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a b s t r a c t

In this paper, we propose a dynamically low-dimensional approximation method to
solve a class of time-dependent multiscale stochastic diffusion equations. In Cheng
et al. (2013) a dynamically bi-orthogonal (DyBO) method was developed to explore
low-dimensional structures of stochastic partial differential equations (SPDEs) and solve
them efficiently. However, when the SPDEs have multiscale features in physical space,
the original DyBO method becomes expensive. To address this issue, we construct
multiscale basis functions within the framework of generalized multiscale finite element
method (GMsFEM) for dimension reduction in the physical space. To further improve the
accuracy, we also perform online procedure to construct online adaptive basis functions.
In the stochastic space, we use the generalized polynomial chaos (gPC) basis functions
to represent the stochastic part of the solutions. Numerical results are presented to
demonstrate the efficiency of the proposed method in solving time-dependent PDEs with
multiscale and random features.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Uncertainty arises in many real-world problems of scientific applications, such as heat propagation through random
media or flow driven by stochastic forces. These kinds of problems usually have multiple scale features involved in
the spatial domain. For example, to simulate flows in heterogeneous porous media, the permeability field is often
parameterized by random fields with multiple-scale structures.

Stochastic partial differential equations (SPDEs), which contain random variables or stochastic processes, play impor-
tant roles in modeling complex problems and quantifying the corresponding uncertainties. Considerable amounts of efforts
have been devoted to study SPDEs, see [1–10] and references therein. These methods are effective when the dimension
of solution space is not huge. However, when SPDEs have multiscale features, the SPDE problems become difficult since
it requires tremendous computational resources to resolve the small scales of the SPDE solutions. This motivates us to
develop efficient numerical schemes to solve these challenging problems.

In this paper, we shall consider the time-dependent SPDEs with multiscale coefficients as follows

∂uε

∂t
(x, t, ω) = Lεuε(x, t, ω), x ∈ D, t ∈ (0, T ], ω ∈ Ω, (1)
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where suitable boundary and initial conditions are imposed, D ⊂ Rd is a bounded spatial domain, Ω is a sample space,
and Lε is an elliptic operator that contains multiscale and random coefficient, where the smallest-scale is parameterized
by ε.

The major difficulties in solving (1) come from two parts. In the physical space, we need a mesh fine enough to resolve
the small-scale features. In the random space, we need extra degrees of freedom to represent the random features.
Moreover, the problem (1) becomes more difficult if the dimension of the random input is high. To address these
challenges, we shall explore low-dimensional structures hidden in the solution uε(x, t, ω). Specifically, if the solution
uε(x, t, ω) is a second-order stochastic process at each time t > 0, i.e., uε(x, t, ω) ∈ L2(D × Ω) for each t , one can
approximate the solution uε(x, t, ω) by its m-term truncated Karhunen–Loève (KL) expansion [11,12]

uε(x, t, ω) ≈ ūε(x, t) +

m∑
i=1

uεi (x, t)Yi(ω, t) = ūε(x, t) + U(x, t)YT (ω, t), (2)

where U(x, t) = (uε1(x, t), . . . , u
ε
m(x, t)) and Y(ω, t) = (Y1(ω, t), . . . , Ym(ω, t)). The KL expansion gives the compact

representation of the solution. However, the direct computation of the KL expansion can be quite expensive since we
need to form a covariance kernel and solve a large-scale eigenvalue problem.

In [13,14], a dynamically bi-orthogonal (DyBO) method was developed. This new method derives an equivalent system
that can faithfully track the KL expansion of the SPDE solution. In other words, the DyBO method gives the evolution
equations for ūε , U, and Y. The DyBO method can accurately and efficiently solve many time-dependent SPDEs, such as
stochastic Burger’s equations and stochastic Navier–Stokes equations, with considerable savings over existing numerical
methods. To explore the low-dimensional features of the solutions to the SPDEs, a dynamically orthogonal (DO) method
was proposed [15]. Later on, the equivalence of DOmethod and DyBOmethod has been shown in [16] and the effectiveness
of the DO and DyBO has also been discussed theoretically in [17]. This area is very active and highly demanded due to
the latest advances in the UQ research.

If the SPDEs have multiscale features in the physical space (i.e., the smallest-scale parameter ε is extremely small),
however, the original DyBO method (as well as the DO method) becomes computationally expensive since one needs
enormous degrees of freedom to represent the multiscale features in the physical space. To overcome this difficulty, we
shall apply the GMsFEM [18,19] to construct multiscale basis functions within each coarse grid block for model reduction
in the physical space.

In the GMsFEM, we divide the computation into two stages: the offline stage and the online one. In the offline
stage, we first compute global snapshot functions within each coarse neighborhood based on the given coarse and fine
meshes and construct multiscale basis functions to represent the local heterogeneities. When the snapshot functions
are computed, one can construct the multiscale basis functions in each coarse patch by solving some well-designed local
spectral problems and identify the crucial multiscale basis functions to form the offline function space. In the online stage,
we add more online multiscale basis functions that are constructed using the offline space. These online basis functions
are computed adaptively in some selected spatial regions based on the current local residuals and their construction is
motivated by the analysis in [20]. In general, the algorithm can guarantee that additional online multiscale basis functions
will reduce the error rapidly if one chooses a sufficient number of offline basis functions. We should point out that there
are many existing methods in the literature to solve multiscale problems though; see [21–30] and references therein.
Most of these methods are designed for multiscale problems with deterministic coefficients.

In our new method, we first derive the DyBO formulation for the multiscale SPDEs (1), which consists of deterministic
PDEs for ūε and U respectively and an ODE system for the stochastic basis Y. For the deterministic PDEs (for ūε and U)
in the formulation, we shall apply the GMsFEM to construct multiscale basis functions and use these multiscale basis
functions to represent ūε and U. It leads to considerable savings over the original DyBO method. For the ODE system, the
memory cost is relatively small and we shall apply a suitable ODE solver to compute the numerical solution. The GMsFEM
enables us to significantly improve the efficiency of the DyBO method in solving time-dependent PDEs with multiscale
and random coefficients.

The rest of the paper is organized as follows. In Section 2, we will introduce the framework of DyBO formulation. The
GMsFEM and its online adaptive algorithm will be outlined in Section 3. The implementation issues of the algorithm and
the numerical results will be given in Section 4. Finally, some concluding remarks will be drawn in Section 5.

2. The DyBO formulation for multiscale time-dependent SPDEs

In this paper, we consider a class of parabolic equations with multiscale and random coefficients
∂uε

∂t
= Lεuε x ∈ D, t ∈ (0, T ], ω ∈ Ω, (3a)

uε(x, 0, ω) = u0(x, ω) x ∈ D, ω ∈ Ω, (3b)

B
(
uε(x, t, ω)

)
= h(x, t, ω) x ∈ ∂D, ω ∈ Ω. (3c)

where D ⊂ Rd (d = 2, 3) is a bounded spatial domain, (Ω,F,P) is a probability space, and suitable boundary and
initial conditions are imposed. The differential operator Lε is defined as Lεuε := ∇ · (aε(x, ω))∇uε + f (x). The multiscale
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information is described by the parameter ε and the force f : Rd
→ R is in L2(D). Assume that there exist two constants

amax ≫ amin > 0 such that P(ω ∈ Ω : aε(x, ω) ∈ [amin, amax], a.e. x ∈ D) = 1. Note that we are interested in the case that
the coefficient aε(x, ω) has high contrast within the domain D, where the mode reduction technique in physical space is
necessary to reduce degrees of freedom in representing the solution.

2.1. An abstract framework for SPDEs

To make this paper self-contained, we briefly review the DyBO method [13,14]. We assume the solution uε(x, t, ω) to
(3) satisfies uε(·, t, ·) ∈ L2(D×Ω) for each time t ∈ (0, T ]. We consider the m-term truncated KL expansion with m ∈ N+

ũε(x, t, ω) = ūε(x, t) +

m∑
i=1

uεi (x, t)Yi(ω, t) = ūε(x, t) + U(x, t)YT (ω, t) ≈ uε(x, t, ω), (4)

as an approximation to the solution uε(x, t, ω). Here, ūε(x, t) is the mean of the solution,

U(x, t) =
(
uε1(x, t), . . . , u

ε
m(x, t)

)
and Y(ω, t) = (Y1(ω, t), . . . , Ym(ω, t))

are the spatial and stochastic modes (with zero mean), respectively. We omit the symbol ε to simplify the notation. Next,
by imposing the orthogonal conditions for U and Y⟨

UT , U
⟩
= (

⟨
ui, uj

⟩
δij) and E

[
YTY

]
= Im×m,

we obtain the evolution equations for ūε , U and Y as follows
∂ ū
∂t

= E [L̃u] , (5a)

∂U
∂t

= −UDT
+ E

[
L̃̃uY

]
, (5b)

dY
dt

= −YCT
+

⟨
L̃̃u, U

⟩
Λ

−1
U , (5c)

where ⟨·, ·⟩ denotes the inner product in L2(D), ΛU = diag(
⟨
UT , U

⟩
) ∈ Rm×m, and L̃̃u = L̃u−E [L̃u]. Define two operators

Q : Rk×k
→ Rk×k and Q̃ : Rk×k

→ Rk×k as follows

Q(M) :=
1
2

(
M − MT ) and Q̃(M) := Q(M) + diag(M),

where M ∈ Rk×k is a square matrix and diag(M) is a diagonal matrix whose diagonal entries are equal to those of M.
Then, the matrices C,D ∈ Rm×m in (5) can be solved uniquely from the following linear system

C − Λ
−1
U Q̃ (ΛUC) = 0, (6a)

D − Q (D) = 0, (6b)

DT
+ C = G∗(ūε,U,Y), (6c)

where the matrix is given by G∗(ūε,U,Y) = Λ
−1
U

⟨
UT , E

[
L̃̃uεY

]⟩
∈ Rm×m.

In order to represent the stochastic modes Yi(ω, t) in (5c), one can choose several different approaches including
ensemble representations in sampling methods and spectral representations. In this paper, we use gPC basis functions to
represent the stochastic modes Yi(ω, t). Given two positive integers r and p, we define J

p
r := {α : α = (α1, . . . , αr ), αi ∈

N+, |α| =
∑r

i=1 αi ≤ p}\{0}. Let {Hi(ξ )}∞i=1 denote a one-dimensional family of ρ-orthogonal polynomials, i.e.,∫
∞

−∞

Hi(ξ )Hj(ξ )ρ(ξ ) dξ = δij.

If we write Hα(ξ) =
∏r

i=1 Hαi (ξi) for α ∈ J
p
r and ξ = (ξi)ri=1, then the Cameron–Martin theorem [31] implies the stochastic

modes Yi(ω, t) in (4) can be approximated by

Yi(ω, t) ≈

∑
α∈J

p
r

Hα(ξ(ω))Aαi(t) = H (ξ)Ai(t) i = 1, 2, . . . ,m. (7)

Here, H (ξ) = (Hα (ξ))α∈J
p
r

∈ R1×Np , Ai(t) = (Aαi(t))α∈J
p
r

∈ RNp×1 and Np := |J
p
r |. We remark that for each i = 1, 2, . . . ,m,

the coefficients {Aαi(t)}α∈J
p
r
represent the projection coefficients of the stochastic mode Yi(ω, t) on the gPC basis functions

Hα(ξ), α ∈ J
p
r . Moreover, {Aαi(t)}α∈J

p
r
changes with respect to time. One may write

Y(ω, t) = H (ξ(ω))A(t) (8)

where A(t) = (A1(t), . . . ,Am(t)) ∈ RNp×m. The KL expansion (4) now reads

ũ ≈ ū + UATHT .
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We can derive equations for ū, U and A, instead of ū, U and Y. Here and in the following, we have suppressed the variables
x, t , and ω for notation simplicity. In other words, the stochastic modes Y are identified with a matrix A ∈ RNp×m, which
leads to the DyBO–gPC formulation of SPDE (3)

∂ ū
∂t

= E [L̃u] , (9a)

∂U
∂t

= −UDT
+ E

[
L̃̃uH

]
A, (9b)

dA
dt

= −ACT
+

⟨
E

[
HT L̃̃u

]
, U

⟩
Λ

−1
U , (9c)

where C(t) and D(t) can be solved from the linear system (6) with

G∗(ū,U,Y) = Λ
−1
U

⟨
UT , E

[
L̃̃uY

]⟩
= Λ

−1
U

⟨
UT , E

[
L̃̃uH

]⟩
A. (10)

By solving the system (9), we have an approximate solution to (3)

uDyBO–gPC
= ū + UATHT .

The condition E
[
YTY

]
implies that the columns (Ai)mi=1 are orthonormal, i.e., ATA = Im×m. Note that AAT

∈ RNp×Np in
general is not an identity matrix as m ≪ Np if the SPDE solution has a low-dimensional structure.

2.2. The DyBO formulation for the model problem

In this section, we shall derive the DyBO formulation for the model problem (3). Recall that the definition of the
differential operator is Lu = ∇ · (a(x, ω)∇u) + f (x) and we have omitted ε for notation simplification. We assume that
the coefficient a(x, ω) is of the form a(x, ω) = ā(x)+ ã(x, ω), where ā(x) = E [a(x, ω)] and ã(x, ω) is the fluctuation, which
can be parameterized as follows

ã(x, ω) =

r∑
i=1

ai(x)ξi(ω), i = 1, 2 · · · , r.

Here, r ≥ 1 is a positive integer and {ξi(ω)}ri=1 are independent identically distributed random variables assumed to be
mean-zero. By substituting the expression of Lu into (9), we obtain the DyBO–gPC formulation for the model problem (3)
(see Appendix A for the details of the derivation)

∂ ū
∂t

= ∇ · (ā∇ū) + ∇ · (E
[
ã∇UATHT ]) + f , (11a)

∂U
∂t

= −UDT
+ ∇ · (E

[
ã∇ūH

]
)A + ∇ · (ā∇U) + ∇ · (E

[
ã∇UATHTH

]
)A, (11b)

dA
dt

= −ACT
+

⟨
∇ · (E

[
HT ã∇ū

]
) + ∇ · (ā∇AUT ) + ∇ · (E

[
ãHTHA∇UT ]), U⟩

Λ
−1
U , (11c)

where matrices C and D can be solved from (6) with G∗ = Λ
−1
U

⟨
UT , E

[
L̃uH

]⟩
A.

Remark 2.1. When the force function of the model problem (3) contains randomness, i.e., f (x, ω), one can derive the
DyBO formulation accordingly without any difficulty.

Remark 2.2. The boundary conditions and initial conditions for each physical component, and the initial condition
for each stochastic component can be obtained by projection of the initial and boundary conditions of u(x, t, ω) on the
corresponding components.

Remark 2.3. As the system evolves, the norm of the mode ui (denoted as λi) in the KL expansion may change and some
of them may get closer to each other. In this case, if the matrices C and D are still solved from (6), numerical errors will
pollute the results. One may freeze U or Y temporarily for a short time and continue to evolve the system. At the end of
this short period, the solution is recast into the bi-orthogonal form via the KL expansion. See [13, Section 4.2] for more
details.

3. Multiscale model reduction using the GMsFEM

3.1. Motivations

Since the DyBO formulation (11) involves multiscale features in the physical space, one may consider an efficient solver
to solve the problem in order to reduce the computational cost. As such, we shall apply the GMsFEM to discretize ū and
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U. Note that, Eq. (11a) and each component of Eq. (11b) have the following deterministic time-dependent PDE form
∂w

∂t
= ∇ · (ā∇w) + G, (12a)

w|t=0 = w0. (12b)

for some functions G. For example, in (11a) we have w = ū and G = ∇ · (E
[
ã∇UATHT

]
) + f .

In order to discretize Eq. (12) in time, we apply the implicit Euler scheme with time step ∆t > 0 and obtain the
discretization for each time tn = n∆t , n = 1, 2, . . . ,N (T = N∆t)

wn
− wn−1

∆t
= ∇ · (ā∇wn) + G

where wn
= w(tn) and the above equation is equivalent to the following

−∇ · (ā∇wn) + cwn
= G̃, (13)

where c = 1/∆t and G̃ = cwn−1
+ G. Hence, for each fixed tn > 0, we use the GMsFEM to solve the second order elliptic

PDE (13) with multiscale coefficient ā.

3.2. The GMsFEM and the multiscale basis functions

Next, we present the framework of the GMsFEM for solving (13). We first introduce the notion of fine and coarse grids
that we shall use in the method. Let T H be a conforming partition of the spatial domain D with mesh size H > 0. We
refer to this partition as the coarse grid. Subordinate to T H , we define a fine grid partition denoted by T h, with mesh size
0 < h ≪ H , by refining each coarse element in T H into a connected union of fine elements. Assume the above refinement
is performed such that T h is a conforming partition of D. Denote the interior nodes of T H as xi, i = 1, 2, . . . ,Nin, where
Nin is the number of interior nodes. The coarse elements of T H are denoted as Kj, j = 1, 2., . . . ,Ne, where Ne is the number
of the coarse elements. Define the coarse neighborhood of the node xi by Di :=

⋃
{Kj ∈ T H

: xi ∈ Kj}.
Once the coarse and fine grids are given, one may construct the multiscale basis functions for approximating the

solution of (13). To obtain the multiscale basis functions, we first define the snapshot space. For each neighborhood Di,
define Jh(Di) as the set of fine nodes of T h lying on ∂Di and denote its cardinality as Li ∈ N+. For each fine-grid node
xj ∈ Jh(Di), define a fine-grid function δhj on Jh(Di) as δhj (xk) = δjk. Next, for j = 1, . . . , Li, define the snapshot function ψ (i)

j
in coarse neighborhood Di as the solution to the following system

−∇ · (ā∇ψ (i)
j ) = 0 in Di, (14)

ψ
(i)
j = δhj on ∂Di. (15)

The local snapshot space V (i)
snap corresponding to the coarse neighborhood Di is defined as follows V (i)

snap := snap{ψ
(i)
j : j =

1, . . . , Li} and the snapshot space reads Vsnap :=
⨁Nin

i=1 V
(i)
snap.

The snapshot space defined above is usually of large dimension. Therefore, a dimension reduction is performed on Vsnap
to archive a smaller space Voff, which contains the multiscale basis functions for simulation. This reduction is achieved
by performing a spectral decomposition on each local snapshot space V (i)

snap. The analysis in [32] motivates the following
construction. For each i = 1, . . . ,Nin, the spectral problem is to find (φ(i)

j , λ
(i)
j ) ∈ V (i)

snap × R such that∫
Di

ā∇φ(i)
j · ∇v = λ

(i)
j

∫
Di

âφ(i)
j v ∀v ∈ V (i)

snap, j = 1, . . . , Li, (16)

where â := ā
∑Nin

i=1 H
2
|∇χi|

2 and {χi}
Nin
i=1 is a set of partition of unity satisfying the following system

−∇ · (ā∇χi) = 0 in K ⊂ Di,

χi = pi on each ∂K with K ⊂ Di,

χi = 0 on ∂Di.

Assume that the eigenvalues obtained from (16) are arranged in ascending order and we may use the first 0 < li ≤ Li
(with li ∈ N+) eigenfunctions (related to the smallest li eigenvalues) to form the local multiscale space V (i)

off := span{χiφ
(i)
j :

j = 1, . . . , li}. The multiscale space Voff is the direct sum of the local multiscale spaces, namely Voff :=
⨁Nin

i=1 V
(i)
off.

Once the multiscale space Voff is constructed, we can find the GMsFEM solution un
off ∈ Voff at time t = tn, n = 1, . . . ,N ,

by solving the following equation

A(un
off, v) + c

⟨
un
off, v

⟩
=

⟨
cun−1

off + G, v
⟩

∀v ∈ Voff, (17)

where A(u, v) :=
∫
D ā∇u · ∇v.
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Remark 3.1. The above derivation of Voff is based on the (mean) coefficient ā and the multiscale basis functions in Voff
are suitable for approximating ū. In this paper, we assume that the fluctuation of the coefficient is a small perturbation
to the mean. Therefore, the multiscale space Voff can also efficiently approximate U.

3.3. Online adaptive algorithm

In order to achieve a rapid convergence in the GMsFEM, one may add some online basis functions to enrich the
multiscale space Voff based on local residuals. In this subsection, we briefly outline the online adaptive algorithm for
the GMsFEM.

Let un
off ∈ Voff be the numerical solution obtained in (17) at time t = tn. Given a coarse neighborhood Di, we define

Vi := H1
0 (Di)∩Vsnap equipped with the norm ∥v∥2

Vi
:=

∫
Di
ā(x)|∇v|2. We also define the local residual operator Rn

i : Vi → R
by

Rn
i (v; u

n
off) :=

∫
Di

(
cun−1

f + G
)
v −

∫
Di

(
ā∇un

off · ∇v + cun
offv

)
∀v ∈ Vi, (18)

where un−1
f is the fine-scale solution at time t = tn−1. The operator norm of Rn

i , denoted by ∥Rn
i ∥V∗

i
gives a measure of

the quantity of the residual. The online basis functions are computed during the time-marching process for a given fixed
time t = tn, contrary to offline basis functions that are pre-computed.

Suppose that one needs to add an online basis φ into the space Vi. The analysis in [20] suggests that the required
online basis φ ∈ Vi is the solution to the following equation

A(φ, v) = Rn
i (v; u

n,τ
off ) ∀v ∈ Vi. (19)

We refer to τ ∈ N as the level of enrichment and denote un,τ
off as the solution of (17) in V n,τ

off . Remark that V n,0
off := Voff

for time level n ∈ N. Let I ⊂ {1, 2, . . . ,Nin} be the index set over some non-overlapping coarse neighborhoods. For each
i ∈ I, we obtain an online basis φi ∈ Vi by solving (19) and define V n,τ+1

off = V n,τ
off ⊕ span{φi : i ∈ I}. After that, solve (17)

in V n,τ+1
off to get un,τ+1

off . Consequently, following the arguments in [20], we have at time t = tn,

∥un
f − un,τ+1

off ∥
2
V ≤

(
1 −

Λ
(I)
min

Cerr

∑
i∈I ∥Rn

i ∥V∗
i
(λ(i)li+1)

−1∑N
i=1 ∥Rn

i ∥V∗
i
(λ(i)li+1)−1

)
∥un

f − un,τ
off ∥

2
V , (20)

where Cerr is a uniform constant and Λ(I)
min = mini∈I λ

(i)
li+1. Here, the norm is defined by ∥ · ∥V :=

√
A(·, ·). Inequality (20)

shows that we can obtain a better accuracy by adding more online basis functions at each time t = tn and the rate of
convergence depends on the constant Cerr and Λ

(I)
min.

3.4. The implementation of our new algorithm

We summarize the computational scheme for the problem in this section. Recall that the multiscale coefficient is
a(x, ω) = ā(x)+ ã(x, ω). The mean has high contrast in nature and the fluctuation part is ã(x, ω) =

∑r
i=1 aiξi = aiξi, where

the Einstein notation is used. We rewrite the DyBO formulation for (9) as follows
∂ ū
∂t

= ∇ · (ā∇ū) + ∇ · (E
[
aiξi∇UATHT ]) + f , (21)

∂U
∂t

= −UDT
+ ∇ · (E [aiξi∇ūH])A + ∇ · (ā∇U) + ∇ · (E

[
aiξi∇UATHTH

]
)A, (22)

dA
dt

= −ACT
+

⟨
∇ · (E

[
HTaiξi∇ū

]
) + ∇ · (ā∇AUT ) + ∇ · (E

[
aiξiHTHA∇UT ]), U⟩

Λ
−1
U . (23)

We assume that homogeneous boundary condition is imposed. Hence, the solutions ū and U = (u1, . . . , um) will vanish
on ∂D. If the model problem (3) has inhomogeneous boundary condition, the boundary conditions for ū and U can be
obtained by taking expectation of u on the corresponding components. The initial conditions for ū, U and A depend on
the initial condition of u, which will be discussed in Section 4. For the details of implementation, see Appendix B.

4. Numerical experiments

In this section, we present some numerical examples to demonstrate the efficiency of our proposed method. The
computational domain is D = (0, 1)2 ⊂ R2 and T = 1. First, we divide the domain D into several equal square units with
mesh size H > 0 and refer to it as the coarse mesh T H . Next, we divide each coarse element into several equal square
blocks with mesh size h > 0 and refer to it as the fine mesh T h. Then, we discretize ū and U in the DyBO formulation
by using the GMsFEM to reduce degrees of freedom in representing the multiscale solutions. Thus, with the multiscale
basis functions, we can represent ū and U on the coarse mesh. In all examples, the number of initial local basis functions
is Li = 4.
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The multiscale coefficient is assumed to be a(x, ω) = ā(x) +
∑r

i=1 ai(x)ξi(ω), where ai(x) is a small (or multiscale)
perturbation and {ξi(ω)}ri=1 is a set of i.i.d. uniform-distributed random variables over [−1, 1]. Moreover, we assume that
there exist two constants amax ≫ amin > 0 such that P(ω ∈ Ω : a(x, ω) ∈ [amin, amax], a.e. x ∈ D) = 1.

The initial condition of the solution is assumed to have the form of m-terms truncated KL expansion

ũ(x, 0, ω) = ū(x, 0) +

m∑
i=1

ui(x, 0)Yi(ω, 0). (24)

The stochastic basis Yi(ω, t) can be expanded as Yi(ω, t) =
∑Np

j=1 Hj(ω)Aji(t) for each i = 1, . . . ,m. Here, {Hj(ω)}
Np
j=1 is a

set of tensor products of orthogonal polynomials in R, Np =
(p+r)!
p!r! − 1, and p is the maximum degree of polynomial.

Denote A(t) = (Aji(t))Np×m. The initial condition of the matrix A(t)|t=0=
(
Aji(0)

)
Np×m should satisfy E [HA] = 0 and

AT (t)A(t)|t=0= Im×m.
For each function to be approximated (e.g. ū, ui or the variance function var(u) :=

∑m
i=1 u

2
i ), we define the following

quantity at t = tn to measure the numerical error

en2 =
∥un

f − un
approx∥L2(D)

∥un
f ∥L2(D)

,

where un
f is the reference solution and un

approx is the approximation obtained by the proposed method. In the remaining
part of this paper, we refer to this quantity as L2-error.

Example 4.1. We set the mesh size to be H = 1/10 and h = 1/100. The time step is∆t = 10−3. The multiscale fluctuation
is parameterized by three independent random variables (r = 3) and the number of terms in the KL expansion is m = 4.
Next, we set the coefficients ai (i = 1, 2, 3) to be

a1(x1, x2) = 0.04 ×

2 + P1 sin(
2π (x1−x2)

ε1
)

2 − P1 cos(
2π (x1−x2)

ε1
)
, P1 = 1.6 and ε1 = 1/8,

a2(x1, x2) = 0.08 ×

2 + P2 cos(
2πx1
ε2

)

2 − P2 sin(
2πx2
ε2

)
, P2 = 1.5 and ε2 = 1/7,

a3(x1, x2) = 0.16 ×

2 + P3 sin(
2π (x1−0.5)

ε3
)

2 − P3 cos(
2π (x2−0.5)

ε3
)
, P3 = 1.4 and ε3 = 1/6.

The mean ā of the multiscale coefficient is of high-contrast (see Fig. 1a). The source function is chosen to be f ≡ 1. The
initial conditions for the mean of the solution and the physical modes are given as follows

ū(x1, x2, t)|t=0 = 32
(
1 − cos(2πx1)

)(
1 − cos(2πx2)

)
,

u1(x1, x2, t)|t=0 = 24
(
1 − cos(2πx1)

)(
1 − cos(2πx2)

)
,

u2(x1, x2, t)|t=0 = 16
(
1 − cos(4πx1)

)(
1 − cos(4πx2)

)
,

u3(x1, x2, t)|t=0 = 8
(
1 − cos(6πx1)

)(
1 − cos(6πx2)

)
,

u4(x1, x2, t)|t=0 = 4
(
1 − cos(8πx1)

)(
1 − cos(8πx2)

)
.

The history of the L2-error is recorded in Table 1. One can find that at the specific time level the L2-errors of the
quantities to be approximated are relative small (less than 1%) when the online procedure is terminated. It shows that
the proposed method can approximate the stochastic multiscale diffusion problem with certain accuracy. We remark that
due to the linearity of the diffusion problem and its DyBO formulation, one may easily extend this algorithm to the case
with more modes in the KL expansion. In addition, one can adopt the adaptive approach proposed in [14] to dynamically
change the number of the modes in the DyBO formulation during the numerical simulation.

Example 4.2. We keep H and h the same as in Example 4.1. The time step is still ∆t = 10−3. The mean permeability
field ā in this example is chosen from the SPE10 data set [33] and the data is moderately related to the real physical
applications (see Fig. 1b). The fluctuation part is parameterized by four independent random variables (r = 4) and the

coefficients are set as ai(x1, x2) = 0.02 ×
2+Pi sin(

2π (x1−x2)
εi

)

2−Pi cos(
2π (x1+x2)

εi
)
, i = 1, . . . , 4, where [P1, P2, P3, P4] = [1.4, 1.5, 1.6, 1.7] and

[ε1, ε2, ε3, ε4] = [
1
9 ,

1
8 ,

1
7 ,

1
6 ]. The number of modes in the KL expansion is m = 3 and the source function is f ≡ 1. The

initial conditions for the mean and the physical modes are given as follows

ū(x1, x2, t)|t=0 = 4
(
1 − cos(2πx1)

)(
1 − cos(2πx2)

)
,
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Fig. 1. The mean component of the permeability.

Table 1
L2-error for each functions in Example 4.1. (S: start, E: end).
Function Online status t = 0.1 t = 0.2 t = 0.4 t = 0.8 t = 1.0

ū S 3.7904% 4.0551% 4.0404% 4.0278% 4.0378%
E 0.3883% 0.4076% 0.4059% 0.4042% 0.4062%

u1
S 3.7449% 5.0027% 4.3672% 4.2385% 4.5720%
E 0.4247% 0.4000% 0.3489% 0.3964% 0.3641%

u2
S 4.9319% 6.7831% 7.5986% 5.0301% 5.2988%
E 0.4284% 0.4496% 0.5077% 0.3662% 0.3708%

u3
S 8.2879% 14.5263% 5.7078% 14.5705% 8.4522%
E 0.5011% 0.5505% 0.4391% 0.5294% 0.4251%

u4
S 14.9988% 12.6509% 11.0844% 22.7257% 20.3689%
E 0.6415% 0.4641% 0.4586% 0.6168% 0.6943%

var(u) S 6.3057% 7.6541% 6.7792% 6.6286% 6.8721%
E 0.6795% 0.6729% 0.5870% 0.6181% 0.6258%

u1(x1, x2, t)|t=0 = 16
(
1 − cos(4πx1)

)(
1 − cos(4πx2)

)
,

u2(x1, x2, t)|t=0 = 4
(
1 − cos(6πx1)

)(
1 − cos(6πx2)

)
,

u3(x1, x2, t)|t=0 = 2
(
1 − cos(8πx1)

)(
1 − cos(8πx2)

)
.

One may notice that this problem has multiscale features driven by the mean field ā and some small random perturbations.
The solution profiles of the mean and the variance at t = 0.1 are plotted in Fig. 2. One can see that our method archives
a certain level of accuracy when the problem has both multiscale and random features.

In both the numerical experiments, a few times of online enrichments are required at each time level. Meanwhile, the
L2-error between the multiscale solution and the fine-scale solution is nearly less than 2% when the online procedure is
terminated.

We remark that the contrast value in SPE10 model used in Example 4.2 is already scaled down by 100 times. The
difficulty of these kinds of stochastic multiscale problem is that when the contrast value is high (e.g. maxx∈D

(
a(x)

)
≈ 104

or larger), the usual computational schemes for UQ problems fail to obtain a good approximation, even though the random
perturbation is small. We shall develop a more robust method to compute stochastic multiscale problems with higher
contrast value in our subsequent research.

Example 4.3. In this example, we compare the efficiency between the proposed method and the fine-scale method in
terms of the CPU time. First, we set the mesh size to be H = 1/10 and h = 1/400. The time step is∆t = 1/80 and the final
time is T = 1. We keep the setting of random variables and initial conditions the same as in Example 4.1. Table 2 records
the L2-error at certain time level using online adaptivity. We remark that when the multiscale space contains sufficiently
many initial local basis functions, only 1-2 times of iterations are required to achieve such certain accuracy. Furthermore,
one may achieve moderate computational savings with the proposed multiscale solver. From the data in Table 3, one may
observe that the proposed DyBO–GMsFEM solver outperforms the fine-scale solver with 20 times speed-up in terms of
the CPU times.
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Fig. 2. Solution profiles at t = 0.1 in Example 4.2.

Table 2
L2-error for each function in Example 4.3; online process terminated.
Function t = 1/8 t = 1/4 t = 1/2 t = 3/4 t = 1

ū 0.2286% 0.2317% 0.2621% 0.1922% 0.3450%
u1 0.2416% 0.2758% 0.2659% 0.2497% 0.2478%
u2 0.2774% 0.3218% 0.3403% 0.2975% 0.2791%
u3 0.5053% 0.3110% 0.3701% 0.2835% 0.4562%
u4 0.7377% 0.2931% 0.4040% 0.3612% 0.4286%
var(u) 0.3911% 0.4730% 0.4276% 0.4219% 0.4131%

Table 3
CPU times of the fine-scale solver and the proposed solver. (H = 1/10 and h = 1/400).
Function CPU times (s)

Fine-scale solver Proposed solver

Mean ū 44.1012 2.0763
Modes ui 170.9146 9.4423
Total 215.0158 11.5186

5. Conclusion

In this paper, we proposed a new framework combining the DyBO formulation and the online adaptive GMsFEM to
solve time-dependent PDEs with multiscale and random features. For a given multiscale PDE with random input, one can
derive its corresponding DyBO formulation under the assumption that the solution has a low-dimensional structure in
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the sense of Karhunen–Loève expansion. The DyBO method enables one to faithfully track the KL expansion of the SPDE
solution.

For the mean of the solution and physical modes of the solution in the truncated KL expansion, they are deterministic
and dependent on time, which were solved using the GMsFEM with implicit Euler scheme. Moreover, at each time level,
the online construction was applied in order to reduce the L2-error rapidly. For the stochastic modes of the solution in
the truncated KL expansion, we projected them onto a set of polynomial chaos to obtain an ODE system, which could
be solved using some existing solvers. Thanks to the approximation property of the multiscale basis functions obtained
using the GMsFEM, the degree of freedom of our new method is relatively small compared with the original DyBO method.
Therefore, our new method provides considerable computational savings over the original DyBO method.

We presented several numerical examples for 2D stochastic parabolic PDEs with multiscale coefficients to demonstrate
the accuracy and efficiency of our proposed method. One may obtain significant saving in computation with the proposed
multiscale solver without losing the accuracy of approximations. We point out that the stochastic multiscale problem is
still very challenging when the contrast value of the coefficient is very large, which will be our subsequent research work.
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Appendix A. Derivations of the DyBO formulation for the multiscale SPDE

In this appendix, we provide the details of the derivations of the DyBO–gPC formulation of multiscale SPDE (3).
Substituting the KL expansion of u (see Eq. (2)) into Eq. (3), we get

Lu = ∇ · ((ā + ã)(∇ū + ∇UATHT )) + f

= ∇ · (ā∇ū) + ∇ · (ã∇ū) + ∇ · (ā∇UATHT ) + ∇ · (ã∇UATHT ) + f .

Taking expectations on both sides yields

E [Lu] = ∇ · (ā∇ū) + ∇ · (E
[
ã∇UATHT ]) + f ,

where we have used the facts that E
[
ã
]

= 0 and E [H] = 0. Then, we obtain

L̃u = Lu − E [Lu]

= ∇ · (ã∇ū) + ∇ · (ā∇UATHT ) + ∇ · (ã∇UATHT ) − ∇ · (E
[
ã∇UATHT ])

In addition, we compute some related terms as follows

E
[
L̃uH

]
= ∇ · (E

[
ã∇ūH

]
) + ∇ · (ā∇UAT ) + ∇ · (E

[
ã∇UATHTH

]
)

and ⟨
UT , E

[
L̃uH

]⟩
m×Np

=
⟨
UT , ∇ · (E

[
ã∇ūH

]
) + ∇ · (ā∇UAT ) + ∇ · (E

[
ã∇UATHTH

]
)
⟩

From Eq. (9), we obtain the DyBO–gPC formulation for the multiscale SPDE (3)
∂ ū
∂t

= ∇ · (ā∇ū) + ∇ · (E
[
ã∇UATHT ]) + f ,

∂U
∂t

= −UDT
+ ∇ · (E

[
ã∇ūH

]
)A + ∇ · (ā∇U) + ∇ · (E

[
ã∇UATHTH

]
)A,

dA
dt

= −ACT
+

⟨
∇ · (E

[
HT ã∇ū

]
) + ∇ · (ā∇AUT ) + ∇ · (E

[
ãHTHA∇UT ]), U⟩

Λ
−1
U ,

where matrices C and D can be solved from (6) with G∗

G∗ = Λ
−1
U

⟨
UT , E

[
L̃uH

]⟩
A.

and we have used that ATA = Im×m.

Appendix B. The implementation of DyBO–GMsFEM

In this section, we present the details of the implementation of our complete algorithm. We denote Voff = span{ηi :

i = 1, . . . ,Nd} and the row vector C = C(x) =
(
η1(x), . . . , ηNd (x)

)
, where Nd = dim(Voff). For each time t = tn, we seek
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the approximations for the functions ū and U using the multiscale basis functions and the following representations hold

ū(x, t) = C(x)û0(t), û0(t) ∈ RNd ,

U(x, t) = C(x)Ûm(t), Ûm(t) := (û1(t), . . . , ûm(t)) ∈ RNd×m.

Then, the variational form of (21) becomes

M
dû0

dt
= −S0û0 − SiÛmATE

[
ξiHT ]

+ f̂ , (B.1)

where

M = (
⟨
ηj, ηk

⟩
) ∈ RNd×Nd , S0 = (

⟨
āηj, ηk

⟩
) ∈ RNd×Nd ,

Si = (
⟨
aiηj, ηk

⟩
) ∈ RNd×Nd , i = 1, . . . , r, f̂ = (⟨f , η1⟩ · · ·

⟨
f , ηNd

⟩
)T ∈ RNd .

Similarly, the variational form of (22) becomes

M
dÛm

dt
= −MÛmDT

− Siû0E [ξiH]A − S0Ûm − SiÛmATE
[
ξiHTH

]
A, (B.2)

where the Einstein notation is used. Next, we apply the implicit Euler method to approximate the time derivatives in
(B.1) and (B.2). Combining with the variational forms, we obtain the following algebraic equations at each fixed time
t = tn = n∆t , n = 1, . . . ,N

S0ûn
0 + cMûn

0 = Gn−1
1 , (B.3)

S0Ûn
i + cMÛn

i = Gn−1
2 , i = 1, . . . ,m, (B.4)

where c = 1/∆t and the right hand sides G1 and G2 are defined as follows

Gn−1
1 = cMûn−1

0 − SiÛn−1
m AT

n−1E
[
ξiHT ]

+ f̂ ,

Gn−1
2 = cMÛn−1

m − MÛn−1
m DT

n−1 − Siûn−1
0 E [ξiH]An−1 − SiÛn−1

m AT
n−1E

[
ξiHTH

]
An−1,

where An−1 = A(tn−1), Ûn
m = Ûm(tn), ûn

0 = û0(tn), and Dn = D(tn). Using integration by part one simplifies the ODE system
for A(t) = (A1(t), . . . ,Am(t)) ∈ RNp×m as follows

dA
dt

= −ACT
−

(
E

[
ξiHT ] ûT

0SiÛm + AÛT
mS0Ûm + E

[
ξiHTH

]
AÛT

mSiÛm
)
Λ

−1
U . (B.5)

Here, Ai(t) = (Aαi(t))α∈J
p
r

∈ RNp×1, i = 1, . . . ,m represent the stochastic components of the solution, which change with
respect to time. Then, we use implicit Euler scheme to approximate the time derivative and get

An = An−1 −∆t
(
An−1CT

n−1 + Gn−1
3

)
, (B.6)

where Cn−1 = C(tn−1) and

Gn−1
3 =

(
E

[
ξiHT ] (ûn−1

0 )TSiÛn−1
m + An−1(Ûn−1

m )TS0Ûn−1
m + E

[
ξiHTH

]
An−1(Ûn−1

m )TSiÛn−1
m

)
Λ

−1
U .

Overall, we solve the following discrete system to obtain ûn
0, Û

n
m, and An at each time t = tn, n = 1, . . . ,N ,

S0ûn
0 + cMûn

0 = Gn−1
1 , (B.7)

S0Ûn
m + cMÛn

m = Gn−1
2 , (B.8)

An = An−1 −∆t
(
An−1CT

n−1 + Gn−1
3

)
, (B.9)

where the matrices Cn−1 and Dn−1 in (B.7)–(B.9) can be computed using the system (6) with G∗(ū,U,Y) = −Λ
−1
U

(
ÛT
mS

T
i û0

E [ξiH] + ÛT
mSÛmAT

+ ÛT
mS

T
i ÛmATE

[
ξiHTH

])
A.

To improve the accuracy of the spatial approximation, one may possibly perform the online adaptive enrichment at
each time level, adjusting the dimension of the multiscale space. See [20] for more details of the online basis construction
using GMsFEM.
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