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The numerical solution of the one-dimensional Klein–Gordon equation on an unbounded
domain is analyzed in this paper. Two artificial boundary conditions are obtained
to reduce the original problem to an initial boundary value problem on a bounded
computational domain, which is discretized by an explicit difference scheme. The stability
and convergence of the scheme are analyzed by the energy method. A fast algorithm is
obtained to reduce the computational cost and a discrete artificial boundary condition
(DABC) is derived by the Z-transform approach. Finally, we illustrate the efficiency of the
proposed method by several numerical examples.

© 2008 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Klein–Gordon equation arises in relativistic quantum mechanics and field theory, which is of great importance for
the high energy physicists [15], and is used to model many different phenomena, including the propagation of dislocations
in crystals and the behavior of elementary particles. The one-dimensional Klein–Gordon equation is given by the following
partial differential equation:

h̄2 ∂2u

∂t2
− h̄2c2 ∂2u

∂x2
+ m2c4u = f (x, t), ∀x ∈ R

1, t > 0, (1.1)

where u = u(x, t) represents the wave density at position x and time t , h̄ is the Planck constant, c and m are particle
velocity and particle mass, respectively.

There are a lot of studies on the numerical solution of initial and initial-boundary problems of the linear or nonlinear
Klein–Gordon equation. For example, Khalifa and Elgamal [22] developed a numerical scheme based on a finite element
method for the nonlinear Klein–Gordon equation with Dirichlet boundary condition on a bounded domain, which shows
the overflow solution as expected. Duncan [6] analyzed three finite difference approximations of the initial nonlinear Klein–
Gordon equation, showed they are directly related to symplectic mappings and tested the schemes on the traveling wave
and periodic breather problems over long time intervals. However, when we wish to solve the Klein–Gordon numerically
on an unbounded domain, these methods will face essential difficulties. Since the unboundedness of the physical domain in
our problem, the standard finite element method or finite difference method can’t be used directly.
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The artificial boundary condition (ABC) method is a powerful approach to reduce the problems on the unbounded domain
to a bounded computational domain. In the well-known paper of Engquist and Majda [12], absorbing boundary conditions
using Padé approximation of a pseudo-differential operator on a line-type boundary for the wave equation are derived.
Higdon [20,21] developed radiation boundary conditions for the numerical modeling of dispersive waves. By specifying
the wavenumber and frequency parameters, the boundary conditions based on compositions of simple first-order differen-
tial operators was got. His formulas can be applied without modification to higher-dimensional problem. Low-order local
ABCs may have low accuracy, whereas high-order local ABCs are usually hard to implement because they typically in-
volve high-order derivatives [13]. The local ABCs may generate some nonphysical reflection at the artificial boundary and
the well-posedness of the resulting truncated initial-boundary problem is still open in general. Nonlocal artificial bound-
ary conditions have the potential of being more accurate than the local ones. Han and Zheng [19] obtained three kinds
of exact nonreflecting boundary conditions for exterior problems of wave equations in two and three-dimensional space
by an approach based on Duhamel’s principle. X. Antoine and C. Besse [2] obtained a nonreflecting boundary conditions
for the one-dimensional Schrödinger equation. X. Antoine, C. Besse and V. Mouysset [3] also generalized their approach to
simulate the two-dimensional Schrödinger equation using nonreflecting boundary conditions. Han and Huang [16], Han, Yin
and Huang [18] derived the exact nonreflecting boundary conditions for two- and three-dimensional Schrödinger equations.
Han and Yin [17] also derived the exact nonreflecting boundary conditions for two- and three-dimensional Klein–Gordon
equations. Generally speaking, the exact boundary conditions require more computational cost. In order to overcome this
disadvantage, a fast algorithm is given in our paper.

The organization of this article is the following: In Section 2 we introduce two artificial boundaries and find the artificial
boundary conditions, then reduce the original problem to an equivalent problem on the bounded computational domain. In
Section 3, a finite-difference scheme for the reduced problem is given and its stability and convergence are analyzed. A fast
algorithm is obtained in Section 4 to reduce the computational cost. In Section 5, a discrete artificial boundary condition
(DABC) is derived by the Z -transform approach. Some numerical results will be given in Section 6 to demonstrate the
accuracy and efficiency of the proposed methods.

2. The artificial boundary condition

In this section, we study the numerical approximation of a dispersive wave solution u(x, t), to the equation with a source
term on an unbounded domain. More precisely, we consider the following linear Klein–Gordon equation on R

1 × [0, T ]:

∂2u

∂t2
− a2 ∂2u

∂x2
+ b2u = f (x, t), ∀x ∈ R

1, t ∈ [0, T ], (2.1)

u|t=0 = ϕ0(x), ∀x ∈ R
1, (2.2)

ut |t=0 = ϕ1(x), ∀x ∈ R
1. (2.3)

Here a, b are two real constants. Assume ϕ0(x),ϕ1(x) and f (x, t) satisfying: Supp{ϕ0(x)} ⊂ [xl, xr], Supp{ϕ1(x)} ⊂ [xl, xr] and
Supp{ f (x, t)} ⊂ [xl, xr] × [0, T ]. For simplicity of the deduction, we take xl = −1 and xr = 1.

In order to reduce the problem (2.1)–(2.3) to a bounded computational domain, we introduce two artificial boundaries,

Σr = {
(x, t) | x = 1, 0 � t � T

}
,

Σl = {
(x, t) | x = −1, 0 � t � T

}
,

which divide R1 × [0, T ] into three parts,

Dl = {
(x, t) | −∞ � x � −1, 0 � t � T

}
,

Di = {
(x, t) | −1 � x � 1, 0 � t � T

}
,

Dr = {
(x, t) | 1 � x � +∞, 0 � t � T

}
.

The bounded domain Di is our computational domain. Consider the restriction of u(x, t) on the unbounded domain Dr .
u(x, t) satisfies,

∂2u

∂t2
− a2 ∂2u

∂x2
+ b2u = 0, ∀(x, t) ∈ Dr, (2.4)

u|Σr = u(1, t) ≡ g1(t), (2.5)

u|t=0 = 0, x � 1, (2.6)

ut |t=0 = 0, x � 1. (2.7)
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Since u(1, t) is unknown, the problem (2.4)–(2.7) is incomplete, which cannot be solved independently. If u|Σr = u(1, t) ≡
g1(t) is given, the problem above has a unique solution. Let

U (x, s) = L
(
u(x, t)

) =
+∞∫
0

e−st u(x, t)dt, Re s > 0,

denotes the Laplace transform of the unknown solution u(x, t). By (2.4)–(2.7) it satisfies,

s2U (x, s) − a2Uxx(x, s) + b2U (x, s) = 0, 1 < x < +∞, (2.8)

U (1, s) = G(s) ≡ L
(

g1(t)
) =

+∞∫
0

e−st g1(t)dt, (2.9)

∣∣U (x, s)
∣∣ < +∞, x → +∞. (2.10)

Eq. (2.8) is a second-order linear ODE with constant coefficient, its general solution is given by

U (x, s) = c1(s)exp

(
−

√
s2 + b2

a
(x − 1)

)
+ c2(s)exp

(√
s2 + b2

a
(x − 1)

)
.

The condition (2.10) implies c2(s) ≡ 0, and we obtain

U (x, s) = c1(s)exp

(
−

√
s2 + b2

a
(x − 1)

)
, (2.11)

here the roots with positive real parts are taken. The partial derivative with respect to x yields,

∂U (x, s)

∂x
= −

√
s2 + b2

a
c1(s)exp

(
−

√
s2 + b2

a
(x − 1)

)
. (2.12)

Combining (2.11) and (2.12) on the artificial boundary Σr , we arrive at

∂U (1, s)

∂x
= −

√
s2 + b2

a
U (1, s) = − 1

a
√

s2 + b2

(
s2U (1, s) + b2U (1, s)

)
. (2.13)

By the table of Laplace transform (see page 1108 of [14]), we obtain

L−1
(

1√
s2 + b2

)
= J0(bt),

L−1(s2U (1, s) + b2U (1, s)
) = ∂2u(1, t)

∂t2
+ b2u(1, t).

Then, by the convolution theorem of Laplace transforms, from (2.13) we obtain:

∂u(1, t)

∂x
= −1

a

t∫
0

J0(bt − bτ )

[
∂2u(1, τ )

∂τ 2
+ b2u(1, τ )

]
dτ

= −1

a

∂u(1, t)

∂t
− b

a

t∫
0

J ′
0(bt − bτ )

∂u(1, τ )

∂t
dτ − b2

a

t∫
0

J0(bt − bτ )u(1, τ )dτ

= −1

a

∂u(1, t)

∂t
− b2

a

t∫
0

[
J ′′

0(bt − bτ ) + J0(bt − bτ )
]
u(1, τ )dτ .

We get the artificial boundary condition of the problem (2.1)–(2.3) on Σr . Similarly we can get the artificial boundary
condition on Σl , with t ∈ [0, T ]. Hence, we can reduce the initial boundary value problem on the computational domain Di .

∂2u

∂t2
− a2 ∂2u

∂x2
+ b2u = f (x, t), ∀(x, t) ∈ [−1,1] × [0, T ], (2.14)

u|t=0 = ϕ0(x), ut |t=0 = ϕ1(x), ∀x ∈ [−1,1], (2.15)

∂u(1, t)

∂t
+ a

∂u(1, t)

∂x
= −b2

t∫
0

[
J ′′

0(bt − bτ ) + J0(bt − bτ )
]
u(1, τ )dτ , (2.16)

∂u(−1, t)

∂t
− a

∂u(−1, t)

∂x
= −b2

t∫
0

[
J ′′

0(bt − bτ ) + J0(bt − bτ )
]
u(−1, τ )dτ . (2.17)
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Let J(x) = J0(x) + J′′0(x), where J(x) is a special function. By some basic recursion formulas of Bessel functions (see page 242
of [1]), we have

J(x) := J0(x) + J′′0(x) = J0(x) − (
J′1(x)

)′ = 1

2

(
J0(x) + J2(x)

)
.

The artificial boundary conditions (2.16), (2.17) will have two simple forms:

∂u(1, t)

∂t
+ a

∂u(1, t)

∂x
= −b2

t∫
0

J(bt − bτ )u(1, τ )dτ , (2.18)

∂u(−1, t)

∂t
− a

∂u(−1, t)

∂x
= −b2

t∫
0

J(bt − bτ )u(−1, τ )dτ . (2.19)

Moreover, let F(x) denotes the primitive of J(x):

F(x) =
x∫

0

J(s)ds =
∞∑

k=0

(−1)k

k!k!(2k + 2)

(
x

2

)2k+1

+
∞∑

k=0

(−1)kx

k!(k + 2)!(2k + 3)

(
x

2

)2k+3

.

Integrating by parts in Eqs. (2.18) and (2.19), we obtain anther two equivalent forms of boundary conditions. The new forms
will bring some convenience for the proof of stability and convergence.

∂u(1, t)

∂t
+ a

∂u(1, t)

∂x
= −b

t∫
0

F(bt − bτ )
∂u(1, τ )

∂τ
dτ . (2.20)

∂u(−1, t)

∂t
− a

∂u(−1, t)

∂x
= −b

t∫
0

F(bt − bτ )
∂u(−1, τ )

∂τ
dτ . (2.21)

Next, we discuss the uniqueness and stability estimate of the reduced problem (2.14)–(2.17). Multiply Eq. (2.1) by ∂u
∂t and

integrate with respect to x ∈ [−1,1] for fixed t ∈ (0, T ], using the boundary condition (2.16), (2.17), we get

d

dt

{
1

2

1∫
−1

[(
∂u(x, t)

∂t

)2

+ a2
(

∂u(x, t)

∂x

)2

+ b2u2(x, t)

]
dx

}
+ a2 ∂u(1, t)

∂t
B
(
u(1, t)

) + a2 ∂u(−1, t)

∂t
B
(
u(−1, t)

)

=
1∫

−1

f (x, t)
∂u(x, t)

∂t
dx. (2.22)

Here

B
(
ν(t)

) = 1

a

dν(t)

dt
+ b2

a

t∫
0

[
J ′′

0(bt − bτ ) + J0(bt − bτ )
]
ν(τ )dτ .

We introduce two auxiliary functions W (1)(x, t) and W (2)(x, t), which satisfy the following problems, respectively:

W (1)
tt − a2W (1)

xx + b2W (1) = 0, ∀(x, t) ∈ Dr,

W (1)|Σr = u(1, t), 0 � t � T ,

W (1)|t=0 = 0, 1 < x < +∞,

W (1)
t |t=0 = 0, 1 < x < +∞

and

W (2)
tt − a2W (2)

xx + b2W (2) = 0, ∀(x, t) ∈ Dl,

W (2)|Σl = u(−1, t), 0 � t � T ,

W (2)|t=0 = 0, −∞ < x < −1,

W (2)
t |t=0 = 0, −∞ < x < −1.
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Through a similar analysis, we obtain,

a2 ∂u(1, t)

∂t
B
(
u(1, t)

) = d

dt

{
1

2

+∞∫
1

[(
∂W (1)(x, t)

∂t

)2

+ a2
(

∂W (1)(x, t)

∂x

)2

+ b2(W (1)(x, t)
)2

]
dx

}
, (2.23)

and

a2 ∂u(−1, t)

∂t
B
(
u(−1, t)

) = d

dt

{
1

2

−1∫
−∞

[(
∂W (2)(x, t)

∂t

)2

+ a2
(

∂W (2)(x, t)

∂x

)2

+ b2(W (2)(x, t)
)2

]
dx

}
. (2.24)

We introduce E(t) and F(t) as following,

E(t) = 1

2

1∫
−1

[(
∂u(x, t)

∂t

)2

+ a2
(

∂u(x, t)

∂x

)2

+ b2u2(x, t)

]
dx

+ 1

2

+∞∫
1

[(
∂W (1)(x, t)

∂t

)2

+ a2
(

∂W (1)(x, t)

∂x

)2

+ b2(W (1)(x, t)
)2

]
dx

+ 1

2

−1∫
−∞

[(
∂W (2)(x, t)

∂t

)2

+ a2
(

∂W (2)(x, t)

∂x

)2

+ b2(W (2)(x, t)
)2

]
dx, (2.25)

F(t) = 1

2

1∫
−1

(
f (x, t)

)2
dx. (2.26)

Combining (2.22)–(2.26) and using Cauchy–Schwarz inequality, we obtain,

d

dt
E(t) � E(t) + F(t), 0 � t � T . (2.27)

Using the Gronwall inequality from inequality (2.27) and noticing that,

E(0) = 1

2

1∫
−1

[(
ϕ1(x)

)2 + a2(ϕ′
1(x)

)2 + b2(ϕ0(x)
)2]

dx.

we get the stability estimate for the solution of the reduced problem (2.14)–(2.17):

1∫
−1

[(
∂u(x, t)

∂t

)2

+ a2
(

∂u(x, t)

∂x

)2

+ b2u2(x, t)

]
dx

�
1∫

−1

[(
ϕ1(x)

)2 + a2(ϕ′
1(x)

)2 + b2(ϕ0(x)
)2]

dx +
t∫

0

1∫
−1

et−τ
(

f (x, τ )
)2

dx dτ . (2.28)

Then, we obtain the following stability estimate of the reduced problem (2.14)–(2.17).

Theorem 2.1. The reduced problem (2.14)–(2.17) has at most one solution u(x, t) on the bounded computational domain Di , and
u(x, t) continuously depends on the initial value {ϕ0(x),ϕ1(x)}, and f (x, t).

From Theorem 2.1, we know that the reduced problem (2.14)–(2.17) is equivalent to the original problem (2.1)–(2.3).
Namely, the solution of the reduced problem (2.14)–(2.17) is the restriction of the solution of original problem (2.1)–(2.3) on
the bounded domain Di , vice versa.

3. Analysis of the difference scheme

In this section, we consider the finite difference approximation of the reduced problem (2.14)–(2.17) on the bounded
domain Di . We divide the domain Di by a set of lines parallel to the x- and t-axes to form a grid. We write h = 1/I and
τ = T /N for the line spacings, where I and N are two positive integers. The crossing points Ωτ

h are called the grid points,

Ωτ
h = {

(xi, tn) | xi = −1 + ih, i = 0,1, . . . ,2I; tn = nτ , n = 0,1, . . . , T /τ
}
.
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Suppose U = {un
i | 0 � i � 2I,n � 0} is a grid function on Ωτ

h . For the simplicity, assume the constants a = b = 1. Introduce
the following notations [24]:

un
i−1/2 = 1

2

(
un

i−1 + un
i

)
, un−1/2

i = 1

2

(
un

i + un−1
i

)
,

δxun
i−1/2 = 1

h

(
un

i − un
i−1

)
, δt un−1/2

i = 1

τ

(
un

i − un−1
i

)
,

δ0
x un

i = 1

2h

(
un

i+1 − un
i−1

)
, δ0

t un
i = 1

2τ

(
un+1

i − un−1
i

)
,

δ2
x un

i = 1

h2

(
un

i+1 − 2un
i + un

i−1

)
, δ2

t un
i = 1

τ 2

(
un+1

i − 2un
i + un−1

i

)
.

We denote the value of the solution u(x, t) at the grid point (xi, tn) by Un
i and f n

i = f (xi, tn). Using the Taylor expansion, it
follows from (2.14), (2.15), (2.21), (2.20) that:

δ2
t Un

i − δ2
x Un

i + Un
i = f n

i + Rn
i , 1 � i � 2I − 1, n � 1, (3.1)

U 0
i = φ0(ih), 0 � i � 2I, (3.2)

U 1
i = U 0

i + τφ1(ih) + S1
i , 0 � i � 2I, (3.3)

δt Un+1/2
2I + δxUn

2I−1/2 = −
n∑

m=1

δ0
t Um

2I

mτ∫
(m−1)τ

F(nτ − s)ds + Pn
2I , n � 2, (3.4)

δt Un+1/2
0 − δxUn

1/2 = −
n∑

m=1

δ0
t Um

0

mτ∫
(m−1)τ

F(nτ − s)ds + Q n
0 , n � 2. (3.5)

If the solution u(x, t) is smooth enough, there exists a constant C , such that∣∣Rn
i

∣∣ � C
(
h2 + τ 2), ∣∣S1

i

∣∣ � Cτ 2,
∣∣Pn

2I

∣∣ � C(h + τ ),
∣∣Q n

0

∣∣ � C(h + τ ).

Omitting the truncation errors in (3.1)–(3.5), we construct a finite difference scheme of the reduced problem (2.14)–(2.17):

δ2
t un

i − δ2
x un

i + un
i = f n

i , 1 � i � 2I − 1, n � 1, (3.6)

u0
i = φ0(ih), 0 � i � 2I, (3.7)

u1
i = u0

i + τφ1(ih), 0 � i � 2I, (3.8)

δt un+1/2
2I + δxun

2I−1/2 = −
n∑

m=1

δ0
t um

2I

mτ∫
(m−1)τ

F(nτ − s)ds, n � 2, (3.9)

δt un+1/2
0 − δxun

1/2 = −
n∑

m=1

δ0
t um

0

mτ∫
(m−1)τ

F(nτ − s)ds, n � 2. (3.10)

This is an explicit scheme with global boundary conditions. In the following, we consider the stability and convergence of
the scheme. Multiplying (3.6) by 2hδ0

t un
i and summing up for i from 1 to 2I − 1, we obtain

2I−1∑
i=1

2hδ0
t un

i

(
δ2

t un
i − δ2

x un
i + un

i

) =
2I−1∑
i=1

2hδ0
t un

i f n
i . (3.11)

After some calculation, we get

2I−1∑
i=1

2hδ0
t un

i δ
2
t un

i = h

τ

2I−1∑
i=1

{(
δt un+1/2

i

)2 − (
δt un−1/2

i

)2}
. (3.12)

Using the summation by parts formula and the boundary condition (3.9)–(3.10), we have

−
2I−1∑
i=1

2hδ0
t un

i δ
2
x un

i = h

τ

2I−1∑
i=0

δxun+1
i+1/2δxun

i+1/2 − h

τ

2I−1∑
i=0

δxun
i+1/2δxun−1

i+1/2 + 2δxun
1/2δ

0
t un

0 − 2δxun
2I−1/2δ

0
t un

2I

= h

τ

2I−1∑
i=0

δxun+1
i+1/2δxun

i+1/2 − h

τ

2I−1∑
i=0

δxun
i+1/2δxun−1

i+1/2
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+ 2δ0
t un

0

{
δt un+1/2

0 +
n∑

m=1

δ0
t um

0

mτ∫
(m−1)τ

F(nτ − s)ds

}

+ 2δ0
t un

2I

{
δt un+1/2

2I +
n∑

m=1

δ0
t um

2I

mτ∫
(m−1)τ

F(nτ − s)ds

}

≡ I1 + I2 + I3. (3.13)

Notice that,

I2 = 2δ0
t un

0

{
δt un+1/2

0 +
n∑

m=1

δ0
t um

0

mτ∫
(m−1)τ

F(nτ − s)ds

}

= 2δ0
t un

0

{
δ0

t un
0 +

n∑
m=1

δ0
t um

0

mτ∫
(m−1)τ

F(nτ − s)ds

}
+ 2δ0

t un
0

{
δt un+1/2

0 − δ0
t un

0

}

≡ IA
2 + IB

2 .

Similarly,

I3 ≡ IA
3 + IB

3 .

Using the linear interpolation to construct a continuous function ũ(1, t), which satisfies ũt(1, t) = δ0
t um

0 , t ∈ [mτ − τ ,mτ ).
According to the stability estimate of the continuous case in Section 2, we obtain

IA
2 = 2δ0

t un
0

{
δ0

t un
0 +

n∑
m=1

δ0
t um

0

mτ∫
(m−1)τ

F(nτ − s)ds

}
� 0. (3.14)

It is easy to check,

IB
2 = 2δ0

t un
0

{
δt un+1/2

0 − δ0
t un

0

} = 1

2

{(
δt un+1/2

0

)2 − (
δt un−1/2

0

)2}
.

By the same technique, we obtain that IA
3 is also nonnegative, and

IB
3 = 2δ0

t un
2I

{
δt un+1/2

2I − δ0
t un

2I

} = 1

2

{(
δt un+1/2

2I

)2 − (
δt un−1/2

2I

)2}
.

The third term in the left of Eq. (3.11) is easy,

2I−1∑
i=1

2hδ0
t un

i un
i = h

τ

2I−1∑
i=1

un
i un+1

i − h

τ

2I−1∑
i=1

un−1
i un

i . (3.15)

We introduce an auxiliary quantity Ẽ ,

Ẽ ≡ s

2
h
(
δt un+1/2

0

)2 + h
2I−1∑
i=1

(
δt un+1/2

i

)2 + s

2
h
(
δt un+1/2

2I

)2 + h
2I−1∑
i=0

δxun+1
i+1/2δxun

i+1/2 + h
2I−1∑
i=1

un
i un+1

i

= s

2
h
(
δt un+1/2

0

)2 + h
2I−1∑
i=1

(
δt un+1/2

i

)2 + s

2
h
(
δt un+1/2

2I

)2 + h
2I−1∑
i=0

(
δxun+1/2

i+1/2

)2 − h

4

2I−1∑
i=0

(
δxun+1

i+1/2 − δxun
i+1/2

)2

+ h
2I−1∑
i=1

(
un+1/2

i

)2 − hτ 2

4

2I−1∑
i=1

(
δt un+1/2

i

)2

= s

2
h
(
δt un+1/2

0

)2 +
(

1 − s2 − τ 2

4

)
h

2I−1∑
i=1

(
δt un+1/2

i

)2 + s

2
h
(
δt un+1/2

2I

)2 + s2h
2I−1∑
i=1

(
δt un+1/2

i

)2

− hs2

4

2I−1∑
i=0

(
δt un+1

i+1/2 − δt un
i+1/2

)2 + h
2I−1∑
i=0

(
δxun+1/2

i+1/2

)2 + h
2I−1∑
i=1

(
un+1/2

i

)2

� αh
2I∑

i=0

(
δt un+1/2

i

)2 + h
2I−1∑
i=0

(
δxun+1/2

i+1/2

)2 + h
2I−1∑
i=1

(
un+1/2

i

)2
> 0, (3.16)
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where

s = τ

h ∈ (0,1)
, α = min

(
s

2
,1 − s2 − τ 2

4

)
> 0.

The right hand of Eq. (3.11) is bounded by:

2I−1∑
i=1

2hδ0
t un

i f n
i = h

2I−1∑
i=1

f n
i

(
δt un+1/2

i + δt un−1/2
i

)

�
(

1

2
− s2

2
− τ 2

8

)
h

2I−1∑
i=1

{(
δt un−1/2

i

)2 + (
δt un+1/2

i

)2} + h

1 − s2 − τ 2/4

2I−1∑
i=1

(
f n

i

)2
. (3.17)

Assume s2 + τ 2

4 < 1, according to the definition of Ẽn , we obtain the inequality

Ẽn �
(

1 − s2 − τ 2

4

)
h

2I−1∑
i=1

(
δt un−1/2

i

)2
. (3.18)

Combining the expressions (3.12)–(3.18), we get

Ẽn � Ẽn−1 + τ

2
(Ẽn + Ẽn−1) + τ

1 − s2 − τ 2/4

∥∥ f n
∥∥2

,

Ẽn � 1 + τ/2

1 − τ/2
Ẽn−1 + τ

(1 − τ/2)(1 − s2 − τ 2/4)

∥∥ f n
∥∥2

.

When τ � 2
3 , we have

Ẽn �
(

1 + 3τ

2

)
Ẽn−1 + τ

2(1 − τ/2)(1 − s2 − τ 2/4)

∥∥ f n
∥∥2

.

By discrete Gronwall inequality (see page 11 of [23]), we arrive at

Ẽn � Ẽ0

n−1∏
k=0

(
1 + 3τ

2

)
+

n∑
k=1

τ

2(1 − τ/2)(1 − s2 − τ 2/4)

∥∥ f k+1
∥∥2

(
1 + 3τ

2

)n−1−k

� e
3
2 nτ

{
Ẽ0 + τ

2(1 − τ/2)(1 − s2 − τ 2/4)

n∑
k=1

∥∥ f k
∥∥2

}
. (3.19)

From (3.16) and (3.19), we obtain the stability theory of the scheme (3.6)–(3.10).

Theorem 3.1 (stability of the scheme). Suppose {un
i } is the solution of difference scheme (3.6)–(3.10), s = τ/h ∈ (0,1) and

α = min( s
2 ,1 − s2 − τ 2

4 ) > 0. Let

En = αh
2I∑

i=0

(
δt un+1/2

i

)2 + h
2I−1∑
i=0

(
δxun+1/2

i+1/2

)2 + h
2I−1∑
i=1

(
un+1/2

i

)2

denotes the energy norm at nth time. We have the following estimate,

En � Ẽn � e
3
2 nτ

{
Ẽ0 + τ

2(1 − τ/2)(1 − s2 − τ 2/4)

n∑
k=1

∥∥ f k
∥∥2

}
.

Where, ‖ f k‖2 = ∑2I−1
i=1 h( f k

i )2 .

Since the difference scheme (3.6)–(3.10) is a system of linear algebraic equation at each time level, it is easy to obtain,

Lemma 3.1. The difference scheme (3.6)–(3.10) has a unique solution.

Next, we turn to analyze the convergence of the difference scheme. Let en
i = Un

i − un
i denotes the error on the grid point

(xi, tn). Subtracting (3.1)–(3.5) from (3.6)–(3.10), we can obtain the error equation:



Author's personal copy

1576 H. Han, Z. Zhang / Applied Numerical Mathematics 59 (2009) 1568–1583

δ2
t en

i − δ2
x en

i + en
i = rn

i , 1 � i � 2I − 1, n � 1, (3.20)

e0
i = 0, 0 � i � 2I, (3.21)

e1
i = s1

i , 0 � i � 2I, (3.22)

δten+1/2
2I + δxen

2I−1/2 = −
n∑

m=1

δ0
t em

2I

mτ∫
(m−1)τ

F(nτ − s)ds + pn
2I , n � 2, (3.23)

δten+1/2
0 − δxen

1/2 = −
n∑

m=1

δ0
t em

0

mτ∫
(m−1)τ

F(nτ − s)ds + qn
0, n � 2. (3.24)

Where there exists a constant c, such that∣∣rn
i

∣∣ � c
(
h2 + τ 2), ∣∣s1

i

∣∣ � cτ 2,
∣∣pn

2I

∣∣ � c(h + τ ),
∣∣qn

0

∣∣ � c(h + τ ). (3.25)

Using the same technique in the proof of Theorem 3.1, we can obtain the following convergence theory.

Theorem 3.2 (convergence of the scheme). Let En denotes the energy norm of the error at nth time level, s = τ/h ∈ (0,1), and α = s/2.

En = αh
2I∑

i=0

(
δt un+1/2

i

)2 + h
2I−1∑
i=0

(
δxun+1/2

i+1/2

)2 + h
2I−1∑
i=1

(
un+1/2

i

)2

we have the estimate,

En � e
3
2 nτ

{
Ẽ0 + τ

1 − τ/2

k=n∑
k=1

{
(qn

0)
2

αh
+ (pn

2I )
2

αh
+

2I−1∑
i=1

h(rn
i )2

α

}}
.

It follows from (3.21), (3.22) and (3.25) that,

Ẽ0 = s

2
h
(
δte1/2

0

)2 + h
2I−1∑
i=1

(
δte1/2

i

)2 + s

2
h
(
δte1/2

2I

)2 + h
2I−1∑
i=0

δxe1
i+1/2δxe0

i+1/2 + h
2I−1∑
i=1

e1
i e0

i

= O
(
2Ihτ 2) = O

(
τ 2),

and

k=n∑
k=1

{
(qn

0)
2

αh
+ (pn

2I )
2

αh
+

2I−1∑
i=1

h(rn
i )2

α

}
∼ O(1).

Hence, the energy norm of the absolute error En have one order convergence.

4. The fast algorithm

The artificial boundary conditions need to compute the convolution terms, which are very expensive for numerical
computation. We recall the boundary condition (2.18) and take a = b = 1,

∂u(1, t)

∂x
+ ∂u(1, t)

∂t
= −

t∫
0

J(t − τ )u(1, τ )dτ .

Where the special function J(t − τ ) can be defined by the series:

J(t − τ ) = 1

2

{
J0(t − τ ) + J2(t − τ )

} = 1

2
+

+∞∑
l=0

(−1)l+1

(l + 1)!(l + 2)!22l+3
(t − τ )2+2l

≡ 1

2
+

+∞∑
l=0

αl(t − τ )2+2l. (4.1)

The coefficients {αl} decay in a rate of O((l!2l)−2), so we just choose the first K
2 − 1 (K is a positive even number) terms

in (4.1) to approximate the special function J(t − τ ). Then we obtain a approximate boundary condition of the original
boundary condition (2.18):
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∂u(1, t)

∂x
+ ∂u(1, t)

∂t
= −

t∫
0

{ K/2−1∑
l=0

αl(t − τ )2+2l

}
u(1, τ )dτ − 1

2

t∫
0

u(1, τ )dτ

= −
K/2−1∑

l=0

t∫
0

{
αl

2(l+1)∑
j=0

C j
2(l+1)

(−1) jt jτ 2(l+1)− j

}
u(1, τ )dτ − 1

2

t∫
0

u(1, τ )dτ

≡
K∑

l=0

Pl(t)

t∫
0

τ lu(1, τ )dτ , (4.2)

here {Pl(t), l = 0,1,2, . . . , K } are given polynomials of time t . The advantage of this algorithm is that we just need to deal
with a series of integrations {∫ t

0 τ lu(1, τ )dτ , l = 0,1,2, . . . , K }, instead of the convolution term. Since

tn∫
0

τ lu(1, τ )dτ =
tn−1∫
0

τ lu(1, τ )dτ +
tn∫

tn−1

τ lu(1, τ )dτ , l = 0,1,2, . . . , K .

In practical computation, at the nth time level we just need to save the previous integration value, and do one step
integral calculus. Our numerical example shows that this algorithm is very efficiency.

5. Discrete artificial boundary conditions

In this section we discuss how to get the discrete artificial BCs (DABC) for the Klein–Gordon equation. This approach was
introduced by A. Arnold in [4] for Schrödinger equation, and M. Ehrhardt in [8] for parabolic equation. After that Arnold and
Ehrhardt used this approach to find the discrete artificial BCs for other equations in [5,11,25]. [5] deals with a generalized
Schrödinger equation appearing in acoustics. [25] deals with a parabolic equation. [11] deals with a Schrödinger–Poisson
system. A Princeton group also adapted this approach to systems of wave equations for materials with cracks [7].

Instead of discretizing the analytic ABC like (3.9) and (3.10), we construct DABCs of the fully discretized whole-space
problem. Reconsider the original initial value problem (2.1), (2.2), for simplicity assuming a = b = 1 again. We mimic the
derivation of the analytic ABC in Section 2 on a discrete level. First choose two integers I and N , and choose T as a fixed
computational time. Let h denotes spatial mesh, τ denotes time mesh, respectively.

h = 1/I, τ = T /N.

With the uniform grid points {(xi, tn) | xi = −1 + ih, i ∈ Z, tn = nτ ,n ∈ N} and the approximations un
i ∼ u(xi, tn) and

f n
i ∼ f (xi, tn), the discretized Klein–Gordon equation on the unbounded domain (−∞,+∞) × [0, T ] reads:(

un+1
i − 2un

i + un−1
i

) − α
(
un

i+1 − 2un
i + un

i−1

) + τ 2un
i = τ 2 f n

i , i = 0,±1,±2, . . . , n = 1,2, . . . , (5.1)

u0
i = φ0(xi), u1

i = u0
i + τφ1(xi), i = 0,±1,±2, . . . , (5.2)

with

α =
(

τ

h

)2

.

Assume ϕ0(x), ϕ1(x), and f (x, t) have the same compact support as in Section 2, we get

u0
i = 0, u1

i = 0, i = 2I,2I + 1,2I + 2, . . . , i = 0,−1,−2, . . . ,

f n
i = 0, i = 2I,2I + 1,2I + 2, . . . , i = 0,−1,−2, . . . , n = 0,1, . . . .

We try to find the boundary condition on Σh
2I+1 and Σh−1,

Σh
2I+1 = {

(x2I+1, tn) | n = 0,1, . . .
}
,

Σh−1 = {
(x−1, tn) | n = 0,1, . . .

}
.

First consider the restriction of the problem (5.1), (5.2) for i � 2I , which satisfies the following difference equation.(
un+1

i − 2un
i + un−1

i

) − α
(
un

i+1 − 2un
i + un

i−1

) + τ 2un
i = 0, i = 2I + 1,2I + 2, . . . , n = 1,2, . . . , (5.3)

u0
i = φ0(xi), u1

i = u0
i + τφ1(xi), i = 2I + 1,2I + 2, . . . . (5.4)

Since {un
2I | n = 2,3, . . .} are unknown on the boundary Γ h

2I+1, the problem (5.3), (5.4) is incomplete, which cannot be solved
independently. Assume {un

2I | n = 2,3, . . .} are given, then the difference equation above has a unique solution. This problem
is defined on the half-infinite domain. To solve it, we use the Z -transform method (see page 1127 of [14]):
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Let

Z
{

un
i

} = Ui(z) :=
∞∑

n=0

un
i z−n, z ∈ C, |z| > Ru,

where Ru denotes the convergence radius of this Laurent series. Z{un
i } is called the Z -transform of the sequence {un

i } for

each fixed index i. According to the initial condition and default u−1
i = 0, we have

Z
{

un+1
i

} = zUi(z), Z
{

un−1
i

} = 1

z
Ui(z).

The difference equation (5.3) becomes

zUi(z) − 2Ui(z) + 1

z
Ui(z) − α

(
Ui+1(z) − 2Ui(z) + Ui−1(z)

) + τ 2Ui(z) = 0, i = 2I + 1,2I + 2, . . . .

Then {Un
i | i = 2I,2I + 1,2I + 2, . . . , } satisfy the following problem

−αUi+1 + β(z)Ui(z) − αUi−1 = 0, i = 2I + 1,2I + 2, . . . , (5.5)

Ui(z) → 0, i → +∞, (5.6)

where β(z) = z + 1
z + c, c = τ 2 + 2( τ

h )2 − 2. Eq. (5.5) is a homogeneous 2nd order difference equation with constant
coefficients, of which the solution has the form:

Ui(z) = (
λ(z)

)i−I
U2I (z), i = 2I,2I + 1,2I + 2, . . . . (5.7)

Then λ(z) satisfies

αλ2(z) − β(z)λ(z) + α = 0. (5.8)

By Eq. (5.8) and the assumptions (5.6), (5.7), we get:

λ(z) = β(z) − √
β2(z) − 4α2

2α
= z + 1/z + c − √

z2 + r1z + r2 + r3/z + 1/z2

2α

= z + 1/z + c − z
√

1 + r1/z + r2/z2 + r3/z3 + 1/z4

2α

≡ z + 1/z + c − zS(z)

2α
, (5.9)

where r1 = r3 = 2c, r2 = 2 + c2 − 4α2 are three constants. First, we try to find the Laurent expansion of S(z). Observe that
S ′(z) satisfies,

S ′(z) = −r1/z2 − 2r2/z3 − 3r3/z4 − 4/z5

2S(z)
,

hence

2S ′(z)

(
1 + r1

z
+ r2

z2
+ r3

z3
+ 1

z4

)
=

(
− r1

z2
− 2r2

z3
− 3r3

z4
− 4

z5

)
S(z). (5.10)

Next, we assume that S(z) = 1 + ∑
n�1 anz−n and S ′(z) = −∑

n�1 nanz−n−1, using the formula (5.10) we can obtain a
recursion relation of an for n � 5,

an = 1

2n

{
(3 − 2n)r1an−1 + (6 − 2n)r2an−2 + (9 − 2n)r3an−3 + (12 − 2n)an−4

}
,

with

a1 = r1

2
, a2 = r2

2
− a1r1

4
, a3 = r3

2
− a2r1

2
, a4 = 1

2
+ a1r3

8
− a2r2

4
− 5a3r1

8
.

According to (5.9), we obtain the Laurent series of λ(z) = ∑+∞
n=0 λnz−n:

λ0 = c − a1

2α
, λ1 = 1 − a2

2α
, λn = −an+1

2α
, n � 2.

From Fig. 1 we can see that the absolute value of λn decline very quickly. The method of computing the Laurent coefficients
through an ODE was first given in Section 2 of Chapter 1 in [10]. Now, we get the inverse transform of λ(z)

Z−1{λ(z)
} = {λn}.
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Fig. 1. The decay tendency of the coefficient {λn}, here h = 0.01, τ = 0.005.

According to the formula (5.7) and the convolution theorem for Z -transforms, we get

un
2I+1 =

n∑
k=0

λn−kuk
2I , n = 2,3, . . . .

This is the DABC on the boundary Σh
2I+1, we are trying to find. Similarly, we can get the DABC on the boundary Σh−1 as

following

un−1 =
n∑

k=0

λn−kuk
0, n = 2,3, . . . .

In practical, we can make some tables for the coefficients {λn|n � 0} before starting the numerical computations.
Using our DABCs, the numerical solution on the computational domain Di exactly equals the restriction of the dis-

crete whole-space solution on the computational domain. Therefore, this scheme prevents any numerical reflections at the
boundary.

Remark 5.1. According to our calculation, these coefficients {λn} are exact, the numerical error of the DABC method is just
equal to the discretization error of (5.1), (5.2) on the unbounded domain R1 ×[0, T ]. Hence the DABC method has the second
order convergence.

Remark 5.2. One can also compute explicit solution to inhomogeneous 2nd order difference equation with constant coeffi-
cients, see [9]. So with only very minor changes, we can also deal with the Klein–Gordon equation with initial data that is
not supported within the computational domain.

6. Numerical tests

To show the effectiveness of different boundary conditions, ABC, DABC and the fast algorithm (FAST) are given in this
paper. We present some numerical examples in this section. In Example 1, we consider the Klein–Gordon equation without
source term, the exact solution is given, and the numerical solutions are compared with the exact solution. The second
example is the Klein–Gordon equation with source term, simultaneously we compare the computational time of the different
schemes for Example 2. We also test the relation between the numerical accuracy of the fast algorithm and the optimal
strategy of choosing K , especially, we test the long time performance of the fast algorithm (FAST).

Example 1. We consider the Klein–Gordon equation without source term:

∂2u

∂t2
− ∂2u

∂x2
+ u = 0, ∀x ∈ R

1, t � 0,
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Table 1
Computational errors and convergence rate of the difference schemes for Example 1 (t = 0.5 s).

Mesh size ABC FAST DABC

1/20 1.8342E−1 · · · 1.8389E−1 · · · 2.4531E−1 · · ·
1/40 4.8302E−2 1.8986 4.8426E−2 1.8987 6.6407E−2 1.8470
1/80 1.3002E−2 1.8573 1.3035E−2 1.8574 1.8219E−2 1.8224
1/160 2.9430E−3 2.2090 2.9505E−3 2.2091 4.3234E−3 2.1069

Table 2
Computational errors and convergence rate of the difference schemes for Example 1 (t = 1.0 s).

Mesh size ABC FAST DABC

1/20 8.8304E−2 · · · 8.8387E−2 · · · 6.8669E−2 · · ·
1/40 2.1502E−2 2.0533 2.1550E−2 2.0506 1.4306E−2 2.3999
1/80 5.4552E−3 1.9707 5.4717E−3 1.9692 3.9813E−3 1.7966
1/160 1.3212E−3 2.0644 1.3257E−3 2.0635 1.3178E−3 1.5104

Table 3
Computational errors and convergence rate of the difference schemes for Example 2 (t = 1.0 s).

Mesh size ABC FAST DABC

1/20 8.2727E−2 · · · 8.3344E−2 · · · 6.9831E−2 · · ·
1/40 2.0447E−2 2.0229 2.0659E−2 2.0171 1.5699E−2 2.2240
1/80 5.2655E−3 1.9516 5.3282E−3 1.9386 4.4639E−3 1.7584
1/160 1.2735E−3 2.0672 1.2890E−3 2.0667 1.3693E−3 1.6975

u|t=0 =
{

sin(5πx), |x| � 1,

0, |x| > 1,

ut |t=0 = 0, ∀x ∈ R
1

which has the exact solution:

u(x, t) = 1

2

{
φ0(x + t) + φ0(x − t)

} − t

2

x+t∫
x−t

φ0(ξ)
J1(

√
t2 − (x − ξ)2)√

t2 − (x − ξ)2
dξ,

where φ0(x) = u|t=0. The solution represents two waves propagating to the left and right respectively with amplitudes
gradually decreasing. To evaluate the quality of numerical solution, we define an error function as

E(t) = ‖unum(·, t) − uexa(·, t)‖L2

‖uexa(·, t)‖L2
.

The relative error and convergence rates of Example 1 are shown in Table 1 (t = 0.5 s) and Table 2 (t = 1.0 s). It can be
observed that the errors decay with a nearly-optimal convergence rate of 4 when the mesh is refined by a factor 2. When
the computation time t = 2, all the original wave will propagate out the computational domain.

Example 2. Secondly, we consider the same Klein–Gordon equation with source term, which will physically effect the wave
propagations.

∂2u

∂t2
− ∂2u

∂x2
+ u = 10 cos(5t) sin(3πx), ∀x ∈ R

1, t � 0,

u|t=0 =
{

sin(5πx), |x| � 1,

0, |x| > 1,

ut |t=0 = 0, ∀x ∈ R
1.

In this example, the “exact solution” is given on a very fine mesh (h = 1
640 , τ = h

2 ). The relative error and convergence
rates of Example 2 are shown in Table 3 (t = 1.0 s) and Table 4 (t = 1.5 s). It can be observed that the errors decay with a
nearly-optimal convergence rate of 4 when the mesh is refined by a factor 2.

Fig. 2 shows the wave amplitudes of difference schemes at fixed times, left one is for Example 1 (t = 1.0 s) and right
one is for Example 2 (t = 1.5 s). Compared with the left one, we can find that the external force can generate new wave,
when the original wave propagate out the computational domain.
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Table 4
Computational errors and convergence rate of the difference schemes for Example 2 (t = 1.5 s).

Mesh size ABC FAST DABC

1/20 1.4313E−1 · · · 1.4944E−1 · · · 2.2887E−1 · · ·
1/40 3.5462E−2 2.0181 3.7102E−2 2.0140 6.2109E−2 1.8425
1/80 9.2490E−3 1.9170 9.6787E−3 1.9166 1.6798E−2 1.8486
1/160 2.1870E−3 2.1145 2.2838E−3 2.1189 4.1326E−3 2.0323

Table 5
Computational time of different scheme for Example 2 (t = 1.0 s).

h (mesh size) ABC DABC FAST

1/10 0.18536 0.00055 0.00357
1/20 0.81051 0.00099 0.00420
1/40 3.34773 0.00311 0.00533
1/80 13.6388 0.00638 0.00853
1/160 55.5626 0.02028 0.01427
1/320 229.469 0.07662 0.03335

Table 6
The relation between computational accuracy and K , for fixed mesh size h = 1/320.

Terminal time K Time cost (seconds) Error

T = 1 K = 2 0.109000 4.26576e−009
T = 2 K = 4 0.297000 1.15538e−009
T = 3 K = 6 0.453000 2.036991e−010
T = 4 K = 8 0.610000 2.384202e−011
T = 5 K = 8 0.766000 1.027745e−009
T = 6 K = 10 0.953000 1.200938e−010
T = 7 K = 10 1.125000 3.230213e−009
T = 8 K = 12 1.328000 4.558574e−010
T = 9 K = 12 1.469000 8.079006e−009
T = 10 K = 14 1.688000 1.235935e−009
T = 12 K = 16 2.328000 2.918184e−009
T = 16 K = 20 2.687000 1.304432e−009
T = 20 K = 26 3.796000 2.365757e−009

Fig. 2. Wave amplitudes of different schemes at fixed times, left is for Example 1 (t = 1.0 s), right is for Example 2 (t = 1.5 s).

Table 5 shows computational time of difference scheme for Example 2 (t = 1.0 s). The ABC method is very expensive for
numerical computation, when the mesh is very fine. The FAST algorithm improves the efficiency dramatically, and the DABC
method is very fast too.

Table 6 shows the relation between computational accuracy of the fast algorithm and the optimal strategy of choosing K ,
here the Error function is defined by

Error(T ) = ∥∥unum(·, T ) − uexa(·, T )
∥∥

L2 .

In Eq. (4.2) of Section 4, we truncate the power series expansion of the special function J(t − τ ) to obtain a fast algorithm.
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Fig. 3. The relationship between the choosing of K and the accuracy of the result for Example 2 with the fixed time t = 5, h = 1/160.

Fig. 4. The decay rate of the error in L2 norm in choosing different K for Example 2 with the fixed time t = 5. From left to right, K = 0,2,4,6,8,10,
h = 1/160.

Numerical tests indicate that the numerical accuracy of the fast algorithm highly depends on the computational time t
and the choosing of truncation term number K . When the computational time is not very long compared with the spatial
domain [−1,1], only using few terms (with K small) can get a very high accuracy. For long time computation, in order to
get the same accuracy, we must increase the term number K accordingly.

Fig. 3 shows the relation between computational accuracy and the different number K . For the fixed time t = 5, we
can see that when K � 4, the numerical solution is almost the same with the exact solution. Fig. 4 shows the convergence
rate between the numerical solution and the exact solution for different K . Fig. 5 shows the long time propagation of the
Klein–Gordon equation.

7. Conclusion

In this paper, we analyze the finite difference method for the one-dimensional Klein–Gordon equation on the unbounded
domain. Two artificial boundary conditions are obtained to reduce the original problem to an initial boundary value problem
on a bounded computational domain, which is discretized by an explicit difference scheme. The stability and convergence
of the scheme are analyzed by the energy method. A fast algorithm is obtained to reduce the computational cost and a
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Fig. 5. Long time (t = 20 s) computation of Example 2.

discrete artificial boundary condition (DABC) is derived by the Z -transform approach. Finally, we illustrate the efficiency
of the proposed method by several numerical examples. The artificial boundary condition for the multi-dimensional and
nonlinear Klein–Gordon equation will be considered as our further work.
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