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Abstract

In this paper, we introduce a new Glimm functional for general systems of
hyperbolic conservation laws. This new functional is consistent with the classical
Glimm functional for the case when each characteristic field is either genuinely
nonlinear or linearly degenerate, so that it can be viewed as “optimal” in some
sense. With this new functional, the consistency of the Glimm scheme is proved
clearly for general systems. Moreover, the convergence rate of the Glimm scheme
is shown to be the same as the one obtained in Bressan, Marson (Arch Ration
Mech Anal 142(2):155–176, 1998) for systems with each characteristic field being
genuinely nonlinear or linearly degenerate.

1. Introduction

There have been extensive studies on the mathematical theory for the systems
of hyperbolic conservation laws. One of the typical examples of these systems is
the compressible Euler equations for fluid dynamics. As for the Cauchy problem,
the celebrated paper [13] by Glimm in 1965 established the global existence of
weak solutions with small total variation under the assumption that each charac-
teristic field is either genuinely nonlinear or linearly degenerate. Even though the
system of compressible Euler equations for gas dynamics satisfies this assumption,
there are many other physical systems such as those arising from elasticity and
magneto-hydrodynamics whose characteristic fields do not all satisfy this assump-
tion. To extend the Glimm theory to general systems, the key step is to redefine of
the Glimm functional for wave interactions in the same characteristic family. For
this purpose, a cubic functional was introduced by Liu in [21], and was elaborated
by Liu and Yang in [23]. It employs an effective angle between two waves in the
same family. This improvement is successful for establishing existence, but it is less
satisfactory for consistency and convergence rate analysis. Therefore, the purpose
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of this paper is to introduce a new Glimm functional for wave interactions in the
same family for general systems, so that the Glimm theory can now be presented
in an elegant way.

Consider the Cauchy problem for a system of hyperbolic conservation laws{
ut + f (u)x = 0, t � 0, −∞ < x < ∞,

u(x, 0) = u0(x), −∞ < x < ∞,
(1.1)

where u ∈ R
n, f : Ω �→ R

n is a smooth vector field with Ω ⊂ R
n being an

open set. Denote A(u) = D f (u) the n × n Jacobian matrix of the flux function
f . One of the features of systems of this type is that in general discontinuities
will form in finite time no matter how smooth the initial data. This leads to the
study of shock waves for which many theories have been developed, refer to [2,5,
8,10–14,16,18,25,26] and references therein. In the framework of solutions with
small total variation, the global existence was established in the fundamental work
of Glimm by introducing the Glimm scheme which uses as building blocks the
solutions to the Riemann problems solved by Lax. The stability of solutions in the
L1 norm was obtained much later, refer to [2,6,8,19,23] and the references therein.
We also mention the recent breakthrough by Bianchini and Bressan on constructing
solutions for this class for hyperbolic systems by the method of vanishing viscosity.

For later reference, we now introduce some notations. As usual, the system
(1.1) is called strictly hyperbolic if for every u ∈ Ω the matrix A(u) has n real
distinct eigenvalues denoted by

λ1(u) < λ2(u) < · · · < λn(u).

Corresponding to these eigenvalues, there are n linearly independent right eigen-
vectors

r1(u), r2(u), . . . , rn(u).

To capture the nonlinearity of these characteristic fields, the following definition is
from [18].

Definition 1.1. For each i ∈ {1, 2, . . . , n}, the i-th characteristic field is called
genuinely nonlinear, if

∇λi · ri �= 0, for all u ∈ Ω, (1.2)

while the i-th characteristic field is called linearly degenerate, if

∇λi · ri ≡ 0, for all u ∈ Ω. (1.3)

Definition 1.2. A function u : [0,∞)×R �−→ R
n is a weak solution of the problem

(1.1), if u is a bounded measurable function and∫∫
t�0

[uφt + f (u)φx ] dx dt +
∫

t=0
u0(x)φ(x, 0)dx = 0, (1.4)

holds for any smooth function φ with compact support in {(x, t)|(x, t) ∈ R
2}.
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To solve the Cauchy problem (1.1), Glimm introduces a scheme for constructing
the solution to systems under the following assumption [13]:

(A)
Each characteristic field is either genuinely nonlinear or linearly
degenerate.

There are two ingredients in the Glimm scheme. The first one is the Glimm
functional, which we will discuss in the next section. The other is the approxima-
tion of the initial data by piecewise constant functions and the solution of Riemann
problems locally in space and time. Here, the Riemann problem is the problem
(1.1) when the initial data is given by:

u0(x) =
{

u− if x < 0,

u+ if x > 0,
(1.5)

where u± are constant vectors.
The Glimm functional is used to guarantee that the total variation of the solution

is bounded by the total variation of the initial data, so that the solutions to the Rie-
mann problems solved locally in space and time can be used as building blocks for
the construction of the approximate solution. In addition, the uniform boundedness
in the total variation of the approximate solutions leads to the convergence to the
global entropy solution as the grid size tends to zero.

Now let us briefly recall the Glimm scheme. Divide the (x, t) plane into rect-
angles with grid sizes r and s satisfying the CFL condition, that is, r

s > supi |λi (u)|
for all u under consideration and pick a sequence of random numbers {θm}∞m=1.
Then we construct the approximate solution uθ,r (x, t) inductively:

– At t = 0, let uθ,r (x, 0) = u0(ir), for (i − 1)r < x < (i + 1)r, i odd.
– Suppose uθ,r (x, t) is defined for t < js, then

uθ,r (x, js)=uθ,r ((i + (2θ j − 1))r, js−0), (i −1)r < x < (i +1)r, i + j odd.

Note that uθ,r (x, js) is a piecewise constant function with possible jumps at
x = ir , where i + j even.

– Now for i + j even, in js � t < ( j + 1)s, (i − 1)r < x < (i + 1)r , define
uθ,r (x, t) as the solution to the Riemann problem{

ut + f (u)x = 0, (i − 1)r < x < (i + 1)r, js � t,

u(x, js) = uθ,r (x, js) (i − 1)r < x < (i + 1)r, i + j even.

Then the approximate solution can be defined up to t < ( j + 1)s.

The Glimm scheme converges with “probability one”. To secure deterministic
convergence, a wave tracing argument was introduced in [20]. It was shown that
the sequence of approximate solutions converges as long as the random sequence
is chosen to be equidistributed defined later in Definition 1.3.

In the deterministic version of the Glimm scheme, with the wave tracing argu-
ment, physical waves are divided into virtual waves which can be either traced back
to the origin, or may be canceled or may be created in a short time interval. The
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wave pattern is greatly simplified if we keep only those waves that can be traced
back. Moreover, it can be further simplified if we replace each of them by the cor-
responding one at the initial time, so that it has the same strength and propagation
speed in a small time interval. If the random sequence is equidistributed, the error
due to this simplification can be controlled by the Glimm functional times a small
factor related to the grid size, and this factor converges to zero in L1 norm when
the grid size tends to zero. Here the equidistributed sequence is defined as follows.

Definition 1.3. A sequence {θi }∞i=0 in [0, 1] is called equidistributed if

A(N , I ) ≡ | B(N ,I )
N − |I || → 0, as N → ∞,

for any subinterval I of [0, 1]. Here B(N , I ) denotes the number of i, 1 � i � N ,

such that θi ∈ I and |I | is the length of I .

The equidistributed sequence leads to a clear description of the structure of the
weak solution through the wave tracing argument. As one step further, to study the
convergence rate of the Glimm scheme as the grid size tends to zero for general
entropy solutions, the following sequence is used, refer to [7].

Lemma 1.1. Let

Dm,n = sup
λ∈[0,1]

∣∣∣∣∣∣λ − 1

n − m

∑
m�l<n

χ[0,λ](θl)

∣∣∣∣∣∣ , (1.6)

then there exists a sequence {θl}l�0 ⊂ [0, 1] such that

Dm,n � O(1)
1 + ln(n − m)

n − m
∀ n > m � 1. (1.7)

By applying the new Glimm functional to the study of the convergence rate,
we need to use the L1 stability of the standard Riemann semigroup generated by
(1.1), denoted by {St ; t � 0}. The first breakthrough on the L1 stability of the
weak solutions to (1.1) was made in [4] for 2 × 2 systems, and it was completed
in [6,8,23] for systems satisfying the condition (A). The L1 stability of entropy
solutions for general hyperbolic conservation laws was later proved in [2] through
the vanishing viscosity argument. In fact, [2] considers the Cauchy problem for the
hyperbolic system with artificial viscosity

ut + A(u)ux = εuxx , u(0, x) = u0(x). (1.8)

Assume that the matrix A(u) is strictly hyperbolic, smoothly depending on u in a
neighborhood of a compact set K ⊂ Ω ⊂ R

n . Then there exist constants c, L , L ′
and δ > 0 such that the following holds. If

T .V .u0 < δ, lim
x→−∞ u0(x) ∈ K ,
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where T .V . means the total variation in x variable, then for each ε > 0 the Cauchy
problem (1.8) has a unique solution, defined for all t � 0, denoted by uε =
uε(t, x) = Sε

t (u0). In addition,

T .V .Sε
t u0 � CT .V .u0,

‖Sε
t u0 − Sε

t v0‖L1 � L‖u0 − v0‖L1 ,

‖Sε
t u0 − Sε

s u0‖L1 � L ′(|t − s| + |√εt − √
εs|).

Moreover, when ε → 0+, the solution uε converges to the trajectory of a semigroup
St such that

‖St u0 − Ssv0‖L1 � L‖u0 − v0‖L1 + L ′|t − s|.
This vanishing viscosity limit can be regarded as the unique vanishing viscosity
solution of the hyperbolic Cauchy problem

ut + A(u)ux = 0, u(0, x) = u0(x). (1.9)

In the conservative case when A(u) = D f (u), every vanishing viscosity solution
is a weak solution of (1.1) satisfying the entropy condition.

Furthermore, under the condition (A), the vanishing viscosity solution coin-
cides with the unique limit of the Glimm and front-tracking approximation. In this
paper, we will not touch the L1 stability or the uniqueness of the weak solutions to
the general hyperbolic conservation laws through the Glimm scheme. Instead, we
will use that for any two nearby initial data, the unique semigroup generated by the
Glimm scheme St satisfies, refer to [1], that

‖St ū − St v̄‖L1 � L‖ū − v̄‖L1 , ∀ū, v̄ ∈ D, t � 0, (1.10)

for some uniform constant L .
Based on the L1 stability (1.10), under the condition (A), the convergence rate

is shown to be o(1)
√

s| ln(s)|, refer to [7]. Here s is the grid size in the Glimm
scheme. And this convergence rate will be shown to be the same for general hyper-
bolic conservation laws by using the new functional introduced in this paper.

For general systems, the solution to the Riemann problem has different struc-
ture so that the Cauchy problem exhibits richer nonlinear phenomena. To estimate
the wave interactions, one uses the same Glimm functional for waves in different
families but a different one for waves in the same family. For this purpose, a cubic
functional was introduced in [21] and was elaborated in [24] in order to take care
of the wave interactions globally. The functional used in [24] is defined by the
product of the strengths of two interacting waves and their effective “interaction”
angle. Based on this improvement, the complete existence theory with the wave
tracing argument for general systems was obtained in [24] under the assumption:

(B)

For each characteristic field, the linear degeneracy manifold L Di ≡
{u : ∇λi (u) · ri (u) = 0} is either the whole space or it consists of a
finite number of smooth manifolds of codimension one, which are
transversal to the characteristic vector ri (u).
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Even though the improved Glimm functional used in [24] is effective in the
study of the existence of entropy solutions, it is not satisfactory in proving the con-
sistency and the convergence rate of the Glimm scheme. In fact, the consistency
of the Glimm scheme was proved in [24] by carefully and artificially dividing the
waves into groups according to their wave strength in comparison with the grid
size to some power, and the convergence rate of the Glimm scheme was shown to

be o(1)s
1
4 |ln s| in [28], and then o(1)s

1
3 |ln s| in [15] which are slower than the one

given in [7] under the condition (A).
The new Glimm functional for the wave interactions in the same family is

optimal in the following sense. First, it yields a clear and complete proof of the
consistency of the Glimm scheme. Then it leads to the proof of the same order
of convergence rate for the general systems as for those under the condition (A).
Finally, it will be shown that it has the same decay effect as the classical one
introduced by Glimm when the assumption of genuine nonlinearity is imposed.
Therefore, the Glimm scheme for general systems can be analyzed satisfactorily
without any artificial adjustment.

The convergence rate of the Glimm scheme can be stated as follows.

Theorem 1.1. Let {θm}∞m=1 be a sequence of numbers in [0, 1] satisfying (1.7).
Given any initial condition ū with small total variation, let u(·, t) = St ū be the
unique solution of (1.1), and let us be the corresponding Glimm approximate solu-
tion with grid size s in the time direction, generated by the sampling sequence
{θm}∞m=1. Then for every T � 0,

lim
s→0

‖us(·, T ) − u(·, T )‖L1

s
1
2 |ln s|

= 0. (1.11)

The limit is uniform with respect to ū, as long as T .V .ū remains uniformly small.

Finally in the introduction, we mention the corresponding result on the con-
vergence rate for the vanishing viscosity approach. Let the system (1.1) be strictly
hyperbolic and the condition (A) hold. Then, given any initial data u(0, x) = u0(x)

with small total variation, for every τ > 0 the corresponding solutions u, uε of
(1.1) and (1.8) were shown to satisfy the following estimate in [9]∥∥uε(τ, ·) − u(τ, ·)∥∥L1 = O(1) · (1 + τ)

√
ε| ln ε|T .V .u0(x). (1.12)

This convergence rate is “optimal” in the sense that even for a scalar conservation
law, the method of Kuznetsov in [17] shows that the convergence rate is O(1) ·ε1/2

which is sharp, refer to [27]. The factor | ln ε| comes from the interaction of waves
in different families in the system which does not exist for scalar equation.

The rest of the paper will be organized as follows. In the next section, the new
functional is introduced together with some preliminaries on the wave interaction
estimates in the wave tracing argument. The non-increasing property of the new
Glimm functional and its application to the consistency of the Glimm scheme will
be proved in Section 3. And the convergence rate of the Glimm scheme, stated in
Theorem 1.1, will be proved in the last section.
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2. Wave tracing and new Glimm functional

The Riemann problem under the general condition (B) is much more com-
plicated than under the condition (A). The Lax entropy condition used under the
condition (A) should be replaced by the following Liu entropy condition under the
condition (B).

Definition 2.1. [22] A discontinuity (u−, u+) is admissible if

σ(u−, u+) � σ(u−, u), (2.1)

for any state u on the Hugoniot curve H(u−) between u− and u+, where H(u−) ≡
{u : σ(u− − u) = f (u−) − f (u)}.
Corresponding to the n characteristic fields of the system, there are n Hugoniot
curves. Any state u on the i-th Hugoniot curve Hi (u0) is connected to u0 by an
i-th shock wave, if the above entropy condition is satisfied. We denote Hi (α)(u0)

the state which can be connected to u0 by an i-th shock wave with strength α. Note
that the shock wave described here includes the case of contact discontinuity.

Another basic wave pattern used for solving the Riemann problem is called a
rarefaction wave. For each characteristic field, the state Ri (α)(u0)(i = 1, 2, . . . , n)

is connected to u0 by an i-th rarefaction wave with strength α, if{
d

dα
Ri (α)(u0) = ri (Ri (α)(u0)), λi (u) is monotone increasing,

Ri (0)(u0) = u0.

Here the wave strength α is used as a parameter along the rarefaction wave curve.
By the implicit function theorem, the Riemann problem for general systems is

solved by piecing together waves in different families. And with the Liu entropy
condition, each wave in the i-th family, may be the composition of several i-th
admissible shocks and rarefaction waves, refer to [3].

Suppose in the k-wave (ul , ur ), the k-th elementary waves (uh−1
k , uh

k ),

h = 1, 2, . . . , nk , are defined as

u0
k = ul , unk

k = ur ,
(2.2)

uh
k =

{
Rk(α

h
k )(uh−1

k ), h is odd,

Hk(α
h
k )(uh−1

k ) h is even,
(h = 1, 2, . . . , nk).

Notice that the strength of αh
k can be zero in the following discussion. Then due to

Definition 2.1, these elementary waves satisfy the following monotonicity property:

λk(u
2p
k ) < λk(u

2p+1
k ) = σk(u

2p+1
k , u2p+2

k ), if α
2p+1
k �= 0,

σk(u
2p+1
k , u2p+2

k ) = λk(u
2p+2
k ) < λk(u

2p+3
k ), if α

2p+3
k �= 0, (2.3)

2p + 1, 2p + 3 ∈ {1, 2, . . . , nk}.
We can construct the wave curve Wi (s, u0) as the curve consisting of all the

end states that can be connected to u0 by admissible shocks, rarefaction waves or
combinations thereof of the i-th family. Here s is a non-degenerate parameter along
the curve. Up to a linear transformation, this parameter can be chosen as the i-th
component of u, that is ui . Then we have the following regularity result.
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Lemma 2.1. [3] Under the assumption (B), the admissible i-th curve Wi (s, u0) has
Lipschitz continuous first order derivatives.

To define the approximate solutions, we use the deterministic version of the
Glimm scheme [13,20]. The approximate solution will be well defined provided
that a uniform bound on the total variation is obtained. For this purpose, one has to
investigate the wave interactions. In [21,24], the following Glimm type functional
is defined.

Fo(J ) ≡ L(J ) + M Qo(J ),

where the subscript “o” refers to the previous one, in contrast to the new one we
shall define later. In the above definition,

L(J ) =
∑

{|α| : α any wave crossing J}, Qo(J ) = Qd(J ) + Qos(J ),

Qd(J ) =
∑

{|α| |β| : interacting waves α and β of distinct

characteristic field crossing J},

Qos(J ) =
n∑

i=1

Qi
os,

Qi
os =

∑
{|α| |β| max{−Θ(α, β), 0} : α and β i-waves crossing J,

α to the left of β}.

(2.4)

Here |α| is the wave strength of a wave α, M is a sufficiently large constant, J is
any space-like curve. An i-wave αi on the left and a j-wave β j on the right are
said to be approaching, if i > j . And Θ(α, β), called the effective angle between
waves α and β of the same i-th family, is defined as follows:

Θ(α, β) ≡ θ+
α + θ−

β +
∑

θγ . (2.5)

Here θ+
α � 0 represents the value of λi at the right state of α minus its wave speed

if α is a shock and is set to be zero if it is a rarefaction wave. Similarly, θ−
β � 0

denotes the difference between the speed of β and the value of λi at its left end
state. θγ is the value of λi at the right state of the wave γ minus that of the left state.
The sum

∑
θγ is over the i-waves γ between α and β. When Θ(α, β) is positive,

the two waves will not likely meet; when Θ(α, β) is negative, the two waves may
eventually meet and interact.

In the deterministic version of the Glimm scheme, all the waves in the solution
are partitioned into small subwaves as follows.

Definition 2.2. [24] Let ur ∈Wi (ul) so that ul is connected to ur by i-discontinuities
(u j−1, u j ), and i-rarefaction waves (u j , u j+1), j odd, 1 � j � m − 1, u0 = ul

and um = ur . A set of vectors {v0, v1, . . . , vp} is a partition of (ul , ur ) if

(i) v0 = ul , vp = ur , v
i
k−1 � vi

k, k = 1, 2, . . . , p,
(ii) {u0, u1, . . . , um} ⊂ {v0, v1, . . . , vp},

(iii) vk ∈ Ri (u j ), j odd, if ui
j < vi

k < ui
j+1,
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(iv) vk ∈ Di (u j−1, u j ), j odd, if ui
j−1 < vi

k < ui
j . Here

Di (ul , ur ) ≡ {u : (u − ul)σ (ul , ur ) − ( f (u) − f (ul)) = c(u)ri (u)

for some scalar c(u)}.
Then set

(1) yk ≡ vk − vk−1,
(2) λi,k ≡ λi (vk−1) and

[λi ]k ≡ [λi ](vk−1, vk) ≡ λi (vk) − λi (vk−1) > 0 if (iii) holds,
(3) λi,k ≡ σ(u j−1, u j ) and [λi ]k ≡ [λi ](vk−1, vk) ≡ 0 if (iv) holds.

In the following, we always assume that a rarefaction wave is divided into sev-
eral small rarefaction shocks with strength less than the grid sizes of the Glimm
scheme. Then the shock waves and rarefaction waves can be treated similarly after
the wave partition. Due to the regularity of the composite wave curve, that is Lemma
2.1, such a partition is stable under perturbations in the following sense.

Lemma 2.2. [24] Suppose that ur ∈ Wi (ul), ūr ∈ Wi (ūl), with ui
r − ui

l = ūi
r −

ūi
l ≡ α > 0, and |ul − ūl | ≡ β. Then there exist partitions {v0, v1, . . . , vp}

and {v̄0, v̄1, . . . , v̄p} for the i-waves (ul , ur ) and (ūl , ūr ) respectively such that
v̄i

k − v̄i
0 = vi

k − vi
0, k = 1, 2, . . . , p, and the following holds:

(i)
∑p

k=1 |yk − ȳk | = 0(1)αβ,
(ii) |λi,k − λ̄i,k | = 0(1)β, k = 1, 2, . . . , p,

(iii) Let Θ+(ul , ur ) represent the value of λi at the right state ur minus the
wave speed of the right-most i-wave in (ul , ur ). Similar definition holds for
Θ−(ul , ur ). Then

|Θ−(ul , ur ) − Θ−(ūl , ūr )| + |Θ+(ul , ur ) − Θ+(ūl , ūr )| = 0(1)αβ.

Moreover, the index set {1, 2, . . . , p} can be written as a disjoint union of subsets
I, II and III such that

(iv) For k ∈ I corresponding to rarefaction waves, both vk and v̄k are of type (iii)
in Definition 2.2 and ∑

k∈I

|[λi ]k − [λ̄i ]k | = 0(1)αβ.

(v) For k ∈ I I corresponding to discontinuities, both vk and v̄k are of the type
(iv) in Definition 2.2.

(vi) For k ∈ I I I corresponding to wave of mixed types, vk and v̄k are of different
type and ∑

k∈I I I

|[λi ]k + [λ̄i ]k | = 0(1)αβ.

Here Θ+(ul , ur ) represents the value of λi at the right state ur minus the wave
speed of the rightmost i-wave in (ul , ur ). Similar definition holds for Θ−(ul , ur ).
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This lemma describes the C2 like dependency of the Riemann problem on the
end states. Then the effect of wave interaction can be estimated by the Glimm
functional and the cancelation as in [24].

Lemma 2.3. [24] Let ul , um and ur be three nearby states and (ui−1, ui ) (vi−1, vi ),
i = 1, 2, . . . , n, be i-waves in the Riemann problem (ul , um) and (um, ur ) respec-
tively with the partition defined in Definition 2.2. Here, rarefaction waves are
divided into small rarefaction shocks with strength less than the grid size s in t
direction. Then the wave partition of the i-wave (wi−1, wi ), i = 1, 2, . . . , n, in
the Riemann problem (ul , ur ) is the linear superposition of the above two solutions
modulo the nonlinear effect of the order s, Q(ul , um, ur ) and δC(ul , um, ur ), where
δ = |um − ul | + |ur − um |. In other words,

γi = αi + βi + O(1)(δC(ul , um, ur ) + Qo(ul , um, ur ) + s), (2.6)

η(γi ) = η(αi ) + η(βi ) + O(1)(δC(ul , um, ur ) + Qo(ul , um, ur ) + s), (2.7)

with

αi =
nαi∑
k=1

αi,k = ui
i − ui

i−1 βi =
nβi∑
k=1

βi,k = vi
i − vi

i−1, and

γi = wi
i − wi

i−1,

η(αi ) =
nαi∑
k=1

η(αi,k), with η(αi,k) = αi,kλi,k,

similar definition for η(βi ) and η(γi ),

C(ul , um, ur ) ≡
n∑

i=1

Ci (ul , um, ur ) = 1

2
||γi | − |αi | − |βi ||,

for some constants nαi and nβi ,i = 1, 2 · · · , n. Each αi,k = (ui,k−1, ui,k) and
βi,k = (vi,k−1, vi,k) is a shock or a rarefaction shock. C(ul , um, ur ) measures the
amount of cancelation.

The above wave interaction estimate is crucial in the study of conservation laws
under general assumption (B). Compared with the corresponding estimate under
condition (A), the error is bounded by terms at least of cubic rather than quadratic
order. This looks better when the total variation of the approximate solutions is
small. On the other hand, the decrease of Qo after the wave interaction in the same
family is much less than the decrease in the classical Glimm functional under the
condition (A). This fact causes difficulty in the proof of consistency and wave
tracing argument. For example, one has to divide waves into two groups by check-
ing whether the total strength of the waves involved is greater or not than a pre-
chosen small constant. We include the following estimate from [24] by using the
old Glimm functional for comparison with Theorem 2.2 given later.

Lemma 2.4. [24] Let ε be a constant with 1
2 < ε < 1. The waves in an approximate

solution in a given time zone Λ = {(x, t) : −∞ < x < ∞, Ms � t < (M + N )s},
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can be partitioned into subwaves of categories I , I I or I I I with the following
properties:

(i). The subwaves in I are surviving. Given a subwave α(t), Ms � t < (M +
N )s, in I , write α ≡ α(Ms) and denote by |α(t)| its strength at time t, by [σ(α)]
the variation of its speed and by [α] the variation of the jump of the states across
it over the time interval Ms � t < (M + N )s. Then∑

α∈I

([α] + |α(Ms)|[σ(α)]) = O(1)(Do(Λ)(Ns)−ε + T .V .N 1+εsε + s).

(ii). A subwave α(t) in I I has positive initial strength |α(Ms)| > 0, but is can-
celed in the zone Λ, |α((M + N )s)| = 0. Moreover, the total strength and variation
of the wave speed satisfy∑

α∈I I

([α] + |α(t)|) = O(1)(Do(Λ) + s), Ms � t < (M + N )s,

∑
α∈I I

([α] + |α(Ms)|[σ(α)]) � 0(1)(Do(Λ)(Ns)−ε + T .V .N 1+εsε + s).

(iii). A subwave in I I I has zero initial strength |α(Ms)| = 0, and is created in
the zone Λ, |α((M + N )s)| �= 0. Moreover, the total strength and variation of the
wave speed satisfy∑

α∈I I I

([α] + |α(t)|) = O(1)(Do(Λ) + s), Ms � t < (M + N )s,

∑
α∈I I I

([α] + |α((M + N )s)|[σ(α)]) � 0(1)(Do(Λ)(Ns)−ε + T .V .N 1+εsε + s).

Here Do(Λ) = Fo(Ms)− Fo((M + N )s), and T .V . = T ot.V ar.{u0(x)}. And F(t)
is the Glimm functional on the space-like curve at time t.

Moreover, the functional defined in (2.4) cannot be reduced to the one defined in
[13] even if each characteristic field is genuinely nonlinear or linearly degenerate
because these two functionals are not of the same order.

To overcome these difficulties, we define a new Glimm functional as follows.

F(J ) ≡ L(J ) + M Qn(J ), (2.8)

where

Qn(J ) = Qd(J ) + Qns(J ), Qns(J ) =
n∑

i=1

Qi
ns,

Qi
ns =

∑
{|α| |β|max{−Θ(α, β), 0}

t.v.(α, β)i
: α and β i-waves crossing J,

α to the left of β},
(2.9)

where t.v.(α, β)i =
∑

{|γ | : γ any i-wave crossing J

and lying between α and β, including α and β}.
Qd , L(J ) and M are defined as before.



444 Jiale Hua, Zaihong Jiang & Tong Yang

For this new functional, we shall first prove that F is non-increasing so that the
uniform bound on the total variation of the approximate solution follows.

Theorem 2.1. J1 and J2 are two space-like curves and J2 is the immediate succes-
sor of J1. When F(J1) is sufficiently small, the following estimate holds:

F(J2) − F(J1) � 0. (2.10)

The proof of this theorem will be given in the next section.
By the Lipschitz dependency of the wave speed on the left and right states, if

the characteristic field is genuinely nonlinear, one can check that the decay rate
of the new functional is the same as the classical Glimm functional through wave
interactions. Thus, it gives a better way for controlling the error of wave tracing
argument than the old Glimm functional in the general setting. Furthermore, we
have the following clear estimate for the wave tracing argument.

Theorem 2.2. The waves in an approximate solution in a given a time zone
Λ = {(x, t) : −∞ < x < ∞, Ms � t < (M + N )s}, can be partitioned
into subwaves of categories I , I I or I I I with the following properties:

(i). The subwaves in I are surviving. Given a subwave α(t), Ms � t < (M +
N )s, in I , write α ≡ α(Ms) and denote by |α(t)| its strength at time t, by [σ(α)]
the variation of its speed and by [α] the variation of the jump of the states across
it over the time interval Ms � t < (M + N )s. Then∑

α∈I

([α] + |α(Ms)|[σ(α)]) = O(1)(D(Λ) + s).

(ii). A subwave α(t) in I I has positive initial strength |α(Ms)| > 0, but is can-
celed in the zone Λ, |α((M + N )s)| = 0. Moreover, the total strength and variation
of the wave speed satisfy∑

α∈I I

([α] + |α(t)|) = O(1)(D(Λ) + s), Ms � t < (M + N )s,

∑
α∈I I

([α] + |α(Ms)|[σ(α)]) � 0(1)(D(Λ) + s).

(iii). A subwave in I I I has zero initial strength |α(Ms)| = 0, and is created in
the zone Λ, |α((M + N )s)| �= 0. Moreover, the total strength and variation of the
wave speed satisfy∑

α∈I I I

([α] + |α(t)|) = O(1)(D(Λ) + s), Ms � t < (M + N )s,

∑
α∈I I I

([α] + |α((M + N )s)|[σ(α)]) � 0(1)(D(Λ) + s).

Here D(Λ) = F(Ms) − F((M + N )s), and T .V . = T ot.V ar.{u0(x)}. And F(t)
is the new Glimm functional on the space-like curve at time t.

The proof of Theorem 2.2 will be given in the last section.
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Fig. 1. Case I

3. Wave interaction estimates

In this section we show that the new Glimm functional is decreasing due to the
wave interactions. To do so, we check two typical cases first. All the other cases
can be dealt by a similar argument.

Proof of Theorem 2.1. Case (I)(refer to Fig.1): Suppose that there are three waves:
α, β, ε are i-shocks or rarefaction shocks. β interacts with ε at time t without any
cancelation:

β + ε → γ +
∑
k �=i

δk .

From the definition of effective angle, Θ(β, ε) � 0. Since there is no cancelation,
for simplicity, we assume α, β, ε � 0, that is, the waves are in the same direction.

By the monotonicity property (2.3), we also assume, without loss of generality,
that the generated i-wave γ is a single shock and

Θ(α, ε) � 0.

From the standard wave interaction estimate, we know the change in the func-
tional L crossing the time t is

∆L ≡ L(t+) − L(t−) = O(1)βε(−Θ(β, ε)). (3.1)

We only need to estimate the change of Qns because the estimation on other
parts are the same as those for the classical Glimm functional.

Before the wave interaction at time t , the potential wave interaction Qns is

Qns(t−) = αε(−Θ(α, ε))

t.v.(α, ε)i
+ βε(−Θ(β, ε))

t.v.(β, ε)i
+ αβ(max{−Θ(α, β), 0})

t.v.(α, β)i
.
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After the wave interaction, it becomes

Qns(t+) = αγ (max{−Θ(α, γ ), 0})
t.v.(α, γ )i

.

Then

∆Qns ≡ Qns(t+) − Qns(t−)

= −βε(−Θ(β, ε))

t.v.(β, ε)i
+

[
αγ (max{−Θ(α, γ ), 0})

t.v.(α, γ )i
− αε(−Θ(α, ε))

t.v.(α, ε)i

−αβ(max{−Θ(α, β), 0})
t.v.(α, β)i

]
= I + I I.

We may assume Θ(α, γ ) � 0. Otherwise it is easy to see that

∆Qns � −βε(−Θ(β, ε))

t.v.(β, ε)i
.

By Lemma 2.3, we have

γ = β + ε + O(1)βε(−Θ(β, ε)),

σ (γ )γ = σ(β)β + σ(ε)ε + O(1)βε(−Θ(β, ε)).

Thus,

t.v.(α, ε)i = t.v.(α, β)i + ε,

t.v.(α, γ )i = t.v.(α, β)i + ε + O(1)βε(−Θ(β, ε)),

−Θ(α, γ ) = −Θ(α, β) + σ(β) − σ(γ ),

−Θ(α, ε) = −Θ(α, β) + σ(β) − σ(ε).

This implies that

I I � αγ (−Θ(α, γ ))

t.v.(α, ε)i

[
1 + O(1)

βε(−Θ(β, ε))

t.v.(α, ε)i

]
− αε(−Θ(α, ε))

t.v.(α, ε)i

−αβ(max{−Θ(α, β), 0})
t.v.(α, β)i

= α[γ (−Θ(α, γ )) − ε(−Θ(α, ε))]
t.v.(α, ε)i

+ O(1)
α[βε(−Θ(β, ε))]

t.v.(α, ε)i

−αβ(max{−Θ(α, β), 0})
t.v.(α, β)i

= α
[
γ (−Θ(α, β) + σ(β) − σ(γ )) − ε(−Θ(α, β) + σ(β) − σ(ε))

]
t.v.(α, ε)i

−αβ(max{−Θ(α, β), 0})
t.v.(α, β)i

+ O(1)
α[βε(−Θ(β, ε))]

t.v.(α, ε)i
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= α [β(−Θ(α, β)) + O(1)βε(−Θ(β, ε))]

t.v.(α, ε)i

−αβ(max{−Θ(α, β), 0})
t.v.(α, β)i

+ O(1)
α[βε(−Θ(β, ε))]

t.v.(α, ε)i

� O(1)
α[βε(−Θ(β, ε))]

t.v.(β, ε)i
.

In the last inequality, we have used the fact that t.v.(α, ε)i � t.v.(α, β)i and
t.v.(α, ε)i � t.v.(β, ε)i .

Therefore, when the total variation of the approximate solution is sufficiently
small, we deduce that

∆Qns � −[βε(−Θ(β, ε))]
t.v.(β, ε)i

+ O(1)
α[βε(−Θ(β, ε))]

t.v.(β, ε)i

� −1

2

[βε(−Θ(β, ε))]
t.v.(β, ε)i

. (3.2)

Combined with (3.1), this implies that F is decreasing for suitably chosen constant
M

∆F � 0.

Case (II)(refer to Fig.2): Assume that α, β are i-waves and γ is a j-wave
(i > j). Without loss of generality, we assume that they are shocks or rarefaction
shocks. Furthermore, we assume that α, β do not interact with each other before
the time t , but after the interaction at time t

β + γ −→ β + γ +
∑

k �=i, j

δk,

β interacts with α. Again we may assume that no cancelation happens and α, β,

γ � 0.
In this case, the standard wave interaction estimates yield

∆L ≡ L(t+) − L(t−) = O(1)|β||γ |.
Again we need to estimate the change of Qn .
Before the wave interaction at time t , the potential wave interaction Qn is

Qn(t−) = βγ + αγ.

After the wave interaction, the i-wave β̄ may be a composite wave. We partition
it into β̄1, . . . , β̄m as in Lemma 2.3 with intermediate states ūl = ū0, ū1, . . . ,

ūm = ūr . The wave interaction potential Qn now becomes

Qn(t+) = αγ +
m∑

k=1

βkα(max{−Θ(α, βk), 0})
t.v.(α, βk)i

+
∑

k<i,k �= j

αδk .
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Fig. 2. Case II

Then the change in Qn is

∆Qn = Qn(t+)−Qn(t−) = −βγ + O(1)αβγ +
m∑

k=1

βkα(max{−Θ(α, βk), 0})
t.v.(α, βk)i

.

At the first glance, from the Lipschitz continuity of wave speed on the end
states, the third term on the right-hand side can only be bounded by γ . But in fact,
with the regularity of composite wave curves, that is Lemma 2.1, we can have a
better estimate. By Lemma 2.2, we partition β into small subwaves β1, . . . , βm

corresponding to β̄1, . . . , β̄m . Then we can write Θ(α, βk) in terms of Θ(α, βk):

−Θ(α, βk) = −Θ(α, βk) + Θ−(ul , ur ) +
k−1∑
l=1

[λi ]l + [λi,k − λi (uk−1)]

−Θ−(ūl , ūr ) −
k−1∑
l=1

[λ̄i ]l − [λ̄i,k − λi (ūk−1)].

As α, β do not interact with each other, by definition, we have

−Θ(α, β) � 0.

Moreover, since we assume that β is an i-th simple wave, from the Definition 2.2,
it follows that −Θ(α, βk) = −Θ(α, β) � 0. Then by applying the Lemma 2.2 and
observing that |ul − ūl | = O(1)γ , the effective angle can be estimated as follows:

max{−Θ(α, βk), 0} � O(1)βγ.

Therefore,

∆Qn � − βγ + O(1)αβγ � −1

2
βγ. (3.3)
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Similar to case (I), this implies that F is decreasing for suitably chosen constant
M , that is

∆F � 0.

When cancelation occurs, we can prove F is non-increasing in a straightfor-
ward way because the amount of cancelation is of first order. So for the general
case, we can regard the problem as the superposition of case (I) and (II). By using
(3.2) and (3.3) repeatedly, we can show that F is non-increasing after the wave
interaction, under the condition that the total variation of the approximate solution
is sufficiently small. Thus Theorem 2.1 follows.

4. Consistency and convergence rate

With the above wave interaction estimates, we can prove Theorem 2.2 on the
wave tracing argument.

Proof of Theorem 2.2. It is obvious that |α(Ms)|[σ(α)] at time t can be controlled
by O(1)(Qn(Λ) + C(Λ)) if the wave interaction is between waves of different
families or cancelation occurs. We only need to consider the interaction of waves
of the same family and with the same sign.

Consider the interaction of two Riemann problems:

(ul , um) + (um, ur ) −→ (ul , ur ).

We can assume that (ul , um) and (um, ur ) are connected by several k simple
waves α = (α1

k , . . . , α
n1
k ) and β = (β1

k , . . . , β
n2
k ) respectively. Furthermore, from

the monotonicity property (2.3), we may assume without loss of generality that
after interaction (ul , ur ) is resolved by a single k-shock γ .

We have the following estimates from the Lemma 2.3:

γ =
n1∑

i=1

αi
k +

n2∑
i=1

β i
k + O(1)Qos(α, β),

σ (γ )γ =
n1∑

i=1

σ(αi
k)α

i
k +

n2∑
i=1

σ(β i
k)β

i
k + O(1)Qos(α, β),

σ (α1
k ) � σ(α2

k ) � ... � σ(α
n1
k ) � σ(γ ) � σ(β1

k ) � σ(β2
k ) � ... � σ(β

n2
k ).

Then we can estimate the variation of the speeds [σ(αi
k)] and [σ(β i

k)] as follows:

n1∑
i=1

αi
k[σ(αi

k)] +
n2∑

i=1

β i
k[σ(β i

k)]

=
n1∑

i=1

αi
k(σ (αi

k) − σ(γ )) +
n2∑

i=1

β i
k(σ (β i

k) − σ(γ ))

≡ I + I I.
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Hence

I =
n1∑

i=1

αi
k

{
σ(αi

k) − 1

γ

[
n1∑

i=1

σ(αi
k)α

i
k +

n2∑
i=1

σ(β i
k)β

i
k + O(1)Qos(α, β)

]}

=
n1∑

i=1

αi
k

t.v.(α, β)i

⎡
⎣ n1∑

j=1

α
j
k (σ (αi

k) − σ(α
j
k ))

+
n2∑

l=1

βl
k(σ (αi

k) − σ(βl
k)) + O(1)Qos(α, β)

]

= [∑n1
i, j=1 αi

kα
j
k (σ (αi

k) − σ(α
j
k )) + ∑n1

i=1

∑n2
l=1 αi

kβ
l
k(σ (αi

k) − σ(βl
k))]

t.v.(α, β)i

+
∑n1

i=1 αi
k O(1)Qos(α, β)

t.v.(α, β)i

= [∑n1
i=1

∑n2
l=1 αi

kβ
l
k(σ (αi

k) − σ(βl
k))]

t.v.(α, β)i
+

∑n1
i=1 αi

k O(1)Qos(α, β)

t.v.(α, β)i
,

since the summation
∑n1

i, j=1 αi
kα

j
k (σ (αi

k) − σ(α
j
k )) = 0.

Similarly,

I I = [∑n1
i=1

∑n2
l=1 αi

kβ
l
k(σ (αi

k) − σ(βl
k))]

t.v.(α, β)i
+

∑n1
i=1 αi

k O(1)Qos(α, β)

t.v.(α, β)i
.

Therefore, we have

I + I I =
(

2 +
n1∑

i=1

αi
k

)
Qos(α, β)

t.v.(α, β)i
= O(1)Qns(α, β). (4.1)

Then Theorem 2.2 follows.

With the help of Theorem 2.2, we can prove the consistency of Glimm scheme
in a clear fashion, that is we can show that the following term∫ ∞

−∞

∫ ∞

0
(uφt + f (u)φx )(x, t)dxdt +

∫ ∞

−∞
(uφ)(x, 0)dx

=
M N∑
k=0

∫ ∞

−∞
(u(x, ks + 0) − u(x, ks − 0))φ(x, ks)dx, (4.2)

vanishes as the grid size r tends to zero. Here φ(x, t) is the test function with
compact support, φ(x, t) = 0, t > T = M Ns.

As in [23] we may start with the simple example of a single shock. Denote by
x = x(k)r the location of the shock at time t = ks. We have∫ ∞

−∞
(u(x, ks + 0) − u(x, ks − 0))φ(x, ks)dx

=
{∫ x(k)r+σ s

x(k)r (u+ − u−)φ(x, ks)dx, if θkr > σ s,∫ (x(k)+1)r
x(k)r+σ s (u− − u+)φ(x, ks)dx, if θkr < σ s.
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If the test function is a constant φ0 then the error becomes, for the interval
I = (0, σ s/r),

M N∑
k=0

∫ ∞

−∞
(u(x, ks + 0) − u(x, ks − 0))φ(x, ks)dx

= φ0(u+ − u−)(B(M N , I )(r − σ s) − B(M N , I c)σ s)

= φ0(u+ − u−)T (B(M N , I )(
r

s
− σ) − (M N − B(M N , I ))σ )

1

M N

= φ0(u+ − u−)T

(
B(M N , I )

M N
− σ

s

r

)
r

s
,

which tends to zero as M N → ∞ when the random sequence is equidistributed as
in (1.6).

The fact that the test function φ(x, t) is not constant induces an error of the
order O(1)L Ns = O(1)LT/M , if we divide the time zone 0 � t < T = M Ns
into M small time zones N (l − 1)s � t < Nls, l = 1, 2, . . . , M . Here L is the
Lipschitz constant of φ(x, t). Then this error tends to zero as M → ∞.

For a general solution, the speed of the shocks or rarefaction shocks is changing.
The variation of the speed has been discussed in Theorem 2.2, which says that for
a surviving wave α, its strength |α| times the variation of its speed in a time zone
Λl is of the order of D(Λl) + s. Thus the error contributed by surviving subwaves
in a given time zone Λl is O(1)(D(Λl) + s)Ns. The total error of this kind over
0 � t < T is then E1 = O(1)(D(t � 0) T

M + sT ). Similarly, the error contributed
by the canceled subwaves in 0 � t � T is

E2 = O(1)(D(t � 0) + sT ).

Thus the total error is of the form

E = O(1)

[
(B(N , I )/N − |I |)T + sT + D(t � 0)

T

M

]
,

which tends to zero as M, N → ∞. This means that the approximate solutions
constructed by the deterministic version of the Glimm scheme converge to a weak
solution of the Cauchy problem as the grid size tends to zero.

Finally, we prove Theorem 1.1 on the convergence rate of the Glimm scheme.
In fact, after the preparation in the previous sections, the proof can follow the argu-
ment in [7] for systems satisfying condition (A). For completeness, we outline the
proof as follows by using the new Glimm functional.

Proof of Theorem 1.1. Consider the approximate solution up to time T = m̄s + s′,
where s′ ∈ [0, ε), s is the grid size in x and t . Pick a constant δ  s. Divide
[0, T ] into finitely many intervals Ji ≡ [mi s, mi+1s], i = 0, 1, . . .. Let m0 = 0.
Construct Ji and a subset E of N inductively as follows.

1. For each i ∈ E , we have F(mi s) − F((mi + 1)s) � δ, and mi+1 is the largest
integer such that F(mi s) − F((mi+1s)) � δ and mi+1s − mi s � δ.

2. On the other hand, for each i ∈ Ec, we have F(mi s)− F((mi +1)s) > δ. Then
denote mi+1 = mi + 1.
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Then there exists some finite number µ � m̄ such that mµ = m̄. Since T is fixed
and F(t) is uniformly bounded,

#E � O(1)
1

δ
, #Ec � O(1)

1

δ
. (4.3)

For each interval Ji , i ∈ E, i � µ, define an auxiliary piecewise constant
function w(x, t) with the following property:

– Every subwave α(t) in u corresponds to a wave front in w with the same initial
and final position.

– The wave front in w has constant wave strength and speed.

Applying the wave tracing result Theorem 2.2,

‖w(·, mi+1s) − Smi+1s−mi sw(·, mi s)‖L1

= O(1)(mi+1s − mi s){(F(mi s) − F(mi+1s))}
+O(1)(mi+1s − mi s)

{
s + 1 + ln(mi+1 − mi )

mi+1 − mi

}
. (4.4)

From the structure of w, we also obtain

‖u(·, mi+1s) − w(·, mi+1s)‖L1 = 0(1)(F(mi s) − F(mi+1s))(mi+1s − mi s), (4.5)

Thus, by combining (4.4) and (4.5), for each i ∈ E , we have

‖u(·, mi+1s) − Smi+1s−mi su(·, mi s)‖L1

� O(1)(mi+1s − mi s) {(F(mi s) − F(mi+1s))

+
[

s + 1 + ln(mi+1 − mi )

mi+1 − mi

]}
. (4.6)

For each i ∈ Ec, by the Lipschitz continuity of approximate solution constructed
by the Glimm scheme, we have

‖u(·, mi+1s) − Smi+1s−mi su(·, mi s)‖L1 � O(1)s (4.7)

By applying these two estimates, (4.3), the construction of Ji and the property of
standard Riemann semigroup, the L1 distance between u(x, T ) and ST u(x, 0) can
be controlled by

‖u(·, T ) − ST u(·, 0)‖L1

�
µ−1∑
i=0

‖ST −mi+1su(·, mi+1s) − ST −mi su(·, mi s)‖L1

+‖u(·, T ) − ST −m̄su(·, m̄s)‖L1

� L
µ−1∑
i=0

‖u(·, mi+1s) − Smi+1s−mi su(·, mi s)‖L1 + O(1)s′
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� O(1)
∑
i∈E

{
(mi+1s − mi s)

{
(F(mi s) − F(mi+1s))

+
[

s + 1 + ln(mi+1 − mi )

mi+1 − mi

]}
+ O(1)

∑
i∈Ec

s

� O(1)

{
δ + s + s

δ

(
2 + |ln δ

s
|
)}

. (4.8)

Let δ = sk ln(|ln s|), k ∈ (0, 1). Then simple a computation yields that when

k = 1
2 , the convergence rate is o(1)s

1
2 |ln s|. This completes the proof. ��

Acknowledgements. The authors would like to thank Professor Alberto Bressan and Pro-
fessor Constantine Dafermos for their valuable comments on revising the paper. The
research was supported by the General Research Fund of Hong Kong, CityU #103607.

References

1. Ancona, F., Marson, A.: Well-posedness for general 2 × 2 systems of conservation
laws. Membr. Am. Math. Soc. 169(801), x+170pp (2004)

2. Bianchini, S., Bressan, A.: Vanishing viscosity solutions of nonlinear hyperbolic
systems. Ann. Math. (2) 161(1), 223–342 (2005)

3. Bianchini, S.: On the Riemann problem for non-conservative hyperbolic systems. Arch.
Ration. Mech. Anal. 166, 1–26 (2003)

4. Bressan, A., Colombo, R.M.: The semigroup generated by 2 × 2 conservation laws.
Arch. Ration. Mech. Anal. 133, 1–75 (1995)

5. Bressan, A.: Hyperbolic systems of conservation laws. The One-Dimensional Cauchy
Problem. Oxford Lecture Series in Mathematics and its Applications, Vol. 20. Oxford
University Press, Oxford, 2000

6. Bressan, A., Graziano, C., Benedetto, P.: Well-posedness of the Cauchy problem
for n × n systems of conservation laws. Membr. Am. Math. Soc. 146(694), (2000)

7. Bressan, A., Marson, A.: Error bounds for a deterministic version of the Glimm
scheme. Arch. Ration. Mech. Anal. 142(2), 155–176 (1998)

8. Bressan, A., Liu, T.-P., Yang, T.: L1 stability estimates for n × n conservation laws.
Arch. Ration. Mech. Anal. 149(1), 1–22 (1999)

9. Bressan, A., Yang, T.: On the convergence rate of vanishing viscosity approximations.
Commun. Pure. Appl. Math. LVII, 1075–1109 (2004)

10. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Springer, New
York, 1948

11. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, New
York, 2000

12. DiPerna, R.J.: Convergence of approximate solutions to conservation laws. Arch.
Ration. Mech. Anal. 82, 27–70 (1983)

13. Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Comm.
Pure Appl. Math. 18, 697–715 (1965)

14. Glimm, J., Lax, P.D.: Decay of solutions of systems of hyperbolic conservation laws.
Memoirs of the American Mathematical Society, Vol. 101. American Mathematical
Society, Providence, RI, 1970

15. Hua, J.L., Yang, T.: An improved convergence rate of Glimm scheme for general
systems of hyperbolic conservation laws. J. Differ. Eq. 231, 92–107 (2006)

16. Kruzkov, S.: First-order quasilinear equations with several space variables, Mat. Sb.
123, 228–255, (1970); English transl. in Math. USSR Sb. 10, 217–273 (1970)



454 Jiale Hua, Zaihong Jiang & Tong Yang

17. Kuznetsov, N.N.: Accuracy of some approximate methods for computing the weak
solutions of a first-order quasi-linear equation. U.S.S.R. Comp. Math. Math. Phys. 16,
105–119 (1976)

18. Lax, P.D.: Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math. 10,
537–566 (1957)

19. LeFloch, P., Iguchi, T.: Existence theory for hyperbolic systems of conservation laws
with general flux-functions. Arch. Ration. Mech. Anal. 168(3), 165–244 (2003)

20. Liu, T.-P.: The deterministic version of the Glimm scheme. Comm. Math. Phys. 57,
135–148 (1977)

21. Liu, T.-P.: Admissible solutions of hyperbolic conservation laws. Mem. Am. Meth. Soc.
30, 240 (1981)

22. Liu, T.-P.: The entropy condition and the admissibility of shocks. J. Math. Anal. Appl.
53, 78–88 (1976)

23. Liu, T.-P., Yang, T.: Well-posedness theory for hyperbolic conservation laws. Comm.
Pure Appl. Math. 52(12), 1553–1586 (1999)

24. Liu, T.-P., Yang, T.: Weak solutions of general systems of hyperbolic conservation
laws. Commun. Math. Phys. 230, 289–327 (2002)

25. Oleinik, O.: Uniqueness and stability of the generalized solution of the Cauchy prob-
lem for a quasilinear equation. Usp. Mat. Nauk 14, 165–170, (1959); Am. Math. Soc.
Transl. Ser. 2 33, 285–290 (1964)

26. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer, New York, 1983
27. Tang, T., Teng, Z.H.: The sharpness of Kuznetsov’s O(

√
∆x)L1 error estimate for

monotone difference schemes. Math. Comp. 64, 581–589 (1995)
28. Yang, T.: Convergence rate of Glimm scheme for general systems of hyperbolic con-

servation laws. Taiwan. J. Math. 7(2), 195–205 (2003)

Department of Mathematics,
City University of Hong Kong,

Hong Kong, People’s Republic of China.
e-mail: hua.jl@student.cityu.edu.hk

and

Joint Advanced Research Center in Suzhou,
University of Science and Technology of China

and City University of Hong Kong,
Suzhou, People’s Republic of China.

e-mail: zaihjiang2@student.cityu.edu.hk

and

Department of Mathematics,
City University of Hong Kong,

Hong Kong, People’s Republic of China.
e-mail: matyang@cityu.edu.hk

(Received June 16, 2008 / Accepted April 15, 2009)
Published online September 19, 2009 – © Springer-Verlag (2009)


	A New Glimm Functional and Convergence Rate of Glimm Scheme for General Systems of Hyperbolic Conservation Laws
	Abstract
	1 Introduction
	2 Wave tracing and new Glimm functional
	3 Wave interaction estimates
	4 Consistency and convergence rate
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


