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The numerical solution of the one-dimensional nonlinear Klein-Gordon equation on an
unbounded domain is studied in this paper. Split local absorbing boundary (SLAB) condi-
tions are obtained by the operator splitting method, then the original problem is reduced
to an initial boundary value problem on a bounded computational domain, which can be
solved by the finite difference method. Several numerical examples are provided to show
the advantages and effectiveness of the given method, and some interesting collision
behaviors are also observed.

� 2008 Published by Elsevier Inc.
1. Introduction

The nonlinear Klein-Gordon equation (NKLGE) appears in various application areas, such as differential geometry and rel-
ativistic field theory, and it also appears in a number of other physical applications, including the propagation of fluxons in
the Josephson junctions, the motion of rigid pendula attached a stretched wire, and dislocations in crystals [1,2].

The initial value problem of the one-dimensional nonlinear Klein-Gordon equation is given by the following problem:
o2u
ot2 �

o2u
ox2 þ f ðuÞ ¼ 0 8x 2 R1; t > 0; ð1:1Þ

ujt¼0 ¼ u0ðxÞ;ut jt¼0 ¼ u1ðxÞ 8x 2 R1; ð1:2Þ
where u ¼ uðx; tÞ represents the wave displacement at position x and time t, u0ðxÞ, u1ðxÞ are initial values, and f ðuÞ is the
nonlinear force. In the well known sine-Gordon equation[19–21], the nonlinear force is given by
f ðuÞ ¼ sin u: ð1:3Þ
In the physical applications, the nonlinear force f(u) also has other forms [20–25]:
f ðuÞ ¼ u3 � u; ð1:4Þ
f ðuÞ ¼ sin uþ sin 2u; ð1:5Þ
f ðuÞ ¼ sinh uþ sinh 2u: ð1:6Þ
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Eq. (1.1) is called the /4 equation, the double sine-Gordon (DSG) equation and the double sinh-Gordon (DSHG) equation,
provided f(u) is given by (1.4)–(1.6), respectively. The above nonlinear Klein-Gordon equations are Hamiltonian PDEs, and
for a wide class of force f(u), it has the conserved Hamiltonian quantity (or energy) [21]
H ¼
Z

1
2

u2
t þ

1
2

u2
x þ GðuÞ

� �
dx;
where G0ðuÞ ¼ f ðuÞ.
The essential difficulty of the numerical solution for the problem (1.1) and (1.2) involves two parts, the nonlinearity and

the unboundedness of the physical domain. For the bounded domain case, there are a lot of studies on the numerical solution
of the NLKGE with Dirichlet or periodic boundary condition. For example, Li and Vu-Quoc [3] studied the finite difference
invariant structure of a class of algorithms for the nonlinear Klein-Gorodn equation and derived algorithms that preserve
energy or linear momentum. Jiminez [4], Jiminez and Vazquez [5] discussed four second-order finite difference schemes
for approximating the nonlinear Klein-Gordon equation with periodic boundary condition. They also observed the undesir-
able characteristics in some of the numerical schemes, in particular a loss of spatial symmetry and the onset of instability for
large value of a parameter in the initial condition of the equation. Guo et al. [6] used the spectral and pseudo-spectral meth-
ods to solving the nonlinear Klein-Gordon equation. Guo et al. [7] also investigated the Numerical solution of the sine-Gor-
don equation with periodic boundary condition. In this paper, we will consider the NLKGE on an unbounded domain.

The artificial boundary condition (ABC) method is a powerful approach to reduce the problems on the unbounded domain
to a bounded computational domain. In general, the artificial boundary conditions can be classified into implicit boundary
conditions and explicit boundary conditions including global, also called nonlocal ABC, local ABC and discrete ABC [11]. For
the last 30 years, many mathematicians have made great contributions on this subject, see [8–15], which makes the artificial
boundary condition method for the linear partial differential equations on the unbounded domain become a well-developed
method. In recent few years, there have been some new progress on the artificial boundary condition method for nonlinear
partial differential equations on unbounded domain. Han et al. [16] and Xu et al. [17] use the Cole–Hopf transformation to
get the exact ABCs for the viscous Burger’s equation and the deterministic KPZ equation, Zheng [18,19] use the inverse scat-
tering approach to get the exact ABCs for the one-dimensional cubic nonlinear Schrödinger equation and the sine-Gordon
equation. Xu et al. [31,32] also utilize an operator splitting method to design split local absorbing boundary (SLAB) condi-
tions for the one- and two-dimensional nonlinear Schrödinger equations. The local absorbing boundary conditions were im-
posed on the split linear subproblem and yielded a full scheme by coupling the discretizations for the interior equation and
boundary subproblems.

In this paper, we use the operator splitting method to find the split local absorbing boundary (SLAB) conditions for the
nonlinear Klein-Gordon equation on the unbounded domain. Then reduce the original problem (1.1) and (1.2) to an initial
boundary value problem on a bounded computational domain, which can be solved by the finite difference method. By this
numerical method, we observe the soliton solutions of different kinds of nonlinear Klein-Gordon equations.

The organization of this paper is as following: in Section 2, we give a brief overview of the operator splitting method, and
then discuss the split local absorbing boundary for the NKLGE, where the ABCs of the subproblem is given in detail. A finite
difference scheme is given by the coupling procedure in Section 3. Some numerical examples are provided to demonstrate the
effectiveness of the proposed scheme, especially some interesting soliton solutions of the NLKGE are observed in Section 4.

2. The split local absorbing boundary method

Operator splitting method [26,34] is a powerful method for the numerical simulation of complex physical time-depen-
dent models, where the simultaneous effect of several different subprocess has to be considered. Mathematical models of
such phenomena are usually described by time-dependent partial differential equations, which include several spatial dif-
ferential operators. Each of them is corresponding to a subprocess of the physical phenomenon. Generally speaking, every
subprocess is simpler than the whole spatial differential operator.

The essential idea of the operator splitting method is to decompose the considered problem into several subproblems
which are easy to be handled, and then solve them successively in a small time step s, in which the solution of one subprob-
lem is employed as the initial condition for the next subproblem.

The operator splitting method has been widely used in many application problems, for instance, the advection–diffusion-
reaction problems in air pollution modelling [27] Maxwell’s equations [28], the model of Bose–Einstein condensates [29,30]
and the nonlinear Schrödinger equation [31,32].

The basic idea of split local absorbing boundary (SLAB) method is using the operator splitting method on the boundaries
to construct boundary conditions. We decompose the nonlinear Klein-Gordon problem into linear and nonlinear subprob-
lems on the artificial boundaries, which are easy to be handled, and then solve them alternatively in a small time step s.

For Eq. (1.1), we introduce an auxiliary function v ¼ ut , and denote the vector function U ¼ ðu; vÞT. Then Eq. (1.1) can be
converted into a differential equation system:
Ut ¼
u

v

� �
t

¼
v

uxx � f ðuÞ

� �
: ð2:1Þ
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We introduce a splitting control parameter a 2 ð0;1Þ, the previous system (2.1) can be written in a splitting form.
Ut ¼
u

v

� �
t

¼ a2v

uxx

 !
þ ð1� a2Þv

�f ðuÞ

 !
� L1U þ L2ðUÞ: ð2:2Þ
From time t ¼ tn to time t ¼ tnþ1, where tnþ1 ¼ tn þ s, t0 ¼ 0, firstly we split the system (2.1) into a linear subproblem and a
nonlinear subproblem.
U1
t ¼ L1U1 U1ðtn; xÞ ¼ Uðtn; xÞ t 2 ½tn; tnþ1�; ð2:3Þ

U2
t ¼ L2ðU2Þ U2ðtn; xÞ ¼ U1ðtnþ1; xÞ t 2 ½tn; tnþ1�: ð2:4Þ
Then we solve the subproblems (2.3) and (2.4) step-by-step, in which the solution of one subproblem is employed as an ini-
tial condition for the alternative subproblem, and take Uðtnþ1; xÞ � U2ðtnþ1; xÞ as the approximate solution of the system (2.1).
This may be realized by the solution operator that approximates combination of products of the exponential operators esL1

and esL2 . By the Baker–Campbell–Hausdroff theorem, we have the first-order approximation using solution operator,
Unþ1 � esL2 esL1 Un: ð2:5Þ
So far, the simplest idea of the operator splitting method has been described. The error of the approximation (2.5) is the first-
order OðsÞ induced from the noncommutativity of the operators L1 and L2 [33]. In general, the second-order Strang splitting
is more frequently adopted in applications, for which the solution operator is approximated by,
Unþ1 � es1
2L1 esL2 es1

2L1 Un: ð2:6Þ
In fact, the only difference between the Strang splitting method [34] and the first-order splitting method is that the first and
last steps are half of the normal step s. Thus a more accurate second-order method can be implemented by a very simple
way.

Next, we use the operator splitting method to obtain the split local absorbing boundary (SLAB) conditions for the NKLGE.
First of all, we introduce two artificial boundaries Rl ¼ fðx; tÞj x ¼ xl; 0 6 t 6 Tg and Rr ¼ fðx; tÞj x ¼ xr ; 0 6 t 6 Tg, where xl,
xr are two constants, with xl < xr , which divide the unbounded domain R1 � ½0; T� into three parts,
Dl ¼ fðx; tÞj �1 6 x 6 xl; 0 6 t 6 Tg;
Di ¼ fðx; tÞjxl 6 x 6 xr;0 6 t 6 Tg;
Dr ¼ fðx; tÞjxr 6 x 6 þ1;0 6 t 6 Tg:
The finite sub-domain Di is the bounded computational domain. Therefore, we must find some appropriate boundary con-
ditions on Rl and Rr , respectively, to reduce the original initial value problem (1.1) and (1.2) into a initial boundary value
problem on the domain Di.

Some simple calculation shows that the equation of the linear subproblem (2.3) is equivalent to the following wave
equations:
utt � a2uxx ¼ 0: ð2:7Þ
In the problem (1.1) and (1.2), we assume the initial values /0ðxÞ;/1ðxÞ are constant in the exterior domain Dl [ Dr . It means
that no wave travels from the exterior domain into the interior domain Di. So at the right artificial boundary Rr , we can ob-
tain a absorbing artificial boundary condition (ABC):
ut þ aux ¼ 0; 8ðx; tÞ 2 Rr : ð2:8Þ
Similarly, at the artificial boundary Rl, we can obtain a absorbing artificial boundary condition (ABC):
ut � aux ¼ 0 8ðx; tÞ 2 Rl: ð2:9Þ
The artificial boundary conditions (2.8) and (2.9) are linear transport equations, which can be discretized by the up-wind
scheme or the beam-worming scheme, thus we have first- or second-order of accuracy, respectively. Similarly, the equation
of the nonlinear subproblem (2.4) is equivalent to the following equation:
utt þ ð1� a2Þf ðuÞ ¼ 0 xl 6 x 6 xr tn
6 x 6 tnþ1: ð2:10Þ
The nonlinear Eq. (2.10) is an ordinary differential equation, which can be solved by the Runge–Kutta method or the Matlab
ode-solver(ode15). Seeing that the restriction of (2.10) on the boundary Rl (or Rr) is an initial value problem, no extra bound-
ary condition is required.

3. The derivation of the difference scheme

In this section, we consider the coupling procedure for solving the nonlinear Klein-Gordon equation on the bounded com-
putational domain Di ¼ ½xl; xr � � ½0; T�. We divide the domain Di by a set of lines parallel to the x- and t-axis to form a grid, and
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write h ¼ ðxl � xrÞ=I and s ¼ T=N for the line spacings, where I and N are two positive integers. The crossing points Xs
h are

called the grid points,
Xs
h ¼ fðxi; tnÞjxi ¼ xl þ ih; i ¼ 0;1; . . . ; I; tn ¼ ns;n ¼ 0;1; . . . ; T=sg:
Suppose U ¼ fun
i j0 6 i 6 I;n P 0g is a grid function on Xs

h. To get the numerical solution on the domain Di, we use the central
difference scheme to approximate Eq. (1.1):
unþ1
i � 2un

i þ un�1
i

s2 �
un

iþ1 � 2un
i þ un

i�1

h2 þ f ðun
i Þ ¼ 0; ð3:1Þ
for i ¼ 1; . . . ; I � 1, where un
i represents the approximation of wave function u(x, t) on the grid point ðxi; tnÞ with tn ¼ ns,

xi ¼ ih, x0 ¼ xl, xI ¼ xr .
For each computational step, the equation system (3.1) contains I þ 1 unknowns, however it only has I � 1 equations. So

the scheme (3.1) is incomplete, thus two unknown values un
0 and un

I must be provided through boundary conditions. Accord-
ing to the discussion in Section 2, we split Eq. (1.1) into two subproblems (2.7) and (2.10) on the grid points ðx0; tnÞ and ðxI; tnÞ
in the vicinity of the boundaries, and then solve them separately, in which the solution of one subproblem is employed as an
initial condition for the next subproblem by imposing two intermediate variables U�i ¼ ðu�i ; v�i Þ

T
; i ¼ 0; I. For Eq. (2.10), we use

the exponential operator form,
U�i � esL2 Un
i ; i ¼ 0; I: ð3:2Þ
The second intermediate step is a linear problem, which can generate two extra equalities by discretizing the ABCs (2.8) and
(2.9) with the up-wind scheme or the beam-worming scheme. Here, we take the up-wind scheme for an example,
unþ1
I � u�I

s
þ a

u�I � un
I�1

h
¼ 0; ð3:3Þ

unþ1
0 � u�0

s
� a

un
1 � u�0

h
¼ 0: ð3:4Þ
At the ðnþ 1Þth time level, suppose fuk
i jk 6 n;0 6 i 6 Ig are given. Firstly, we solve Eqs. (3.2)–(3.4) to get the boundary term

unþ1
i ; i ¼ 0; I and assume vnþ1

i ¼ v�i then solve Eq. (3.1) to get funþ1
i j1 6 i 6 I � 1g. Hence, we can get all the solution

U ¼ funþ1
i j0 6 i 6 I;n P 0g step-by-step. Compare with the global ABC as mentioned above, our split local absorbing bound-

ary (SLAB) method has great advantage for long time computation. In order to improve the accuracy of the local time-split-
ting procedure, a second-order Strang splitting [34] and the beam-worming scheme can be used, where we use two
intermediate variables U�i ¼ ðu�i ; v�i Þ

T
; i ¼ 0; I and U��i ¼ ðu��i ; v��i Þ

T
; i ¼ 0; I. Here, U�i is obtained from Un

i through the half time
step ordinary differential equation,
U�i � e
s
2L2 Un

i ; i ¼ 0; I: ð3:5Þ
Suppose that v��i ¼ v�i ; i ¼ 0; I and u��i ; i ¼ 0; I are deduced from u�i ; i ¼ 0; I by the beam-worming scheme:
u��I � u�I
s

¼ �að3u�I � 4un
I�1 þ un

I�2Þ
2h

þ a2ðu�I � 2un
I�1 þ un

I�2Þ
2h2 ; ð3:6Þ

u��0 � u�0
s

¼ að3u�0 � 4un
1 þ un

2Þ
2h

þ a2ðu�0 � 2un
1 þ un

2Þ
2h2 : ð3:7Þ
Finally, Unþ1
i can be obtained from U��i through another half time step ordinary differential equation,
Unþ1
i � e

s
2L2 U��i ; i ¼ 0; I: ð3:8Þ
Thus a more accurate scheme can be obtained by coupling Eqs. (3.5)–(3.8) and the equation system (3.1).

4. Numerical tests

To test the performance and accuracy of the given split local absorbing boundary method, four different kinds of appli-
cation examples for the NLKGE are provided in this section, where the second-order Strang splitting and the beam-worming
scheme are used.

4.1. The sine-Gordon (sG) equation

The sine-Gordon (sG) equation is a very important nonlinear Klein-Gordon equation [19–21], which has the potential
function GðuÞ ¼ 1� cosðuÞ and takes the following form:
o2u
ot2 �

o2u
ox2 þ sin u ¼ 0:
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The sine-Gordon (sG) equation has some travelling soliton solutions, also called the kink solution and anti-kink solution.
u ¼ 4 arctan exp � x� ctffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

� �
;

where c 2 ð0;1Þ is the moving velocity, the sign ‘‘+” corresponds to the case of kink solution, and ‘‘�” corresponds to the case
of anti-kink solution. When t ¼ 0, these solutions tend to some constants exponentially fast as x tends to infinity. For exam-
ple, ukink ! 2p as x! þ1, and ukink ! 0 as x! �1.

First of all we consider the kink solution. Let c ¼ 0:8, xl ¼ �8, xr ¼ 8 and take u0ðxÞ ¼ ukinkðx;0Þ and u1ðxÞ ¼ o
ot ukinkðx;0Þ as

the initial data. From Fig. 1, we can see that the wave travels through the right artificial boundary, without causing dramatic
reflection.

Next, we study the interaction of solitons, also called the Breather solution of the sine-Gordon equation. The sine-Gordon
equation admits the kink–anti-kink solution,
ukink—anti-kink ¼ 4 arctan
c sinhð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

tÞffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

coshðcxÞ

 !
and the kink–kink solution,
ukink—kink ¼ 4 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

sinhðcxÞ
c coshð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

tÞ

 !
:

The solitons in the kink–anti-kink solution(or the kink–kink solution) move with the same speed
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

=c but in different
direction. Let c ¼ 2, xl ¼ �8, xr ¼ 8 and take u0ðxÞ ¼ ukink—anti-kinkðx;0Þ, u1ðxÞ ¼ o

ot ukink—anti-kinkðx;0Þ and u0ðxÞ ¼ ukink—kinkðx;0Þ,
u1ðxÞ ¼ o

ot ukink—kinkðx;0Þ, respectively, as the initial data. Fig. 2 shows that the given scheme not only captures the interaction
of solitons, but also let the solitons travel out the computational domain without causing dramatic reflection. Finally, we de-
sign an oscillation wave problem to test the performance of the given boundary conditions. In this case, xl ¼ �8, xr ¼ 8, the
initial conditions are oscillation wave:
u0ðxÞ ¼ sinð10xÞ exp � x2

4

� �
; u1ðxÞ ¼ 0:
Fig. 3 shows that the initial oscillation wave splits into two smaller waves and spreads along the characteristic lines. When
they travel out the computational domain, the reflection waves are negligible.

4.2. The /4 equation

We also test the scheme for the travelling soliton wave of the /4 equation [20,21], which has the potential function
GðuÞ ¼ � 1

2 m2u2 þ 1
4 cu4 and takes the following form:
o2u
ot2 �

o2u
ox2 þ cu3 �mu ¼ 0;
where the m and c are two parameters. The /4 equation has travelling soliton wave solutions, also called the kink and anti-
kink solutions:
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uðx; tÞ ¼ mffiffifficp tanh � mðx� ctÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� c2Þ

p
 !

;

for ðx; tÞ 2 R� Rþ, with the velocity restricted by c2 < 1. If we choose the sign ‘‘+” (‘‘�”), the travelling soliton wave uðx; tÞ is a
kink(anti-kink) solution, i.e. it consists of a single transition region between the asymptotic values ukink ¼ �1ðuanti-kink ¼ 	1Þ
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as x� ct varies between �1. Again this solution is on the whole real line, and it quickly approaches its asymptotic values
away from the transition region.

Similar to the construction of the soliton solution in Section 4.1, let xl ¼ �8, xr ¼ 8 and take u0ðxÞ ¼ ukinkðx;0Þ and
u1ðxÞ ¼ o

ot ukinkðx;0Þ as the initial data. The numerical solutions of u(x, t) is shown in Fig. 4, with c ¼ 1
p2, m ¼ 1, c ¼ 0:8 together

with the step sizes h ¼ 0:05 and s ¼ h
2. We can see that the right artificial boundary is nearly transparent for the solitary wave

propagation, since the wave travel out the computational domain without causing dramatic reflection.

4.3. The double sine-Gordon (DSG) equation

The double sine-Gordon (DSG) equation has attracted many researchers attention, because it models a variety of systems
in condensed matter, quantum optics, and particle physics. Condensed matter applications include the spin dynamics of
superfluid He3, magnetic chains, commensurate-incommensurate phase transitions, surface structural reconstructions,
and domain walls. In quantum field theory and quantum optics DSG equation applications include quark confinement
and self-induced transparency, respectively, see [22,23]. The double sine-Gordon (DSG) equation has the potential,
GðuÞ ¼ � 4
1þ 4jgj g cos u� cos

u
2

� �
;

where the parameter g may be assigned any arbitrary real value. In this paper we will consider the range g > 0, so we intro-
duce parameter R related with g by g ¼ 1

4 sinh2R. From the potential function G(u), we get the following DSG equation:
o2u
ot2 �

o2u
ox2 þ

2
1þ 4jgj 2g sin u� sin

u
2

� �
¼ 0: ð4:1Þ
Eq. (4.1) has a static solution in the form of a 4p kink (anti-kink):
uðx; tÞ ¼ 4pm� 4 arctan
sinh x�ctffiffiffiffiffiffiffiffi

1�c2
p
� �

cosh R
;

where the sign ‘‘+” corresponds to the case of kink, and ‘‘�” corresponds to the case of anti-kink, and m is an integer. u(x, t)
can be interpreted as a superposition of two sG solitons, separated by the distance 2R.

In the numerical experiment, we set c = 0.8, xl ¼ �12, xr ¼ 12 and take u0ðxÞ ¼ ukinkðx;0Þ and u1ðxÞ ¼ o
ot ukinkðx;0Þ as the

initial data. The numerical solutions of u(x, t) is shown in Fig. 5, with m ¼ 0, R ¼ 4, together with the step sizes h ¼ 0:05
and s ¼ h

2. We can find that the profile of the initial wave consists two kinks. They travel through the right artificial boundary
consecutively, without causing dramatic reflection, which shows that the boundary conditions are nearly transparent for the
wave propagation.

4.4. The double sinh-Gordon (DSHG) equation

The double sinh-Gordon (DSHG) equation has been extensively studied in the classical thermodynamics. This model
equation also has a double well potential GðuÞ ¼ ðf cosh 2u�mÞ2, when the positive parameter m; f satisfy m > f, thus there
also exists the kink and anti-kink solutions. Even though it is nonintegrable, the DSHG is remarkably amenable to analysis,
see[24,25]. From the potential function G(u), we get the following DSHG equation:
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o2u
ot2 �

o2u
ox2 þ 2fðf sinh 4u� 2m sinh 2uÞ ¼ 0: ð4:2Þ
Eq. (4.2) possess a single kink solution and anti-kink solution as following:
uðx; tÞ ¼ �tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� f
mþ f

s
tanh n

x� ctffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

 !
; n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2 � f2Þ

q
; m > f:
The sign ‘‘+” corresponds to the case of kink solution, and the sign ‘‘�” corresponds to the case of anti-kink solution. Eq. (4.2)
can be linearized around u ¼ 0 leading to higher energy phonons. For phonons around u ¼ 0, the above Eq. (4.2) can be
approximated by a /4 equation, which shows the connection between the /4 equation and the DSHG equation.
o2u
ot2 �

o2u
ox2 þ ð8n2 � 8mnÞuþ 16

3
ð4n2 �mnÞu3 ¼ 0:
In the numerical experiment, we set c = 0.5, xl ¼ �8, xr ¼ 8 and take u0ðxÞ ¼ ukinkðx;0Þ and u1ðxÞ ¼ o
ot ukinkðx;0Þ as the initial

data. The numerical solutions of u(x, t) is shown in Fig. 6, with m ¼ 2, n ¼ 1, together with the step sizes h ¼ 0:05 and s ¼ h
2.

We can see that the kink solution travels through the right artificial boundary without causing dramatic reflection, which
shows that the boundary conditions are also effective for this nonintegrable equation.

4.5. Accuracy of the SLAB method

In this section, we consider the numerical accuracy of the SLAB method for the tested problems in Sections 4.1–4.4 with
exact solutions. Numerical experiments show that for these four kinds of nonlinear Klein-Gordon equation, the SLAB method
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Fig. 6. Kink of the DSHG equation, h ¼ 0:05, s ¼ h=2.
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has the same accuracy. To avoid tautology, we only give the numerical results about the sG equation and the /4 equation
here.

In all the computation, we let h ¼ 2s. To evaluate the accuracy of numerical solution, we define the L2 norm of the error
function as
Table 1
Compu

Mesh s

h ¼ 1
10

h ¼ 1
20

h ¼ 1
40

h ¼ 1
80

h ¼ 1
160

–

lo
g(

E
)

EðtÞ ¼ kunumð
; tÞ � uexað
; tÞkL2
: ð4:3Þ
Table 1 lists the errors for different mesh sizes and the convergence rates. Fig. 7 gives the linear least square fitting of dif-
ferent errors and mesh sizes in logarithm coordinates. It can be seen that our numerical scheme is second-order convergence,
just as we anticipate.

Fig. 8 gives the result about how the SLAB method depends on the cut points xl and xr . The top-left part is the evolution of
the sG equation with h ¼ 0:05; s ¼ h

2 ; xl ¼ �15; xr ¼ 15; T ¼ 22:5. The initial value on the top-right part shows that the wave-
tation of E(12) and the convergence order, h ¼ 2s

ize L2 norm of the error (sG equation) L2 norm of the error (/4 equation)

1.713E�2 . . . 2.212E�2 . . .

4.262E�3 4.019 5.532E�3 4.011
1.066E�3 3.996 1.383E�3 3.999
2.739E�4 3.893 3.459E�4 3.998
9.345E�5 2.930 8.666E�5 3.991
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Fig. 7. Linear least square fitting of different errors and mesh sizes, left is sG equation, right is /4 equation. h ¼ 1
10 ;

1
20 ;

1
40 ;

1
80 ;

1
160 ; s ¼ h

2.
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Fig. 8. The waveform of the sG equation, h ¼ 0:05, s ¼ h=2, T ¼ 22:5.
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form is constant outside the interval [�5,5]. Let L ¼ jxlj ¼ jxr j denotes the distance from the location of the artificial boundary
to the center of the computational domain. During the computation process, we fix the terminal time as T ¼ 22:5. Initially,
we set L ¼ 1 and every time we increase L by 1 to compute the numerical error. Here, the error function is defined by
E
rr

o
r

EðLÞ ¼ max
06t6T;�L6x6L

junumðx; tÞ � uexaðx; tÞj:
Fig. 9 shows that when the length L is bigger than 5, the SLAB method will have a very high numerical accuracy.
The choice of the splitting control parameter a is quite important in the SLAB method, however how to get the a in an

analytic way is still open. Through numerical experiments, we find that if we choose the splitting control parameter
0:8 < a < 0:9, the given method is nearly transparent for the wave propagation. Hence, in all of the numerical experiments
in this paper, we set a ¼ 0:85. Fig. 10 shows the numerical error for different velocity of the sG equation. Here, the error func-
tion is the same as (4.3), and the wave velocities are c ¼ 0:8 and c ¼ 0:4, respectively.

The numerical schemes (3.1)–(3.4) are the standard splitting method, hence we call them SLAB1 for simplicity. Similarly,
the Strong splitting methods (3.1) and (3.5)–(3.8) are called SLAB2. We compare the performance of these two methods for
sG equation and /4 equation. Fig. 11 shows that the SLAB2 method is second-order convergence, but when the mesh size is
fine enough, the SLAB1 method can not get the second-order convergence. For the nonlinear Klein-Gordon equation on the
unbounded domain, Szeftel [35] adopted the paradifferential calculus approach to construct a family of absorbing boundary
conditions for the semilinear wave equation. Let PDC1 and PDC2 denote the first- and second-order absorbing boundary con-
ditions given by Szeftel. In fact, the PDC1 absorbing boundary condition is just the Neumman boundary condition. We com-
pare the performance of the PDC1, PDC2 and SLAB2 method for the sG equation and /4 equation.
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Fig. 9. The errors of different length L for the sG equation, h ¼ 0:05, s ¼ h=2, T ¼ 22:5.
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Figs. 12 and 13 show that for a large-range of wave velocity c, the SLAB2 method is nearly transparent for the wave prop-
agation, which means the SLAB2 method is robust to wave velocity c. When c ¼ 0:8 the PDC2 method is more accurate than
the SLAB2 method. However, when the wave velocity is small, the PDC2 method will bring strong reflection on the artificial
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Fig. 12. Comparison of different absorbing boundary conditions for the sG equation, h ¼ 0:05, s ¼ h=2. From top-left to bottom-right c ¼ 0:8, 0.6, 0.4, 0.2,
respectively.
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boundaries. We can also see that for the nonlinear Klein-Gordon equation, the Neumman (PDC1) boundary conditions will
cause dramatic reflection.

5. Conclusion

The numerical solution of the one-dimensional nonlinear Klein-Gordon equation on an unbounded domain is studied in
this paper. Split local absorbing boundary (SLAB) conditions are obtained by the operator splitting method, then the original
initial value problem is reduced to an initial boundary value problem on a bounded computational domain. Numerical exam-
ples indicate that the given method is fast and nearly transparent for the wave propagation, but the stability and error anal-
ysis of the method is still open. This method also has the potential of generalizing to multi-dimensional nonlinear Klein-
Gordon equation on the unbounded domain, which we will be our further work.
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