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Abstract

As a typical example of hyperbolic conservation laws, the system of Euler equations rep-
resenting the conservation of mass, momentum and energy has three basic wave patterns.
They are two nonlinear waves called shock and rarefaction wave, and one linearly degenerate
wave called contact discontinuity. These basic wave patterns have their counterparts both
in other physical models for gas motions in equilibrium involving viscosity and heat conduc-
tivity, and gas motion in non-equilibrium. The stability of these basic wave patterns in the
system of Navier-Stokes equations and the Boltzmann equation has been an active research
topic. Even though the stability of the two nonlinear wave patterns has been extensively
studied, the stability of the linearly degenerate contact wave was not solved until recently.
In this paper, we will briefly present our recent results in [32] on the stability of the contact
wave patterns for both the Navier-Stokes equations and the Boltzmann equation.

1 Introduction

The study of hyperbolic conservation laws in the form of

Ut + F (U)x = 0, (1.1)
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has a long history and the earliest mathematical work can be traced back to Euler in 1755 on
the study of acoustic waves. And the pioneer nonlinear formulation on the fluid dynamics was
done by Riemann through the consideration of two stationary gases separated by a membrane
when the membrane is suddenly removed. This fundamental work bared the name of Riemann
problem is so essential that it plays an important role on the existence and stability theory.

As a typical example of hyperbolic conservation laws, the system of Euler euqations has three
basic wave patterns in the solution to the Riemann problem. They are two nonlinear waves,
called shock and rarefaction wave, and a linearly degenerate wave called contact discontinuity.
These dilation invariant solutions [66], [15], and their linear superposition in the increasing
order of characteristic speeds, called Riemann solutions, govern both the local and large time
asymptotic behavior of general solutions to the inviscid Euler system [45]. Since the inviscid
system is an idealization when the dissipative effects are neglected, it is of great importance to
study the large time asymptotic behavior of solutions to the corresponding viscous systems in
the form of

Ut + F (U)x = (B(U)Ux)x, (1.2)

toward the viscous versions of these basic wave patterns. As a basic system for the viscous fluid,
the Navier-Stokes equations which include the effects of viscosity and heat conductivity, have the
above wave phenomena which are smoothed out by the dissipative effect. Furthermore, coming
from statistics physics for rarefied gas, the Boltzmann equation which describes the macroscopic
and microscopic aspects in the non-equilibrium gas motion, has similar wave phenomena in the
macroscopic level.

In this paper, we will briefly present our recent results on the stability of contact waves for
the system of Navier-Stokes equations and the Boltzmann equation. It is worthy to pointing out
that even though the stability of the basic wave patterns individually is now well understood, the
stability of the wave pattern to the Riemann problem consisting of these basic wave patterns are
still not known. It is somehow due to the differences in the analytic techniques used for different
wave patterns and the different properties of the basic wave patterns in terms of monotonicity
and decay rates.

In the next section, we will consider the Navier-Stokes equations. Indeed, there have been
great interests and intensive studies in the respect of wave phenomena in the development of the
mathematical theory for viscous systems of conservation laws since 1985, started with studies on
the nonlinear stability of viscous shock profiles by Goodman [21] and Matsumura-Nishihara [56].
Deeper understanding has been achieved on the asymptotic stability toward nonlinear waves,
viscous shock profiles and viscous rarefaction waves; and the linearly degenerate wave, contact
discontinuities which have been shown to be nonlinearly stable with quite general perturbations
for the compressible Navier-Stokes system and more general system of viscous strictly hyper-
bolic conservation laws (1.2). Moreover, some new phenomena have been discovered and new
techniques, such as weighted characteristic energy methods and uniform approximate Green’s
functions, have been developed based on the intrinsic properties of the underlying wave patterns
see [32], [39], [41], [48], [68], [46] [69], [58], [62] and the references therein.

Precisely, when the solution to the corresponding Riemann problem of Euler equations con-
sists of only a shock wave, the smooth solution profile to the Navier-Stokes equations is the
so called shock profile satisfying a system of differential equations with two given end states.
Since shock wave is a compression wave, the monotone decreasing property of the characteristic
speed in the shock profile plays an crucial role in the stability analysis. In different settings,
the nonlinear stability of the shock profiles with smallness assumption on its wave strength has
been established in [39], [47], and [56], etc.

When the solution to the corresponding Riemann problem consists of only a rarefaction
wave, the corresponding nonlinear stability results are obtained in [41], [48], [58], and [60] for
different settings. Notice that the rarefaction wave is an expansion wave and the monotone
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increasing property of the characteristics is also crucially used in the stability analysis. In
particular, the stability of strong rarefaction wave was studied in [62]. Moreover, it shows
that, for the general gas, a global stability result can also be established for the non-isentropic
ideal polytropic gas provided that the adiabatic exponent γ is close to 1. Furthermore, for
the isentropic compressible Navier-Stokes equations, the corresponding global stability result
holds provided that the resulting compressible Euler equations is strictly hyperbolic and both
characteristical fields are genuinely nonlinear. Here, global stability means that the initial
perturbation can be large. Since it does not require the strength of the rarefaction waves
to be small, these results give the nonlinear stability of strong rarefaction waves for the one-
dimensional compressible Navier-Stokes equations.

For the study on the stability of the linearly degenerate wave, i.e., damped contact disconti-
nuity, with general perturbations for both the Navier-Stokes equations, it is somehow surprising
that the energy method can be applied to capture the coupling of the contact discontinuity
with the diffusion waves created by the perturbations in the sound wave families so that a
priori estimate can be closed with a convergence rate on the solution to the wave profile time
asymptotically.

Compared to the works on the stability of nonlinear waves, the problem of stability of contact
discontinuities is more subtle so that the previous studies in [28], [30], [33], [51] and [76] are less
satisfactory. One of the main reasons is the contact discontinuities are associated with linearly
degenerate fields and are less stable compared with the nonlinear waves for the inviscid system
(1.1), [45]. Thus the stabilizing effects around a damped contact wave pattern for Navier-Stokes
equations should come mainly from the viscosity and heat conductivity. A general perturbation
of a contact wave may introduce waves in the nonlinear sound wave families, and interactions of
these waves with the linear contact wave are the major difficulties to overcome, see [76], [51] and
[30]. Another technical difficulty is that the viscosity matrix for the compressible Navier-Stokes
equations is only semi-positive definite.

The mathematical aspect on the stability toward contact waves for solutions to systems of
viscous conservation laws was first studied by Xin in [76], where the metastability of a weak
contact discontinuity for the compressible Euler equations with uniform viscosity, was proved
by showing that although a contact discontinuity is not an asymptotic attractor for the viscous
system, yet a viscous contact wave, which approximates the contact discontinuity on any finite
time interval, is asymptotically nonlinear stable for small generic perturbations and the detailed
asymptotic behavior can be determined a priorily by initial mass distribution. This was later
generalized by Liu-Xin in [51] to show the metastability of contact discontinuities for a class
of general systems of nonlinear conservation laws with uniform viscosity, and obtain pointwise
asymptotic behavior toward viscous contact wave by approximate fundamental solutions, which
also leads to the nonlinear stability of the viscous contact wave in Lp-norms for all p ≥ 1.
However, the theory in [51] and [76] does not apply to the compressible Navier-Stokes system
since its viscosity matrix B(U) in (1.2) is only semi-positive definite.

For a free boundary value problem to the Navier-Stokes equations with a particle path as
free boundary, the nonlinear stability of a viscous contact wave is proved in the super-norm
through the energy method by Huang-Matsumura-Shi in [28]. However, the approach can not
be applied here to study the asymptotic behavior toward contact waves for solutions to Cauchy
problems of the Navier-Stokes equations since the analysis in [28] depends crucially on the
availability of Poincaré type inequality, which does not hold in the whole space. Recently, a
more satisfactory answer was obtained in [30] which shows that for a weak contact discontinuity
for the compressible Euler system, one can construct a smooth viscous contact wave for the
Navier-Stokes system solves Euler equations asymptotically, and approximates the given contact
discontinuity on any finite time interval, and such a viscous contact wave is nonlinearly stable
under small initial perturbation with zero mass condition. There the stability is in sup-norm
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and a rate of convergence is also obtained. Notice that the convergence rate to either the viscous
shock wave or viscous rarefaction wave has not been achieved yet for the compressible Navier-
Stokes system, see [39], [48], [62]. However, the rate of decay obtained in the form of (1 + t)−

1
4

may not be optimal. Motivated by the pointwise behavior toward viscous contact waves for
solutions to the Euler system with uniform viscosity (see [76] and [51]), one would conjecture
that its decay rate could be improved to (1 + t)−

1
2 .

In [30], the major assumption in the stability theory is the initial zero excessive mass con-
dition which excludes the possible presence of diffusion waves in the sound wave families. As it
is shown in [76] and [51] for the compressible Euler equations with uniform viscosity, a generic
perturbation of a viscous contact wave introduces not only a shift with center of the viscous con-
tact wave, but also nonlinear and linear diffusion waves. Note that the fine accurate asymptotic
ansatz as in [76] and [51] may not be necessary for the stability theory toward contact waves in
the super-norm. The main results in [32] are to overcome the difficulty for the excessive mass
and obtain the stability and convergence rate for the viscous contact waves. Therefore, it gives
a satisfactory answer to the problem on the stability of contact discontinuity in the gas motion.

In the last section, we consider the stability of contact waves for the Boltzmann equation.
The Boltzmann equation is a fundamental equation, which gives a statistical description of the
time evolution of particles in rarefied gas. It takes the form of

ft + ξ · ∇f = Q(f, f), (f, x, t, ξ) ∈ R×R3 ×R+ ×R3, (1.3)

where f is the distribution function of the particles and Q(f, f) is the collision operator which
gives the gain and loss rate of the particle distribution function through collision.

Since its derivation by Boltzmann in 1872, the mathematical problems on (1.3) have been
extensively studied with fruitful results. Among them, we mention a few as: the renormalized
solution, fluid dynamic limits, global existence around a global Maxwellian, regularity of the
solutions, cf. [5], [6], [16], [19], [43] and references therein. Since they are not directly related to
our problem considered here, we will not discuss them in details. Notice that the energy method
making use of the spectrum properties of the linearized operator from Grad to Ukai gives a good
description of the perturbation of a global Maxwellian, cf. [22], [65], [70], [71]. Recently, the
energy method based on the decomposition of the solution and the equation has been developed
and used for the study of existence, stability and large time behavior of the solutions, cf. [54]
for stability of shock profiles and later in [52] for decomposition around the local Maxwellian
and the works after that. Notice also that in [23] the decompositon around a global Maxwellian
is also used for the problems on space periodic solutions. It is worthy to pointing out that by
decomposing the solution and the equation around the local Maxwellian, the techniques used
for fluid dynamics can be applied and the solutions around non-trivial time asymptotic solution
profile can be studied more clearly.

One of the most important properties of the Boltzmann equation is its asymptotic equivalence
to the macroscopic fluid dynamics equations. In fact, the first order of the Hilbert expansion for
the Boltzmann equation is the system of Euler equation and the second order of the Chapman-
Enskog expansion gives the system of the Navier-Stokes equations. Hence, one can expect the
wave phenomena for the macroscopic fluid dynamics also exist in the solutions to the Boltzmann
equation. In fact, there is a series of work on the wave phenomena for the Boltzmann equation
starting from the existence of shock profile proved by [9]. Recently, the nonlinear stability of
shock profiles, rarefaction wave profiles and contact waves for the Boltzmann equation are also
studied through energy method, cf. [54], [53], [31] and [32].

Another the fundamental properties of the Boltzmann equation is the celebrated H-theorem
which implies that the solution is time irreversible so that the mathematical entropy is decreasing
in time for non-equilibrium gas. There are two ways to view this dissipative effect. One is
from the linearized version of the collision operator which dissipates on the sub-space( non-
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fluid components) orthogonal to the null space( fluid components) of this linearized operator.
This in some sense implies that the gas approaches to equilibrium as time tends to infinity.
Another consideration comes from the dissipation through the fluid entropy in the nonlinear
setting. In this case, the dissipative effect indeed corresponds to those from the viscosity and
heat conductivity as for the Navier-Stokes equations.

Now we come back to the stability of a wave pattern. For a non-trivial solution profile
connecting two different global Maxwellians at x = ±∞, it is reasonable and better to decompose
the Boltzmann equation and its solution with respect to the local Maxwellian. This kind of
decomposition was introduced in [52] by rewritting the Boltzmann equation into a fluid-type
dynamics system with the non-fluid component appearing in the source terms, coupled with an
equation for the time evolution of the non-fluid component. In fact, set, cf. [54, 52, 61],

f(x, t, ξ) = M(x, t, ξ) +G(x, t, ξ),

where the local Maxwellian M and G represent the fluid and non-fluid components in the
solution respectively. Here, the local Maxwellian M is defined by the five conserved quanti-
ties, that is, the mass density ρ(x, t), momentum m(x, t) = ρ(x, t)u(x, t), and energy density
(E(x, t) + 1

2 |u(x, t)|
2). As presented in the last section, the governing system for the fluid

components is of fluid-type so that the techniques for Navier-Stokes equations can be applied
with some extra terms coming from the non-fluid component. Moreover, the dissipative effect
of the linearized operator on the non-fluid component helps to close the energy estimate for
the Boltzmann equation. Similar to the Navier-Stokes equations, the dissipative effect in the
Boltzmann equation also spreads out the basic wave patterns so that the energy method can be
applied. Therefore, the stability of contact waves can also be established for this equation for
non-equilibrium rarefied gas in [31, 32].

2 Navier-Stokes equations

The one dimensional compressible Navier-Stokes equations in Lagrangian coordinates take the
form: 

vt − ux = 0,
ut + px = µ(

ux

v
)x,

(e+
u2

2
)t + (pu)x = (κ

θx

v
+ µ

uux

v
)x,

(2.1)

where v(x, t) > 0 denotes the specific volume, u(x, t) the velocity, θ(x, t) > 0 the absolute
temperature, µ > 0 the viscosity and κ > 0 the coefficient of heat conduction. Here we study
the perfect gas so that the pressure p and the internal energy e are given respectively by

p =
Rθ

v
, e =

R

γ − 1
θ + const. (2.2)

where γ > 1 is the adiabatic exponent and R > 0 is the gas constant. The initial data
(v0, u0, θ0)(x) is assume to satisfy

(v0, u0, θ0)(x) → (v±, 0, θ±) as x→ ±∞. (2.3)

To make the two far field states be connected by a single contact discontinuity for the system
of Euler equations, we also need to impose

p− :=
Rθ−
v−

=
Rθ+
v+

:= p+. (2.4)
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We are interested in the asymptotic behavior toward to contact discontinuity for solutions
to the compressible Navier-Stokes system with general initial perturbation. First, we need to
construct the background profile consisting the contact wave for the Navier-Stokes equations
and the two diffusion waves in the first and third families respectively.

In the setting of compressible Navier-Stokes equations, the contact wave profile (v̄, ū, θ̄)(x, t)
becomes smooth and behaves as a diffusion wave due to the dissipation effect from the viscosity
and heat conductivity. From [30], the pressure of the profile (v̄, ū, θ̄)(x, t) is almost constant, i.e.

p̄ =
Rθ̄

v̄
≈ p+, (2.5)

which indicates the leading part of the energy equation (2.1)3 is

R

γ − 1
θt + p+ux = κ(

θx

v
)x. (2.6)

By (2.6) and the mass equation (2.1)1, we obtain a nonlinear diffusion equation,

θt = a(
θx

θ
)x, a =

κp+(γ − 1)
γR2

> 0. (2.7)

From [2] and [17], (2.7) has a unique self similarity solution Θ(ξ), ξ = x√
1+t

with the boundary
conditions

Θ(−∞, t) = θ−, Θ(+∞, t) = θ+.

With Θ defined above, the contact wave profile (v̄, ū, θ̄) is then defined by:

v̄ =
R

p+
Θ, ū =

Ra

p+Θ
Θx, θ̄ = Θ− γ − 1

2R
ū2. (2.8)

It is straightforward to check that this contact wave profile approximates the contact discon-
tinuity to the Euler equation in Lp norm, for p ≥ 1 on any finite time interval as the heat
conductivity coefficient κ tends to zero.

To construct the diffusion waves in the other two families, we first denote the conserved
quantities by

m(x, t) = (v, u, θ +
γ − 1
2R

u2)t, m̄(x, t) = (v̄, ū, θ̄ +
γ − 1
2R

ū2)t, (2.9)

where ()t means the transpose of the vector (). At the far fields x = ±∞, the vectors m and m̄
are the same, that is m± = (v±, 0, θ±)t. Since we consider the general initial perturbation here,
the integral

∫∞
−∞(m(x, 0)−m̄(x, 0))dx may not be zero in general. Hence, the mass distributes in

all characteristic fields when time evolves, which introduces diffusion waves in the two nonlinear
sound wave families as in [76] and [51]. Thus we need to construct two diffusion waves θ1 and
θ3 to carry the exceed mass in the first and third characteristic fields respectively. In fact, let

A(v, u, θ) =

 0 −1 0
−p

v 0 R
v

− (γ−1)pu
Rv

γ−1
R p (γ−1)u

v

 , (2.10)

be the Jacobi matrix of the flux (−u, p, γ−1
R pu)t. Then, it is straightforward to check that the

first eigenvalue of A(v−, 0, θ−) is λ−1 = −
√

γp−
v−

with right eigenvector

r−1 = (−1, λ−1 ,
γ − 1
R

p−)t. (2.11)
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Similarly, the third eigenvalue and right eigenvector of A(v+, 0, θ+) are respectively λ+
3 =

√
γp+

v+

and
r+3 = (−1, λ+

3 ,
γ − 1
R

p+)t. (2.12)

By strict hyperbolicity, the vectors r−1 , m+ −m− = (v+ − v−, 0, θ+ − θ−)t and r+3 are linearly
independent in R3. Thus, the integral

∫∞
−∞(m(x, 0)− m̄(x, 0))dx can be distributed as follows∫ ∞

−∞
(m(x, 0)− m̄(x, 0))dx = θ̄1r

−
1 + θ̄2(m+ −m−) + θ̄3r

+
3 , (2.13)

with some constants θ̄i, i = 1, 2, 3. Now we can define the ansatz m̃(x, t) by

m̃(x, t) = m̄(x+ θ̄2, t) + θ̄1θ1r
−
1 + θ̄3θ3r

+
3 , (2.14)

where

θ1(x, t) =
1√

4π(1 + t)
e
−

(x−λ−
1

(1+t))2

4(1+t) , θ3(x, t) =
1√

4π(1 + t)
e
−

(x−λ+
3

(1+t))2

4(1+t) , (2.15)

satisfying
θ1t + λ−1 θ1x = θ1xx, θ3t + λ+

3 θ3x = θ3xx, (2.16)

and
∫∞
−∞ θi(x, t)dx = 1 for i = 1, 3, and all t ≥ 0 respectively. More precisely, the ansatz m̃ has

the following expression

m̃(x, t) = (ṽ, ũ, θ̃ +
γ − 1
2R

ũ2)t(x, t), (2.17)

with

ṽ(x, t) = v̄(x+ θ̄2, t)− θ̄1θ1 − θ̄3θ3,
ũ(x, t) = ū(x+ θ̄2, t) + λ−1 θ̄1θ1 + λ+

3 θ̄3θ3,

θ̃(x, t) = θ̄(x+ θ̄2, t) +
γ − 1
2R

ū2(x+ θ̄2, t) +
γ − 1
R

p+(θ̄1θ1 + θ̄3θ3)−
γ − 1
2R

ũ2.

(2.18)

Furthermore, we have∫ ∞

−∞
(m(x, 0)− m̃(x, 0))dx

=
∫ ∞

−∞
(m(x, 0)− m̄(x, 0))dx+

∫ ∞

−∞
(m̄(x, 0)− m̃(x, 0))dx

= θ̄2(m+ −m−) +
∫ ∞

−∞
(m̄(x, 0)− m̄(x+ θ̄2, 0))dx = 0.

(2.19)

We can now state the main result for the compressible Navier-Stokes (2.1)-(2.2). First, we
denote the perturbation around the ansatz (ṽ, ũ, θ̃) by

φ(x, t) = v − ṽ, ψ(x, t) = u− ũ, ζ(x, t) = θ − θ̃. (2.20)

Then set
Φ(x, t) =

∫ x

−∞
φ(y, t)dy, Ψ(x, t) =

∫ x

−∞
ψ(y, t)dy,

W̄ (x, t) =
∫ x

−∞
(e+

|u|2

2
− ẽ− |ũ|2

2
)(y, t)dy.

(2.21)

Notice that the quantities (Φ,Ψ, W̄ ) can be well defined in some Sobolev space since the com-
pressible Navier-Stokes equations (2.1) and (Φ,Ψ, W̄ )(±∞, 0) = 0 due to (2.19).

The precise statement of our first result is as follows.
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Theorem 1. Let (ṽ, ũ, θ̃)(x, t) be defined in (2.18) and δ = |θ+− θ−|. Then there exist positive
constants δ0 and ε, such that if δ ≤ δ0 and the initial data (v0, u0, θ0) satisfies

‖(Φ,Ψ, W̄ )‖L2 + ‖m− m̄‖H1 ≤ ε,

then the system (2.1) admits a unique global solution (v, u, θ)(x, t) satisfying

(Φ,Ψ, W̄ ) ∈ C(0,+∞;H2),

φ ∈ L2(0,+∞;H1), (ψ, ζ) ∈ L2(0,+∞;H2).

Furthermore, the solution satisfies

‖(v − ṽ, u− ũ, θ − θ̃‖L∞ ≤ C(ε+ δ
1
2
0 )(1 + t)−

1
4 .

3 Boltzmann equation

Since the profile studied is in one space dimension, we consider the Boltzmann equation as
follows

ft + ξ1fx = Q(f, f), (f, x, t, ξ) ∈ R×R×R+ ×R3, (3.1)

where f(x, t, ξ) represents the distributional density of particles at space-time (x, t) with velocity
ξ. For monatomic gas, the rotational invariance of the molecules leads to the collision operator
Q(f, f) as a bilinear collision operator in the form of, cf. [7]:

Q(f, g)(ξ) ≡ 1
2

∫
R3

∫
S2

+

(
f(ξ′)g(ξ′∗) + f(ξ′∗)g(ξ

′)− f(ξ)g(ξ∗)− f(ξ∗)g(ξ)
)
B(|ξ − ξ∗|, θ) dξ∗dΩ,

with θ being the angle between the relative velocity and the unit vector Ω. Here S2
+ = {Ω ∈

S2 : (ξ − ξ∗) · Ω ≥ 0}. The conservation of momentum and energy gives the following relation
between velocities before and after collision: ξ

′ = ξ − [(ξ − ξ∗) · Ω] Ω,

ξ′∗ = ξ∗ + [(ξ − ξ∗) · Ω] Ω.

Here we consider the Boltzmann equation for the two basic models, i.e., the hard sphere
model and the hard potential with angular cut-off. In these two cases, the collision kernel
B(|ξ − ξ∗|, θ) takes the forms

B(|ξ − ξ∗|, θ) = |(ξ − ξ∗,Ω)|,

and
B(|ξ − ξ∗|, θ) = |ξ − ξ∗|

n−5
n−1 b(θ), b(θ) ∈ L1([0, π]), n > 5,

respectively. Here, n is the index in the inverse power potentials proportional to r1−n with r
being the distance between two particles. The analysis can be generalized to other kernels with
similar property. But we will not discuss them here.

For a non-trivial solution profile connecting two different global Maxwellians at x = ±∞,
we decompose the Boltzmann equation and its solution with respect to the local Maxwellian.
This kind of decomposition was introduced in [52], [54] by rewriting the Boltzmann equation
into a fluid-type dynamics system with the non-fluid component appearing in the source terms,
coupled with an equation for the time evolution of the non-fluid component. In fact, set, cf.
[52], [61],

f(x, t, ξ) = M(x, t, ξ) +G(x, t, ξ),

8



where the local MaxwellianM andG represent the fluid and non-fluid components in the solution
respectively. Here, the local Maxwellian M is defined by the five conserved quantities, that is,
the mass density ρ(x, t), momentum m(x, t) = ρ(x, t)u(x, t), and energy density (E(x, t) +
1
2 |u(x, t)|

2): 

ρ(x, t) ≡
∫
R3
f(x, t, ξ)dξ,

mi(x, t) ≡
∫
R3
ψi(ξ)f(x, t, ξ)dξ for i = 1, 2, 3,[

ρ
(
E + 1

2 |u|
2
)]

(x, t) ≡
∫
R3
ψ4(ξ)f(x, t, ξ)dξ,

(3.2)

as

M ≡M[ρ,u,θ](x, t, ξ) ≡
ρ(x, t)√

(2πRθ(x, t))3
exp

(
−|ξ − u(x, t)|2

2Rθ(x, t)

)
. (3.3)

Here θ(x, t) is the temperature which is related to the internal energy E by E = 3
2Rθ with

R being the gas constant, and u(x, t) is the fluid velocity. It is well known that the collision
invariants ψα(ξ) are given by, cf. [7]:

ψ0(ξ) ≡ 1,

ψi(ξ) ≡ ξi for i = 1, 2, 3,

ψ4(ξ) ≡ 1
2 |ξ|

2,

satisfying ∫
R3
ψj(ξ)Q(h, g)dξ = 0, for j = 0, 1, 2, 3, 4.

In the sequel, the inner product of h and g in L2
ξ(R

3) with respect to a given Maxwellian M̃
is defined by:

〈h, g〉M̃ ≡
∫
R3

1
M̃
h(ξ)g(ξ)dξ,

when the integral is well defined. If M̃ is the local MaxwellianM , with respect to the correspond-
ing inner product, the macroscopic space is spanned by the following five pairwise orthogonal
functions 

χ0(ξ) ≡
1
√
ρ
M,

χi(ξ) ≡
ξi − ui√
Rθρ

M for i = 1, 2, 3,

χ4(ξ) ≡
1√
6ρ

(
|ξ − u|2

Rθ
− 3)M,

< χi, χj >= δij , i, j = 0, 1, 2, 3, 4.

Using these five basic functions, we define the macroscopic projection P0 and microscopic pro-
jection P1 as follows: 

P0h ≡
4∑

j=0

< h, χj > χj ,

P1h ≡ h− P0h.

The projections P0 and P1 are orthogonal and satisfy

P0P0 = P0, P1P1 = P1, P0P1 = P1P0 = 0.

A function h(ξ) is called microscopic or non-fluid if∫
h(ξ)ψj(ξ)dξ = 0, j = 0, 1, 2, 3, 4.
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Under this decomposition, the solution f(x, t, ξ) of the Boltzmann equation satisfies

P0f = M, P1f = G,

and the Boltzmann equation becomes

(M +G)t + ξ1(M +G)x = 2Q(M,G) +Q(G,G),

which is equivalent to the following fluid-type system for the fluid components (see [52], [53],
[54] for details): 

ρt + (ρu1)x = 0,

(ρu1)t + (ρu2
1 + p)x = −

∫
ξ21Gxdξ,

(ρui)t + (ρu1ui)x = −
∫
ξ1ξiGxdξ, i = 2, 3

(ρ(e+
|u|2

2
))t + (ρu1(e+

|u|2

2
) + pu1)x = −

∫ 1
2
ξ1|ξ|2Gxdξ,

(3.4)

or more precisely, 

ρt + (ρu1)x = 0,

(ρu1)t + (ρu2
1 + p)x =

4
3
(µ(θ)u1x)x −

∫
ξ21Θxdξ,

(ρui)t + (ρu1ui)x = (µ(θ)uix)x −
∫
ξ1ξiΘxdξ, i = 2, 3

(ρ(e+
|u|2

2
))t + (ρu1(e+

|u|2

2
) + pu1)x = (λ(θ)θx)x

+
4
3
(µ(θ)u1u1x)x +

3∑
i=2

(µ(θ)uiuix)x −
∫ 1

2
ξ1|ξ|2Θxdξ,

(3.5)

together with the equation for the non-fluid component G:

Gt + P1(ξ1Mx) + P1(ξ1Gx) = LMG+Q(G,G). (3.6)

It follows from (3.6) that
G = L−1

M (P1(ξ1Mx)) + Θ

with
Θ = L−1

M (Gt + P1(ξ1Gx)−Q(G,G)). (3.7)

Here LM is the linearized operator of the collision operator with respect to the local Maxwellian
M :

LMh = Q(M,h) +Q(h,M),

and the null space N of LM is spanned by the macroscopic variables:

χj , j = 0, 1, 2, 3, 4.

Furthermore, there exists a positive constant σ0(ρ, u, θ) > 0 such that for any function h(ξ) ∈
N⊥, see [22],

< h,LMh >≤ −σ0 < ν(|ξ|)h, h >,

where ν(|ξ|) is the collision frequency. For the hard sphere and the hard potential with angular
cut-off, the collision frequency ν(|ξ|) has the following property

0 < ν0 < ν(|ξ|) ≤ c(1 + |ξ|)β,
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for some positive constants ν0, c and 0 < β ≤ 1. In the above presentation, we have normalized
the gas constant R to be 2

3 for simplicity so that e = θ and p = 2
3ρθ. Notice also that the viscosity

coefficient µ(θ) > 0 and the heat conductivity coefficient λ(θ) > 0 are smooth functions of the
temperature θ.

Since the problem is in one dimensional space x ∈ R, in the macroscopic level, it is more
convenient to rewrite the system and the equation by using the Lagrangian coordinates as in
the study of conservation laws. That is, consider the coordinate transformation:

x⇒
∫ x

0
ρ(y, t)dy, t⇒ t.

We will still denote the Lagrangian coordinates by (x, t) for simplicity of notation. The system
(3.1) and (3.4) in the Lagrangian coordinates become, respectively,

ft −
u1

v
fx +

ξ1
v
fx = Q(f, f), (3.8)

and 

vt − u1x = 0,

u1t + px = −
∫
ξ21Gxdξ,

uit = −
∫
ξ1ξiGxdξ, i = 2, 3

(e+
|u|2

2
)t + (pu1)x = −

∫ 1
2
ξ1|ξ|2Gxdξ.

(3.9)

Moreover, (3.5) and (3.6) take the form



vt − u1x = 0,

u1t + px =
4
3
(
µ(θ)
v

u1x)x −
∫
ξ21Θ1xdξ,

uit = (
µ(θ)
v

uix)x −
∫
ξ1ξiΘ1xdξ, i = 2, 3

(e+
|u|2

2
)t + (pu1)x = (

λ(θ)
v
θx)x +

4
3
(
µ(θ)
v

u1u1x)x

+
3∑

i=2

(
µ(θ)
v

uiuix)x −
∫ 1

2
ξ1|ξ|2Θ1xdξ,

(3.10)

and

Gt −
u1

v
Gx +

1
v
P1(ξ1Mx) +

1
v
P1(ξ1Gx) = LMG+Q(G,G), (3.11)

with

G = L−1
M (

1
v
P1(ξ1Mx)) + Θ1,

and

Θ1 = L−1
M (Gt −

u1

v
Gx +

1
v
P1(ξ1Gx)−Q(G,G)). (3.12)

Notice that system (3.10) can be regarded as the compressible Navier-Stokes equations (2.1)
with some source terms coming from non-fluid components. Analogous to (2.1), we construct
the ansatz for the wave profile of the Boltzmann equation as follows. First, let Θ( x√

1+t
) be the

unique self-similarity solution of the following nonlinear diffusion equation

Θt = (a(Θ)Θx)x, Θ(−∞, t) = θ−, Θ(+∞, t) = θ+, (3.13)

11



where the function a(s) = 9p+λ(s)
10θ > 0. Notice that (3.13) is exactly the same as the diffusion

equation (2.7) for the compressible Naiver-Stokes equations when γ = 5
3 , R = 2

3 and κ = λ(θ).
We then define

v̄ =
2

3p+
Θ, ū1 =

2a(Θ)
3p+

Θx, ūi = 0, i = 2, 3, θ̄ = Θ− 1
2
|ū|2. (3.14)

Let m = (v, u1, θ + 1
2 |u|

2) and m̄ = (v̄, ū1, θ̄ + 1
2 |ū|

2). Since
∫∞
−∞(m(x, 0) − m̄(x, 0))dx is

usually not zero, we have to introduce two diffusion waves in the sound wave families as shown
in the previous subsection. Let

A− =

 0 −1 0
−p−

v−
0 2

3v−

0 p− 0

 , A+ =

 0 −1 0
−p+

v+
0 2

3v+

0 p+ 0

 , (3.15)

be the Jacobi matrices of the flux (−u, p, pu)t at (v−, 0, θ−) and (v+, 0, θ+) respectively. It is
easy to check that λ−1 = −

√
5p−
3v−

is the first eigenvalue of A− with r−1 = (−1, λ−1 , p−)t being

the corresponding eigenvector. And λ+
3 =

√
5p+

3v+
and r+3 = (−1, λ+

3 , p+)t are those of the third
family of A+. Since r−1 , (v+ − v−, 0, θ+ − θ−)t and r+3 are linearly independent in R3 by strict
hyperbolicity, we have∫ ∞

−∞
(m(x, 0)− m̄(x, 0))dx = θ̄1r

−
1 + θ̄2(v+ − v−, 0, θ+ − θ−)t + θ̄3r

+
3 (3.16)

with unique constants θ̄i, i = 1, 2, 3. The ansatz m̃(x, t) for m is defined as

m̃(x, t) = m̄(x+ θ̄2, t) + θ̄1θ1r
−
1 + θ̄3θ3r

+
3 , (3.17)

where

θ1(x, t) =
1√

4π(1 + t)
e
−

(x−λ−
1

(1+t))2

4(1+t) , θ3(x, t) =
1√

4π(1 + t)
e
−

(x−λ+
3

(1+t))2

4(1+t) , (3.18)

satisfying θ1t + λ−1 θ1x = θ1xx, θ3t + λ+
3 θ3x = θ3xx and

∫∞
−∞ θi(x, t)dx = 1 for i = 1, 3 and all

t ≥ 0. Similar to (2.19), we now have
∫∞
−∞(m(x, 0)− m̃(x, 0))dx = 0. Notice that

∫∞
−∞ ui(x, 0)dx

may not be zero either for i = 2, 3. For this, we define

ūi(x, t) = θ̄i+2
1√

4π(1 + t)
e
− x2

4(1+t) , i = 2, 3, (3.19)

where θ̄i+2 =
∫∞
−∞ ui(x, 0)dx. It is obvious that

∫∞
−∞(ui(x, 0)− ũi(x, 0))dx = 0, i = 2, 3.

Finally, the ansatz is defined as

ṽ(x, t) = v̄(x+ θ̄2, t)− θ̄1θ1 − θ̄3θ3,
ũ1(x, t) = ū1(x+ θ̄2, t) + λ−1 θ̄1θ1 + λ+

3 θ̄3θ3,

ũi = θ̄i+2√
4π(1+t)

e
− x2

4(1+t) , i = 2, 3,

θ̃(x, t) = θ̄(x+ θ̄2, t) +
1
2
|ū|2(x+ θ̄2, t) + p+(θ̄1θ1 + θ̄3θ3)−

1
2
|ũ|2.

(3.20)

Here (ṽ, ũ, θ̃) satisfies

m̃(x, t) = (ṽ, ũ1, θ̃ +
1
2
|ũ|2)t(x, t). (3.21)
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With above preparation, we are ready to state the result on the stability of the contact wave
pattern for the Boltzmann equation (3.1). Denote the perturbation around the ansatz (ṽ, ũ, θ̃)
by

φ(x, t) = v − ṽ, ψ(x, t) = u− ũ, ζ(x, t) = θ − θ̃. (3.22)

Then set
Φ(x, t) =

∫ x

−∞
φ(y, t)dy, Ψ(x, t) =

∫ x

−∞
ψ(y, t)dy,

W̄ (x, t) =
∫ x

−∞
(e+

|u|2

2
− ẽ− |ũ|2

2
)(y, t)dy,

(3.23)

so that the quantities Φ,Ψ ad W̄ can be well defined in some Sobolev space. The second main
theorem is as follows.

Theorem 2. Let (ṽ, ũ, θ̃)(x, t) be the ansatz defined in (3.20) with δ = |θ+ − θ−|. Then there
exist small positive constants δ0, ε and global Maxwellian M∗ = M[ρ∗,u∗,θ∗], such that if δ ≤ δ0
and the initial data satisfies

{‖(Φ,Ψ, W̄ )‖L2
x

+ ‖(φ, ψ, ζ)‖H1
x

+
∑
|α|=2

‖∂αf‖L2
x(L2

ξ
( 1√

M∗
))

+
∑

0≤|α|≤1

‖∂αG‖L2
x(L2

ξ
( 1√

M∗
))}|t=0 ≤ ε,

then the Cauchy problem (3.8) admits a unique global solution f(x, t, ξ) satisfying

‖f(x, t, ξ)−M[v̄,ū,θ̄]‖(t)L∞x (L2
ξ
( 1√

M∗
)) ≤ C(ε+ δ

1
2
0 )(1 + t)−

1
4 .

Here f(ξ) ∈ L2
ξ(

1√
M∗

) means that f(ξ)√
M∗

∈ L2
ξ(R

3).

Remark The estimate for the higher order derivatives on the solution can be obtained similarly,
provided that the initial data has the same order regularity.
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