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FORM-TYPE CALABI-YAU EQUATIONS ON KÄHLER

MANIFOLDS OF NONNEGATIVE ORTHOGONAL BISECTIONAL

CURVATURE

JIXIANG FU, ZHIZHANG WANG, AND DAMIN WU

Abstract. In this paper we prove the existence and uniqueness of the form-type
Calabi-Yau equation on Kähler manifolds of nonnegative orthogonal bisectional
curvature.

1. Introduction

In the previous paper [1], we introduced the form–type Calabi–Yau equation on
a compact complex n-dimensional manifold with a balanced metric and with a non-
vanishing holomorphic n-form Ω. A balanced metric ω on X is a hermitian metric
such that dωn−1 = 0. Given a balanced metric ω0 on X, let us denote by P(ω0) the

set of all smooth real (n − 2, n − 2)–forms ψ such that ωn−1
0 +

√
−1
2 ∂∂̄ψ > 0 on X.

Then, for each ϕ ∈ P(ω0), there exists a balanced metric, which we denote by ωϕ,

such that ωn−1
ϕ = ωn−1

0 +
√
−1
2 ∂∂̄ϕ. We say that such a metric ωϕ is in the balanced

class of ω0. Our aim is to find a balanced metric ωϕ in the balanced class of ω0 such
that

(1.1) ‖Ω‖ωϕ = a constant C0 > 0.

The geometric meaning of such a metric is that its Ricci curvatures of the hermit-
ian connection and the spin connection are zero. On the other hand, the direct
non–Kähler analogue of the Calabi conjecture has recently been solved by Tosatti–
Weinkove [7] (see also [4], and the references in [7, 4].). In general their solutions
provides hermitian Ricci-flat metrics which are not balanced.

As in the Kähler case, equation (1.1) can be reformulated in the following form

(1.2)
ωn
ϕ

ωn
0

= ef
∫
X ωn

ϕ∫
X ωn

0

,

where f ∈ C∞(X) is given and satisfies the compatibility condition:

(1.3)

∫

X
efωn

0 =

∫

X
ωn
0 .

We would like to find a solution ϕ ∈ P(ω0). The equation (1.2) is called a form-

type Calabi–Yau equation, a reminiscent of the classic function type Calabi–Yau
equation. We have constructed solutions for (1.1) when X is a complex torus [1]. A
natural approach to solve (1.2) is to use the continuity method. The openness and
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uniqueness were discussed in the previous work [1]. We do not know whether there
is a geometric obstruction for solving (1.2) in general.

Equation (1.2) is still meaningful on a compact complex manifold with a balanced
metric, whose canonical line bundle is not holomorphically trivial. Geometrically,
solving (1.2) allows us to solve the problem of prescribed volume form on X, in the
balanced class of each balanced metric on X. Namely, given any positive (n, n)–form
W on X and a balanced metric ω0, we let

ef =

(
W

ωn
0

) ∫
X ωn

0∫
X W

;

then by solving (1.2) we are able to find a metric ωϕ in the balanced class of ω0 such
that ωn

ϕ is equal to W , up to a constant rescaling.
It seems to us very hard to understand equation (1.2) in general. In this paper, we

want to look for solutions in a subset within the balanced class of a given balanced
metric. The idea is, in some sense, to transfer the form-type Calabi–Yau equation
to a function type equation.

So in the following we let (X, η) be an n-dimensional Kähler manifold, n ≥ 2,
and ω0 be a balanced metric on X. We let

Pη(ω0) = {v ∈ C∞(X) | ωn−1
0 + (

√
−1/2)∂∂̄v ∧ ηn−2 > 0 on X}.

For each v ∈ Pη(ω0), we denote by ωv the positive (1, 1)–form on X such that

ωn−1
v = ωn−1

0 + (
√
−1/2)∂∂̄v ∧ ηn−2 on X.

Then we consider the equation

(1.4)
ωn
u

ωn
0

= ef
∫
X ωn

u∫
X ωn

0

,

where f ∈ C∞(X) is given and satisfies the compatibility condition (1.3).
Obviously, the function-type equation (1.4) is a special case of the form-type

equation (1.2). However, an important observation is that, solving (1.4) will enable
one to find all the solutions to (1.2), in the balanced class of a given balanced metric
(see Remark 2).

In this paper, we are able to solve (1.4), under the assumption that the Kähler
metric η has nonnegative orthogonal bisectional curvature; that is, for any orthonor-
mal tangent frame {e1, . . . , en} at any x ∈ M , the curvature tensor of η satisfies
that

(1.5) Rīijj̄ ≡ R(ei, ēi, ej , ēj) ≥ 0, for all 1 ≤ i, j ≤ n and i 6= j.

We remark that nonnegativity of the orthogonal bisectional curvature is weaker than
nonnegativity of the bisectional curvature. In fact, the former condition are satisfied
by not only complex projective spaces and the Hermitian symmetric spaces, but
also some compact Kähler manifolds of dimension ≥ 2 whose holomorphic sectional
curvature is strictly negative somewhere. We refer the reader to the recent work
Gu–Zhang [3] for the study of nonnegative orthogonal bisectional curvature, which
generalizes the earlier work of Mok [5] and Siu–Yau [6].

Our main result is as follows:
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Theorem 1. Let (X, η) be a compact Kähler manifold of nonnegative orthogonal

bisectional curvature, and ω0 be a balanced metric on X. Then, for any smooth

function f on X, equation (1.4) admits a solution u ∈ Pη(ω0), which is unique up

to a constant.

Remark 2. Recall that our aim is to find all solutions of equation (1.2) in the

balanced class of a given balance metric ω0 for a given f ∈ C∞(X) satisfying the

compatibility condition (1.3). By Theorem 1, we achieve this goal on a Kähler

manifold X of nonnegative orthogonal bisectional curvature. (In particular, the

form-type equation on a complex torus is completely settled.)
Indeed, for any ϕ ∈ P(ω0) and any f ∈ C∞(X) satisfying (1.3), we claim that

there exists a unique smooth function uϕ up to a constant such that (ϕ+uϕ ∧ ηn−2)
is in P(ω0) and solves (1.2); namely, if we denote by ωuϕ the positive (1, 1)–form
such that

ωn−1
uϕ

= ωn−1
0 +

√
−1

2
∂∂̄ϕ+

√
−1

2
∂∂̄uϕ ∧ ηn−2 > 0,

then,

(1.6)
ωn
uϕ

ωn
0

= ef
∫
X ωn

uϕ∫
X ω

n
0

.

To see this, we define a function fϕ ∈ C∞(X) by

efϕ = ef
ωn
0

ωn
ϕ

∫
X ωn

ϕ∫
X ωn

0

.

Then, fϕ satisfies ∫

X
efϕωn

ϕ =

∫
X efωn

0

∫
X ωn

ϕ∫
X ω

n
0

=

∫

X
ωn
ϕ.

Applying Theorem 1 to ωϕ and fϕ yields that, there exists a unique solution uϕ ∈
Pη(ωϕ) satisfying that

ωn
uϕ

ωn
ϕ

= efϕ

∫
X ω

n
uϕ∫

X ωn
ϕ

.

Clearly, this is equivalent to (1.6). The claim is proved. Therefore, in this way,

we can find all solutions (which are infinitely many) to equation (1.2) in the bal-

anced class of a given balanced metric on X of nonnegative orthogonal bisectional

curvature.

So the idea used in this paper, which is to transfer from the form-type Calabi–

Yau equation to a function-type equation, may be useful. Later we will establish the

theorem 1 on any compact Kähler manifold.

We employ the continuity method to prove Theorem 1. In Section 2, we establish
an a priori C2 estimate for the solution u. This is the place where we need the
curvature condition. The C2 estimate enables us to obtain a general a priori C0

estimate, via the classic Moser’s iteration. This is the content of Section 3. We then
adapt the Evans–Krylov theory to our form–type equation, and obtain in Section 4
the Hölder estimates for second derivatives. The openness is covered by Theorem 3
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in our previous paper [1]. For readers’ convenience, we briefly indicate the argument
in the last section, Section 5. The uniqueness is also proved in Section 5.

Acknowledgment. The authors would like to thank Professor S.-T. Yau for helpful
discussion. Part of the work was done while the third named author was visiting
Fudan University, he would like to thank their warm hospitality. Fu is supported in
part by NSFC grants 10831008 and 11025103.

2. C2 estimates for Form–type equations

In this section, we would like to establish the following estimate:

Lemma 3. Given F ∈ C2(X), let u ∈ C4(X) satisfy that

ωn−1
0 + (

√
−1/2)∂∂̄u ∧ ηn−2 > 0 on X,

and that

det[ωn−1
0 + (

√
−1/2)∂∂̄u ∧ ηn−2] = eF detωn−1

0 .(2.1)

Then, we have

(2.2) ∆ηu ≤ C + C(u− inf
X
u) on X,

and

sup
X

|ωn−1
0 + ∂∂̄u ∧ ηn−2|η ≤ C +

(
sup
X
u− inf

X
u
)
.

Here ∆ηv =
∑
ηij̄vij̄ denotes the Laplacian of a function v with respect to η, and

C > 0 is a constant depending only on infX(∆ηF ), supX F , η, n, and ω0.

Here are some conventions: For an (n− 1, n − 1)–form Θ, we denote

Θ =
(√−1

2

)n−1
(n− 1)!

·
∑

p,q

s(p, q)Θpq̄dz
1 ∧ dz̄1 · · · ∧ d̂zp ∧ dz̄p ∧ · · · ∧ dz̄q ∧ d̂z̄q ∧ · · · ∧ dzn ∧ dz̄n,

in which

(2.3) s(p, q) =

{
−1, if p > q;

1, if p ≤ q.

Here we introduce the sign function s so that,

dzp ∧ dz̄q ∧ s(p, q)dz1 ∧ dz̄1 · · · ∧ d̂zp ∧ dz̄p ∧ · · · ∧ dz̄q ∧ d̂z̄q ∧ · · · ∧ dzn ∧ dz̄n

= dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n, for all 1 ≤ p, q ≤ n.

We denote
detΘ = det(Θpq̄).

If the matrix (Θpq̄) is invertible, we denote by (Θpq̄) the transposed inverse of (Θpq̄),
i.e., ∑

l

Θil̄Θ
jl̄ = δij .
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Note that, for a positive (1, 1)–form ω given by

ω =

√
−1

2

n∑

i,j=1

gij̄dzi ∧ dz̄j ,

we have

ωn =
(√−1

2

)n
n! det(gij̄)dz

1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n,
and by our convention,

(ωn−1)ij̄ = det(gij̄)g
ij̄ .

It follows that

(2.4) det(ωn−1) = det(gij̄)
n−1,

and

(ωn−1)ij̄ =
gij̄

det(gij̄)
.

In the following, the subscripts such as “, p” stand for the ordinary local deriva-
tives; for example,

(2.5) ηij̄,k =
∂ηij̄
∂zk

, ηij̄,lm̄ =
∂2ηij̄
∂zl∂z̄m

.

For a function h we can omit the comma: hl = h,l, hlm̄ = h,lm̄, etc. Unless otherwise
indicated, all the summations below range from 1 to n. We remark that, under the
convention, equation (1.4) can be rewritten as

det[ωn−1
0 + (

√
−1/2)∂∂̄u ∧ ηn−2]

detωn−1
0

= e(n−1)f

(∫
X ω

n
u∫

X ω
n
0

)n−1

,

which is convenient for deriving the estimates.

Proof of Lemma 3. Let

Ψu = Ψ+ (
√
−1/2)∂∂̄u ∧ ηn−2, where Ψ = ωn−1

0 .

Let

φ =

∑
i,j ηij̄(Ψu)ij̄

det η
−Au,

where A > 0 is a large constant to be determined. Using wedge products, the
function φ can also be written as

φ =
nη ∧Ψu

ηn
−Au

= (h+∆ηu)−Au, where h =
nη ∧ ωn−1

0

ηn
.

(2.6)

Consider the operator

Lφ = (n− 1)
∑

k,l

Ψkl̄
u

(√−1

2
∂∂̄φ ∧ ηn−2

)
kl̄
.
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Suppose that φ attains its maximum at some point P in X. We choose a normal
coordinates, such that at P , ηij̄ = δij and dηij̄ = 0. Then, we rotate the axes so
that at P we have (Ψu)pq̄ = δpq(Ψu)pp̄. Thus, for any smooth function v on X, we
have at P that

(2.7) (n− 1)
(√−1

2
∂∂̄v ∧ ηn−2

)
ij̄
= δij

∑

p 6=i

vpp̄ + (1− δij)vjī.

By (2.7) we obtain that

(Ψu)īi = Ψīi +
1

n− 1

∑

q 6=i

uqq̄,(2.8)

(Ψu)ij̄ = Ψij̄ +
ujī
n− 1

= 0, for all i 6= j.(2.9)

It follows that

(2.10)

n∑

i=1

(Ψu)īi =

n∑

i=1

Ψīi +

n∑

i=1

uīi = h+∆ηu.

Furthermore, we have

(2.11) (Ψu)ij̄,p = Ψij̄,p +
δij
n− 1

∑

q 6=i

uqq̄p +
1− δij
n− 1

ujīp,

and

(Ψu)īi,pp̄ = Ψīi,pp̄ +
1

n− 1

∑

k 6=i

ukk̄pp̄ +
1

n− 1

∑

k 6=i

ukk̄

( ∑

j 6=k,j 6=i

ηjj̄,pp̄

)

− 1

n− 1

∑

a6=i,b6=i,a6=b

uab̄ηbā,pp̄.

Note that under the normal coordinate system, the curvature (Rij̄kl̄) of η reads

Rij̄kl̄ = −ηij̄,kl̄ +
∑

a,b

ηab̄ηib̄,kηaj̄,l̄ = −ηij̄,kl̄, at P .

This together with (2.9) imply that

(Ψu)īi,pp̄ = Ψīi,pp̄ +
1

n− 1

∑

k 6=i

ukk̄pp̄ −
1

n− 1

∑

k 6=i

ukk̄

( ∑

j 6=k,j 6=i

Rjj̄pp̄

)

−
∑

a6=i,b6=i,a6=b

Ψab̄Rab̄pp̄.
(2.12)

We compute at P that

Lφ =(n− 1)
∑

l

(Ψu)
ll̄
(√−1

2
∂∂̄φ ∧ ηn−2

)
ll̄
=
∑

l

∑

p 6=l

(Ψu)
ll̄φpp̄.

Note that

(2.13) 0 = φp(P ) = hp + (∆ηu)p −Aup.
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Apply (2.13) to obtain that

0 ≥ φpp̄(P ) = hpp̄ + (∆ηu)pp̄ −Aupp̄.

It follows that

0 ≥ Lφ =
∑

l

∑

p 6=l

(Ψu)
ll̄φpp̄

=
∑

l

∑

p 6=l

(Ψu)
ll̄[hpp̄ + (∆ηu)pp̄]−A

∑

l

∑

p 6=l

(Ψu)
ll̄upp̄.

(2.14)

Notice that∑

l

∑

p 6=l

(Ψu)
ll̄[hpp̄ + (∆ηu)pp̄]

=
∑

l

∑

p 6=l

(Ψu)
ll̄hpp̄ +

∑

l,a

∑

p 6=l

(Ψu)
ll̄uaāpp̄ +

∑

l

∑

p 6=l

(Ψu)
ll̄
∑

a,b

ηab̄,pp̄uab̄

=
∑

l

∑

p 6=l

(Ψu)
ll̄hpp̄ +

∑

l,a

∑

p 6=l

(Ψu)
ll̄uaāpp̄ +

∑

l,a

∑

p 6=l

(Ψu)
ll̄Raāpp̄uaā(2.15)

− (n− 1)
∑

l

∑

p 6=l

∑

a6=b

(Ψu)
ll̄Rbāpp̄Ψbā,

(
by (2.9)

)
.

Here the fourth derivative term can be handled by the equation (2.1): We rewrite
(2.1) as

log detΨu = F + log detΨ.

Differentiating this in the direction of ∂/∂za yields
∑

k,l

(Ψu)
kl̄(Ψu)kl̄,a = (F + log detΨ)a.

and then,
∑

k,l

(Ψu)
kl̄(Ψu)kl̄,ab̄ = (F + log detΨ)ab̄ +

∑

k,l,p,q

(Ψu)
kq̄(Ψu)

pl̄(Ψu)kl̄,a(Ψu)pq̄,b̄.

Contracting this with (ηab̄) and applying the normal coordinates yield that

∑

l,a

(Ψu)
ll̄(Ψu)ll̄,aā =

∑

a

(F + log detΨ)aā +
∑

k,l,a

∣∣(Ψu)kl̄,a
∣∣2

(Ψu)ll̄(Ψu)kk̄
.

This together with (2.12) imply that
∑

l,a

(Ψu)
ll̄Ψll̄,aā +

1

n− 1

∑

l,a

∑

p 6=l

(Ψu)
ll̄upp̄aā

≥
∑

k,l,a

∣∣(Ψu)kl̄,a
∣∣2

(Ψu)ll̄(Ψu)kk̄
+

1

n− 1

∑

l,a

(Ψu)
ll̄
∑

p 6=l

upp̄

( ∑

m6=p,m6=l

Rmm̄aā

)

+
∑

l,a

(Ψu)
ll̄
( ∑

p 6=l,q 6=l,p 6=q

Ψpq̄Rpq̄aā

)
+∆ηF +∆η(log detΨ).
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Combining this with (2.15) yield

∑

l

∑

p 6=l

(Ψu)
ll̄(hpp̄ + (∆ηu)pp̄)

≥
∑

l,a

∑

p 6=l

(Ψu)
ll̄Raāpp̄uaā +

∑

l,a

∑

p 6=l

(Ψu)
ll̄upp̄

( ∑

m6=p,m6=l

Raāmm̄

)

+ (n− 1)
∑

k,l,a

∣∣(Ψu)kl̄,a
∣∣2

(Ψu)ll̄(Ψu)kk̄
+ (n− 1)∆ηF + (n− 1)∆η(log detΨ)

+
∑

l

∑

p 6=l

(Ψu)
ll̄hpp̄ − (n− 1)

∑

l,a

(Ψu)
ll̄Ψll̄,aā

+ (n− 1)
∑

l,a

(Ψu)
ll̄
( ∑

p 6=l,q 6=l,p 6=q

Ψpq̄Rpq̄aā

)

− (n− 1)
∑

l

∑

p 6=l

∑

a6=b

(Ψu)
ll̄Rab̄pp̄Ψab̄.

(2.16)

The first two terms on the right hand side of above inequality can be handled as
follows.

∑

l,a

∑

p 6=l

(Ψu)
ll̄Raāpp̄uaā +

∑

l,a

∑

p 6=l

(Ψu)
ll̄upp̄

( ∑

m6=p,m6=l

Raāmm̄

)

=
∑

l,a

(Ψu)
ll̄Rll̄aāull̄ −

∑

l,a

(Ψu)
ll̄Raāll̄uaā +

∑

l,p

∑

a6=l

(Ψu)
ll̄uaāRaāpp̄

+
∑

l,a

∑

p 6=l

(Ψu)
ll̄upp̄

( ∑

m6=p,m6=l

Raāmm̄

)

=
1

2

∑

l,a

(Ψu)
ll̄Rll̄aā(ull̄ − uaā) +

1

2

∑

l,a

(Ψu)
aāRll̄aā(uaā − ull̄)

+ (n− 1)
∑

l

(∑

m6=l

Rmm̄

)
(Ψu)

ll̄
[
(Ψu)ll̄ −Ψll̄

] (
by (2.8)

)

=
1

2

∑

l,a

Rll̄aā

(ull̄ − uaā)[(Ψu)aā − (Ψu)ll̄]

(Ψu)ll̄(Ψu)aā

+ (n− 1)2
∑

l

Rll̄ − (n− 1)
∑

l

(Ψu)
ll̄Ψll̄

(∑

m6=l

Rmm̄

)
.

(2.17)
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Apply (2.8) to estimate the first term of last equality

1

2

∑

l,a

Rll̄aā

(ull̄ − uaā)[(Ψu)aā − (Ψu)ll̄]

(Ψu)ll̄(Ψu)aā

=
n− 1

2

∑

l,a

Rll̄aā

[(Ψu)aā − (Ψu)ll̄]
2

(Ψu)ll̄(Ψu)aā

+
n− 1

2

∑

l,a

Rll̄aā

(Ψll̄ −Ψaā)[(Ψu)aā − (Ψu)ll̄]

(Ψu)ll̄(Ψu)aā

≥ (n− 1)
∑

l,a

Rll̄aā

Ψll̄ −Ψaā

(Ψu)ll̄
, by (1.5).

(2.18)

Combining (2.16) with (2.17) and then with (2.18), we obtain
∑

l

∑

p 6=l

(Ψu)
ll̄(hpp̄ + (∆ηu)pp̄)

≥ −C1(n− 1)
∑

l

(Ψu)
ll̄ − (n− 1)2C1 + (n− 1) inf ∆ηF.

(2.19)

Here and throughout this section, we denote by C1 > 0 a generic constant depending
only on Ψ and the curvature of η.

Substituting (2.19) into (2.14) yields

0 ≥ Lφ ≥ −A
∑

l

∑

p 6=l

(Ψu)
ll̄upp̄ −C1(n− 1)

∑

l

(Ψu)
ll̄

− (n− 1)2C1 − inf ∆ηF

= −n(n− 1)A + (n − 1)A
∑

l

(Ψu)
ll̄Ψll̄ − C1(n− 1)

∑

l

(Ψu)
ll̄

− (n− 1)2C1 + (n− 1) inf ∆ηF.

Now we choose A > 0 sufficiently large so that

A inf
X
(min

l
Ψll̄) ≥ 2C1.

It follows that

nA

C1
+ (n− 1)− inf ∆ηF

C1
≥

n∑

l=1

(Ψu)
ll̄

≥
[

n∑

i=1

(Ψu)īi

] 1

n−1 {
det
[
(Ψu)ij̄

]} −1

n−1

=

[
n∑

i=1

(Ψu)īi

] 1

n−1

e
−F
n−1 (detΨ)

−1

n−1 .

9



Hence,

h+∆ηu =

n∑

i=1

(Ψu)īi ≤ C2 at P .

Here and throughout this section, we denote by C2 a generic positive constant
depending only on n, Ψ, η, sup∆ηF , and supF . Therefore, at any point in X,

(h+∆ηu) ≤ (h+∆ηu)(P ) +Au−Au(P ) ≤ C2 + C2

(
u− inf

X
u
)
.

Since [(Ψu)ij̄ ] is positive definite everywhere, we have

|(Ψu)ij̄ | ≤ C2 + C2(u− inf
X
u), for all 1 ≤ i, j ≤ n.

This completes the proof. �

Lemma 3 enables us to establish the C2 estimate for equation (1.4):

Corollary 4. For any f ∈ C∞(X), let u ∈ C∞(X) be a solution of

(2.20)
det(ωn−1

u )

det(ωn−1
0 )

= e(n−1)f

( ∫
X ω

n
u∫

X efωn
0

)n−1

,

where ωu is a positive (1, 1)–form on X such that

ωn−1
u = ωn−1

0 + (
√
−1/2)∂∂̄u ∧ ηn−2 > 0.

Then, we have

(2.21) ∆ηu ≤ C + C(u− inf
X
u) on X,

and

sup
X

|ωn−1
u |η ≤ C +C(sup

X
u− inf

X
u),

where C > 0 is a constant depending only on f , η, n, and ω0.

Proof. Let

F = (n− 1)

(
f + log

∫

X
ωn
u − log

∫

X
efωn

0

)
.

To apply Lemma 3, it suffices to estimate inf(∆ηF ) and supF . Note that

∆ηF = (n− 1)∆ηf.

Applying the maximum principle to (2.20) at the points where u attain its maximum
and minimum, respectively, yields a uniform bound for the constant:

− sup f ≤ log

∫

X
ωn
u − log

∫

X
efωn

0 ≤ − inf f.

This implies that sup |F | ≤ (n− 1)(sup f − inf f). �
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3. C0 estimates

In this section, we first would like to derive the following general C0 estimate. This
then combining Corollary 4 will settle the C0 estimate for manifolds of nonnegative
orthogonal bisectional curvature.

Lemma 5. Let (X, η) be an arbitrary Kähler manifold with complex dimension

n ≥ 2. Suppose that u ∈ C2(X) satisfies

∆u ≤ C1 + C1(u− inf
X
u),

∆u > −C2,

where ∆ stands for the Laplacian with respect to η, and C1, C2 are two positive

constants. Then,

sup
X
u− inf

X
u ≤ C,

in which C > 0 is a constant depending only on η, n, C1, and C2.

The proof uses Moser’s iteration, consisting of the following two propositions. For
simplicity, we denote, throughout this section, that

∫
h =

∫

X
h ηn, for all h ∈ L1(X, η),

and for p > 0,

‖h‖p =

(∫
hp
)1/p

, for all h ∈ Lp(X, η).

And we abbreviate ∆ = ∆η in this section.

Proposition 6. Let v ∈ C2(X), v > 0 on X, satisfy that

(3.1) ∆v + cv ≥ d on X,

where c and d are constants. Then, for any real number p > 0,

sup
X
v ≤ C1/p(1 + |c|)n/p(‖v‖p + |d|),

where C > 0 is a constant depending only on η and n.

Proof. Let

ṽ = v + |d|.
Then,

ṽ ≥ v > 0.

Multiplying both sides of (3.1) by −ṽp, p ≥ 1, and then integrating by parts yield
that

p

∫
|∇ṽ|2ṽp−1 ≤ c

∫
ṽpv − d

∫
ṽp.

11



Then,
∫

X
|∇ṽ p+1

2 |2 ≤ p|c|
∫
ṽp+1 + p|d|

∫
ṽp

≤ p(|c|+ 1)

∫
ṽp+1, p ≥ 1.

Now invoke the Sobolev inequality

‖h‖22n/(n−1) ≤ C(‖∇h‖22 + ‖h‖22), for all h ∈ C1(X).

Here and below, we denote by C > 0 a generic constant depending only on η and

n. Substituting h = ṽ
p+1

2 into the Sobolev inequality gives that

(3.2) ‖ṽ‖(p+1)κ ≤ [C(1 + |c|)(p + 1)]
1

p+1‖ṽ‖p+1, for all p ≥ 1.

Here

κ =
n

n− 1
.

Now we fix a real number p ≥ 2, and define a sequence {pi} as follows:

p0 = p, pi = pi−1κ = pκi, for all i = 1, 2, . . .

Iterating (3.2) with respect to {pi} yields that

‖ṽ‖pk+1
≤ exp

(
log
[
C(1 + |c|)

] k∑

i=0

1

pi
+

k∑

i=0

log pi
pi

)
‖ṽ‖p0

≤ [C(1 + |c|)]n/p‖ṽ‖p, for any k ≥ 0,

where we use the fact that
∞∑

i=0

1

κi
= n.

Letting k tend to infinity gives that for p ≥ 2,

(3.3) sup
X
ṽ ≤ [C(1 + |c|)]n/p‖ṽ‖p.

For 0 < p < 2, it follows from above inequality that

sup ṽ ≤ [C(1 + |c|)]n/2
(∫

ṽ2
)1/2

≤ [C(1 + |c|)]n/2
(∫

ṽp
)1/2

(sup ṽ)(1−p/2).

Then we still have (3.3). So for any real number p > 0,

sup
X
v ≤ sup

X
ṽ ≤ C1/p(1 + |c|)n/p(‖v‖p + |d|).

�
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Proposition 7. Let v ∈ C2(X), v > 0 on X and satisfy

(3.4) ∆v − cv ≤ 0 on X,

where c is a constant. Then, there exists a real number p0 > 0, depending on η, n,
and c, such that

inf
X
v ≥ C−1/p0(1 + |c|)−n/p0‖v‖p0 ,

where C > 0 depends only on η and n.

Proof. By (3.4) we have

∆(v−1) + cv−1 ≥ −v−2(∆v − cv) ≥ 0.

Applying Proposition 6 to v−1 yields that, for any p > 0,

sup(v−1) ≤ C1/p(1 + |c|)n/p‖v−1‖p.
It follows that

inf v ≥ C−1/p(1 + |c|)−n/p‖v‖p
(∫

v−p ·
∫
vp
)−1/p

.

Then, it suffices to show that, there exists some p0 > 0 such that

(3.5)

∫
v−p0 ·

∫
vp0 ≤ C.

Here and below, we always denote by C > 0 a generic constant depends only on η
and n, unless otherwise indicated. Denote

w = log v −
∫
log v∫
ηn

.

To show (3.5), it is sufficient to establish

(3.6)

∫
ep0|w| ≤ C,

for, (3.6) implies both
∫
ep0w ≤ C, and

∫
e−p0w ≤ C;

and multiplying these two inequalities gives (3.5).
Note that

ep0|w| =
∞∑

m=0

pm0 |w|m
m!

.

Let us estimate ‖w‖m for each m ≥ 1. Multiplying both sides of (3.4) by φv−1,
where φ ∈ C1(X) and φ ≥ 0, and then integrating by parts yield that

(3.7)

∫
φ|∇w|2 ≤ c

∫
φ+

∫
∇φ · ∇w.

We first set φ ≡ 1 in (3.7) to obtain that

(3.8)

∫
|∇w|2 ≤ |c|

∫
ηn.

13



We can apply Poincaré inequality to get

(3.9)

∫
w2 ≤ C|c|.

Then, by Hölder inequality,

(3.10)

∫
|w| ≤ C|c|1/2.

It remains to estimate ‖w‖m for m ≥ 3. We now set φ = w2p, p ≥ 1, in (3.7).
Then, ∫

|w|2p|∇w|2 ≤ |c|
∫

|w|2p + 2p

∫
|w|2p−1|∇w|2.

By Young’s inequality,

2p|w|2p−1 ≤ 2p− 1

2p
|w|2p + (2p)2p−1.

It follows that ∫
|w|2p|∇w|2 ≤ 2p|c|

∫
|w|2p + (2p)2p

∫
|∇w|2.

Observe that

|∇wp|2 = p2w2p−2|∇w|2 ≤ w2p|∇w|2 + p2p|∇w|2.
We then have∫

|∇wp|2 ≤ 2p|c|
∫

|w|2p + 2(2p)2p
∫

|∇w|2, for all p ≥ 1.

Apply the Sobolev inequality to obtain that
(∫

w2pκ

)κ

≤ Cp(1 + |c|)
∫

|w|2p + C(2p)2p
∫

|∇w|2

≤ Cp(1 + |c|)
(∫

|w|2p + (2p)2p
)
, by (3.8).

Here we denote

κ =
n

n− 1
.

Hence, we have for all p ≥ 1 that

(3.11) ‖w‖2pκ ≤ [C(1 + |c|)]
1

2p (2p)
1

2p
(
‖w‖2p + 2p

)
,

in view of the inequality

(a+ b)ǫ ≤ aǫ + bǫ, for all 0 < ǫ < 1, a ≥ 0, and b ≥ 0.

We shall iterate (3.11) with respect to the sequence {pi}∞i=0 given below:

p0 = 2, pi = pi−1κ = 2κi for all i ≥ 1.

14



Thus, we obtain for each k ≥ 0 that

‖w‖pk+1
≤ C

k∑

i=0

pi + exp

(
log[C(1 + |c|)]

k∑

i=0

1

pi
+

k∑

i=0

log pi
pi

)
‖w‖p0

≤ Cpk + C(1 + |c|)n/2‖w‖2,
in which we use the fact that

k∑

i=0

κi ≤ nκk.

Now note that for any integer m ≥ 2, there exists an integer i ≥ 0 such that

2κi ≤ m < 2κi+1.

Then,

‖w‖m ≤ ‖w‖pi+1
≤ Cm+ C(1 + |c|)n/2‖w‖2

≤ Cm+ C(1 + |c|)n/2
(
by (3.9)

)

≤ C(1 + |c|)n/2m.
Hence, ∫ |w|m

m!
≤ Cm(1 + |c|)nm

2

mm

m!
≤ Cm(1 + |c|)nm

2 em.

Let

p0 =
1

2C(1 + |c|)n/2e ;

and then ∫
pm0 |w|m
m!

≤ 1

2m
, for all m ≥ 2.

This together with (3.10) yields (3.6). This completes the proof. �

We are in a position to prove Lemma 5.

Proof of Lemma 5. Let

v = u− inf
X
u+ 1.

Then,

v ≥ 1, and inf
X
v = 1,

since X is compact and so u attains its minimum. On the other hand, we have

(3.12) ∆v − C1v ≤ 0,

and

(3.13) ∆v > −C2.

Applying Proposition 7 to (3.12) obtains that

inf
X
v ≥ C−1/p0(1 + |C1|)−n/p0‖v‖p0 .

15



Here p0 > 0 is a number depending only on η, n, and C1; and C > 0 is a constant
depending only on η and n. Applying Proposition 6 to (3.13) with p = p0 yields
that

sup
X
v ≤ (C ′)1/p0(‖v‖p0 +C2),

where C ′ > 0 depends only on η and n. Combining these two inequalities we have

sup
X
v ≤ (C ′)1/p0

[
C1/p0(1 + |C1|)n/p0 inf

X
v + C2

]

= (C ′)1/p0
[
C1/p0(1 + |C1|)n/p0 + C2

]
.

It follows that

sup
X
u− inf

X
u ≤ sup

X
v ≤ C,

where C > 0 depends only on η, n, C1, and C2. �

Let us now return to equation (1.4). We let (X, η) be the complex n-dimensional
Kähler manifold of nonnegative quadratic bisectional curvature, and ω0 be a Her-
mitian metric on X.

Corollary 8. Given any f ∈ C∞(X), let u ∈ C∞(X) be a solution of

det(ωn−1
u )

det(ωn−1
0 )

= e(n−1)f

( ∫
X ω

n
u∫

X efωn
0

)n−1

,

where ωu is a positive (1, 1)–form such that

ωn−1
u = ωn−1

0 + (
√
−1/2)∂∂̄u ∧ ηn−2 > 0 on X.

Then,

sup
X

|ωn−1
u |η ≤ C,

where C > 0 is a constant depending only on f , η, n, and ω0.

Proof. By Corollary 4, it suffices to estimate (supu− inf u). Contracting

ωn−1
0 + (

√
−1/2)∂∂̄u ∧ ηn−2 > 0

with η yields that

∆ηu > −nη ∧ ω
n−1
0

ηn
> −C2 on X.

Here the constant C2 > 0 depends only on η, n, and ω0. We have (2.21), on the
other hand. Therefore, the result is an immediate consequence of Lemma 5. �
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4. Hölder estimates for second derivatives

Let X be a n-dimensional Kähler manifold, η be a Kähler metric on X, and ω0

be a balanced metric on X. We will establish the following estimate.

Lemma 9. Given F ∈ C2(X), let u ∈ C4(X) satisfy that

ωn−1
0 + (

√
−1/2)∂∂̄u ∧ ηn−2 > 0 on X,

and that

(4.1) det[ωn−1
0 + (

√
−1/2)∂∂̄u ∧ ηn−2] = eF detωn−1

0 .

Suppose that

(4.2) sup
X

|ωn−1
0 +

√
−1/2∂∂̄u ∧ ηn−2|η ≤ C3

for some constant C3 > 0. Then,

‖u‖C2,α(X) ≤ C,

where 0 < α < 1 and C > 0 are constants depending only on C3, n, ω0, and η.

We shall apply the Evans–Krylov theory (see, for example, Gilbarg–Trudinger [2,
p. 461, Theorem 17.14].), which is on the real fully nonlinear elliptic equation.
Note that Evans–Krylov theory is based on the weak Harnack estimate (see, for
example, [2, p. 246, Theorem 9.22]), which, in turn, makes uses of the Aleksandrov’s
maximum principle (see, for example, [2, p. 222, Lemma 9.3]).

We first adapt the Aleksandrov’s maximum principle to the complex setting. To
see this, we start from the following result (see, for example, Lemma 9.2 in [2]): Let
Ω ⊂ C

n be a bounded domain with smooth boundary.

Lemma (Aleksandrov). For v ∈ C2(Ω) with v ≤ 0 on ∂Ω, we have

(4.3) sup
Ω
v ≤ diam(Ω)

σ
1/(2n)
2n

(∫

Γ+
v

|detD2v|
) 1

2n

.

Here σ2n is the volume of unit ball in C
n, D2v denotes the real Hessian matrix of

v, and Γ+
v is the upper contact set of v, i.e.,

Γ+
v = {y ∈ Ω; v(x) ≤ v(y) +Dv(y) · (x− y) for all x ∈ Ω}.

Then, it suffices to control the real Hessian D2v by the complex Hessian (vij̄)

of v, over Γ+
v . Note that Γ+

v ⊂ {y ∈ Ω; (D2v)(y) ≤ 0}. We shall make use of the
following inequality:

Proposition 10. Let w be a real C2 function in Ω. For P ∈ Ω such that D2w ≥ 0,

det(D2w) ≤ 8n|detwij̄|2 at P .

Proof. Recall that

∂

∂zi
=

1

2

(
∂

∂xi
−

√
−1

∂

∂yi

)
, 1 ≤ i ≤ n.

17



We denote

wxi =
∂w

∂xi
, wxiyj =

∂2w

∂xi∂yj
, . . . .

Then,

wij̄ =
1

4

(
wxixj + wyiyj

)
+

√
−1

4

(
wxiyj − wxjyi

)
, 1 ≤ i, j ≤ n.

Since D2w ≥ 0 at P , we can choose a coordinate system (x1, y1, . . . , xn, yn) near P
such that D2w is diagonalized at P ; and hence,

wxixi ≥ 0, wyiyi ≥ 0, for all 1 ≤ i ≤ n.

Then, under this coordinate system, the complex Hessian of w is also diagonalized,
i.e.,

wij̄ =
δij
4

(
wxixi + wyiyi

)
.

It follows that, at P ,

16n|detwij̄ |2 =
n∏

i=1

(
wxixi +wyiyi

)2

≥ 2n
n∏

i=1

wxixi

n∏

i=1

wyiyi

= 2n det(D2w).

�

Moreover, for any Hermitian matrix (aij̄) > 0 on Γ+
v , we have by the elementary

inequality that

(4.4) det(aij̄) det(−vij̄) ≤
(
−∑i,j a

ij̄vij̄

n

)n

.

Now apply Proposition 10 and (4.4) to (4.3) to obtain the following complex version
Aleksandrov’s maximum principle (compare with [2, p. 222, Lemma 9.3]):

Lemma 11. Let (aij̄) be a positive definite Hermitian matrix in Ω. For v ∈ C2(Ω)
with v ≤ 0 on ∂Ω,

sup
Ω
v ≤ 2ndiam(Ω)

nσ
1/(2n)
2n

[∫

Γ+
v

∣∣∣
−∑ aij̄vij̄

det(aij̄)
1/n

∣∣∣
2n
] 1

2n

.

Then, the weak Harnack inequality below (compare with [2, p. 246, Theo-
rem 9.22]) follows from Lemma 11 and the cube decomposition procedure.

Theorem (Krylov–Safonov). Let v ∈W 2,2n(Ω) satisfy
∑
aij̄vij̄ ≤ g in Ω, where

g ∈ L2n(Ω), and (aij̄) satisfies that

0 < λ|ζ|2 ≤
∑

i,j

aij̄(z)ζiζj ≤ Λ|ζ|2, for all z ∈ Ω and ζ ∈ C
n,

18



in which λ and Λ are two constants. Suppose that v ≥ 0 in an open ball B2R(y) ⊂ Ω
centered at y of radius 2R. Then,

(
1

|BR|

∫

BR

vp
)1/p

≤ C

[
inf
BR

v +
R

λ
‖g‖L2n(B2R)

]
,

where |BR| denotes the measure of BR, and p > 0 and C > 0 are constants depending

only on n, λ, and Λ.

Let us denote by

E[(uij̄)] = log det
[
ωn−1
0 + (

√
−1/2)∂∂̄u ∧ ηn−2

]
.

To apply Evans–Krylov theory, it remains to check the following two conditions ([2,
p. 456]):

(1) E is uniformly elliptic with respect to (uij̄),
(2) E is concave on the range of (uij̄).

As in Section 2, we denote Ψ = ωn−1
0 and

(4.5) Ψu = Ψ+ (
√
−1/2)∂∂̄u ∧ ηn−2.

We use the index convention (2) for an (n− 1, n− 1)–form. Then,

E[(uij̄)] = log det[(Ψu)ij̄ ];

and thus,
∂E

∂(Ψu)ij̄
= (Ψu)

ij̄ ,
∂2E

∂(Ψu)ij̄∂(Ψu)kl̄
= −(Ψu)

il̄(Ψu)
kj̄.

Clearly, E is concave on [(Ψu)ij̄ ]. By (4.1) and (4.2), we know that the eigenvalues
of [(Ψu)ij̄ ] with respect to (ηij̄), have uniform bounds which depend only on F , ω0,
and C3. Therefore, E is uniformly elliptic with respect to [(Ψu)ij̄ ]. Observe that by
(4.5), [(Ψu)ij̄ ] depends linearly on (upq̄). Since (ηkl̄) > 0 on X, the conditions (1)
and (2) follows immediately from the chain rule.

Now we can apply the procedure in [2, p. 457–461], and this proves Lemma 9.
As a corollary, we obtain the Hölder estimate of C2 for equation (1.4).

Corollary 12. Let (X, η) an n-dimensional Kähler of nonnegative quadratic bisec-

tional curvature, and ω0 be a Hermitian metric on X. Given any f ∈ C∞(X), let
u ∈ C∞(X) be a solution of

det(ωn−1
u )

det(ωn−1
0 )

= e(n−1)f

( ∫
X ω

n
u∫

X efωn
0

)n−1

,

where ωu is a positive (1, 1)–form such that

ωn−1
u = ωn−1

0 + (
√
−1/2)∂∂̄u ∧ ηn−2 > 0 on X.

Then,

‖u‖C2,α(X) ≤ C,

where 0 < α < 1 and C > 0 are constants depending only on f , η, n, and ω0.
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5. Openness and uniqueness

Throughout this section, we let ω0 be a balanced metric, and let η be an arbitrary
Kähler metric, unless otherwise indicated. We fix k ≥ n + 4, 0 < α < 1, and a
function f ∈ Ck,α(X) satisfying∫

X
efωn

0 = V ≡
∫

X
ωn
0 .

Here Ck,α(X) is the usual Hölder space on X. Consider for 0 ≤ t ≤ 1,

(5.1)
det(ωn−1

ut
)

det(ωn−1
0 )

= e(n−1)tf

( ∫
X ωn

ut∫
X etfωn

0

)n−1

,

where ut ∈ Pη(ω0). By abuse of notation, in this section we denote

Pη(ω0) = {v ∈ Ck+2,α(X);ωn−1
0 + (

√
−1/2)∂∂̄v ∧ ηn−2 > 0}.

Let

T = {t ∈ [0, 1]; the equation (5.1) has a solution ut ∈ Ck+2,α(X)

such that ut ∈ Pη(ω0). }.
(5.2)

Clearly, we have 0 ∈ T .

Lemma 13. Let T be the set given as above. Then T is open in [0, 1].

Proof. Notice that (5.1) is the same as

ωn
ut

ωn
0

= etf
∫
X ω

n
ut∫

X etfωn
0

.

As in Section 3 of [1], we define

M(w) ≡ log
ωn
w

ωn
0

− log

(
1

V

∫

X
ωn
w

)
,

for any w ∈ Pη(ω0). Then, M(w) ∈ Fk,α(X), where Fk,α(X) is the hypersurface in

Ck,α(X) given by

Fk,α(X) =

{
g ∈ Ck,α(X);

∫

X
eg ωn

0 = V

}
.

Now suppose that t ∈ T . Then, the corresponding ut defines a positive (1, 1)–form
ωut such that

ωn−1
ut

= ωn−1
0 + (

√
−1/2)∂∂̄u ∧ ηn−2 > 0 on X ;

furthermore, ut satisfies that

M(ut) = tf + log V − log

(∫

X
etfωn

0

)
∈ Fk,α(X).

The tangent space of Fk,α(X) at M(ut) is identically the same as the Banach space

Ek,α
t (X), which consists of all h ∈ Ck,α(X) such that

∫

X
hωn

ut
= 0.
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In view of the Implicit Function Theorem, it suffices to show that the linearization
operator Lt ≡Mut , given by

Lt(v) =
n(
√
−1/2)∂∂̄v ∧ ηn−2 ∧ ωut

(n− 1)ωn
ut

− n
∫
X(

√
−1/2)∂∂̄v ∧ ηn−2 ∧ ωut

(n− 1)
∫
X ω

n
ut

,

is a linear isomorphism from Ek+2,α
t (X) to Ek,α

t (X). This is guaranteed by Lemma 13
in [1]. The proof is thus finished. �

Remark 14. We thank John Loftin for pointing out that the openness argument

in [1] also works for η being a astheno-Kähler metric, i.e., η is a hermitian metric

such that ∂∂̄ηn−2 = 0.

By the results in the previous section, we know that T is also closed, provided that
the orthogonal bisectional curvature of η is nonnegative. Therefore, the existence
part in Theorem 1 is proved. The uniqueness follows immediately from the following
proposition.

Proposition 15. Let v ∈ Pη(ω0) satisfying

(5.3) det
[
ωn−1
0 + (

√
−1/2)∂∂̄v ∧ ηn−2

]
= δ detωn−1

0 ,

where δ > 0 is a constant. Then, v must be a constant function and δ = 1.

Proof. Applying the maximum principle to equation (5.3) at the maximum points
of v yields that δ ≤ 1. Similarly, we get δ ≥ 1 by considering (5.3) at the minimum
points of v. Thus, δ = 1. Then, we apply the arithmetic–geometric mean inequality
to obtain

1 =

[
detωn−1

v

detωn−1
0

]1/n
≤ 1 +

1

n

n∑

i,j=1

(ωn−1
0 )ij̄

(
(
√
−1/2)∂∂̄v ∧ ηn−2

)
ij̄

= 1 +
ω0 ∧ ηn−2 ∧ (

√
−1/2)∂∂̄v

ωn
0

≡ 1 +Kv.

Note that the linear operator K so defined is uniformly elliptic, by the metric equiv-
alence of η and ω0 on the compact manifold X. Applying the strong maximum
principle to Kv ≥ 0 yields that v is a constant function. �

Therefore, the proof of Theorem 1 is completed.
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