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Abstract. In this paper, we will survey some recent results on the study
of the viscous and invisid compressible flow with vacuum. It is well-
known that the study on vacuum has significance in the investigation on
some important physical phenomena. However, most of the important
questions about vacuum are still open due to the singularities caused by
vacuum which need new mathematical tools and techniques to handle.

1. Introduction

In this paper, we will consider the viscous and invisid compressible flow
with vacuum. The study of the vacuum phenomena for the compressible flow
is of great importance both theoretically and practically. In the following, we
are interested in the time evolution of the vacuum boundary which separates
the vacuum and the gas, and the singular behavior of the solutions near this
interface. For illustration, we will mainly consider two mathematical models:
the Euler equations and the Navier-Stokes equations for isentropic compress-
ible flow. Some recent results on these models will be summarized and some
open problems will be raised. Similar problems have been and can be studied
for the models for non-isentropic flow and those in muti-dimensional spaces.
Furthermore, similar vacuum problems can be raised for the systems of Euler-
Possion equations governing the evolution of the gaseous star, and the Maxwell
equations for electro-magnetic fields where vacuum region is nontrivial.
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The remaining of the paper will be organized as follows. In Section 2, we
will consider the Euler equations for isentropic flow with vacuum. Since the
system fails to be strictly hyperbolic at the vacuum states, the classical analysis
of strictly hyperbolic equations is not applicable to the present situation. Most
of the main open problems on this system are still open, such as what the
canonical behavior of the solutions near the vacuum boundary is and what
the large time behavior of the solutions is. It can be seen that this kind of
study will help us to understand the singularity, evolution of vacuum boundary
and other complicated phenomena caused by vacuum. It would also help the
design of the numerical scheme for the understanding of the evolution of the
vacuum boundary.

In Section 3, we will consider the Navier-Stokes equations for isentropic
flow. It has been shown that the classical Navier-Stokes equations with con-
stant viscosity coefficient is not stable with vacuum [11]. By deriving the
Navier-Stokes equations from Boltzmann equations using Chapman-Enskog
expansion up to the second order, the viscosity coefficient depends on the tem-
perature. For isentropic gas, this dependence is reduced to the dependence on
the density. Therefore, even though the system with constant viscosity coeffi-
cient is well understood at the vacuum state, it is interesting and important to
study the system when the viscosity coefficient depends on the density. For the
latter system, most of the questions on vacuum boundary are still unanswered.

2. Euler Equations with Vacuum

Consider the compressible Euler equations in R3 for isentropic flow with
damping in Eulerian coordinates:

ρt +∇ · (ρ~u)= 0,

ρ~ut + ρ~u · ∇~u +∇p(ρ)= −kρ~u,
(2.1)

where ρ, u and p(ρ) are density, velocity and pressure, respectively, and k > 0 is
the linear frictional coefficient. When the initial density function has compact
support, the vacuum boundary Γ is defined as

Γ = {(~x, t) | ρ(~x, t) > 0} ∩ {(~x, t) | ρ(~x, t) = 0}.
The main difficulty caused by vacuum is that the system becomes degenerate,
that is, characteristics coincide and become zero in the Lagrangian coordinates.
Therefore, even though the system is symmetrizable, in general the coefficients
do not satisfy the usual local existence theories. For Euler equations without
damping, the author in [36] gave a sufficient condition for blowup of C1 solu-
tions when inf ρ0(~x) > 0, where ρ0(~x) is the initial density. The nonexistence
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of C1 solutions in [36] is related to the shock formation. However, in the fol-
lowing discussion, we will concentrate on the singularity of the solutions at the
vacuum states when the solutions contain no shocks. Hence, the time when
the regular solutions blow up in our discussion is before the time when shock
forms.

The one-dimensional Euler equations with damping can be written in the
Lagrangian coordinates as follows:

vt − ux = 0,
ut + p(v)x = −ku,

(2.2)

where v = 1/ρ is the specific volume. Most of the following results are on this
one-dimensional system.

When there is no frictional damping, it was shown that the shock waves
vanish at the vacuum and the singular, non-shock behavior at the vacuum
is similar to that of the centered rarefaction waves [21]. Under some special
condition on the initial velocity, the authors in [9] give the existence of global
smooth solutions for Euler equations for an isentropic perfect gas in the d-
dimensional Euclidean space. Precisely, the conditions in [21] are: (i) the
initial velocity belongs to the Sobolev space of order m with m > 1 + d/2,
and for any x the spectrum of its Jacobian at x is nonnegative; (ii) the initial
density has compact support and its (γ − 1)/2 power is small enough in the
Sobolev space of order m.

When there is linear frictional damping and the solution is away from
vacuum, the dissipative effect of damping prevents shock forming. Since no
other singularity emerges from the flow, it was shown that the system is time-
asymptotically equivalent to the porous media equation [13]. When the system
contains both linear damping and vacuum, so far this kind of equivalence was
only proved for a class of special solutions [18].

The main open problems on the system (2.2) with vacuum are still un-
solved. One of them is to study the singular evolution of the interface, that is,
to give a detailed description of how the solution near the interface changes
and how it becomes the canonical kind of behavior after finite time. Another
would be the study of the nonlinear stability of the traveling wave solutions
and the class of special solutions corresponding to the Barenblatt’s solutions
for the porous media equation obtained in [18]. It will also be interesting and
important to give the time asymptotic equivalence between the Euler equa-
tions with damping and the porous media equation when vacuum occurs. In
the following, we will summarize some of the recent results which partially
answer the above questions.

In [18], the author constructs a class os spherical symmetric solutions which
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converge to the self-similar solutions of the porous media equation

kρt = p(ρ)xx,
p(ρ)x = −kρu.

It is also conjectured in [18] that the general behavior of the solution near Γ
satisfies

0 < |dc2

dx
| < ∞(2.3)

in the Eulerian coordinates after finite time, where c =
√

dp(ρ)/dρ is the
sound speed. Notice that this singular behavior implies that the pressure has
a bounded nonzero effect on the evolution of the vacuum boundary. This also
implies that if initial data (ρ, u)(x, 0) are smooth, then there is a waiting time.
After that time, the boundary will move due to the effect of the pressure.
In [18], a class of traveling wave solutions with infinite total mass is also
constructed. To our knowledge, these two kinds of solutions are the only
nontrivial global solutions to the Euler equations with vacuum and damping
where the vacuum boundary is clearly presented.

Along this direction, the authors in [20] show that the regular solutions
cannot be global if the density function has compact support. And the local
existence of solutions when they have the property that dcα/dx, 0 < α ≤ 1,
is bounded away from zero across Γ is also proved. It is noticed that this
kind of phenomenon exists and α remains the same locally in time. When
the initial data connect to vacuum states discontinuously, local existence for
Euler equations without damping was proved in [19] by a polygonal method
introduced in [6] for scalar equations and generalized in [16] for p-systems.

According to the argument in [18], the general behavior of the solutions
should be the one corresponding to α = 2. Very recently, the authors in
[22] obtained the local existence when α = 2 by introducing a coordinate
transformation. For illustration, let x = 0 be the vacuum boundary in the
Lagrangian coordinates and the pressure function satisfy the γ-law, i.e., p(v) =
σ2v−γ , γ > 1. By the transformation x = y(2γ/(γ−1)), the system (2.2) can be
rewritten as

φ(v)t + µ̄uy = 0,
ut + µ̄φ(v)y = −ku,

(2.4)

where φ(v) = 2
√

γσ
γ−1 v−

γ−1
2 , and µ̄ = (γ−1)σ√

γ (vy
2

γ−1 )−
γ+1
2 . Notice that at the

vacuum boundary, both φ(v)y and µ̄ are bounded away from zero if (2.3) holds.
Thus the local existence of solutions with the property (2.3) can be proved by
the fixed-point theorem. However, this kind of transformation works only for
α = 2. Up to now, the local existence of solutions for 1 < α < 2 remains open.
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The above analysis can also be applied to the system of Euler-Poisson equa-
tions for gaseous star to obtain local existence which includes the stationary
solutions. The Euler-Poisson equations can be written as

ρt +∇ · (ρ~u) = 0,
ρ~ut + ρ~u · ∇~u +∇P (ρ) + ρ∇Φ = 0,
∆Φ = 4πρ,

(2.5)

where Φ is the gravitational potential. When 6/5 < γ < 2, there exist station-
ary solutions with spherical symmetry (cf. [26]),

ρ =

(
σ2A2γ

4π(γ − 1)

) 1
2−γ

θ(A|x|) 1
γ−1 , u = 0,

where A is an arbitrary positive constant and θ(r) is the “Lane-Emden func-
tion” of index 1/(γ − 1) satisfying (cf. [5]),

d2

dr2
θ +

2
r

d

dr
θ + θ

1
γ−1 = 0, θ(0) = 1,

d

dr
θ(0) = 0.

Furthermore, there exists R = Rγ such that θ(r) > 0 when 0 ≤ r < R and
θ(R) = 0. And the solutions behave like

ρ(r) = C(R− r)
1

γ−1 [1 + P (R− r, (R− r)
γ

γ−1 )]

when r → R − 0. Here C is a positive constant and P is a double power
series with positive radii of convergence. Notice that this behavior is precisely
the one stated in (2.3). The local existence result in [26] does not include
this family of stationary solutions. However, by using the above coordinate
transformation the local existence in [22] includes this family of stationary
solutions.

When inf ρ0(~x) = 0, the author in [27] proved the nonglobal existence of
regular solutions by assuming that the initial data (ρ0(~x), ~u0(~x)) have compact
support, where ~u0(~x) is the initial velocity. For the Euler-Poisson equations
governing gaseous stars, the authors in [25] proved the nonglobal existence
of tame solutions under the condition of spherical symmetry. This nonglobal
existence result can be generalized to the boundary condition dc2/dx = 0
instead of dc/dx = 0 at vacuum. Local existence of tame or regular solutions
for these two systems was proved in [24, 26], by using the symmetrization
and the fixed-point theorem. Solutions thus obtained correspond to those
of 0 < α < 2

3 or α = 1 if the solutions are in the space H2. Using the
same symmetrization, the author in [7] uses the paradifferential calculus of



38 Tong Yang

J.M. Bony, and the author in [4] uses the Gagliardo-Nirenberg inequality and
Littlewood-Paley theory to obtain local existence of solutions to (2.5) without
assuming the support of the initial density being compact.

Notice that the regular solution defined in [20] is different from that in
[26], where ργ−1 ∈ C1([0, T ) × R3) instead of ρ((γ−1)/2) ∈ C1([0, T ) × R3) is
required. Since c = σ

√
γρ((γ−1)/2) is a continuous function, the regular solution

defined in [20] is more general than the one in [26], and thus the nonexistence
theorem in [20] generalizes that of [26]. So far the proofs for the nonexistence of
global regular solutions either for invisid models given above or for the viscous
models (cf. [20, 24, 15, 27, 38] etc.) are based on the analysis of the support of
the density. As shown by the special class of global solutions obtained in [18],
the support of the density there is infinite. Therefore, deeper understanding
on the development of the singularity at the vacuum is desirable.

3. Navier-Stokes Equations with Vacuum

The one-dimensional compressible Navier-Stokes equations for isentropic
gas flow in Eulerian coordinates can be written as

ρτ + (ρu)ξ = 0,
(ρu)τ + (ρu2 + p(ρ))ξ = (µuξ)ξ,

(3.1)

where µ ≥ 0 is the viscosity coefficient.
We are interested in the study of the existence and uniqueness of the weak

solutions to (3.1) when the density function has compact support. The weak
solution in consideration should have enough regularity for the study of the
behavior of the vacuum boundary and the behavior of the solution near the
boundary or when time tends to infinity. The general global existence of
weak solutions to Navier-Stokes equations is foundamental [17], but it is not
applicable to the present situation because we need more regularity of the
solution to study its behavior. For simplicity, we also consider the polytropic
gas, i.e., p(ρ) = σ2ργ with constant γ > 1. Assume that the entire gas initially
occupies only a finite interval [a, b] ⊂ R1 with one side or two sides connecting
to vacuum, and the viscosity coefficient µ is a functional of the density ρ; for
example, µ = cρθ, where c > 0 and θ ≥ 0 are constants. The important
feature of this problem is that the interface separating the gas and vacuum
propagates with finite speed and has some singular behavior. This system
models many interesting physical phenomena, such as the gaseous stars in
astrophysics. This kind of study will help us to understand the singularity,
evolution of vacuum boundary and other complicated phenomena caused by
vacuum for the viscous compressible flow.
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When the viscosity coefficient is constant, this problem is well investi-
gated when the density function connects to vacuum either with a jump or
continuously. For this case, both the large-time behavior and the interface
behavior have been obtained for the initial boundary value problem. In [38],
the dispersive behavior of the total pressure is described for smooth solutions
in multi-dimensional space, which yields the nonexistence of global smooth
solutions with compact supported initial data.

However, the problem becomes more complicated when the viscosity de-
pends on the density because of the higher degeneracy and weaker dissipation.
Such a dependence can be seen when the Navier-Stokes equations are derived
from the Boltzmann equations through the Chapman-Enskog expansion to the
second order, where the dependence of the viscosity coefficient on the temper-
ature is translated to the dependence on the density for the isentropic flow.
For this problem, there are recently some results on the global existence of
solutions when the density function connects to the vacuum with a jump. But
the global existence when the density function connects to vacuum continu-
ously remains open. Furthermore, the exact large-time behavior and interface
behavior when the density function connects to the vacuum either with a jump
or continuously are still unknown.

In the following, we will summarize some recent results and state some
other open problems on this subject. Notice that the situation when the
gravity is taken into account can be discussed similarly [31].

When the viscosity coefficient is constant, i.e., θ = 0, the study in [11]
shows that the continuous dependence on the initial data of the solutions to the
Navier-Stokes equations with vacuum fails. The main reason for the failure at
the vacuum comes from the kinematic viscosity coefficient being independent
of the density. In [31], the author studies the free boundary value problem of
(3.1) with one boundary fixed and the other connected to vacuum. She proved
the global existence of weak solutions. Similar results were obtained in [25] for
the system of spherically symmetric motion of viscous gases. In fact, the free
boundary problem of the one-dimensional viscous gases which expand into the
vacuum has been studied by many people; see [31, 32, 38] and the references
therein. A further understanding of the regularity and behavior of solutions
near the interface between the gas and vacuum is given in [23].

As mentioned above, it is more reasonable to consider the case when the
viscosity coefficient depends on the density for the vacuum problem, i.e., θ > 0.
For this case, the local existence of weak solutions to Navier-Stokes equations
with vacuum was studied in [19], where the initial density was assumed to
be connected to vacuum with discontinuities. This property, as shown in [19]
maintains as time evolves. Under the assumption that the gas connects to vac-
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uum with a jump, the authors in [33] recently obtained the global existence
and uniqueness of weak solutions when µ = cρθ and 0 < θ < 1/3. As pointed
out in [8], for some physical models or when considering the second approxima-
tion of the Chapman-Enskog expression to the nonlinear Boltzmann equations
for a rarefied gas with hard sphere interaction potential, the viscosity of gas
is proportional to the square root of the temperature. Under this hypothesis,
the temperature is of the order of ργ−1 for the perfect gas where the pressure
is proportional to the product of the density and the temperature. In this con-
sideration, the result in [33] includes the case when 1 < γ < 5/3. Since this
result does not include the important case when γ = 5/3 which corresponds
to the monatomic gas, it is necessary to generalize it to larger θ. Under this
motivation, the authors in [39] consider this problem and generalize the result
in [33] to 0 < θ < 1/2, which corresponds to the case when 1 < γ < 2 in the
above consideration. Very recently, the authors in [15] further generalize this
result to the case of 0 < θ < 1 which corresponds to 1 < γ < 3. Note also that
the solution defined in [15] is in weaker sense.

It is noticed that the above analysis is based on the uniform positive lower
bound estimate of the density with respect to the construction of the approx-
imate solutions. This estimate is crucial because the other estimates for the
convergence of a subsequence of the approximate solutions and the uniqueness
of the solution thus obtained follow from it by standard techniques as long as
the vacuum does not appear in the solutions. The authors in [39] obtain the
positive lower bound of the density in more general setting than the one in [33]
by minimizing the constant α1 such that the term

∫ 1
0 ρα1u2dx has an upper

bound estimate in Lagrangian coordinates. Here we normalize the total mass
to 1 and assume the support of the density function to be [0, 1] in Lagrangian
coordinates. And this minimizing procedure is carried out by deriving a re-
currence relation of αm, where

∫ 1
0 ραmu2m

dx is bounded. Further estimation
in [15] yields the lower bound for density under more general conditions.

The lower bound of the density is easier to get when the viscosity coefficient
is constant because we have the following expression for the density:

ρ(x, t) = ρ(0, t) exp
{
−

∫ t

0
ρ(x, s)ux(x, s)ds

}

in Lagrangian coordinates. This gives a simple connection between the density
at time t and t = 0 along the particle path with a factor in exponential form.
By using this expression and the standard energy estimates, the lower bound
of the density can be readily obtained. However, when θ 6= 0, the above
expression reduces to the difference between the density to some power at
time t and t = 0. Thus, it is not easy to obtain the lower bound for the
density. Nevertheless, the lower bound at the boundary can be obtained by
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using the conservation of momentum in the whole interval when the density
connects to vacuum with a jump. That is, we have

ρ(t) = ρ(0)
(

γ − θ

γ − θ + ρ(0)γ−θt

) 1
γ−θ

,

for the density at one side of the vacuum boundary. Notice that when θ = 0,
the above decay rate for density is valid also in the gas region. Whether this
decay rate holds in the gas region for θ 6= 0 is unknown. All the analyses
in [15, 33, 39] depend on the above lower bound estimate for density at the
boundary. This is the main reason why those analyses cannot be applied to
the study of the problem when the gas connects to vacuum continuously. It is
because the density is zero at the boundary in this case. The optimal decay
rate is necessary for the study of the expansion of the vacuum boundaries and
the detailed description of the solution near these interfaces.

When the gas connects to the vacuum continuously, another interesting
problem is to study how the regularity property of the initial data near the
vacuum boundary affects the behavior of the solution and what is the canonical
behavior of the solution near the vacuum boundary.

There has been a lot of investigation on the Navier-Stokes equations when
the interface separating the gas and the vacuum is not specified, both for
smooth initial data or discontinuous initial data, and one-dimensional or mul-
tidimensional problems. For these results, please refer to [12, 35] and the
references therein.
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