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Abstract The paper aims to estimate the thickness of the boundary layer for the planar
MHD system with vanishing shear viscosity p. Under some conditions on the initial and
boundary data, we show that the thickness is of the order \/g|In u|. Note that this estimate
holds also for the Navier-Stokes system so that it extends the previous works even without

the magnetic effect.
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1 Introduction

Consider the planar magnetohydrodynamics system

pr + (pu)z =0,

(ou)e + (pu? 9+ b)) = Dt

(pwW)i + (puw — b)y = Wy, (1.1)
b: + (ub — W), = vb,,

(pe)t + (peu)s — (K)o + pus = Aul + plwa|> + v|bg > =: Q,

where p denotes the density of the flow, 6 the temperature, u € R the longitudinal velocity,
w € R? the transversal velocity, b € R? the transversal magnetic field, p = p(p, ) the pressure
and e = e(p,0) > 0 the internal energy, respectively. Moreover, k = k(p,6) is the heat
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conductivity coefficient, and the positive constants A, u and v represent the bulk viscosity,
shear viscosity and the magnetic diffusivity coefficients, respectively. In this paper, we consider

the perfect gas with the equation of state given by
p = Rpb, e = Cy, (1.2)

with physical constants R > 0 and C, > 0. Without loss of generality, set C,, = 1. Motivated
by some physical models, such as the Boltzmann collision operator, assume « depends only on
0 as

k=r(0) =01, ¢q>0. (1.3)

In this paper, we consider the system (1.1) in a bounded domain Qr = Q x (0,7T) with

Q= (0,1) under the following initial and boundary conditions:

(pv u, 0, w, b)(:l?, O) = (p()v ug, 6o, wo, bo)($),
(u, b, 0z)[c=0,1 =0, (1.4)
w(0,t) =wi(t), w(l,t)=wa(t),

and try to understand the thickness of the boundary layer when the shear viscosity p vanishes.

For this, let us first review some of the related works. First of all, the MHD system has
been extensively studied because of its physical importance and mathematical difficulties, cf.
[1, 2, 4, 11, 14, 15, 22-24] and the references therein.

Without the boundary effect, Vol’pert and Hudjaev [24] proved the existence and uniqueness
of local solutions to this system. Some results on the system with small initial data were
obtained in [10, 17, 19, 20]. When the heat conductivity coefficient & is of the order of § for
some g > 0, some global existence solutions to the system (1.1) with large initial data were
studied in [2, 3, 21] for ¢ > 2, in [5] for ¢ > 1 and in [6] for ¢ > 0. On the other hand, for the case
g = 0, the problem on the global existence of smooth solution to (1.1)—(1.4) with large initial
data remains unsolved even though the corresponding problem for the Navier-Stokes equations
was solved in [13] long time ago.

For problem in a bounded domain, the presence of boundary layer is a fundamental problem
in fluid dynamics that can be traced back to the seminal work by Prandtl in 1904. For this,
some results on the vanishing shear viscosity for the Navier-Stokes equations can be found in
[7-9, 12, 19, 25] and the references therein. With the effect of magnetic field, the vanishing

shear viscosity for the planar flow was studied in [5, 6] under the following condition on x:
CH1+09)<k=r) <C1+07)(q>0), or, K =r(p) >C/p, (1.5)

that avoids the degeneracy of 6 around zero.

Without the magnetic effect, Frid and Shelukhin in [8] investigated the boundary layer of
the compressible isentropic Navier-Stokes equations with cylindrical symmetry, and estimated
the thickness of boundary layer (cf. Definition 1.1 below) in the order of O(u®)(0 < o < 3).

For the non-isentropic Navier-Stokes equations, by imposing the following assumption on «:
CTH L+ 0%) < k(p.0) < CL+ 07, |ry(p.0)] < COL+0%) (g > 1), (L6)

Jiang and Zhang in [12] obtained the same thickness estimate. In a recent paper [18], we
improved these results to remove the constraint on the heat conductivity coefficient.
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The purpose of this paper is to estimate the thickness of the boundary layer for the vanishing
shear viscosity with the magnetic effect under some physical condition on the heat conductivity
coefficient.

As in [8], the thickness of a boundary layer is defined as follows.

Definition 1.1 A function 6(u) is called the thickness function of the boundary layer,
denoted by BL-thickness, of the problem (1.1)—(1.4) with vanishing shear viscosity u if 6(p) — 0

as u — 0, and
lltli% ”(p —-pu—u,w—w,b—b, 6 — H)HLOO(OvT;LOO(QMM))) =0,

ifiﬂig)m [(p—p,u—U,w—W,b—Db,0 —0)||L0,1;1(2) >0,

where Q5 = (5,1 —9) for § € (0,1/2), and (p,u, w, b, ) and (5,7, W, b, #) are the solutions to
the problem (1.1)—(1.4) and the problem (1.1)—(1.4) with p = 0 respectively.
To obtain a lower bound of §(u), as in [8, 12], we only consider the system (1.1) with the

following initial boundary conditions:
po = constant >0, up=0, vog=0, by=0, 6= constant > 0, (1.7)
wi(t) € (C10,7))%, wi(0)=0, i=1,2. (1.8)
Note that (5,7, w,b,0) = (po,0,0,0,6)) is a solution for the problem (1.1)-(1.4) with g = 0.

The main result of the paper is stated as follows.

Theorem 1.2 Let the initial and boundary functions satisfy (1.7) and (1.8). Then
(1) the problem (1.1)—(1.4) admits a unique solution;
(2) the following L? estimates hold

sup / [(p —po) 2+ ut+(0—00)% +uZ+p>+ b+ |W|2}d:1:
0<t<T Jo

+ // (uf + 9320 + uim)dxdt <Cyu, (1.9)

sup /(|bw|2 +602)dx + // b [2dzdt < Cpl/4;
0<t<T JQ Qr

(3) any function d(u) satisfying 6(u) — 0 and \/n/0() — 0 as p — 0 is a BL-thickness for
the problem (1.1)—(1.4) when the boundary value (w1, ws) is not identically zero. In this case,

1-6
/ |Wm|dx§C(ul/8+$), Vo € (0,1/2). (1.10)
5

Here and in the following, we use C' to denote a positive generic constant independent of .

Note that the existence of solution stated in Theorem 1.2 was proved in [6]. Thus, we only
need to show (1.9) and (1.10) for the estimation on the BL-thickness, as in [8]. However, the
arguments used in [8, 12] for the Navier-Stokes equations can not be applied directly to the
system (1.1) because of the strong interaction between the fluid variables with the magnetic
field.

For example, without the magnetic field, the following pointwise estimate on u:

u< C&(x), z€][0,6]; u>-C&(x), zel[l-0,1], (1.11)
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with
; 0<z<yé,

&(x) =1 6, S<x<1-—29,
l—z, 1-6<z<1

€T

can be obtained by either the maximal principle as in [8] or by obtaining a uniform bound on
u, as in [12, 18]. However, it seems very difficult to achieve this estimate in the appearance of
the magnetic field b.

One of the key observations in this paper is that since

(e, 8)] < el o ey < &5(2) / tgelde, Ve € [0,4],
@ (1.12)
(e, £)] < (1 — @) [uall L) < €3(2) /Q htgelde, Ve € [1— 6, 1],

the estimate (1.11) can be replaced by (1.12) if us, is uniformly bounded in L'(Q7r). Indeed,
for ¢ > 1, we can show by using an argument similar to [8, 12] that u,, is uniformly bounded
in L?(Qr). For the more difficult case when ¢ € (0, 1], we prove by using the LP-estimate of a

linear parabolic equation that
el Lars(@qp) < C- (1.13)

On the other hand, for the estimation on the magnetic field, we will show that

sup /belzd:z:+// b [2dzdt < Cpt/4. (1.14)
0<t<T JQ T

With (1.13) and (1.14), one can prove (1.10).

The rest of the paper will be arranged as follows. Theorem 1.2 will be proved in the next
section. Precisely, in Section 2.1, we give some basic estimates, in particular, the estimate
(1.13). In Section 2.2, we establish the L2-estimates on u,  and w in terms of the shear
viscosity for proving (1.14). The proof of (1.10) will be given in Section 2.3.

2 Proof of Theorem 1.2

We divide the proof of the Theorem 1.2 into the following three subsections.

2.1 A Priori Estimates

In this subsection, we first give some basic a priori estimates. First of all, it follows from
the equations (1.1) that

&+ [u(é’ +p+ %|b|2) —w-bL = ()\uuw—i—uw-ww—i—ub-bm +f<59w)m,
(2.1)

n_ez) _ g +plwe? + b P k6
x

(pS): + (puS). — (5 ; =

where
Lo 2 Lo
5=p(e+§(u + |w| ))+§|b| , S=Inf—Rlnp.

Some basic estimates are given in
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Lemma 2.1 Under the conditions in Theorem 1.2, it holds that
/ plx,t)da = / po(z)dz, Vte (0,T),
Q Q

sup / [p(0 +u® + [w]?) + |b|*]da < C, (2.2)
o<t<T

2 2
// <)\u +u|wz| +I/|b| )dxdt<C

Proof Integrating (2.1); over Q; = Q x (0,t) with ¢t € (0,T) yields

/de—/5|t de—i-u/ w-w, 255 ds. (2.3)

Let d =0 or 1. We first integrate (1.1)3 from = = d to x, and then integrate again over {2

to obtain

pwo(d, t) = p(wa —wy) — /Q(puw —b)dx — %/ﬂ/{: pwdydz. (2.4)

Taking the inner product of (2.4) with w(d,¢) and integrating over (0,t), we have

o Wl oads =g / (wa - wr) - w(d, s)ds / wid)- [ s~ byac)as
—w(d,t) - (/Q /:pwdydx) +/Otwt(d,t)- (/Q /:pwdyd:r)ds.
Hence, (2.2); gives

t
‘,u/ W+ Wy|z=qds
0

Substituting it into (2.3) yields

<C+ C/ plw|dz + C'// (pu|w| + |b| + p|lw|)dzds
Q Q+

1
<C+ = / plw|?dz + C Edzds.
2 Q Q

/ Edz < C+C Edxds,
Q Qt

that implies (2.2)2 by Gronwall inequality.
Finally, (2.2)3 can be proved by integrating (2.1)2 and using (2.2)2. Then the proof of the
lemma is completed. O

Some other estimates given in the following lemma can be found [6, 8] except the lower
bound of the temperature 6.

Lemma 2.2 Let ¢ > 0. Under the conditions of Theorem 1.2, we have
Cl'<p<C, 0=C,

ui + pwa|* + [ba|? | K07 -
//QT ( o + 91+a> dzdt < C, Va € (0,min{l,q}),

T
/0 161950t < €, Va € (0, min{1,q}),

// (u2 + plwa|® + [by|?) dadt < C,
Qr

T
/ Ib|2dt < C; // 0,1%dadt < C, VB € (1,3/2).
0 Qr
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Proof We only need to prove the lower bound on 6 because the other estimates can be
found in [6, 8.
Based on the fact that p is bounded, it follows from (1.1)5 that
1 A P A p\2 R?
0 0y — — ozz>_(2__z):_(z__) 9
: +u p(n ) = up — U 5 u ) o
Hence,

1
0; +ub, — ;(n@m)m + K62 >0,

. ol . _ ming 6o
where K is a positive constant independent of p. Let § = =%

z=0—60. We have

with C' = K ming 6y, and

Zz|e=0,1 = 0, 2Z|¢=0 > 0,
and
2t + uzg — %(/{zx)z + K(0+0)z
=0, + c% +uf, — %(n@m)m + KO- K (Hgfﬁof
> ming 6o K (minQHO)2 _
=Y (Ct+1)? Ct+1
Then, by the comparison theorem, z > 0 on Q,. The proof is completed. 0

For the magnetic field, we have the following

Lemma 2.3 Under the conditions of Theorem 1.2, we have

sup /|b|4d:1:+// |b[?|b, [2dzdt < C.
0<t<T JQ Qr

Proof Taking the inner product of (1.1)4 with 4|b|?b and integrating over Q; give

/|b|4dx+4u// |b|2|bw|2dxds+8u// b - b,|*dzds

Q Qt Qt

= / |bo|*dx +4/ w, - (|b/*b)dzds — 4// (ub), - (|b|*b)dxds. (2.6)
Q Qt Qt

In addition, we have

/ w, - (b|b|*)dzds = —// w-(bm|b|2)dxds—2// (w-b)(b - b,)dzds
Qt Q1 t
< 3// |w||b|?|b,|dzds

Q+
5// |b|2|bw|2dxds+0// [w2[b[2dwds
4 Q1 Qt

t
5// |b|2|bz|2dxds+0/ ||b|\%x,/ iw|2dads
4

Q1 0 Q

%// Ib|2[b,[2dzds + C, (2.7)

where we have used (2.2)2 and (2.5)4, and

// ub), |b|2bdxds—3// (b, - b)|b|*dzds

IN

IN

IN
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IN

5// |b|2|bz|2dxds+0// u2|b|*dzds
4 Q1 Qt

IN

Plugging (2.7) and (2.8) into (2.6) yields

t
/|b|4d:v+// |b|2|bw|2dxds§0+0/ ||u2||Lm(Q>/ Ib|*dzds.
Q Q. 0 Q

y t
1// |b|2|bz|2d:17ds+0/0 [[u?] Lo () /Q |bl*dzds. (2.8)

By Gronwall inequality and noticing [|[u?|| 110, ;5 (0)) < HuwH%Z(QT) < C by (2.5)4, we com-

plete the proof of the lemma.
The following lemma gives further estimates on the density function.

Lemma 2.4 Under the condition of Theorem 1.2, we have

sup / pidr + // (p; + 0p2)dadt < C,
0<t<T JQ T

12\ /2
o) = p(u.0] < O (|l =yl +]s = 1]/2)
Proof Setn=1/p. It follows from the equation (1.1); that

Uy = (1) + Uil
Substituting it into (1.1)s yields

[p(u = X)), + [pu(u — Anz)], = Rp®(0n, —nbs) —b - by

Multiplying it by (v — An,,) and integrating over @, give

1
3 / plu — Ay )?da + R)\// 0p*n2dads
Q t

1
= 5/ po(uo + )\p0_2p01)2dx + R// p20un,dxds
Q t

—R// 0°10.(u — A, )dwds — // b - by (u — An,)dads.

By Lemmas 2.1 and 2.2, we have

R// p20un,dzds < RT)\ // Op*n>dads + C// fu’dads
t Q+ Q+

RA !
< —// 9p2n§dxds+0/ ||u2HLoo/9dxds
2 Q¢ 0 Q
R

<C+ —/ 0p*n2dxds.
2 JJa

By Lemma 2.3 and (2.5)2, we then obtain

—R// p°10z(u — Ay )dads — // b - by (u — Ang)dzds
Q+ t

O

0962
<C+ C// 1T p(u — A, )?dads + C'// 91—+zdxds + C// p(u — Ang)?dzds
t Qt t

t
<C+ C/ (L4 10" | Lo () / p(u — Ang)*dads, « € (0,min{1,¢}).
0 Q
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Combining the above estimates yields

/ plu — An,)*da +/ 0p*nidads < C + C/ 09| e (@) / p(u — An,)*dads.
Q Qt Q

Hence, Gronwall inequality gives

sup /pidx—i—/ Op2dzdt < C. (2.10)
o<t<T Ja Qr

With this estimate, it follows from the equation (1.1); and (2.5) that
lpellZ2(0ry < Clw,ua, pa)l22(gpy < C,

and this gives (2.9);.

To prove the second estimate in the lemma, let §(z) = p(z, s) — p(x, t) for s,t € [0,T] with
s # t. Then for any x € [0,1] and § € (0, 3], there exist some y € [0,1] and £ between z and y
such that 6 = |y — z| and 3(¢) = xlTy f; B(z)dz. Since

(o) = —— / ")z + /§_ "B (2)ds
e

pTdez

by (2.10), we have

=5
1

5 (pz(z,t) - p=(2, S))dz

1 1
5(// pdedz) |x—y|1/2|s e
Qr

1/2

1
([ s oPis) - g
0
< C5 Y2 s —t|V? + oot/

Taking 0 = |s — t|'/? with s # t gives

1ol 5) — plz,1)] < Cls — 1|4,
On the other hand, (2.10) implies that

lp(a,t) = ply. t)] < Cla —y['/2.

Thus, (2.9)2 holds and the proof of the lemma is completed. O

The following lemma gives a LP estimate on the second order derivative of the velocity by

using the parabolic equation properties.

Lemma 2.5 Under the conditions of Theorem 1.2, we have

// g |/ *dzdt < C. (2.11)

Proof Rewrite the equation of u as

A R 1
Ut — —Ugy = —UUy — Oy — —p0 — =b-b, =: f.
p p p
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By Lemmas 2.2 and 2.3, it is clear that the second term and the fourth term of f are
uniform bounded in L*/3(Qr).

By Lemma 2.1, we have

u? < 2/Q|uuz|d:17 < 2(/Qu2d:17)1/2(/ﬂuid:17)1/2 < C’(/Quidx)lﬂ,

that implies
T
/ l|ul|fdt < c// udzdt < C.
0 Qr

// lug|*?dzdt < 2// uSdxdt + 2// uZdxdt
Qr Qr Qr
T
< C'—i-C'/ HuH%m/ u?dazdt
0 Q

T
<C+ c/ ult _dt < C.
0

Thus,

By (2.9)1, we then obtain

// |pw9|4/3dxdt:// (1pa 26021362/ 3 At
Qr Qr
§C// pi@dxdt—l—C// #2dxdt

T
< c+o/ ||9|\Lao/0dxdt§ C.
0 Q

Combining the above estimates yields || f| pi/s(g,) < C. Therefore, from the LP-estimate of
linear parabolic equations (cf. [16, Corollary 7.16]) and by noticing (2.9)2, the estimate given

in the lemma is proved. 0

2.2 Estimates in Terms of Shear Viscosity

In this subsection, we will give some detailed estimates on the solution in terms of the shear
viscosity for the estimation on the boundary layer thickness. The next lemma gives estimates

on the transversal magnetic and velocity fields.

Lemma 2.6 Under the conditions of Theorem 1.2, we have

sup /(|b|2+|w|2)dx+// |b,|*dzdt < C\/p,
Q Qr

o<t<T

(2.12)
Vi sup /|W1|2d$+u3/2 // |Woe|?dadt < C.
0<t<T JQ Qr
In particular,
T T
Vi [ Il 4 [ e < (2.13)

Proof We first prove the following estimate

u/ |wo|?dz 4+ p? // W |2dxds < C/i + C// b, |?dxds. (2.14)
Q Qt Qt
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Rewrite (1.1)3 in the form of
1
W — me = —-b, — uw,. (2.15)
p p

Taking the inner product of (2.15) with —uw,, and integrating over @, give

/ |wo|?dx + p? // — | Wz |*dzds
t t =1
= —u// —b, - wydxds + u// UW, - Wydrds + u/ Wi - Wy
e P ¢ 0 x

t x=1
= —u// lbm - Wagdzds — B // Up | W, |2 dds —I—u/ Wi Wy d
P 2 ) Jaq, 0 x=0
p? 1
<= // —|Wez|?dads + C// |b,|*dzds
4 . P Q

S

t t =1
—I—C/ ltea || 1o (,u/ |wz|2d:17)ds—|—,u/ Wi - Wy ds. (2.16)
0 Q 0 =
Since
b,t) — t)|2
|Wz|2<’ (b, t) — w(a, )’ +2/ | W || W |da
b—a Q
2 /
<C+C(/ |Wm|2d$) (/ |Wm|2d:v) ,
that is,
1/4 /
|wa| < O+C(/ |Wx|2d$) (/ |wm|2d:1:) ;
we have

1/2 1/2
w07 [watds < et w0 [ ([ wan)” (0 [ wetas)
3/2—|—Cu// |w|>dzds + Cp? // — | W |2 dads,
t ' 4
u/ [Wellcods < C',LL—I—C/ 1/4 /|W |2 dx /|Wxx| dx ds
0

<Cp—+ — // |w |2dzds + ep? // ;|Wm|2dxds. (2.17)

By taking e > 0 small enough, we obtain

t z=1
,u/ Wi+ Wy
0 =0
I 1
< C\/ﬁ+Cu// |wm|2dxds+z// ;|wm|2dxds. (2.18)
Qt

Inserting (2.18) into (2.16) gives

/|wz|2dx—|—,u // — | W |2dxds
< C\/ﬁ+c// |bm|2dxds+C/ (1+|um||Loo)(u/(o2 |wm|2dx)ds.
t 0

t

¢
ds < Cu/ [lWs || cods
0

By Gronwall inequality and foT |tz || Loedadt < foT [uge|dzdt < C because of (2.11), we
obtain (2.14).
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Next, we will show that

|b|2dz + // b, [2dzds < C’// |w|?dzds. (2.19)
Q t t

Taking the inner product of (1.1)4 with b and integrating over Q; give

/|b|2d:v+1/// |b,|?dzds
= // (w — ub), - bdads = —// (W —ub) - bydads
3// |b$|2dxds+0// |w|2dxds+C// u?[b[2dzds
2 t Qt Qt
t
3// |bz|2dxds+0// |w|2dxds+0/ ||u2||Loo(Q)/ Ib|2dads,
2 t Q¢ 0 Q

that gives (2.19) by Gronwall inequality.

IN

IN

Now we turn to show

/ lw|?dz < C'\/p. (2.20)
Q

In fact, taking the inner product of (1.1)3 with w and integrating over @Q; yield

1 ¢
B / p|lw|?dz + ,u// |w|*dzds = // b, - wdxzds + u/ W+ W
Q t

By (2.19), we obtain

// b, - wdzds <2// b, |2da:ds+2// |w|?dxds <c// |w|?dzds.

From (2.14), (2.19) and (2.17) with € = 1, it follows that
t =1 t
u/ Wy .w’ 7Ods SCu/ Wl oo ds < Cy/p + C// |w|?dzds.
Thus, we have from (2.21) that

/|W| dx—i—u// |w,|?dzds < C\/——i—C// |w|?dxds,

which implies (2.20) by Gronwall inequality. Then (2.12) follows.

In summary, we obtain (2.13) and the proof of the lemma is completed. O

(2.21)

The following estimate about the relation between the fluid variables and the magnetic field

will also be useful.

Lemma 2.7 Under the conditions of Theorem 1.2, we have

sup / [uZ + 02+ (p— po)® + (6 — 6p)*]dz + // (uf +ul, + 07)dadt
Q T

0<t<T
<Cyp+ // |b - b, [*dxdt + C’// |b.|?|0 — Oo|dadt. (2.22)
Qr Qr
Proof Rewrite the equation (1.1)5 into
A
VPUt — —=Ugy = —+/puty, — R/pby —R 9——b b,.
VP Ve VP
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Taking the square on both sides and integrating over Q);, we obtain

1
é/ uidx—i—// puidrdt + \? // —u?, dxds
2 Ja ¢ . P
< C// w*u?dads + C 02dxds + C// p26%dxds + C// |b|?|b,[*dzds
t Qt t Qt
t
< C’/ Hu2||Loo(Q)/uidde+O// 9§dxds+0// p20%dxds
0 Q t t

+C // Ib[2[b, dads. (2.23)

Note that

// p20%dads < 2// P2[(0 — 09)* + 63]dzds
t . t

< C/ ||9—90||2Loo/pidxds+0// p2dxds
0 Q .
t

< C/ 10 — Oo|% ds + C// p2dads
0 t

< C// (0 — 6p)*dxds + C'// 62dxds + C// pidrds.  (2.24)

On the other hand, we can derive from the equation (1.1); that

2

and integrating over @); yields

1
3 / dx = // UPga P + 2pzux + ppzum)dxds
Q t

3
= ——// pxuwdxds—i—// PPzUzzdrds
Qt
< C/ ||U1|‘Loo/p§d$d8+0// pidxds—i—C// u?, dads.
Q t t

By Gronwall inequality, we have

/pid:z: < C'// u?, dzds.
Q t

Substituting it into (2.24) yields

// p20%dxds < C// (0 — 0p)*dads + C/ 02dxds + C/ // uizdxdT)ds.
t t Qt

Then, we can derive from (2.23) that

/uidx—i—// ufdxdt—i—// u? dxds
Q Q1 Qt
< C// |b|2|bm|2dxds+0// (9—60)2dxds+0/ 02dads
t t Q1
t
+C/ (1+Hu2|\Loo(Q))(/uidx—i—// |um|2dxd7)ds,
0 Q Qs
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/uidx—l—// ufdxdt—i—// u? dxds
Q Qt Qt

< C// |b|2|b1|2dxds+0// (9—90)2dxds+0/ 62dxds. (2.25)
Qt t Qt

Multiplying (1.1)5 by (8 — 6p) and integrating over @, we obtain

l/ p|9—60|2dx+// xO2dxds
2 Q Qt
=— // pug (0 — 0o)dzds + // (0 — 0p)Qdxds. (2.26)

- // pug (0 — 0p)dzds
Qt
= —R// pug (0 — 0g)*dads — R, // p(0 — Bo)u,dads
¢
< C/ ||tz Lo / (6 — 0p)*dads + C// udrds + C// (0 — 6p)?dads.  (2.27)
0 Q t t

By (2.5)4 and (2.12)3, we have

t
// (0 —6p)Qdzds < C\/l+ C/ 10 — 6ol L= / u2dzds + C// |b.|?0 — Op|dxds. (2.28)
Q Q+

t

which gives

Thus,

Combining (2.27) and (2.28) with (2.26) yields

/|9 Bo| 2d:v—|—/ 02dzds

t
gc\/ﬁ+c//Q |bw|2|9—60|d:vds+0/ (1+|\9—90|\Loo)/ﬂu§dxds
t 0

t
+0/ (1+||uz|\Loo)/ |0 — 6o|*dxds.
0 Q

By (2.25), Gronwall inequality yields

/|9—60|2dx+// 9§dxdsgc¢ﬁ+c// |bw|2|6—90|d:cds+0// |b?|b,|*dzds,
Q Q+ Qt Qt

and it completes the proof of the lemma. O

Lemma 2.8 Under the conditions of Theorem 1.2, we have

\/ﬁ// b |*dadt < C,

T
/ by ]|7<dt < C, (2.29)
0

sup / (u® +ul + (0 — 00)* + p2)dz + // (uf + 02 4+ u?,)dzdt < C/p.
0<t<T Jo

T

Proof Taking the inner product of (1.1)4 with b,, and integrating over Q; give

1
—/ |bm|2dx+u// |bm|2dxds:// (ub — W), - byydads
2 Ja Q .
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1
= // ugb - byydrds — = // Uy |by|?dzds —/ W - bydxds
Q 2/, Qi
K// |bm|2dxds+C// |w,|?dzds
2 JJa, Q
t
+C// |u1|2|b|2dxds+0/ HuIHLm/ b, [2dads. (2.30)
Qt 0 Q

From (2.22) and Lemma 2.3, we have

/ ulder < C + C// |b,|?0dzds.
Q t

Hence, this together with (2.5)g imply

t
// |ux|2|b|2dxd$§/ b2 [ |ue|*deds
t 0 Q
t t
< C/O HbllimderC/O b2 //Q b |?0dadrds
< O+O// |b,|?0dxds

t
< c+o/ ||9|\Lm/ by |2dzds.
0 Q

Substituting it into (2.30) yields

/lbmlzdx+// |b,.|?dzds
Q ;
t
SC// |Wm|2dxds+C/ (||uw||Lm+||9HLw)/ Ib, |2 dads,
t 0 Q

/|bm|2d:v+// |bm|2d:vds§0// |w|?dads.
Q : .

This together with (2.12) give (2.29);.
By (2.12); and (2.29), we have

/ Iba % mds < c// b |[bs |dads
1/2
<C // |bx|2dxds// |bm|2dxds)
Qt Qt
1/2
< c(\/p// [buafdeds) < €,
so that (2.29)s holds.

By (2.12); and (2.29)2, we obtain

// [b-b,| dxds—l—// |b.|?|0 — Op|dzds
< / ||bx|\%m/ |b|2dxds + C’// |b.|?dzds + C// |b.|?(0 — 6p)*dxds
0 Q t t

t
<ovi+C [ b [ 080 dods

IN

so that
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By (2.22) we have (2.29)3 by Gronwall inequality. And then it completes the proof of the
lemma. g

The following lemma gives estimates on the derivatives of the transversal magnetic and
velocity fields.

Lemma 2.9 Under the conditions of Theorem 1.2, we have

// |w¢|?dadt < C,
Qr

sup |b,|?dz + // by [2dzdt < Cpt/t.
o<t<T Jo T

Proof From (2.15), (2.29) and (2. 12) it follows that

// |w|?dadt = //
T T
< Op? // |Wm|2d:vdt+ C// |b,|*dzdt + C// u?|w |*dadt
Qr Qr

< O+ O— / ooy (V7 [ v Pkt

(2.31)

dxdt

—Wyy + — b — UW,

< O\/_+O / Hu ||Loo(Q)dt
gC\/ﬁ—t—C—// uidxdtSC,
\/ﬁ Qr

which implies (2.31);.
Taking the inner product of (1.1)4 with b; and integrating over Q; yield

[b.| dx—l—// |bt| dzdt = // w, — (ub) ) - bydzdt. (2.32)
Q t
/ wy - bydzdt = / w, - bdz — // (W), - bdzdt

Qt Q t

=— | w-bydx + / w¢ - bdzdt,
Q Q+

Since

by (2.12);, we have

y 1/2 1/2
/ W, - bydadt < c\/ﬁ+—/ b, [2dz + (// |bm|2dxds) (// |wt|2dxdt)
o 4 Jq o o

< ou % / b, |2dz. (2.33)
Q

By using (2.12)1, ||ul| p(g,) < C and fOT Juzl|7dt < [[o, [usel*dadt < C because of (2.29)s,

we have

—// (ub), - bydzdt < %// |bt|2dxdt+%// |(ub), |*dzds
t t Qt
1
< 5// |bt|2dxdt+0// |bm|2dxds+C// |bu, |*dzds

1 t
< C‘/ﬁ+5//Q |bt|2dxdt+C/O Hum||%m(m/9|b|2dxds
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1 t
<COVi+y //Q |b¢|*dzdt + C\/ﬁ/ 1200 (0 ds
. 0
1
=Vt // b [*dadt. (2:34)

Substituting (2.33) and (2.34) into (2.32) completes the proof of the lemma. O
The following lemma is about further estimate on the temperature.

Lemma 2.10 Under the conditions of Theorem 1.2, we have

sup /ﬁqﬁidx—i—// 0%90%dzdt < Cpt/*.
Q T

o<t<T

Proof Rewrite the equation (1.1)5 as
p0r — (kb)) = Q — pub, — Rpbu, =: f. (2.35)
We first estimate || f||z2(g,)- Obviously,
// fAdadt < C// (u20% +u?0% +ul + p?jw,|* + |be|t)dzdt.
Qr Qr
By Lemma 2.8 and noticing [|u[|p(g,) < C, we have
// (ug + u?02 4+ u26?)dzdt
Qr

<Cypu+ O// (us +u2(0 — 0p)* + O3u2 ) dzdt

T
<Oyt [ (uale +10-0012) [ w2asar
0 Q
T
<OVE+C [ (sl +10 = 60l )dt < OV
0

By (2.12) and (2.13), we also have

T
AR e R N R B
T 0 Q

T
< [ wiliedt <O
0
From (2.31) and (2.29), it follows that

T T
// |bm|4dxdt§/ Hbm||%m/ |bm|2dxdt§0u1/4/ b dt < Cpl/4,
Qr 0 Q 0

Combining the above estimates gives

1£172(gqp) < Cut™. (2.36)

Multiplying (2.35) by 096, and integrating by parts give

1
/ / p0902dadt + - / 62192y = / £690,dxdt,
. 2 Ja Q.

so that (2.36) implies

1 1
//Pquthdxdt—i- i/ﬂemlegom < Cp 0l g, + 5//@ P06 dxdt.
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Thus,
// 0767 dxdt + /Q 62192dx < Ou1/4||0|\qm@t). (2.37)
On the other hand, we have
1+4+q
gla < (/ de) + (1+q)/ 04]0,|dz < C+O/ 62492 dz. (2.38)
Q Q Q

Combining (2.37) and (2.38) yields

10155 ) <O+ 1011 )
which implies [|0|| g,y < C. This together with (2.37) complete the proof of the lemma. [

2.3 Variation Estimate on Transversal Velocity

As shown in [8], the thickness of the boundary layer can be estimated once we obtain (1.10).
Hence, in this subsection, we will prove (1.10) based on the estimates obtained in the previous
subsections.

Let y = w,. Differentiating (2.15) with respect to = gives

(XY bs
yi = u( P )w (uy)z + ( 5 )m (2.39)
Denote ®.(-) : R? — R for e € (0,1) and & : [0,1] — [0,1] for § € (0, %) by
z, OSJIS(S,
2+, VEeR?  &(x) =44, §<z<1-30,

l—2z, 1-0<z<1.

Observe that &s has the properties

0<¢&(x) <8, Vaelol]. (2.40)
Note that @, satisfies
€] < [P(E)] < [&] + €, V€ € R?,
Ve (8] < 1, VE € R?,
0<E-Ved(6) < e(§), VEER?, (2.41)
nDE®(&)n" >0, VE,n € R?,
Jim (&) = [€]; V€ € R?,

where ¢7 stands for the transpose of the vector £ = (£1,&) € R?, and DZg is the Hessian
matrix of the function ¢ : R? — R:
ISE3N gflfz)

DZg(&) = (
9261 &6

Taking the inner product of (2.39) with (Ve®c(y))&s(z) and integrating over Qy, we obtain

/ (gmw+/@m

= —u// ~Yo DE®R(y)(ya) " &sdads —u//t %@(‘V)&'sdwds
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— // Uy - Ve@e(y)ésdads — // uysz - Ve, (y)ésdads
. p . p?
6
=y I (2.42)
n=1
From (2.41)4, it follows
I; <0.
For I, by using (2.41)1, (2.9) and (2.13), we have
FO(y) o= "oy s
Ig:u/ ) ds—u/ // pgéd ds
o P lz=1- 0 ¢
! ¢E (bé xr
HET A o
0 plz=l P .
t
<Cu [ (I¥lleioy + s+ / (1] + 1)lpaldeds
0
1/2
< Cyu—+ Cu(// (ly| + 1)2dxds // p2dxds < Cy/p.
Qt
Note that
I, = // umcbe(y)&;d:vds—i—// u®(y)&sdads. (2.43)
Hence,

(e, )] < llue =) < x/ ltaalda < gg(x)/ ltgalda, Ve € [0, 6],
Q Q

(e, )] < (1 — 2)|ual e < (l—x)/ |um|d:v§§5(x)/ gl da, Vo € [1— 6,1,
Q Q

// u®( §5dxds—/ / u®( dxds—// y)dzds
Qt 1-6

so that

S/O ( ; |um|dx)/0 B, (y)¢sdads
+/Ot (/Q|uzz|dx) /1; o, (y)ésdads

t 1
S/ (/ |um|dx)/ D (y)Esdads.
0 Q 0
On the other hand, we have

t
// ug P (y)&sdads < C/ ||quLao(Q)/<I)E(y)§5d:rds
t 0 Q

t
SC/ ( |um|dx)/<1>€(y)§5dxds.
0 Q Q

Plugging (2.44) and (2.45) into (2.43) yields

t
Iy < C’/ ( |um|dx)/<1)é(y)§5d:17ds.
0 “Ja Q

(2.44)

(2.45)
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By (2.41)3, we have

t
@sc/n%mwm/@@mwﬁ
0 Q

< C/Ot(/Q|um|dw)/ﬂ‘1’e(>’)§5d:vd8-

From the equation (1.1)4, by using (2.41)3, (2.41)2, (2.31) and (2.40), we obtain

1 // [by + (ub), — y] V@ (y) Iy
//r b; + (ub), ] VE(I)( )gédxdt

<O5// [[be] + [(ub),|]dzdt

<o // [[be] + [uby] + [ugb]]dedt < Cou5,
Qt

I5

Therefore, by (2.29)3, (2.31) and (2.40), we have

Is < 05// Iba||px [ dzds
Qt
1/2 1/2
§c5(// |bz|2dxds) (// |px|2dxds) < OopM2.

Combining the above estimates with (2.42) yields

t

/ O (y)ésd < de + C /i + Cou'/® + C / ( / |um|dx) / B, (y)€sdads.

Q 0 Q Q
Hence, by (2.11) and the Gronwall inequality, we have
/@@mmsa&+ﬁ+wwy
Q
Since the constant is independent of €, taking e — 0 yields
[ Wlgsde < €+ cont.
Q

Therefore, this gives (1.10) by the definition of &s.

Finally, for the boundary layer respect to the transversal velocity, we have from (1.10) and

(212)1 that
1-6 1-6
[Wllzoe(s5,1-5) < C / |w|dz —|—/ |w,|dx
s 5

< C(;N‘l B4 %) Vo € (0,1/4),
which implies that for any function d(yu) satisfying \/1/d(p) — 0 as up — 0, we have
T [wl oo 0,722 (5, 1-5u1)) = O-

Thus, the proof of Theorem 1.2 is completed.
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