −v ·∇x{(ρ̃0 + ( 1

2 |ũ0|2 + 3
2 θ̃0)(

|v|2 − 3
2

))

+ 1
2 (A(v) : (ũ0 ∨ ũ0))− L−1

M

(
(A(v)) : ∇xũ0

)
},

W ε
3 = 2Q(ũ0 · v, ρ̃0 + ( 1

2 |ũ0|2 + 3
2 θ̃0)(

|v|2 − 3
2

))− LMwε0 + εhε,

with εhε uniformly bounded in Hl,β . Since the initial data ũ0 is divergence free, one has

v ·∇xũ0 · v = A(v) : ∇xũ0, (5.40)

which implies that there is no term of order −1 in (5.39). The assumption made on the regularity of the
initial data implies that the rest of the expansion is bounded in Hl,β . This proves the first point of ii).

A direct computation shows that :

P( ˙̃
G
ε

0) = v · {µ∗∆xũ0 −∇x(ũ0 ⊗ ũ0)−∇x(θ̃0 + ρ̃0)}+ εhε . (5.41)

From (5.41) one deduces that

(P0 + Pe)
˙̃
G
ε

0 = v · {µ∗∆xũ0 −∇x(ũ0 ⊗ ũ0)−∇x(θ̃0 + ρ̃0)−∇xp0}, (5.42)
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with p0 given by the relation
−∆xp0 =

∑
ij

∂xi ũ0∂xj ũ0 + ∆x(θ̃0 + ρ̃0) . (5.43)

Eventually, one obtains

exp
tBε
ε2

˙̃
G
ε

0 = exp
tBε
ε2

(
v · {µ∗∆xũ0 −∇x(ũ0 ⊗ ũ0)−∇x(θ̃0 + ρ̃0)−∇xp0}

)
+ exp

tBε
ε2

(P − (Po + Pe))
˙̃
G
ε

0 + εhε,

(5.44)

with
exp

tBε
ε2

(P − (Po + Pe))
˙̃
G
ε

0 = exp
tBε
ε2

(v · ∇xp0). (5.45)

The convergence in C([δ, T ];Hl,β) of ˙̃
G follows from (5.44), and with (5.44) one shows that δ can be taken

to be zero if and only if ∇xp0 = 0, i.e., if and only if the relation (5.32) holds, which concludes the proof of
the Proposition 5.1.

At present, as in the formal derivations, the solution of the rescaled Boltzmann equation is decomposed
into odd and even parts according to scaling and projection on E and E⊥ :

G̃ε = G̃εo + εG̃εe,

G̃εo = ũε · v +⊥ G̃εo,

G̃εe = ρ̃ε +
1
6

(|v|2 − 3)(|ũ|2 + 3θ̃ε) +⊥ G̃εe,

(5.46)

and one has the following:

Theorem 5.2. Let G̃ε be the solution of the rescaled Boltzmann equation (5.17) with well prepared initial
data given by (5.30). Then:

i) G̃ε0 converges to the odd function ũ · v in C([δ, T ];Hl,β) with δ = 0 if and only if the initial data satisfy
the compatibility conditions (5.20).

ii) G̃εe converges in C([δ, T ];Hl−1,β) with δ = 0 if and only if (5.20) and the following supplementary
compatibility condition is satisfied.

−∆x(θ̃0 + ρ̃0) =
∑
ij

∂ũ0j

∂xi

∂ũ0i

∂xj
. (5.47)

Furthermore, for ũ0 and 0 < ε ≤ ε0 small enough, T can be taken to be +∞.

This theorem substantiates the convergence hypotheses in Theorem 3.1. Notice the “derivative loss” by
order 1 in the convergence of the even part G̃ε compared with the odd part G̃εo.

Proof of Theorem 5.2: As stated in Theorem 5.1 and Proposition 5.1, it is already known that G̃ε

converges in C([δ, T ];Hl+1,β+1) to the odd fluctuation ũ·v and that ˙̃
G
ε

is uniformly bounded in L∞(0, T ;Hl,β)
with strong convergence in C(δ, T ;Hl,β), with δ = 0 allowed under the assumption specified there. This
implies the same bound and convergence for G̃εo, εG̃

ε
e, ∂tG̃

ε
o and ε∂tG̃

ε
e. Therefore, the points i) and ii) of

Theorem 5.2 follow once the convergence of G̃εe is established.

Firstly, we will check ⊥G̃εe. With the equations,

ε2∂tG̃
ε
o + ε2v ·∇xG̃εe + LG̃εo = 2ε2Q(G̃o, G̃e), (5.48)
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and
ε2∂tG̃

ε
e + v ·∇xG̃εo + LG̃εe = Q(G̃εo, G̃

ε
o) + ε2Q(G̃e, G̃e), (5.49)

one has

LM (⊥G̃εo) = 2εQ(G̃εo, εG̃
ε
e)− ε2∂tG̃εo − εv ·∇xεG̃εe,

LM (⊥G̃εe) = Q(G̃εo, G̃
ε
o) + ε2Q(G̃e, G̃e)− ε2∂tG̃εe − v ·∇xG̃εo,

(5.50)

and the continuity of the pseudo inverse implies that

||⊥G̃εo||L∞(0,T,Hl,β) ≤ Cε. (5.51)

Therefore ⊥G̃εo converges to zero in C([0, T ];Hl,β) while ⊥G̃εe converges in C([δ, T ];Hl,β) to the solution of
the equation

L(⊥G̃e) = Q(ũ · v, ũ · v)− v ·∇xũ · v, (5.52)

which is given (with the divergence free condition) by

⊥G̃e = 1
2 (A(v) : (ũ ∨ ũ))− L−1

M (A(v)) : ∇xũ . (5.53)

To complete the proof, it remains to analyze the convergence of the hydrodynamic part of G̃εe:

P(G̃εe) = ρ̃ε + 1
6 (|ũε|2 + 3θ̃ε)(|v|2 − 3). (5.54)

The behavior of ρ̃ε and θ̃ε is given by the behavior of the functions:

σε ≡ 1
3

(|v|2 |PG̃εe)M = ρ̃ε + θ̃ε + 1
3 |ũ

ε|2

ωε ≡ 1
5

(|v|2 − 5 |PeG̃εe)M = 3
2 θ̃
ε − ρ̃ε + 1

2 |ũ
ε|2 ,

(5.55)

keeping in mind the strong convergence of ũε in C([δ, T ];Hl) and the obvious formulas:

ρ̃ε = 1
5 (3σε − 2ωε),

θ̃ε = 2
5

(
σε + ωε)− 1

3 |ũ
ε|2.

(5.56)

Multiplication of the equation (5.48) by v gives (cf. (3.9))

∂t(v|G̃εo)M +∇x ·
(
(v∨v − |v|

2

3
) G̃εe)

)
M

+∇x(
|v|2

3
G̃εe)M = 0 , (5.57)

or

∇xσε = ∇x(
|v|2

3
PG̃εe)M = ∇x(

|v|2

3
G̃εe)M

= −∇x ·(A(v)⊥G̃εe))M − ∂t(vG̃εo)M ,
(5.58)

and eventually,
−∆xσ

ε = ∇x ·(∇x ·(A(v)|⊥G̃εe))M )−∇x ·(∂t(v|G̃εo)M ). (5.59)

With (5.53) one observes that
∇x ·(∇x ·(A(v)|⊥G̃εe))M )
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converges in C([δ, T ];Hl) to

∇x ·(∇x ·(A(v) : ( 1
2 (A(v) : (ũ ∨ ũ))− L−1(A(v)) : ∇xũ))

=
∑
ij

∂xi ũ∂xj ũ−∆x
|ũ|2

3
.

(5.60)

On the other hand, as a direct consequence of Proposition 5.1,∇x·(∂t(v|G̃εo)M ) converges to 0 in C([δ, T ];Hl−1)
with δ = 0 if and only if

−∆x(ρ̃0 + θ̃0) =
∑
ij

∂xi ũ0∂xj ũ0 (5.61)

Same convergence properties hold for −∆x(σε), and with the continuity property of the operator G given by
(4.2), one has

lim
ε→0, in C([δ,T ];H0

l )
σε = −G

(∑
ij

∂xi ũ∂xj ũ
)

+
|ũ|2

3
, (5.62)

which proves the convergence of σε.
In order to prove the convergence of ωε, starting from the moment equation (3.9),

∂t((
|v|2 − 5)

2
)|G̃εe)M +∇x · (G̃εo|

B(v)
ε2

)
M

= 0, (5.63)

one deduces that

∂tω
ε = ∂t((

|v|2 − 5)
2

)|PeG̃εe)M

= ∂t((
|v|2 − 5

2
)|G̃εe)M = −∇x · (G̃εo|

B(v)
ε2

)
M
,

(5.64)

As in the formal proof, the equation

ε2∂tG̃
ε
o + ε2v ·∇xG̃εe + LG̃εo = 2ε2Q(G̃εo, G̃

ε
e), (5.65)

is used for the term

∇x · (G̃εo|
B(v)
ε2

)
M
,

giving

(G̃εo|
B(v)
ε2

)
M

= (LM G̃εo|
B̃(v)
ε2

)
M

= ({2Q(G̃εo, G̃
ε
e)− v ·∇xG̃εe − ∂tG̃εo}|B̃(v))

M
.

(5.66)

With the already proven convergence results (in particular the limit given by (5.53)), one can represent the
right hand side of (5.66) in the following form:

(LM G̃εo|
B̃(v)
ε2

)
M

= (2Q(ũε · v, ( 1
2 |ũ

ε|2 +
3
2
θ̃ε)

1
3

(|v|2 − 3) + 1
2 (A(v) : (ũε ∨ ũε)))|B̃)

M

− v ·∇x(θ̃ε)(
|v|2 − 3

2
)|B̃)

M
+ Zε1(x, t),

(5.67)
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where Zε1(x, t) denotes a function uniformly bounded in L∞(0, T,Hl) strongly converging in C([δ, T ];Hl) and
produces a linear parabolic equation for ωε:

∂tω
ε +∇x ·

(
ũε( 5

2 θ̃
ε + 1

2 |ũ
ε|2)
)
− κ∗∆xθ̃

ε = Zε2 (5.68)

with some Zε2 having the same property as Zε1. In (5.68), θ̃ε is expressed in term of ωε and σε, giving

∂tω
ε +∇x ·

(
ũε(ωε + σε)

)
− 2

5κ
∗∆x(ωε + σε) = Zε3, (5.69)

or
∂tω

ε +∇x ·(ũεωε)− 2
5κ
∗∆xω

ε = 2
5κ
∗∆xσ

ε −∇x ·σε + Zε3, (5.70)

Zε3 being similar to Zε1. Since σε is bounded in L∞(0, T ;H0
l ) and converging on C([δ, T ];H0

l ) (for any δ > 0
), eventually one has

∂tω
ε +∇x ·(ũεωε)− 2

5κ
∗∆xω

ε = Zε4, (5.71)

where Zε4 bounded in L∞(0, T ;H0
l−2) and converging in C([δ, T ];H0

l−2). With the initial data given by

ωε(x, 0) = 3
2 θ̃0 − ρ̃0 + 1

2 |ũ0|2,

and by virtue of the well-known parabolic estimates applied to (5.71), we conclude the convergence of ωε in
C([0, T ];Hl−1).

Now, the convergence of ρ̃ε and θε follows from the formula (5.56), and as a consequence, the convergence
of PG̃εe. This completes the proof of Theorem 5.2.

Remark 5.1. Theorem 5.1 gives an improvement of [BU] on the convergence spaces. In [BU], the conver-
gence is proved in the space C([δ, T ] ×K,L∞β ) for any compact K ⊂ R3, using some compactness property
of the relevant semigroup, whereas, in the above theorem, it is in C([δ, T ];Hl,β). This improvement became
possible by the newly derived parabolic equation (5.71) for ωε.

Remark 5.2. The parabolic equation (5.71) may be contrasted with the elliptic equation which is established
in [G] based on the micro-macro decomposition of the Boltzmann equation near the uniform Maxwellian.
Recently, it was shown in [D] that the Boltzmann equation can be written as a perturbation of the linear
compressible Navier-Stokes equations with the source term depending only on the space derivatives of the
microscopic component of the solution. The equation (5.71) can be taken to be a higher order correction of
it.
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