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We prove a version of equivariant split generation of Fukaya 
category when a symplectic manifold admits a free action of 
a finite group G. Combining this with some generalizations of 
Seidel’s algebraic frameworks from [35], we obtain new cases 
of homological mirror symmetry for some symplectic tori with 
non-split symplectic forms, which we call special isogenous 
tori. This extends the work of Abouzaid–Smith [2]. We also 
show that derived Fukaya categories are complete invariants 
of special isogenous tori.
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1. Introduction

In this paper we investigate the relation between the Fukaya category of a symplectic 
manifold and its finite coverings. This aspect of Fukaya categories has been considered 
in many different perspectives. For example, in [32] Seidel related an equivariant Fukaya 
category of a branched cover over a quartic surface to the one downstairs, which led to 
the first proof of homological mirror symmetry of complex dimension higher than 1. This 
idea was exploited further in [36][39][12][11][38] for many other instances of homological 
mirror symmetry. Another closely related result was given in [30], where Alex Ritter and 

E-mail address: weiwei.wu@uga.edu.
https://doi.org/10.1016/j.aim.2017.10.036
0001-8708/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aim.2017.10.036
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
mailto:weiwei.wu@uga.edu
https://doi.org/10.1016/j.aim.2017.10.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2017.10.036&domain=pdf


280 W. Wu / Advances in Mathematics 323 (2018) 279–325
Ivan Smith showed that for a finite covering π : X → X with deck transformation G, if 
B is a collection of Lagrangian branes that split generates the Fukaya category Fuk(X), 
then their lifts also split generates Fuk(X).

We would like to address in general the other direction of Ritter–Smith’s result: let 
π : X → X be a finite covering, if B split generates Fuk(X), do their images under the 
projection π also split generate Fuk(X)? The answer is both yes and no: one immediately 
notices that not all images in π(B) are guaranteed to be embedded thus are not even 
objects of Fukaya category of X in the common definition. However, it is conceivable that, 
if one is willing to include immersed objects in the formulation of the Fukaya category, the 
result should still hold by establishing an appropriate version of Abouzaid’s generation 
result [1].

The approach we adopt in this article is technically simpler. We first define a version 
of equivariant Fukaya category Fuk(X)G. The particular formulation we use here is 
very close to that in [12], to which we will compare in Section 4. This category, as 
promised, a technical replacement of the immersed Fukaya category of X, in which the 
extra immersed objects are replaced by G-orbits of their lifts in X, hence simplifying the 
situation.

The main tool of our study of the equivariant Fukaya categories is the following 
G-equivariant version of Abouzaid’s generation criterion. Throughout, we work over a 
ground field K, such that char(K) is coprime with |G|.

Theorem 1.1 (Corollary 4.7). Let B be a subcategory of Fuk(X). If the open–closed string 
map OC : HH∗(B) → HF ∗(X) hits the identity, then G · B split generates Fuk(X)G
over a ground field K, such that char(K) is coprime with |G|.

Following [1], we say the subcategory B resolves the diagonal if it satisfies the condition 
in Theorem 1.1. To relate this equivariant version of Fukaya category to the usual one, 
we consider the following fully faithful functor from Fuk(X) to the G-invariant category 
Fuk(X)G.

Theorem 1.2 (Theorem 4.6). There is a transfer functor T : Fuk(X) → Fuk(X)G which 
is full and faithful.

The functor T is naturally defined using the classical transfer map for covering spaces 
in the Floer context. By definition, it is easy to see that T is an equivalence in the 
following circumstance:

Corollary 1.3 (Corollary 4.9). If B ∈ Ob(Fuk(X)) resolves the diagonal, and π(L) is 
embedded for any L ∈ B, then the collection π(B) split generates Fuk(X) over a ground 
field K, such that char(K) is coprime with |G|.

Our next task is to understand some applications of this equivariant split generation 
mechanism. We are first interested in a general algebraic reduction scheme of a mirror 
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functor when the symplectic side is equipped with a free finite G-action. We set up the 
problem in a rather algebraic manner as follows.

Given an equivalence functor F : C → D between triangulated categories, where C is 
endowed with a strict G-action for a finite group G. D does not inherit a natural strict 
G-action from F in general, but only a coherent G-action. We showed that, when the 
G-action can be lifted up to A∞-level in an appropriate sense, then one may reduce 
F to a fully faithful functor Ffix from Cfix to Dfix, while the two fixed (non-full) 
subcategories and Ffix are again shown to be triangulated. Also, to obtain a more 
natural set up to study Dfix when D is only endowed with a coherent G-action, we 
propose to consider a strictification of G-action Dstrict of D in Section 2.3. We proved 
the existence of a strictification model for any finitely generated groups (although this 
will not be used in the rest of our paper). These are again reminiscent of an idea of Seidel 
in [35, (14b)], where he considers the case when G = Z/2. Combining the results from 
the first part, given a mirror functor m : DπFuk(X) → DbCoh(X∨) with a finite free 
G-action on X, we have fully faithful functors mfix : DπFuk(X/G) → Db(X∨)fix and 
m̄fix : DπFuk(X/G) → (Db(X∨)strict)fix.

We then turn to a new case of homological mirror symmetry following a suggestion of 
Paul Seidel. We call a symplectic form ωlin of R2n linear, if its coefficients are constant 
everywhere. For any linear symplectic forms and a full lattice Γ < R2n, (R2n, ωlin)/Γ is 
a smooth T2n endowed with a quotient symplectic form, which by abuse of notation will 
be denoted as ωlin again. Such symplectic forms on T2n will also be called linear.

Note that the symplectomorphism type of linear symplectic forms on T2n are deter-
mined completely by linear algebra. Namely, a symplectomorphism between two linear 
symplectic forms induces a linear map on H1(T2n, R). Fixing an integral basis in the first 
cohomology groups, such a map belongs to GL(2n, Z), which shows that the cohomology 
classes of the two linear symplectic forms are congruent (as an anti-symmetric bilinear 
form) by such a matrix. Since linear symplectic forms are completely determined by the 
cohomology classes, one may indeed choose a symplectomorphism which lifts to a linear 
transformation on the universal cover.

The main computation concerns the mirror symmetry of a special type of linear sym-
plectic tori, which we call the special isogenous symplectic tori, denoted T (ᾱ)l̄. Roughly 
speaking, these are tori finitely covered by split symplectic tori in a specific way. On 
the B-side, we consider abelian varieties A(ᾱ)l̄ over the Novikov field, which are again 
isogenous in a specific way to split analytic tori. We refer the reader to Definition 5.1
and Example 5.6 for the precise definitions. Our main homological mirror symmetry 
statement reads:

Theorem 1.4. Dπ(Fuk(T (ᾱ)l̄)) is equivalent to Db(A(ᾱ)l̄).

The reconstruction theorem due to Bondal and Orlov [9] shows that the derived 
category of an algebraic variety with ample (anti-)canonical line bundle completely de-
termines the variety. In other words, the derived category is a complete invariant of 
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varieties of this sort. In contrast, this is not the case for abelian varieties [23]. More-
over, Polishchuk [28] and Orlov [25] gave an explicit criterion for two abelian varieties 
to be derived equivalent over a field char(k) = 0. As the mirror of derived categories in 
algebraic geometry, the reconstruction theorem of a Fukaya category still seems to be 
out of reach currently, however, it is still curious how far the Fukaya category is from 
a complete invariant. With the mirror symmetry Theorem 1.4, one verifies the derived 
Fukaya category is a complete invariant of special isogenous tori.

Theorem 1.5. Two special isogenous tori are symplectomorphic if and only if they have 
equivalent derived Fukaya categories.

The proof crucially relies on Orlov’s result, however, the verification of Orlov’s condi-
tion is far from straightforward: we will need to involve flavors of rigid analytic geometry, 
which we will recall in Section 5.1.2 and 5.4. We further propose the following question:

Question 1.6. Is the derived Fukaya category a complete invariant of linear symplectic 
tori?

An affirmative answer to this question should be useful for distinguishing symplectic 
manifolds of shapes T (ᾱ)l̄ ×M , where the elementary linear algebra method would no 
longer work. This will be the topic of a forthcoming work.

Notation: Throughout G will be a finite group acting freely on a symplectic manifold M
unless otherwise specified. When L ⊂ M is Lagrangian submanifold,

• M = M/G, and L = L/G if G preserves the Lagrangian submanifold L ⊂ M ;
• GL = {g ∈ G : g(L) = L} is the isotropy group of L;
• GL = G · L =

⋃
g∈G g · L;

• when x ∈ CF ∗(L0, L1), we denote

G · x =
⊕
g∈G

g · x ∈
⊕
g∈G

CF ∗(gL0, gL1);

• given a strict/coherent G-action on a category C, we denote Cfix or CG as the sub-
category consisting of invariant objects and morphisms. The same applies to a naive 
G-action on an A∞-category;

• the universal Novikov ring is

ΛR = {
∞∑
i=0

aiT
λi , ai ∈ R, λi → +∞, λi ∈ R} (1.1)

for any commutative ring R.
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Standing assumption: To simplify the technicality of the paper, we assume throughout 
that

(1) All Lagrangian submanifolds we consider are spin. We also require that they ei-
ther bounds no holomorphic disks for generic choice of compatible almost complex 
structures; or monotone, i.e.

[ω] = β · [c1(M,L)], β > 0 (1.2)

and

w1(L) = 0 = w2(L). (1.3)

See more discussions on the monotonicity condition from 4.1.2.
(2) gcd(ord(G), char(R)) = 1. When a Z/N -grading is considered for a symplectic/La-

grangian manifold, gcd(ord(G), N) = 1 (see Section 4 for definition and discussions 
on gradings).

Acknowledgments: The author is particularly grateful to Mohammed Abouzaid for very 
informative discussions on [2] and many other aspects of homological mirror symme-
try, which was crucial for the author to initiate this project during the “Workshop on 
Moduli Spaces of Pseudo-holomorphic Curves I” in Simons Center; and to Paul Seidel, 
who suggested considering the special isogenous tori as an application of our reduction 
method. Discussions with Cheol-Hyun Cho, Octav Cornea, Luis Haug, Richard Hind, 
Heather Lee, Yanki Lekili, Tian-Jun Li, Cheuk Yu Mak, Dusa McDuff, Egor Shelukhin, 
Jingyu Zhao have greatly influenced this paper. Part of this work was completed during 
the author’s stay in Michigan State University and supported by Selman Akbulut under 
NSF Focused Research Grants DMS-0244663; Octav Cornea and Francois Lalonde have 
generously supported trips related to this work during my stay in Universite de Montreal 
as a CRM postdoc; Lingyan Xiao helped typesetting part of the first draft of this work. 
My cordial thanks are due to all of them.

2. Algebraic preliminaries

The purpose of this section is two-fold: first we would like to recall basic notions of 
A∞-categories and fix notations for the rest of the paper. Then we discuss some purely 
algebraic results relevant to reducing a mirror functor m : Dπ(Fuk(M)) → D by a finite 
group action. Here D can be any triangulated category, in action it is usually the derived 
category of coherent sheaves or matrix factorizations of the mirror variety/singularity.

The reader will note that we almost always focus on the cohomological level hence 
will mostly only deal with ordinary (triangulated) categories. This is mostly due to the 
attempt of making our discussion as succinct as possible. In fact, once the cohomological 
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level is clear, there is a machinery of obstruction theory developed by Paul Seidel [31, 
Proposition 14.5] and [37] of upgrading equivariant objects from cohomological level to 
chain level (weakly equivariant to coherent equivariant in Seidel’s terminology), therefore, 
we will save ourselves from replicating his work.

2.1. Reminder on A∞-category

We collect necessary notion of A∞-categories we will need, mostly from [35] without 
proofs. Interested readers are referred thereof for a systematic treatment on the topic.

Definition 2.1. Fix an arbitrary field k. An A∞-category consists of the following data:

(1) a set of objects Ob(A),
(2) a graded k-vector space homA(X0, X1) for each X0, X1 ∈ Ob(A),
(3) a k-linear composition maps, for each d ≥ 1,

μd
A : homA(Xd−1, Xd) ⊗ · · · ⊗ homA(X0, X1) −→ homA(X0, Xd)[2 − d],

which satisfies quadratic equations∑
m,n

(−1)�nμd−m+1
A (ad, . . . , an+m+1, μ

m
A(an+m, . . . , an+1), an . . . , a1) = 0

with �n =
∑n

j=1 |aj | − n and where the sum runs over all possible compositions: 
1 ≤ m ≤ d, 0 ≤ n ≤ d −m.

In particular, homA(X0, X1) is a cochain complex with differential μ1
A; the cohomolog-

ical category H(A) has the same objects as A but morphism groups are the cohomologies 
of these cochain complexes. In this case, the natural composition maps inherited from 
μ2 are associative.

Definition 2.2. An A∞-functor F : A → B between A∞-categories A and B comprises

(1) a map F : Ob(A) → Ob(B),
(2) a sequence of multilinear maps for d ≥ 1

Fd : homA(Xd−1, Xd) ⊗ · · · ⊗ homA(X0, X1) → homB(FX0,FX1)[1 − d]

satisfying the polynomial equations

∑
r

∑
s1+···+sr=d

μr
B(Fsr (ad, . . . , ad−sr+1), . . . ,Fs1(as1 , . . . , a1))

=
∑
m,n

(−1)�nFd−m+1(ad, . . . , an+m+1, μ
m
A (an+m, . . . , an+1), an, . . . a1).
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Such an A∞-functor defines an ordinary functor H(F) : H(A) → H(B) which takes 
[a] 	→ [F1(a)].

Definition 2.3. If H(F) is an isomorphism (resp. full or faithful), we say F is a quasi-
isomorphism (resp. cohomologically full or faithful).

For any A∞-category A, one may consider the A∞-modules over A.

Definition 2.4. A left A-module M associates to each object X ∈ ObA a graded vector 
space M(X), together with maps

μk : hom(Xk−1, Xk) ⊗ . . .⊗ hom(X0, X1) ⊗M(X0) → M(Xk) (2.1)

which satisfies A∞ relations from Definition 2.2 so that M becomes an A∞-functor from 
A to Ch, the dg-category formed by chain complexes over k.

The left A-modules form a dg-category, which will be denoted A-mod. Similarly one 
defines the category of right A-modules, denoted as mod-A. There is a A∞ analogue of 
Yoneda embedding:

Definition 2.5. Given an object K ∈ A, we define its Yoneda embedding, a left module Y l
K , 

with

Y l
K(L) := homA(K,L) (2.2)

μk
Yl

K(L) := μk+1
A . (2.3)

In this way Yoneda embedding extends to a cohomologically fully faithful A∞-
embedding Y l : A → A-mod and the same holds true for right mod-A. (For explicit 
formulae of natural transformations between modules see [35, Section 2g].)

One of the basic merits A-module enjoys is the natural triangulated structure. More 
concretely, if c ∈ hom0

A(Y0, Y1) is a cocycle, Cone(c) is an A∞-module defined by

Cone(c)(X) = homA(X,Y0)[1] ⊕ homA(X,Y1) (2.4)

and with operations μd
Cone(c)((b0, b1), ad−1, . . . , a1) given by the pair of terms

(
μd
A(b0, ad−1, . . . , a1), μd

A(b1, ad−1, . . . , a1) + μd+1
A (c, b0, ad−1, . . . , a1)

)
.

In particular one may apply Yoneda embedding and obtain naturally a triangulated 
envelop of A from A-mod, which is the smallest full subcategory which contains Y l(A)
and are closed under taking cones and applying shift functors. An A∞-category which is 
closed under these two operations are called a triangulated A∞ category. A triangulated 
envelop can also be recast by a concrete construction called the twisted complex.
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Definition 2.6. A twisted complex over A is a pair of data (X, δX), so that

(1) X is a formal direct sum over finite index set I

X = ⊕i∈IV
i ⊗Xi

with {Xi} ∈ Ob(A) and V i finite-dimensional graded k-vector spaces.
(2) δX is a matrix of differentials

δX = (δjiX); δjiX =
∑
k

φjik ⊗ xjik

with φjik ∈ Homk(V i, V j), xjik ∈ homA(Xi, Xj) and having total degree |φjik| +
|xjik| = 1. The differential δX should satisfy the two properties
• δX is strictly lower-triangular with respect to some filtration of X;
•
∑∞

r=1 μ
r
ΣA(δX , . . . , δX) = 0.

One observes that twisted complexes form an A∞-category Tw(A) (see [35]), which is 
closed under mapping cones and has a natural automorphism by the degree shift functor 
⊗k[1]. One may show that Tw(A) is naturally quasi-isomorphic to the triangulated en-
velop of the Yoneda modules. For concreteness, we will mostly stick to twisted complexes 
in this paper. From the triangulated structure of Tw(A), one may prove

Lemma 2.7 ([35, 3.29]). H0(Tw(A)) is an (ordinary) triangulated category.

Next we will discuss idempotents. Given an additive category C and X ∈ C, suppose 
we have an idempotent endomorphism p ∈ hom(X, X). A triple (Y, i, r) is called an 
image of p if the following holds:

i ∈ hom(Y,X), r ∈ hom(X,Y ),

ri = idY , ir = p.

C is called idempotent complete or Karoubi complete if every idempotent endomor-
phism has an image in C. An idempotent completion ΠC of C can be constructed in a 
fairly formal way.

Definition 2.8. The idempotent completion ΠC of an additive category C is defined as:

• Ob(ΠC) = {(X, pX) : X ∈ C, p2
X = pX ∈ hom(X, X)},

• hom((X0, pX0), (X1, pX1)) = pX1hom(X0, X1)pX0 .
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Idempotent completions behave well with respect to the triangulated structure:

Theorem 2.9 ([4]). If C is triangulated, then ΠC has a natural induced triangulated struc-
ture.

There is also a notion of idempotents in the A∞ sense. Let A be an A∞-category as 
usual.

Definition 2.10. An idempotent up to homotopy for an object Y is a non-unital 
A∞-functor P : K → A such that P(∗) = Y .

For each idempotent up to homotopy P, one may associate an abstract image of P
which is an A-module (see [35, (4b)]). We then say A is split closed if any such abstract 
image is quasi-isomorphic to a Yoneda image of an object of A.

However, as we mentioned in the beginning of the section, we will only consider 
idempotents after passing to the homotopy level. This does not lose too much information 
due to following observation by Seidel.

Lemma 2.11 ([35, 4c]). Given A∞-categories A, B and a cohomologically fully faithful 
functor F : A → B. Then (B, F) forms an A∞ split-closure of A iff (H∗(B), H∗(F))
forms a split-closure of H∗(A).

In particular, H0(ΠTwA) is equivalent to Π(H0TwA).

We then define the derived category DπA of an A∞-category A as

DπA := H0(ΠTwA) ∼= Π(H0TwA)

While the first model is adopted by most of the existing literature, we will also make 
use of the latter. For situations we will consider, this ambiguity does not incur extra 
complications.

2.2. Group actions on a category

Recall the definition of strict and coherent group action on a category from [35].

Definition 2.12. Let G be a discrete group, A be an additive category, and {Tg}g∈G a set 
of autoequivalences of A such that Te = idA. Then {Tg}g∈G forms

• a strict G-action if Tg1 ◦ Tg0 = Tg1g0 ,
• a coherent G-action if there is a system of isomorphism of functors ϕg1,g0 : Tg1 ◦

Tg0
∼−→ Tg1g0 , such that ϕg1,g0 is the identity when g0 = e or g1 = e, and that:
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Tg3 ◦ Tg2 ◦ Tg1

LTg3
(ϕg1,g2 )

RT1 (ϕg3,g2 )
Tg3g2 ◦ Tg1

ϕg3g2,g1

Tg3 ◦ Tg2g1

ϕg3,g2g1
Tg3g2g1

(2.5)

• We also consider the case when A is an A∞ category with a naive G-action. This 
means {Tg}g∈G is a system of A∞-autoequivalences so that
(1) they form a G-action on Ob(A),
(2) the maps T 1

g : hom(X, Y ) → hom(Tg(X), Tg(Y )) forms a G-action,
(3) T i

g ≡ 0 when i > 1.

The reason we need both notions of G-actions is the following:

Lemma 2.13. Given an equivalence between categories F : C → D and a strict G-action 
on C. Then for any choice of quasi-inverse of G of F , {F ◦ Tg ◦ G}g∈G forms a coherent 
G-action on D.

Proof. See [35, 10c]. �
Definition 2.14. Let C be an additive (A∞, resp.) category with either a strict or coherent 
(naive, resp.) G-action. Its fixed part Cfix denotes the subcategory consisting both objects 
and morphisms fixed by the G-action.

One notes that Cfix is equivalent to the notation Cinv in [35].
It goes without saying that the situation of Lemma 2.13 models the case of mirror 

symmetry, where we have constrained our data so that there is a strict action on the 
A-side, and induce a coherent action on the B-side.

The proof of Lemma 2.13 involves a choice of G. Much of the theory of G-action 
carries out without the explicit mention of G, however, it turns out the invariant part of 
the G-action (the equivariant category) is sensitive to this particular choice. This means 
that if we choose the quasi-inverse in an arbitrary way, F does not descend to a functor 
between the invariant part naturally (even when the coherent action is strictified, see 
Section 2.3). The author does not know if there is a natural way to induce an invariant 
functor Ffix in such cases. Instead, we impose the following extra condition, which can 
always be achieved.

Definition 2.15. In the situation of Lemma 2.13, a quasi-inverse G : D → C is called 
admissible if the following holds:

(1) If Y ∈ F(Cfix), then G(Y ) ∈ Cfix and F ◦ G(Y ) = Y .
(2) If Y0, Y1 ∈ F(Cfix), the pair F : hom(G(Y0), G(Y1)) → hom(Y0, Y1) and G :

hom(Y0, Y1) → hom(G(Y0), G(Y1)) are inverses of each other.
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Lemma 2.16. In the situation of Lemma 2.13, given an admissible quasi-inverse G of F , 
F induces a functor F|Cfix : Cfix → Dfix, which is fully faithful.

Proof. Let {Tg}g∈G denote the functors in G-action as in Definition 2.12. For any X ∈
Cfix, since GF(X) ∈ Cfix, we have F ◦Tg ◦G(FX) = F ◦G(FX) = F(X). The left hand 
side is precisely the induced coherent action on F(X). This proves F(X) ∈ Dfix. The 
property of being fully faithful follows directly from the definition of admissibility (2). �

An important feature of mirror functors is their triangulated structures, hence this 
property of Ffix is our next topic of study. To begin with, we assume throughout the 
rest of this section that:

• In the situation of Lemma 2.13, C, D and F are all triangulated, and the quasi-
inverse G of F is always admissible. (The reader should be reminded that G is also 
triangulated in this case, see [20, p. 4].)

• When G is a naive action on an A∞-category, the G-action sends cohomological units 
to cohomological units (the G-action is c-unital).

We say that Cfix inherits a triangulated structure from C if it has a triangulated 
structure so that all exact triangles in Cfix are triangles in C.

Lemma 2.17. If Cfix inherits a triangulated structure from C, then Dfix and Ffix inherits 
a triangulated structure from D and F .

Proof. Given Y0, Y1 ∈ Dfix, there is a triangle in C for every f ∈ hom(Y0, Y1)fix

GY0
Gf−−→ GY1

i−→ Cone(Gf) j−→ GY0[1]. (2.6)

Since GYi ∈ Cfix and Gf ∈ hom(GY0, GY1)fix (the latter follows from admissibility), 
we have a choice of Cone(Gf) ∈ Cfix from assumption, and i, j are also in the corre-
sponding fixed parts of morphism groups. Applying F to (2.6), the following is a triangle 
in D from the admissibility:

Y0
f−→ Y1

Fi−−→ F(Cone(Gf)) Fj−−→ Y0[1]. (2.7)

But we have seen that F|Cfix : Cfix → Dfix is a well-defined functor, which implies 
(2.7) is indeed a triangle in D with all objects and morphisms belonging to Dfix. This 
verifies that Dfix has an inherited triangulated structure from D. Verification of axioms 
for triangulated structure on Dfix is straightforward and similar to the above proof.

The triangulated structure of Ffix then follows from that of F . �
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The triangulated structure on Cfix comes for free once we bring in a bit more informa-
tion from the chain level. In particular, this always holds when C is the derived category 
of an A∞-category with a naive G-action as the following lemma shows.

Lemma 2.18. For a triangulated A∞-category A with a naive G-action, DπA is a tri-
angulated category with a strict G-action. Moreover, its fixed part (DπA)fix is also 
triangulated.

This is a mild generalization of a result in [14] where Elagin proved the result for 
dg-categories. Of course, the derived category model we have adopted here is much 
more elementary, in particular, we did not explicitly involve A∞-modules hidden in the 
construction of twisted complexes.

Proof. Recall that using Definition 2.8, an object in DπA can be represented as

Z = (Z = (
⊕
i∈I

Vi ⊗Xi, δ), pZ),

where pZ ∈ Hom0(Z, Z) is an idempotent. Using the notation from Definition 2.12, the 
strict action is given by {H0(Tg)}. Hence, an object of (DπA)fix is pair consisting a 
twisted complex and an idempotent, which are both fixed by G. Given a G-invariant 
morphism between two objects f : (Z1, p1) → (Z2, p2) in DπA, if pi = idZi

, then the 
usual construction of twisted complex shows the mapping cone Z0 is also an invariant 
twisted complex. For the general case we argue as in the proof of [4, Lemma 1.13].

Consider the following diagram of triangles:

Z1

p1

Z2

p2

Z0

t

Z1[1]

p1[1]

Z1 Z2 Z0 Z1[1]

(2.8)

From the triangulation structure of H0TwA, there is a t which makes the diagram 
commute. By averaging one may also assume t to be G-invariant. Then [4, Lemma 1.13]
shows

p0 = t + (t2 − t) − 2t(t2 − t) = 3t2 − 2t3

is an idempotent, by which one may replace t in diagram (2.8). Hence (Z0, p0) is the 
mapping cone of f .

Now (TR2) and (TR3) follows from definition and the above averaging trick. This 
applies to the octahedron axiom as well, but we provide a little more details here. Given 
a lower cap of the octahedron, one first completes all objects to a G-invariant twisted 
complex by adding another direct summand. This is always possible since we assumed the 
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cohomological unit and all projections involved to be G-invariant. One then completes 
the octahedron by the canonical construction of mapping cones for twisted complexes, 
which again consists of G-invariant twisted complexes. The averaging trick makes all 
maps on the upper cap G-invariant again. Now the rest of the proof follows literally 
from that of [4, 1.15], by noting that all maps and cones involved are now G-invariant, 
hence this property carries over the whole proof. �

We conclude the general discussions on categorical G-actions by bridging the G-fixed 
derived categories and the derived category of a G-equivariant A∞-category, as will be 
needed in Section 4.

Lemma 2.19. Let A be an A∞-category with a naive G-action. Then there is an isomor-
phism of categories S : ΠH0((TwA)fix) ↪→ (ΠH0TwA)fix = (DπA)fix.

Proof. The proof is tautological but we include it to dispel possible doubts. Define the 
functor S : ΠH0((TwA)fix) → (ΠH0TwA)fix by the natural inclusion. Given (Zi, pZi

)
with Zi ∈ (TwA)fix, i = 0, 1, where pZi

∈ Hom0(Zi, Zi)fix are idempotents. The full 
and faithfulness of S is equivalent to the claim

(pZ1Hom(Z0, Z1)pZ0)fix = pZ1Hom(Z0, Z1)fixpZ0 .

But any morphism on the left has the form of a G-orbit G · (pZ1 ◦ f ◦ pZ1) = pZ1 ◦
(Gf) ◦ pZ0 . On the other hand, for an object (Z, p) ∈ ΠH0(TwA) to be fixed by the 
G-action, Z and p must be both fixed by definition. �
2.3. Strictification of a coherent G-action

In this section we will explain how to obtain a canonical strict G-action model out of 
a coherent one. The advantage of this model is that the discussion of induced coherent 
action on the B-side becomes more canonical. However, for reducing the mirror functor 
we still need the admissibility condition on the quasi-inverse G. Such a strictification 
model was investigated by Paul Seidel in [35, 14b] for the case of G = Z/2. We extend 
this result to all finitely generated groups using Cayley graph, which is actually much 
more than what we need. One may easily see from our argument that this even works 
for a broad generality of infinitely generated G, as long as one stays in cases that an ap-
propriate version of axiom of choice can be set up, so that the corresponding generalized 
Cayley graph has a maximal subtree.

Definition 2.20. Let C be a category with a coherent G-action {Tg, φg0,g1}g,g0,g1∈G. Then 
the canonical strictification model Cstrict is a category equipped with a strict G-action, 
defined by the following data:
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(1) Objects: X ∈ Ob(Cstrict) has the form X = ((Xg)g∈G, F), where Xg ∈ Ob(C), 
F = {Fg}g∈G. Here Fg ∈

⊗
h∈G hom(Xgh, gXh) are isomorphisms. Moreover, we 

require the compatibility condition

{
ϕ−1
g1,g0

◦ Fg1g0 = Tg1(Fg0) ◦ Fg1

Fe = id⊗G
(2.9)

Such a system of isomorphisms will be called a compatible system of isomorphisms.
(2) Morphisms: homCstrict(X , Y ) = homC(Xe, Ye) for X = ((Xg)g∈G, FX ), Y =

((Yg)g∈G, FY ).
(3) G-action:

• On the object level, for s ∈ G, X · s = ((X̃g)g∈G, F̃). Here X̃g = Xgs and 
F̃g ∈
⊗

h∈G homC(X̃gh, gX̃h) =
⊗

h∈G homC(Xghs, gXhs) is a shifted copy of Fg.
• On the morphism level, if Φ ∈ hom(X , Y ), then Φ · s = (FY

s )−1 ◦ Ts(Φ) ◦ FX
s .

Remark 2.21. It is straightforward to check that the G-action defined above is strict. 
The equivalence of Cstrict and C is equally transparent once we construct X for each 
X ∈ ObC so that Xe = X in Proposition 2.22. One should notice that the isomorphism 
type of an object X is completely determined by Xe. The inheritance of triangulation 
structure should also be transparent.

However, one also notes that our model has a partially unsatisfactory feature, that 
we are forced to trade the left coherent G-action for a right strict G-action on Cstrict, 
unless G is abelian. This of course could be remedied in a naive way: we may apply the 
process again to turn the right action back to a left one when absolutely necessary.

Our main proposition of this section is:

Proposition 2.22. For any G finitely generated, if C is equipped with a coherent G-action, 
Cstrict is equivalent to C.

A note on notations: In the proof we will not specify which component of Fg is under 
investigation when it is clear from the context (for example, when its source and target 
are specified). We will use t· to replace the notation of group action Tt for t ∈ G. Using 
this notation, ϕt0,t1 is simply a functor isomorphism from t0 ·t1 ·(−) to (t0t1) ·(−). Hence 
we will also suppress the subscripts of ϕ when the context causes no confusions.

Proof. From discussions in Remark 2.21, what we need is to construct an X ∈
Ob(Cstrict) for any X ∈ ObC, so that Xe = X. We will show a stronger statement 
that for any set of objects {Xg}g∈G satisfying Xg

∼= gXe, there is a compatible system 
of isomorphisms between these objects.

The first step is to take a set of generators of G, {t1, · · · , tk}, and we consider the 
Cayley graph Γ for this generating set. Recall that
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Fig. 1. Cayley graph for an object X . All single arrows are part of the Cayley graph, while the solid arrows 
belong to Tr, and the rest are dotted. Double dotted arrows are not part of the Cayley graph, but elements 
of isomorphism systems determined by (2.9). The top left arrows in the center depicts (2.10) in the actual 
Cayley graph. Extra bullets are added for demonstration purposes.

• vert(Γ) = G as a set,
• there is an oriented edge e with source s(e) = v1 and target t(e) = v2 iff v1v

−1
2 = tl

for some l. In this case we endow e an extra label tl.

Note that our direction of arrows is opposite from the usual notation in Cayley graph.
Replace vertices marked as g by the object Xg. Our goal is to assign each edge 

marked by ti a component of Fti , so that the compositions are compatible with (2.9). 
More concretely, if two consecutive edges marked as ti and tj are each assigned an 
isomorphism components of Fti and Ftj , then (2.9) uniquely determines a component 
of Ftitj . Our proposition is equivalent to the assertion that, there is a choice of Fti for 
edges of the Cayley graph, so that these compositions depend only on the start and end 
points. We demonstrate part of the Cayley graph in Fig. 1.

The naive strategy is to start by assigning arbitrary isomorphisms for some edges, 
then use the above observation to complete the whole compatible system. There are two 
potential conflicts in completing this process:

(i) (Compatibility along a path.) For triple compositions, Ftitjtk determined by 
{Ftitj , Ftk}, and {Fti , Ftjtk} must coincide.

(ii) (Compatibility along a loop.) When there are more than one oriented path connect-
ing Xg0 and Xg1 , the isomorphism component of Fg−1

0 g1
determined by the two 

paths must coincide.



294 W. Wu / Advances in Mathematics 323 (2018) 279–325
We claim that (i), the compatibility along a path does not impose extra obstructions.

Xt1t2t3g

Ft1
t1 · Xt2t3g

t1Ft2
t1 · t2 · Xt3g

t1·t2Ft3

ϕ

t1 · t2 · t3 · Xg

ϕ

(t1t2) · Xt3g

(t1t2)·Ft3(t1t2) · t3 · Xg

ϕ

t1 · (t2t3) · X ϕ

ϕ

(t1t2t3) · Xg

(2.10)

In diagram (2.10), we have included all possible compositions of relevant isomor-
phisms, corresponding to three consecutive arrows in the Cayley graph. Arrows in the 
first row are given arbitrary isomorphism components of F , and this will determine all 
the rest of the data in the diagram. To see this yields a commutative diagram, we note 
first that all the solid arrows form a commutative sub-diagram: there are two loops in 
question, where the top-right square is commutative since ϕ is an isomorphism of func-
tors; the bottom-right diagram is simply the coherence condition of the action. Now by 
definition, the three dotted arrows are determined by the sub-diagram formed by solid 
arrows, the commutativity hence follows.

For (ii), we take a connected maximal subtree Tr of Γ with the following property:

• Xe ∈ Tr

• there is an oriented path in Tr starting from Xe and ends at Xg for all g ∈ G.

Note that Tr contains all vertices in Γ: otherwise, take any missing vertex Xm. m can 
be decomposed as

m = ti1 · · · tik .

Let l′ = max{r : 1 ≤ r ≤ k, ti1 · ti2 · · · · tir ∈ Tr}. Adding vertices {Π1≤ν≤ptiν}l′≤p≤l

and corresponding edges yields a strictly larger subtree than Tr.
Now assign arbitrary isomorphism components corresponding to each edge belonging 

to Tr. Then the compatibility on paths proved above yields a system of isomorphisms 
through (2.9) on all compositions along Tr.

For edges that are not in Tr, by definition, adding any of them to Tr yields precisely 
one loop to the new graph. Hence the prescribed data on Tr and (2.9) automatically 
assigns an isomorphism to these edges, and by definition (or repeating the proof of com-
patibility along paths), this way of assigning isomorphisms yields a compatible system 
of isomorphisms as desired.
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Lastly, notice that we indeed fixed a bit more data than in the proof by requiring 
Fe ≡ id⊗G. But a quick reflection shows this only cause potential problem when there 
is a loop starting from a vertex and back, which consists a loop that we could deal with 
as in (ii) in the proof. �

Note that although the embedding C ↪→ Cstrict is canonical only up to a choice of 
compatibility system of isomorphism for each object, it is canonical on Cfix where the 
system of isomorphisms can be chosen as identity (strictly speaking one needs to require 
ϕ to be identity on Cfix, too, but this is only cosmetic). Hence by combining 2.19, 2.16
from previous sections we obtain the following:

Proposition 2.23. If A is a triangulated A∞-category with a naive G-action, and there 
is an triangulated equivalence m : DπA → B, then the equivalence can be reduced to 
triangulated fully faithful embeddings

mfix : (DπA)fix ↪→ Bfix,

m̄fix : (DπA)fix ↪→ (Bstrict)fix.
(2.11)

Question: When are mfix and m̄fix exact equivalences?

Abstractly, this question is related to the equivariant theory recently developed by 
Paul Seidel in [37][31]. Using terminologies from his work, the potential failure for 
(DπA)fix → Bfix to be essentially surjective lies in that whether one could find a 
weakly equivariant object with image Y for all Y ∈ Bfix. If this is the case, [31, 
Lemma 14.10] provides a way to produce the necessary object in (DπA)fix. The next step 
for Bfix ↪→ (Bstrict)fix would probably require additional considerations on obstruction 
theories for coherent actions.

In this perspective, what we have shown is quite preliminary: given a chain level (for 
example, a naive one) G-action on A and a quasi-equivalence to A′, the strictification 
model provided an approach so that one could discuss weakly equivariant objects on 
both sides as a start. However, problems about upgrading the G-action or equivariant 
objects on A′ to the chain level, as well as the comparison of these objects on A and A′, 
remain mysterious. However, we will see later that, in some geometric situations, one 
may show the equivalence from extracting an isomorphic piece from each side, where the 
induced G-action on B is still strict.

3. Equivariant Fukaya category and split generation

3.1. Moduli spaces of bordered holomorphic curves

We start by considering various moduli spaces of pseudo-holomorphic curves involved 
in our discussions. Since a comprehensive account on these moduli spaces in rather 
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general contexts has been carefully written down in [1][18], we only recall relevant notions 
involved in our later discussions and refer interested readers to their detailed expositions.

Let D2 = {z ∈ C : |z| ≤ 1}. Denote the moduli space

D̃i,j = {D2\Σ+ ∪ Σ− : Σ+ ∪ Σ− ⊂ ∂D2; |Σ+| = i, |Σ−| = j},

and

D̃±
i,j = {D2\Σ+ ∪ Σ− ∪ p± : Σ+ ∪ Σ− ⊂ ∂D2; |Σ+| = i, |Σ−| = j; p± ∈ int(D2)},

where D2 is always equipped with the standard complex structure. In both cases, we 
order Σ+ and Σ− counterclockwisely as {z+

1 , · · · , z+
i } and {z−1 , · · · , z−j }. To be more per-

tinent to our applications, we further restrict our attention to the following components 
of the above moduli spaces:

Definition 3.1. Di,j ⊂ D̃i,j , D±
i,j ⊂ D̃±

i,j are components such that the following additional 
restrictions are satisfied:

(1) j = 0, 1 or 2;
(2) Σ− lies on the same connected component of ∂D2\Σ+.

We will denote the Deligne–Mumford compactification of these two types of moduli 
spaces as Di,j and D±

i,j , where the lower strata are stratified by stable disks with more 
than one component.

Next we consider the moduli space for annuli, denote Ar = {1 ≤ |z| ≤ r}, and the 
moduli space C−

d = {(Ar, z0, z1, ...zd)|z0 = 1, z1 = r, |zk| = r, ∀k ≥ 2}.
The Deligne–Mumford compactified moduli space C−

d has similar boundary strata as 
Di,j , i.e. bubbling up disks at the boundary |z| = r. However, two types of new boundary 
strata of codimension 1 appears where the annulus breaks into two disks D1 and D2, 
and either

(1) D1 ∈ D−
d,0 and D2 ∈ D+

0,1
(2) D1 ∈ Dd1,2 , D2 ∈ Dd−d1+2,1.

In many occasions below, we will deal with D±
i,j and C−

d uniformly. In such cases we will 
simply use R and R to denote any of these moduli spaces and their compactifications, 
respectively.

3.2. Floer data and consistent choices

Definition 3.2. A G-invariant Floer datum on a disk S ∈ R consists of the following 
choice on each component:
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(1) Strip-like ends and cylindrical ends: a strip-like end near z±l is a choice of ε±l :
Z± → S, where Z+ = [0, +∞) × [0, 1], Z− = (−∞, 0] × [0, 1] and lim

s→±∞
ε±l (s, t) = z±l . 

A cylindrical end near p± is a choice of ε±0 : W± → S, where W+ = [0, +∞) × S1, 
W− = (−∞, 0] × S1, and lim

s→±∞
ε±0 (s, t) = p±.

(2) Hamiltonian perturbations: this is a map HS : S → H(M)G on each surface defining 
a Hamiltonian flow XS depending on points over S, where H(M)G denotes the 
space of Hamiltonian functions on M that are G-invariant. Moreover, HS ◦ ε±i (s, t)
is independent of s for all i ≥ 0.

(3) Basic one-form: a basic one-form αS satisfies αS |∂S=0 and that XS⊗αS = XHS
⊗dt

at all cylindrical ends or strip-like ends.
(4) Almost complex structures: this is a map IS : S → J (M)G whose pullback under 

ε±l depends only on t, where J (M)G denotes the G-invariant compatible almost 
complex structure on (M, ω).

A special case that we did not include is when we have a disk D with one input z+

and one output z−. We fix a diffeomorphism

S1,1 = D \ {z+, z−} � R × [0, 1]
(s , t)

(3.1)

and choose HS and IS to be invariant under translations in the s-variable for similar 
construction in 3.2.

With the aim of defining Fukaya category, one needs to restrict the choice of Floer 
data. Before getting that far, we first explain the notion of universal and consistent choice 
of Lagrangian labels. Explicitly, for any S ∈ R, one assigns a label ζ to a connected 
component of ∂S\ ∪ {zl} which we denote as ∂ζS. One assigns a Lagrangian Lζ to ∂ζS, 
which we call a Lagrangian label. Seidel showed in [35] that, one could extend a given 
choice of Lagrangian labels from a Riemann surface S ∈ S to a set of Lagrangian labels 
for the universal family S of Riemannian surfaces over R, so that it is locally constant 
over S and compatible (in the most obvious sense) with the gluing maps from lower 
strata to higher strata.

We now may consider extending the choice of Floer datum from R to R.

Definition 3.3. A universal and consistent choice of G-invariant Floer data for R is the 
following: given a set of Lagrangian labels {Lζ}, we have a choice of G-invariant Floer 
data for each element S ∈ R which varies smoothly over this compactified moduli space. 
Floer data between different strata satisfies the following compatibility conditions:

(1) On boundary strata the Floer data are conformally equivalent to the product of 
Floer data over irreducible components.

(2) In the coordinates given by the parameters gluing at cylindrical or strip-like ends, the 
Floer data near the boundary agrees with those obtained by gluing of the boundary 
strata up to infinite order.
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(3) At any positive (resp. negative) strip-like end, ε+(ε−, resp.) with adjacent Lagrangian 
labels L+

1 , L+
2 (L−

1 , L−
2 resp.), the Floer data is the chosen one for the strip with 

corresponding Lagrangian labels.
We will denote the space of G-invariant Floer data over a universal family R as PG

R.
In most cases when the universal family is clear from the context, we will suppress 
the subscript and simply use PG.

Again such choices could be obtained in the non-equivariant R = Dn,1 case, according 
to [35, (9g, 9i)]. See [1] for the adaption when R is different from Dn,1. The proof 
completely carries over to our G-equivariant case without modifications. We will show 
in 3.4 that within PG transversality could also be obtain in the monotone cases.

Remark 3.4. One notices our definitions for various moduli spaces and consistent choices 
of data are contained in those appeared in [1]. Our case is only simpler due to the fact 
that we do not deal with wrapped Floer cohomology, so that one does not need the 
delicate rescaling trick, hence discussions on weights can be ignored.

This affects Definition 3.2(3), where cylindrical ends and strip-like ends need not be 
distinguished; and Definition 3.3(2), where in the wrapped case the gluing cannot be 
performed in a naive way as we described (see [1, Section 6.2]). We do not encounter 
such subtlety in this paper, which is a lot more convenient. This in turn means our 
consistent choice can be understood in the original way that Seidel described in [35].

3.3. Moduli spaces of perturbed holomorphic curves

Using notations from the previous section, for S ∈ R, we consider maps u : S → M , 
which satisfy the following set of equations:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(du−XHs

⊗ αS)(0,1) = 0
lim

s→±∞
u ◦ ε±0 (s, t) = y±(t),

lim
s→±∞

u ◦ ε±l (s, t) = x±
l (t), l ≥ 1,

u(∂ζS) ∈ Lζ

(3.2)

Let us explain the equations term by term. We use a universal choice of Floer data 
associated to a given set of Lagrangian labels {Lζ} for R. y± is a Hamiltonian orbit 
of HS restricted to the cylindrical end ε±0 . For a given strip-like end ε±l , l ≥ 1, it has 
two adjacent-components of ∂ζ±

0
S and ∂ζ±

1
S numbered counter-clockwisely when it is 

a positive end (input) and clockwisely when it is a negative end (output). Then its 
asymptotic limit x±

l (−) = lims→±∞ u ◦ ε±(s, −) is a Hamiltonian chord going from 
Lζ±

0
to Lζ±

1
. These moduli spaces all come with relative orientations with respect to 

orientations of determinant lines of chords x±
l and orbits y± as long as all Lagrangian 

labels come with a fixed spin structure, as proved in [35] and [17].
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Definition 3.5. When S ∈ R, for R = D(±)
i,j or C−

d , MR denotes the moduli space of 
(3.2), and MR as its compactification.

3.4. Equivariant transversality

The transversality problem of (3.2) is by now standard under the condition (1.2). 
See [6], [7] for the treatment for defining Fukaya categories specifically in this setting. 
For more general cases one needs virtual perturbations techniques from [17].

In the equivariant setting with finite G-actions, this was addressed in [12] again using 
Kuranishi structures. However, in our setting when the G-action is free, the issue of 
equivariant transversality can be settled by more or less classical methods such as [22, 
Lemma 5.13] and [35, Section (9k)]. Although such arguments have appeared in the 
literature, we feel it instructive to re-iterate part of it here just for the sake of being 
self-contained, as well as to remove potential doubts, but we will not elaborate all the 
details. We will focus on a single Riemann surface case, the family version will follow 
from adapting arguments in [35, (9k)].

Upshot: given S ⊂ D(±)
i,j or C−

d decorated with Lagrangian labels {Lζ}, one may choose 
equivariant perturbation datum (HS , JS) from a generic set Pgen ∈ PG, so that the 
moduli problem (3.2) modeled over S achieves transversality with (HS , JS).

To this end, one first notices that, the virtual dimension count of bubbles is not affected 
by a finite free group action (unbranched covers of a sphere are trivial covers), hence the 
issues of bubbling is taken care of in a completely analogous way as in the non-equivariant 
case. Then the main point of the proof is that, as in the usual genericity argument, a cok-
ernel element of the Cauchy–Riemann operator Du,J for such a perturbed holomorphic 
curve u : S → M satisfying (3.2) gives a nonzero section Z ∈ Lq(Λ0,1

S , u∗TM) for some 
q > 0, which satisfies a ∂̄-type equation and satisfies:∫

S

ω〈(δY )0,1, Z〉dsdt = 0 (3.3)

for all Y ∈ TJ , the tangent space at J in the space of domain dependent compatible 
almost complex structures. We assume Z(z0) �= 0 for z0 ∈ S.

When S is not a strip, one could first construct δ̃Y which is not necessarily G-invariant 
but concentrated near z0 over the domain and u(z0) over the target, so that the left 
hand side of (3.3) is non-zero hence the equality fails. To make the infinitesimal varia-
tion G-invariant, simply use an averaging process on the target symplectic manifold M
to replace δ̃Y by δY =

∑
g∈G g∗δ̃Y (note that δY still concentrates near z0 over the 

domain).
When S = R × [0, 1] is a strip, there is an additional requirement that δY must be 

s-invariant. In this case we resort to [22, Lemma 5.12] and [15, Theorem 4.3]. A key 
property is:
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Lemma 3.6 ([22, Lemma 5.12(J5)]). Let v1, v2 : R × [0, 1] → M be two non-constant 
solutions of ∂su +Jt∂tu = 0. Assume that v2 is not a translate of v1 in s-direction. Then 
for any ρ > 0 the subset Sρ(v1, v2) = {(s, t) ∈ R × (0, 1) : v1(s, t) /∈ v2([−ρ, ρ] × {t})} is 
open and dense in R × (0, 1).

From this we consider sets

R1(u) = {(s, t) ∈ R× (0, 1) : du(s, t) �= 0, u(s, t) /∈ u(R\{s}, t), u(s, t) �= x±},

R2(u) = {(s, t) ∈ R× (0, 1) : u(s, t) �= g(x±),∀g ∈ G, g �= e},

R3(u) = {(s, t) ∈ R× (0, 1) : u(s, t) /∈ g(u(R, t)),∀g ∈ G, g �= e},

where x± are the limits for u(s, t) when s → ±∞. R1 and R2 are both open and dense 
(see for example [22, Lemma 5.12 (J3)]), and R3(u) is a countable intersection of open 
dense sets by Lemma 3.6. Hence R(u) = R1(u) ∩ R2(u) ∩ R3(u) is a residual set, and 
it can indeed be shown to be open as in [15, Theorem 4.3]. With this understood, the 
averaging process on s-invariant δY as above again leads to a contradiction in (3.3). This 
concludes the proof of the equivariant transversality.

As a result of what is explained in this section, we will make no mention to the 
transversality issue in the rest of the paper and use freely the fact that all moduli prob-
lems we encounter satisfies transversality by choosing generic universal and consistent 
Floer data.

4. G-equivariant generation criterion

In this section we define a version of G-equivariant Fukaya category Fuk(M)G. We 
will first review ingredients involved in the definition of usual Fukaya category, which 
are mostly taken from [35], then explain how to incorporate the G-action.

The reader will note that our definition is a mild generalization (with simplifications 
on some technical points) of that in [35] for the case of G = Z/2. We should also 
compare our version to another very similar version of G-equivariant Fukaya category 
defined in [12]. For readers’ convenience, we list the differences (using their terminology) 
as follows:

• In [12] the authors discusses general cases of different spin profiles which defines 
different equivariant Fukaya categories, while we always take the trivial spin profile 
in their terminology.

• We restrict ourselves to the monotone cases and the universal Novikov field coeffi-
cients, and avoid the use of general G-Novikov theory.

• We allowed intersections between gL and g′L for g �= g′ ∈ G.
• We include discussions on Z/N -gradings for N �= ∞.
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In particular, we have restricted our setting convenient for the G-equivariant gener-
ation, and have paid exclusive attention to issues relevant to passing to the quotient 
instead of making any attempts to a general equivariant theory. Presumably, one should 
still be able to construct a more general version of equivariant split generation after 
incorporating more ingredients such as non-trivial spin profiles and Kuranishi structures 
from [12], but we will not discuss this point in the current paper.

4.1. Review on Fukaya category

4.1.1. Technical aspects: gradings and spin structures
Prior to actually defining the Fukaya category, we need to recall two basic technical 

ingredients necessary for well-defined degrees and signs appearing in the definition. We 
will only give brief summaries without proofs on notions involved in the G-equivariant 
variations.

• Gradings:
Z/N -gradings of an embedded Lagrangian submanifold for 2 ≤ N ≤ ∞ is defined 

in [33]. For coherence of notation, in below Z/∞ will be understood as Z. Recall that 
if we denote L as the total space of the Lagrangian Grassmannian bundle over (M, ω), 
L N → L is an N -fold cover so that its restriction to Lx is the standard N -fold cover 
associated to a preferred generator of H1(Lx, Z/N). The existence of a Z/N -grading is 
in turn equivalent to either of the following:

(a) Existence of a global Maslov class mod N , i.e. CN ∈ H1(L , Z/N), such that CN |Lx

is the preferred generator in H1(Lx, Z/N),
(b) 2c1(M, ω) = 0 in H2(M, Z/N).

As a result of (b), there is always a 2-fold Maslov cover. Assuming the existence of an 
N -fold Maslov covering, we may consider the Z/N -grading of a Lagrangian submanifold 
L ⊂ (M, ω). This is a lift grN : L → L N |L from the natural section L → L |L. The 
existence of such a grading in turn implies L N → L is a trivial N -fold cover when 
restricted to TL. Note that when L is orientable (as is the only case we consider), its 
orientations gives natural Z/2-gradings, hence we always assume N ≥ 2. Following the 
usual convention, we will call the pair (L, grN ) for 2 ≤ N ≤ ∞ a Z/N -graded Lagrangian.

Although the discussion above covers the case of Z-gradings, there is a more ex-
plicit way of describing it which is worth recalling. Take a quadratic volume form 
η2 ∈ (∧n(TM ; J)⊗2)∨, one defines αM : L → S1 as

αM (ξx) = η(v1 ∧ · · · ∧ vn)2/|η(v1 ∧ · · · ∧ vn)2| ∈ S1 (4.1)

for any basis {vi} of a Lagrangian subspace ξx ⊂ TMx. This offers an explicit represen-
tative of a global Maslov class in H1(L , Z). A grading of a Lagrangian submanifold L
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is therefore a lift α# : L → R, so that the composition L α#

−−→ R → R/Z = S1 coincides 
with the restriction of αM to TL ⊂ TM . The existence of a grading for L is equivalent 
to the vanishing of the Maslov class μL ∈ H1(L; Z).

The existence of gradings has the following implication in Floer theory: given two 
Z/N -graded Lagrangians (L0, α

#
0 ), (L1, α

#
1 ), any intersection point x ∈ L0 ∩L1 obtains 

an absolute degree deg(L0,α
#
0 ),(L1,α

#
1 )(x) ∈ Z/N from the extra grading structure as 

explained in [33]. We will abbreviate this as deg(x) when no confusion occurs. We omit 
the concrete construction here, but the following situation will be relevant. Given any 
symplectomorphism f : M → M , (f(Li), α#

i ◦ f−1) are again two graded Lagrangians, 
i = 0, 1. Then deg(f(x)) = deg(x).

• Spin structures:
With a chosen spin structure on each Lagrangian labels, all moduli spaces involved 

in the Floer cohomology operations we will consider are all equipped with a preferred 
orientation, hence one may talk about signs in a coherent way, see [35]. Hence, if one is 
willing to work over a base ring with char(R) = 2, this assumption is redundant.

4.1.2. Definition of Fukaya category Fuk(M)
With the above technical points understood, we may explain the definition of the 

Fukaya category Fuk(M) following [35].

• Objects:
An object in Fuk(M) is a Lagrangian brane, that is, a triple L# = (L, grNL , spin(L)), 

where L ⊂ (M, ω) is an embedded Lagrangian submanifold, grNL is a Z/N -grading, and 
spin(L) a chosen spin structure over L. For ease of notation, sometimes the additional 
data (grNL , spin(L)) will be suppressed and we will just refer to a Lagrangian brane L#

using its underlying Lagrangian L when the context is clear.
The above definition already works for the consideration of Fukaya categories con-

sisting of unobstructed Lagrangians. Although we have already seen the transversality 
issues can be taken care of in a standard way for Lagrangians satisfying the Stand-
ing Assumption in the introduction, for the Fukaya category to be well-defined in the 
monotone case, the value of superpotential of a monotone Lagrangian in the sense of 
Fukaya–Oh–Ohta–Ono [17] needs to be recalled.

Explicitly, the value of superpotential is a Gromov–Witten type invariant which counts 
the algebraic number, weighted by Novikov coefficients, of holomorphic disks of Maslov 
index 2 with the boundary passing through a fixed point of L, i.e.

m0(L) =
∑
μ(β)=2

β∈H2(M,L)

Tω(β) · (ev0)∗[MD0,1(β)]/[L] ∈ Λ.

In [30, Lemma 3.2] and [6][7] (for ungraded and Z2-coefficient case), it was shown that 
Lagrangians with the same value of m0 consist an A∞-categories as in the unobstructed 
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case. In the rest of this paper, our treatment can be made uniform for unobstructed cases 
and monotone cases only by noting this point. Hence, we will make no explicit mention 
regarding the m0-value of the Fukaya category under considerations from this point on.

• Morphisms:
We define the morphism groups as

hom∗(L0, L1) = CF ∗(L0, L1) =
⊕

x∈C(L0,L1;HL0,L1 )

ΛR · 〈x〉.

Here C(L0, L1; HL0,L1) denotes the set of solutions x : [0, 1] → M , such that{
ẋ(t) = XHL0,L1

(x(t)),

x(0) ∈ L0, x(1) ∈ L1,
(4.2)

where HL0,L1 is part of the universal and consistent choice of Floer data for the pair 
(L0, L1).

• A∞-compositions:
We use perturbed holomorphic polygons to define the A∞-compositions in Fuk(M). 

Concretely, let

μd : hom(Ld−1, Ld) ⊗ · · · ⊗ hom(L0, L1) → CF ∗(L0, Ld)

for d ≥ 1 be defined as:

μd(xd, · · · , x1) =
∑

y∈C(L0,Ld;HL0,Ld
)

u∈MDd,1 (y;xd,··· ,x1)
dimMDd,1=0

sign(u)Tω(u)〈y〉 (4.3)

which are algebraic counts on rigid holomorphic polygons with x1, · · · , xd as inputs and 
y as outputs, weighted by the Novikov coefficients determined by the area of the polygon.

Here we recall that MDd,1(y; xd, · · · , x1) is the solution of (3.2) defined by the uni-
versal and consistent choice of Floer data for the (d + 1)-tuple (L0, · · · , Ld), sign(u) is 
canonically determined from the orientation of u, see [17][35, Section 11] for a compre-
hensive account on the sign issues, which we will omit for the rest of the paper. Such 
compositions {μd} satisfies the A∞-relations as proved again in [17] and [35], which we 
will not reproduce here.

4.2. Incorporating the G-action

We now bring in the symplectic G-action on (M, ω) and explain term by term our 
adaption from the previous section to define the equivariant Fukaya category Fuk(M)G.
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• G-equivariant gradings and spin structures:
We further restrict ourselves to the class of symplectic manifold M and Lagrangian 

submanifolds L satisfying the following:

Assumption 4.1.

(1) M is equipped with a G-invariant N -Maslov covering for 2 ≤ N ≤ ∞. L is equipped 
with a GL-equivariant Z/N -grading.

(2) We assume the induced action of GL on the orthonormal frame bundle O(L) lifts to 
an action of an associated spin bundle Spin(L).

Some discussions on these assumptions seem instructive. The key point is that, with 
these assumptions, any Lagrangian we consider is a connected component of a lift of 
Lagrangian brane from the quotient, so that we could easily compare Fuk(M) and 
Fuk(M)G using the transfer functor T (see Section 4.4).

The assumption on the spin structure is different from that of [35]: when we con-
sider G-actions on the spin structure, we do not need additional twist between the spin 
structure restricted on different components, hence is much simpler to deal with. In the 
language of [12], we use the spin profile equals zero. The reader interested in this subject 
is referred to these nicely written references, which we will not discuss any more.

For the condition (1), there is a sufficient condition following arguments in [35][12].

Lemma 4.2. Assume gcd(ord(G), N) = 1, then M admits an N -fold Maslov cover if and 
only if it admits a G-equivariant N -fold Maslov cover. An embedded Lagrangian L admits 
a Z/N -grading if and only if L admits a GL-equivariant Z/N -grading.

In particular if N = ∞, it was shown by Seidel when G = Z/2 and Cho–Hansol for 
the general case that there is no extra obstruction of obtaining an equivariant grading.

The proof goes as follows. For the Maslov cover part, one could pass to the quotient 
and conclude that ord(G) · 2c1(M/G) = 0 ∈ H2(M/G, Z/N) which is in turn equivalent 
to 2c1(M/G) = 0 ∈ H2(M/G, Z/N). Hence one may obtain an N -fold Maslov cover 
from the quotient and pull back to M . Alternatively, one may average the global Maslov 
class CN ∈ H1(L , Z/N) using the G-action using the invertibility of ord(G) ∈ Z/N .

For the equivariant grading of L ⊂ M , given an ordinary grading grN : L →
L N supported on the G-equivariant Maslov cover, solely its existence implies that 
(grN )∗(L N ) → L is a trivial covering, or equivalently, is a trivial Z/N -bundle. As-
sume g ∈ GL, grN ◦ g− grN ∈ Z/N is well-defined and locally constant. Hence if ord(G)
is invertible in Z/N , then

ord(g)(grN ◦ g − grN ) =
ord(g)∑
k=1

(grN ◦ gk − grN ◦ gk−1) = 0

implies grN ◦ g − grN = 0, hence the claim.
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However, (1) is clearly broader than Lemma 4.2. Namely, suppose G = Z/2 and L
is only Z/2-graded due to its orientability. If L/G ⊂ M/G is still orientable, it clearly 
obtains a Z/2-grading which lifts to an equivariant one on L.

• Objects: G-Lagrangian branes.
For any connected embedded Lagrangian brane L# = (L, grN , spinL) satisfying As-

sumption 4.1, we denote the G-Lagrangian brane associated to L# as

GL# := (
⋃
g∈G

g · L, spinGL, gr
N
GL),

which is the following. Its underlying Lagrangian submanifold is the orbit of L under the 
G-action. We emphasize that we only consider the underlying set and not the multiplic-
ities caused by non-trivial GL’s. Since the decoration (grN , spinL) is GL-invariant, one 
then legitimately transfers this invariant grading and spin structure to other components 
gL using the G-action, which consists the decorations (spinGL, grNGL) on the whole orbit 
GL. Note that since gL and g′L are allowed to intersect when g �= g′, the underlying 
Lagrangian submanifold is usually immersed. We will call the orbit elements gL for any 
g ∈ G irreducible components of GL#.

• The morphism groups.
We first make a heuristic definition of the Floer cochain group between two 

G-Lagrangian branes as

CF ∗(GL0, GL1) =
⊕

g0,g1∈G

CF ∗(g0L0, g1L1) (4.4)

when there is no isotropy groups for L0 or L1. In the general case, we take exactly one 
representative gi in each coset elements in G/GLi

, i = 0, 1, respectively, in equation (4.4).
To make sense of this definition, we need to modify slightly the universal and consistent 

choice of regular Floer data for the non-equivariant case. First of all, note that we did 
not include a preferred element as part of the data of the equivariant Lagrangian, so 
that GL# and G(gL#) are considered the same object. Instead, we include this extra 
piece of information into the Floer data: for each G-Lagrangian brane GL# we fix one 
of its irreducible component L and call it the principal component. This choice should 
be constant over any moduli problem of perturbed holomorphic curves involved in 3.1, 
and is implicit in the notation GL.

The rest of the argument goes as in [35]. Given any pair of G-equivariant Lagrangian 
branes (GL#

0 , GL#
1 ), we take pairs of components (L0, gL1) for one element g in each 

coset G/GL1 , where L0, L1 are the principal components of (GL#
0 , GL#

1 ). One thus ob-
tains a generic set PG

(L0,gL1) ⊂ PG for each g which is regular in the usual sense from 
Section 3.4. Once a Floer datum is picked for the pair (L0, gL1), the G-invariance auto-
matically determines the same piece of Floer datum for pairs of the form (g′L0, g′gL1), 
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g′ ∈ G. Take the intersection of these subsets and denote it as PG
GL0,GL1

, any Floer 
datum in this subset would define (4.4). One then inductively extend the Floer data to 
any (d + 1)-tuple of G-Lagrangian branes as in [35] for the non-equivariant case.

CF ∗(GL0, GL1) admits an obvious G-action preserving degrees from our choices. Now 
we define the morphism group as the G-invariant part of the Floer cochain group

hom∗
Fuk(M)G(GL0, GL1) := CF ∗(GL0, GL1)G. (4.5)

We emphasize that from the freeness condition, any morphism in hom∗(GL0, GL1)
has the form G · x for some x ∈

⊕
g∈G CF (L0, gL1).

• A∞-compositions.
We continue to use counts of holomorphic polygons with Hamiltonian perturbation 

at strip-like ends to define compositions of hom∗(GL0, GL1). The G-invariance of Floer 
data ensures that the usual composition map lands on the G-invariant part of the Floer 
cochain group. Namely, assume a perturbed holomorphic polygon u ∈ M(x0; x1, · · · , xd)
contributes to the composition:

μd
G : hom(GLd−1, GLd) ⊗ · · · ⊗ hom(GL0, GL1) → CF ∗(GL0, GLd) (4.6)

for x0 ∈ hom∗(g0L0, gdLd) and xi ∈ hom∗(gi−1Li−1, giLi), i = 1, · · · , d for some 
group elements gi. Then by the G-invariance of our perturbation data, gu ∈ g ·
M(x0; x1, · · · , xd) = ·M(gx0; gx1, · · · , gxd) for any g ∈ G also contributes to (4.6).

To summarize, in the G-equivariant case, the composition maps {μd
G}d≥1 is no more 

than an additive enlargement of the usual A∞-compositions with G-invariant regular 
Floer data. The A∞ relation for the {μd

G}d≥1 hence follows from non-equivariant ones.

• An algebraic point of view.
To complete our discussion on the definition of Fuk(M)G in this section, we would 

like to relate it to Fuk(M). There is an obvious functor

ι̃ : Fuk(M)G → Tw(Fuk(M))

sending GL to ⊕g∈GgL with vanishing differentials. Since our choices of Floer data are 
both G-invariant and regular, the Fukaya categories on both sides are defined using the 
same choice of universal and consistent Floer data, the obvious map on morphism level 
is also well-defined. Therefore, by setting ι̃d ≡ 0 for all d ≥ 2 yields an A∞-functor.

There is a naive G-action on Tw(Fuk(M)). Clearly, ̃ι reduces to a functor to the fixed 
category of TwFuk(M) as defined in Section 2. Moreover, this induces an A∞-functor

ι : Tw(Fuk(M)G) → (TwFuk(M))fix.

ι is an isomorphism of A∞-categories: it follows from that each G-invariant twisted 
complex on the right hand side is formed by the G-orbit of a direct sum of Lagrangian 
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objects, then the G-orbit of each direct summand is an object of Fuk(M)G. En-
tries of the differential can also be written similarly as G-orbits of elements of Floer 
cochains.

What we explained above shows the objects of the two categories are one–one cor-
respondent. The fully faithfulness of ι can be argued similarly as the differential part. 
Therefore, Lemma 2.19 shows:

Lemma 4.3. Dπ(Fuk(M)G) = (DπFuk(M))fix is an isomorphism of triangulated cate-
gories.

4.3. The G-equivariant generation criterion

In this section, we give the statement and proof of the G-equivariant generation cri-
terion 1.1 and 4.6. The split-generation is in the sense of Definition 2.10, which implies 
the split generation on derived level.

Our proof follows closely that of [1] and [40]. We remark that we will use the Hamil-
tonian Floer cochain complexes CF ∗(M) and their equivariant version throughout. This 
can be equivalent to the more commonly used version in closed manifolds (see for 
example [40]) OC : HH∗(B) → QH∗(M) and CO : QH∗(M) → HF ∗(K, K) by a 
PSS-isomorphism ([30, Lemma 5.3]), and the proof carries through word-by-word.

We start by summarizing several other algebraic operations including coproducts, the 
open–closed and closed–open string maps in Fuk(M)G relevant to our proof. The way to 
define them using various moduli spaces of the form MR is similar to the A∞-structure: 
they send the tensor products of inputs to the tensor products to the outputs, adding the 
Novikov coefficients corresponding to rigid objects in the moduli space. The algebraic 
structure of these operations are in turn derived from the degeneration scenarios of 
relevant moduli spaces.

We will focus on these algebraic operations in the equivariant case. However, they are 
exactly the restriction from non-equivariant case to the G-invariant part of correspond-
ing (co)chains defined using G-invariant Floer data. Hence we will not reproduce the 
proof that these maps are (co)chain maps, which can be found in [1][30][17] [6]—in fact 
[1][30][18] these maps are even shown to be chain maps for the wrapped cases. But we 
will still attach a super(sub)-script to emphasize when the G-equivariant cases is being 
considered.

The coproduct ΔG: Coproducts are defined by the moduli problem of MDn,2 . Explicitly, 
this is a degree-n homomorphism of A∞-bimodules

ΔG : GB → Y l
GK ⊗ Yr

GK

for any full subcategory of GB ⊂ Fuk(M)G and GK ∈ ObFuk(M)G. By definition, this 
consists of a collection of maps:
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Δr|1|s
G : CF ∗(GLr−1, GLr) ⊗ · · · ⊗ CF ∗(GL0, GL1) ⊗ CF ∗(GL|0, GL0)

⊗ CF ∗(GL|1, GL|0) ⊗ · · · ⊗ CF ∗(GL||s, GL|s−1) → CF ∗(GK,GLr) ⊗ CF ∗(GL|s, GK)
(4.7)

for all involved Lagrangians GLγ ∈ GB, and satisfies the certain A∞ equation (see [1, 
Section 4.2]).

• The open–closed string map OCG:
Let CF ∗(M)G denote the invariant part of CF ∗(M). The open–closed string map is 

defined by the moduli problem of MD−
n,0

. It gives chain level homomorphisms:

OCG
d : CW ∗(GLd−1, GL0) ⊗ · · · ⊗ CF ∗(GL1, GL2) ⊗ CW ∗(GL0, GL1) → CF ∗(M)G

(4.8)

which shift degree by n − d + 1 and are the components of a degree n chain map

OCG : CCG
∗ (GB, GB) → CF ∗(M)G. (4.9)

Here the left hand-side is the cyclic bar complex of GB equipped with the differential 
computing Hochschild homology of Fuk(M)G.

• The closed–open string map CO:
The moduli problem of MD+

0,1
defines the closed–open string map, which is a chain 

map between Floer cochain complexes:

CO : CF ∗(M)G → CF ∗(GK,GK) (4.10)

where GK is the unique Lagrangian label on ∂S for S ∈ D+
1 .

• The homotopy H:
The last operation H is a chain map

H : CC∗(GB, GB) → CF ∗(K)G[n]

between the cyclic bar complex and the Floer complex defined by the moduli problem 
of MC−

n
, while inputs on the left hand side comes from Lagrangian labels on {|z| =

r > 1} ⊂ ∂S, S ⊂ C−
n and K is the unique Lagrangian label on {|z| = 1}.

Next we define a purely algebraic morphism. Recall that given L, R a left (resp. right) 
GB-module, then the tensor product over GB is a chain complex:

R⊗GB L =
⊕

GL0,··· ,GLd∈Ob(GB)

R(Ld) ⊗ CF ∗(Ld−1, Ld) ⊗ · · · ⊗ CF ∗(L0, L1) ⊗ L(L0)

(4.11)
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with differential

p⊗ ad ⊗ . . .⊗ a1 ⊗ q 	→
∑

p⊗ ad ⊗ · · · ⊗ a
+1 ⊗ μ
|1(a
, . . . , a1, q)

+
∑

(−1)deg(q)+��
1μ1|d−
(p, ad, . . . , a
+1) ⊗ a
 ⊗ · · · ⊗ a1 ⊗ q

+
∑

(−1)deg(q)+��
1p⊗ ad ⊗ · · · ⊗ a
+k+1 ⊗ μk(a
+k, . . . , a
+1) ⊗ a
 ⊗ · · · ⊗ a1 ⊗ q.

The bimodule morphism ΔG induces at the level of Hochschild chains a homomor-
phism CC∗(ΔG) : CCG

∗ (GB) → Yr
GK ⊗GB Y l

GK :

CC∗(ΔG)(ad ⊗ . . .⊗ a1) =∑
(−1)�I

(
Δr|1|s

G (ar, . . . , a1, ad, ad−1, . . . , ad−s) ⊗ ad−s−1 ⊗ · · · ⊗ ar+1

)
(4.12)

where I is the maps which reorders the factors

I(q ⊗ p⊗ ad−s−1 ⊗ · · · ⊗ ar+1) = (−1)◦p⊗ ad−s−1 ⊗ · · · ⊗ ar+1 ⊗ q

and the signs are given by the formulae

� = �r
1 · (1 + �d

r+1) + n�d−s−1
r+1 (4.13)

◦ = deg(q)(deg(p) + �d−s−1
r+1 ) (4.14)

�t
s =
∑

s≤j≤t

||aj ||. (4.15)

We define HH∗(ΔG) to be the map induced by CC∗(ΔG) on homology groups.
The last bit of information we need is the composition map, which is a chain map of 

degree 0:

μ : Yr
GK ⊗GB Y l

GK → CF ∗
G(GK,GK) (4.16)

p⊗ ad ⊗ · · · ⊗ a1 ⊗ q 	→ (−1)deg(q)+�d
1μd+2

G (p, ad, . . . , a1, q). (4.17)

What is important to us is the following proposition.

Proposition 4.4. The following diagram commutes up to homotopy and a sign
(−1)n(n+1/2):

CCG
∗ (GB)

OCG

CC∗(ΔG)
Yr
GK ⊗G·B Y l

GK

μ

CF ∗(M)G COG

CF ∗(GK,GK)G

(4.18)

Moreover, the chain homotopy is defined by H.
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Proof. For the non-equivariant case, this is proved in [1, Proposition 1.3], [40] and [30, 
Section 8.6]. But in our case it is actually much simpler: consider the Gromov bordifi-
cation of dimension 1 moduli of type MC−

d
. Its boundaries consist of the following four 

types of moduli spaces:

MD−
n,0

×MD+
0,1

(4.19)

MC−
d1

×MDd2,1 , d1 + d2 = d (4.20)

MC−
d
×MD1,1 (4.21)

MD−
d1,2

×MDd1,1 , d1 + d2 − 2 = d. (4.22)

Here (4.20), (4.21) are responsible for the chain homotopy part

(−1)nμ1
Fuk(M)G ◦ H + H ◦ b,

where b is the differential of the Hochschild chain complex and (4.19), (4.22) accounts 
for the difference

μ ◦ CC∗(ΔG) − COG ◦ OCG.

Hence we obtain

(−1)nμ1 ◦ H + H ◦ b + μ ◦ CC∗(ΔG) − COG ◦ OCG = 0 (4.23)

This is exactly equation (6.9) in [1]. Our simplification relies on the fact that there is 
no rescaling trick necessary for our applications, hence the moduli space counting μ and 
CC∗(Δ) can be glued directly. This process is essentially the homotopy H2 in [1]. �

From Proposition 4.4, we have a commutative diagram up to a sign (−1)
n(n+1)

2 :

HHG
∗ (GB)

H∗(OCG)

HH∗(ΔG)
H∗(Yr

GK ⊗G·B Y l
GK)

H∗(μ)

HF ∗(M)G
H∗(COG)

HF ∗(GK,GK)G

(4.24)

We are now ready to explain the proof of Theorem 1.1. Note first id ∈ HF ∗(M) is 
automatically G-invariant as the fundamental class. Assume that H∗(OCG) hits the iden-
tity id ∈ HF ∗(M)G. Given an embedded Lagrangian K ⊂ M , H∗(CO) sends idHF∗(M)
to idHF∗(gK) (see for example [34]) for each irreducible component gK. Therefore, in 
the equivariant setting, H∗(COG)(idHF∗(M)G) = idHF∗(GK) =

∑
g∈G idHF∗(gK) from 

applying the G-action.
The following lemma is due to Abouzaid [1, Lemma 1.4], see also [18, Proposition 2.6].
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Lemma 4.5. Given an A∞ full subcategory A′ in A, and K ∈ Ob(A). Then H∗(μ) :
Yr
K ⊗A′ Y l

K → Hom(K, K) hits the identity iff A′ split generates K.

In our G-invariant context, the lemma still applies without any modifications: we only 
regard Fuk(M)G as an ordinary A∞-category and GB generates a full subcategory in 
the ordinary sense (using morphisms in Fuk(M)G, which are by definition G-invariant). 
Hence, we have proved:

Theorem 4.6. Let GB be a A∞ full subcategory of the Fuk(M)G. Assume that

HHG
∗ (GB)

H∗(OCG)
HF ∗(M)G

has its image containing idHF∗(M)G , then GB split-generates Fuk(M)G.

Corollary 4.7. Suppose B ⊂ Ob(Fuk(M)) split generates Fuk(M) over a ground field K, 
such that char(K) is coprime with |G|, then GB also split generates Fuk(M)G.

Proof. From the assumption and Lemma 4.5, we have H∗(OC) : HH∗(B) → HF ∗(M)
hits the identity. Take a chain representative of a preimage α ∈ CC∗(B) so that 
OC(α) = e and [e] = idHF∗(M). Then clearly Gα ∈ CC∗(GB) and [OCG(Gα)] = [Ge] =
ord(G) · idHF∗(M), which shows GB split generates Fuk(M)G when |G| is invertible. �
4.4. The transfer functor

The goal of this section is to define a transfer functor T and relate the equivariant 
Fukaya category to the ordinary Fukaya category of the quotient. Our main result reads:

Theorem 4.8. There is an A∞ functor

T : Fuk(M) → Fuk(M)G, (4.25)

which is full and faithful. In particular, if there is a subcollection B ⊂ Ob(Fuk(M)) so 
that T (B) resolves the diagonal, then B split generates Fuk(M).

We will call T the transfer functor.

We now explain the definition of the transfer functor T .

Object level: For L ∈ Ob(Fuk(M)), we assume it comes with a chosen spin structure 
spin(L) and grading grN

L
. Let L be a component of π−1(L). spin(L) naturally lifts to a 

G-invariant spin structure on 
⋃

g∈G gL.
The same story holds for the grading: the Grassmannian bundle Gr(TM)|L is lifted 

to Gr(TM)|L by π, hence the section grN is lifted equivariantly to one on Gr(TM)|L
L
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as in Lemma 4.2. A possible confusion is that such lifting seems to give a possibility of 
improving the grading (for example, the vanishing of mod-N global Maslov class might 
be improved to its vanishing in Z-coefficient after the lift), but this cannot be achieved 
in a G-equivariant way unless the improved grading can already be realized before the 
lift.

Morphisms: We require T d ≡ 0 for all d ≥ 2. T 1 is defined by lifting z̄ ∈ hom(L0, L1) to 
Gz ∈ hom(GL0, GL1), i.e. T 1(z̄) = Gz. To verify that T indeed defines an A∞ functor, 
we want to see that

T 1(μd
M

(z̄d, · · · , z̄1)) = μd
G(Gzd, · · ·Gz1) (4.26)

holds for any z̄i ∈ CF ∗(Li−1, Li), i = 1, · · · , d. Since both sides of the equality are 
G-invariant, it suffices to compare the coefficient of a fixed lift z0 of some fixed out-
put z̄0 of μd

M
. Notice the following correspondence: on the one hand, given any holo-

morphic polygon in ū ∈ M(z̄0; ̄zd, · · · , ̄z1), it has precisely |G| lifts which are still 
holomorphic polygons in M with respect to the lifted data. Among them there is 
a unique polygon u contributing to M(z0; zd, · · · , z1) for some lifts z1, · · · , zd ∈ M

of z̄1, · · · , ̄zd ∈ M . The virtual dimension, area and sign of u are all the same as 
ū due to the freeness assumption. On the other hand, given a holomorphic polygon 
u ∈ M(z0; gdzd, · · · , g1z1) with G-equivariant Floer data for some g1, · · · , gd ∈ G, it 
clearly descends to ū ∈ M(z̄0; ̄zd, · · · , ̄z1), also with the same virtual dimension and 
Novikov coefficients on up- and down-stairs as argued above. To summarize, we saw that 
the correspondence from u to ū is ord(G)-to-one, and singling out the specific lift z0
upstairs gives equality of Novikov coefficients

〈z̄0;μd(z̄d, · · · , z̄1)〉 =
∑
gi∈G

〈z0;μd(gdzd, · · · , g1z1)〉 = 〈z0;μd
M (Gzd, · · · , Gz1)〉.

Summing the above equality over its G-orbits for all outputs of the form gz0, g ∈ G

yields the desired equality (4.26).
To this end, we have shown that T defines an A∞ functor, the fact that T is fully 

faithful is trivial since (1) embedded Lagrangians always lifts to embedded Lagrangian 
submanifolds due to the freeness of G-action and, (2) T 1 sends a basis to basis on the 
morphism level since all morphisms in Fuk(M)G has the form G · x. This concludes 
Theorem 4.8. �
Corollary 4.9. If B ∈ Ob(Fuk(M)) resolves the diagonal, and π(L) is embedded for 
all L ∈ B, then the collection π(B) split generates Fuk(M). Hence Dπ(Fuk(M)) ∼=
Dπ(Fuk(M)G) ∼= (Dπ(Fuk(M)))fix from Lemma 4.3.

Proof. We already have a full and faithful functor T : Fuk(M) → Fuk(M)G. The 
collection T (π(B)) = GB by definition. From Corollary 4.7 this collection generates the 
whole Fuk(M)G, hence the claim. �
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5. Applications to homological mirror symmetry

5.1. Special isogenous tori

5.1.1. Special isogenous symplectic tori
Let ᾱ = (α1, · · · , αn) ∈ Rn, we will denote the split torus T (ᾱ) := T (α1) ×· · ·×T (αn), 

where T (αi) is the symplectic 2-torus with area αi. For the purpose of being explicit, 
we parametrize any symplectic 2-torus with area A as {(s, t) ∈ S1(A) × S1(1)}. We also 
tacitly rearrange coordinates of T (ᾱ) so that the s-coordinates are aligned at the first n
components, i.e. T (ᾱ) = (S1(α1) × S1(α2) × · · · × S1(αn) × S1(1)n, 

∑
dsi ∧ dti).

Definition 5.1. A special automorphism is a finite Z/l-action for some l ∈ Z on a split 
symplectic torus T (ᾱ) with generator

g : T (α) → T (α), g(s1, t1, · · · , sn, tn) → (s1 + α1

l
, t1, · · · , sn + αn

l
, tn).

We will denote T (ᾱ)l := T (ᾱ)/(Z/l) and call it a special isogenous torus with one 
factor. A special isogenous torus is then a finite product of such tori.

Note that a split torus is also a special isogenous one with l = 1. Let us now focus 
on the special isogenous tori with one factor at the moment. T (ᾱ)l can be realized as a 
lattice quotient of (R2n, ωstd)/Γᾱ

l . Explicitly,

Γᾱ
l = Ze1 + · · · + Ze2n,

where

e1 = (α1/l, · · · , αn/l, 0, · · · , 0)T

ei = (0, · · · , 0, si = αi, 0, · · · , 0)T , 2 ≤ i ≤ n,

en+j = (0, · · · , 0, tj = 1, 0, · · · , 0)T , 1 ≤ j ≤ n.

(5.1)

This lattice contains the split lattice formed by the one formed by replacing e1 by 
(α1, 0, · · · , 0)T as an index-l subgroup.

Now take a linear transformation defined by the block matrix

M̃ ᾱ
l =
(
M ᾱ

l 0
0 In

)
,

where

M ᾱ
l =

⎛⎜⎜⎜⎜⎝
l
α1

− 1
α1

1
α2

0
... · · ·

− 1 0 1

⎞⎟⎟⎟⎟⎠ ,
α1 αn
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which sends Γᾱ
l to the standard lattice Z2n ⊂ R2n. The pull-back symplectic form on 

R2n/Z2n, regarded as a bilinear form on R2n due to translation invariance, can then be 
represented by a matrix

Ωᾱ
l̄

= (M̃ ᾱ
l )T
(

0 In
−In 0

)
M̃ ᾱ

l =
(

0 (M ᾱ
l )T

−M ᾱ
l 0

)
.

Hence, if T (ᾱ)l and T (ᾱ′)l′ are symplectomorphic, the two corresponding matrices 
Ωᾱ

l and Ωᾱ′

l′ are in the same GL(2n, Z)-congruence class (recall that we already argued 
in the introduction that linear symplectic tori are symplectomorphic only if they are 
symplectomorphic by linear transformations). The converse of the above argument works 
equally well. To summarize:

Lemma 5.2. T (ᾱ)l and T (ᾱ′)l′ are symplectomorphic if and only if the two corresponding 
matrices Ωᾱ

l and Ωᾱ′

l′ are in the same GL(2n, Z)-congruence class.

Finally, note that the results above apply to a general special isogenous torus—one 
simply replaces the matrix M ᾱ

l by a block matrix with blocks of the same shape.

Example 5.3. There is an obvious generalization of the special automorphism construc-
tion. Take l̄ = (l1, · · · , ln) ∈ Zn with gcd(l1, · · · , ln) = 1 and l = lcm(l1, · · · , ln). Define 
a Z/l-action by the generator

g : T (α) → T (α), g(s1, t1, · · · , sn, tn) → (s1 + α1

l1
, t1, · · · , sn + αn

ln
, tn).

We will show that such a construction does not provide any new examples. Let us 
denote the result of such a quotient as T (ᾱ)l̄. T (ᾱ)l̄ can be realized as a lattice quotient 
of (R2n, ωstd)/Γᾱ

l̄
. Explicitly,

Γᾱ
l̄

= Ze1 + · · · + Ze2n + Ze2n+1,

where

e1 = (α1/l1, · · · , αn/ln, 0, · · · , 0)T

ei = (0, · · · , 0, si = αi, 0, · · · , 0)T , 2 ≤ i ≤ n,

en+j = (0, · · · , 0, tj = 1, 0, · · · , 0)T , 1 ≤ j ≤ n,

e2n+1 = (α1, 0, · · · , 0)T .

(5.2)

Of course, this is not an integral basis of the lattice. One may make a simplification 
of Γᾱ

l̄
as follows. First, for given i ≥ 1, multiplying lcm(l1, · · · , ̂li, · · · , ln) to e1 gives 

a lattice point (∗, αi · lcm(l1, · · · , ̂li, · · · , ln)/li, ∗)T , where ∗ denotes entries of integral 
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multiples of αj , j �= i. This implies that (0, · · · , 0, αi/l̃i, 0, · · · , 0)T ∈ Γᾱ
l̄

for l̃i = li/l
′
i, 

l′i = gcd(li, lcm(l1, · · · , ̂li, · · · , ln)). Let α′
i = αi/l̃i, we have proved Γᾱ

l̄
is spanned by

e′i = (0, · · · , 0, si = α′
i, 0, · · · , 0)T , 1 ≤ i ≤ n,

en+j = (0, · · · , 0, tj = 1, 0, · · · , 0)T , 1 ≤ j ≤ n,

e2n+1 = (α′
1/l

′
1, · · · , α′

n/l
′
n, 0, · · · , 0)T .

If l′k = 1 for certain 1 ≤ k ≤ n, one may then reduce e2n+1 by setting sk = 0 and 
repeat the same procedure to the rest of the coordinates of e2n+1. Note that l′i ≤ li
and the strict inequality holds for at least one i unless li = lj holds for all i, j pairs. 
Therefore, after finite steps one arrives at an integral basis of Γᾱ

l̄
in the form of

e′′1 = (α′′
1/l

◦, · · · , α′′
m/l◦, α′′

m+1, · · · , α′′
n, · · · , 0)T , 1 ≤ m ≤ n, l◦ ∈ Z,

e′′i = (0, · · · , 0, si = α′′
i , 0, · · · , 0)T , 2 ≤ i ≤ n,

e′′n+j = (0, · · · , 0, tj = 1, 0, · · · , 0)T , 1 ≤ j ≤ n.

This means T (ᾱ)l̄ is always the product of at most two special isogenous tori T1 × T2
as in Definition 5.1, while one of them is a split torus. �
5.1.2. Special isogenous analytic tori

To explain the special isogenous tori in the analytic category, we will need to recall 
some notions from rigid analytic geometry invented by Tate [41]. Readers wishing for a 
more thorough treatment on this well-studied subject may consult [16] for example. All 
varieties involved in this section are assumed to be over the universal Novikov field with 
complex coefficients Λ = ΛC.

Recall first that Λ is endowed with a valuation

σ(
∑
i

aiT
λi) = λ0.

We interchangeably refer to a split algebraic torus of dimension n or its analytifica-
tion as T an = (Λ∗)n = SpecΛ[z1, z

−1
1 , · · · , zn, z−1

n ]. A character on T an is a algebraic 
group homomorphism χ : T an → Λ∗, which has the form zk = zk1

1 · zk2
2 · · · zkn

n for 
l = (l1, · · · , ln) ∈ Zn. We denote the set of characters as X(T an).

The valuation extends to T an as a map

σ : T an → Rn.

A lattice Γ ⊂ T an is a subgroup such that σ : Γ → Rn is injective and its image forms 
a lattice of full rank in the classical sense. By abuse of notation, we sometimes use the 
notation Γ (or lattice points in Γ) and σ(Γ) interchangeably when the context is clear. 
One then considers the quotient T = T an/Γ. One has
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Proposition 5.4 ([16, 6.4.1]). T is a separated and proper Λ-scheme.

Indeed T has the additional structure of a rigid analytic space. T thus defined will 
be called an analytic torus or simply a lattice quotient.

As in the case over C, not all lattice quotients defines an abelian variety. A classical 
sufficient and necessary condition is given by the Riemann matrix condition (see for 
example [8]). In the rigid analytic setting, we have the following:

Theorem 5.5 ([16, 6.6.1]). T is an abelian variety if and only if there is a homomorphism 
ϕ : Λ → X(T an), such that the bilinear form

〈λ, λ′〉 := σ(ϕ(λ)(λ′)), λ, λ′ ∈ Γ

is symmetric and positive definite.

Example–Definition 5.6. Let the lattice Γᾱ
l = 〈V1 = (qα1/l, qα2/l, · · · , qαn/l), V2 =

(1, qα2 , 1, · · · , 1) · · · , Vn = (1, · · · , 1, qαn)〉, where ᾱ = (α1, · · · , αn) ∈ Rn. We may define

ϕ(V1) = z1 · z2 · · · · · zn,

ϕ(Vi) = zli, for i ≥ 2.

Given any lattice points

λm = (q
m1α1

l , q
m1α2

l +m2α2 , · · · , q
m1αn

l +mnαn)

λm′ = (q
m′

1α1
l , q

m′
1α2
l +m′

2α2 , · · · , q
m′

1αn
l +m′

nαn),

one may compute

〈λm, λm′〉 = σ((zm1
1

n∏
i=2

zmil+m1
i )(λm′))

=
n∑

i=2
(mil + m1)(m′

1αi/l + m′
iαi) + α1

l1
·m′

1 ·m1

=
n∑

i=2

αi

l
(mil + m1)(m′

ili + m′
1) + α1

l
·m′

1 ·m1

which is clearly a positive definite quadratic form. This verifies (Λ∗)n/Γᾱ
l is an abelian 

variety over Λ. We will denote this lattice quotient as A(ᾱ)l and call a finite product 
of these tori a special isogenous analytic torus. When l = 1, we will simply refer to 
A(ᾱ) = A(α1) × · · · ×A(αn) = Λ∗/〈Tα1〉 × · · · × Λ∗/〈Tαn〉 as a split analytic torus.

Note that a special isogenous analytic torus is indeed isogenous to a product torus 
A(ᾱ)l by considering the following free action of Z/l generated by
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gan : A(ᾱ) → A(ᾱ), g(λ1, · · · , λn) → (λ1 · Tα1/l, · · · , λn · Tαn/l).

The verification is straightforward hence omitted. We will see that this is the mirror 
group action of the symplectic side (Definition 5.1).

5.2. Homological mirror symmetry of product tori

We briefly recall the homological mirror symmetry of a product torus following [2]. 
We also borrowed expositions in the case of a two-torus from [21] and Auroux’s lecture 
notes [3].

Given a torus T (α) with area α, parametrized by (s, t) ∈ R/αZ × R/Z. We denote 
longitudes and meridians as:

Lm,a = {s = a}, Ll,b = {t = b},

respectively. It is shown in [29,2] etc. that (T (α), ωstd) has the Tate curve A(α) as 
the mirror, which can be identified with its analytification Λ∗

C
/〈Tα〉. Note that any 

ζ ∈ Λ∗
C
/〈Tα〉 can be written as ζ = Tσ(ζ) · (a0 +a1T

s1 + · · · ), where we take the mod −α

reduction σ(ζ) ∈ R/αZ and si > 0 for all i ≥ 1.
We describe the mirror functor at least on the object level for a set of gener-

ators. Namely, on the symplectic side, [2] showed that {Ll,0, Lm,0} split generates 
DπFuk(T (α)). To describe objects in the derived category as geometric objects, one 
must incorporate an additional piece of data of local systems, which is more or less a 
routine procedure nowadays, but we will avoid introducing more notations here and only 
consider them as objects introduced by taking the Karoubi completion. Clearly, the split 
generation holds true also for any pair of longitude and meridian {Ll,b, Lm,a} by applying 
an appropriate symplectomorphism.

On the analytic side, it is known (see [26]) that O and Op split generates the bounded 
derived category of coherent sheaves DbCoh(A(α)) for any p ∈ A(α). Moreover, the 
mirror functor constructed in [29] can be used to describe mirrors of longitudes and 
meridians. Denote pb = e2πb

√
−1 ∈ C∗ ⊂ Λ∗, one has the following correspondence via 

the mirror functor:

Ll,b ←→ O(pb − p0),
Lm,a ←→ OTa·p0 .

(5.3)

In short, the longitudes correspond to a degree zero line bundle; while the meridians 
correspond to skyscraper sheaves of closed points.

Abouzaid and Smith [2, Section 7, 8] generalizes this split generation to any product 
tori. For T (ᾱ) =

∏n
i=1 T (αi), the split generation holds for the set of product Lagrangians 

of the form

LW,t := Lw1,t1 × · · · × Lwn,tn .
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Here W = w1 · · ·wn is a word of length n consisting of m and l; t = (t1, · · · , tn), where 
ti is a given sequence of arbitrary real numbers within its own range of values. This 
corresponds to a split generation result of DbCoh(A(α)) (again using [26, Theorem 4], 
see [2, Lemma 8.1]), where LW,t corresponds to the coherent sheaf

EV := E1 � · · · � En,

where Ei is the mirror of Lwi,ti under the correspondence (5.3). The upshot is that, 
given any finite set of Lagrangians of the form LW,t without repetition in words W ’s, 
and consider the subcategory A consisting of twisted complexes they split generate in 
DπFuk(T (ᾱ)), there is a fully faithful functor

F : A → Db(A(ᾱ)). (5.4)

Also, the following homological level assertion will be useful.

Lemma 5.7. A is isomorphic to its image.

This is obvious from definition: the images of LW,t are pairwisely distinct objects for 
different value of W and F is fully faithful. Now A is equivalent to DπFuk(T (ᾱ)) if and 
only if W run through all possible words by the split generation result. On the analytic 
side, the image F(A) is split generated by EV , which by Orlov’s result is equivalent 
to Db(A(ᾱ)) when W runs through all possible words, hence proving the homological 
mirror symmetry for the split tori.

Remark 5.8. We should remark on some technical points regarding the definition of F
in Abouzaid–Smith’s work. The construction combines several lines of considerations, 
but one of the key part is that one needs to use a chain-level (A∞) model F∞, then 
regard F as its reduction to the homotopy level. Lemma 5.7 is only a rephrase that 
F∞ is a quasi-isomorphism to the image. For complex dimension 1, the functor on the 
homological level that we considered essentially follows from [29].

To define F∞ for higher dimensions, we first recall the dg-enhancement of the de-
rived category of A(ᾱ), denoted as Dπ

∞(A(ᾱ)). This is a dg-category with essentially 
the same objects, but the bounded complexes of coherent sheaves should be replaced by 
their quasi-isomorphic injective resolutions. Then the morphism groups are morphisms 
of chain complexes, which are graded by the degree shifts. A standard procedure shows 
Db

∞(A(ᾱ)) can be regarded as an A∞ category obtained by equipping Db(A(ᾱ)) with 
an A∞-structure with higher operations (i.e. μi with i ≥ 3). The construction takes a 
dg-enhancement of derived category, then apply the homological perturbation lemma to 
obtain the minimality (i.e. vanishing μ1-terms, see [17][35]).

The construction of F∞ then uses the formalism of quilts by considering LW,t

as functors from Fuk(T (α1, · · · , αn−1)) to Fuk(T (αn)). By induction of homologi-
cal mirror symmetry from one complex dimension lower, this is quasi-equivalent to 
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Fun(Db
∞A(α1, · · · , αn−1), Db

∞A(αn)), while the latter is in turn quasi-equivalent to 
Db

∞A(ᾱ) from [42, Theorem 8.15].

5.3. Homological mirror symmetry of special isogenous tori

We finish the proof of Theorem 1.4 in this section. Throughout we focus on the special 
isogenous tori with one factor, the general case then follows from the product-functor 
correspondence described in the previous section due to Abouzaid–Smith. Alternatively, 
implementing our proof directly to the case of multiple factors is also pretty straightfor-
ward.

Consider the special automorphism of T (ᾱ) in Definition 5.1. This induces a naive 
Z/l-action on the Fukaya category on T (ᾱ) equipped with Z-gradings. Let the set Bl

formed by all Lagrangians of the form LW,t specified by the following condition: ti = 0
when wi = l, and ti = rα/l when wi = m for some integer r with 0 ≤ r ≤ l. Let Al be the 
subcategory of twisted complexes and their direct summands in DπFuk(T (ᾱ)l) formed 
by Bl (we seem to be using a redundant expression of “subcategory split generated by Bl”, 
but we want to distinguish these twisted complexes in the derived categories from objects 
that are only isomorphic to them). Then Z/l · Bl forms a collection of Z/l-Lagrangian 
submanifolds endowed with equivariant brane structures. From Theorem 1.1, Z/l ·B split 
generates the equivariant Fukaya category Fuk(T (ᾱ))Z/l, hence also the Z/l-invariant 
part of Al. Moreover, it is easy to see that Bl verifies the assumption in Corollary 4.9, 
thus (Al)Z/l is equivalent to DπFuk(T (ᾱ)l).

On the analytic side, let B∨
l be the set of coherent sheaves on A(ᾱ) which are mirror of 

Bl under (5.3), or equivalently, (5.4). Let A∨
l := F(Al) be the subcategory of Db(A(ᾱ))

generated by the set B∨
l . The fact that A∨

l being isomorphic to Al (Lemma 5.7) implies 
that the induced Z/l action is indeed strict rather than coherent, and its invariant part 
(A∨

l )Z/l is split generated by G · B∨
l . Hence we have the equivalence

(A∨
l )Z/l ∼= (Al)Z/l ∼= DπFuk(T (ᾱ)l). (5.5)

It is not difficult to relate (A∨
l )Z/l to the more commonly used notion of equivariant 

derived categories. Consider the free Z/l-action gan on the analytic torus A(ᾱ) as in 
Example 5.6. One checks from (5.3) that the action g and gan are equivariant with 
respect to the functor F on Bl and B∨

l . (This partially justifies our claim that g and gan

are mirror actions. One may further check the full generality of the claim by incorporating
local systems as in [2][21] and identify points on the analytic tori and the corresponding 
skyscraper sheaves, but we will not use this here.)

Therefore, one may talk about the derived category of equivariant sheaves
Db

Z/lCoh(A(ᾱ)) (which is defined to be the equivariant derived category when the group 

action is free, see [5, 0.4]). We regard Db
Z/lCoh(A(ᾱ)) as a (non-full) triangulated sub-

category of DbCoh(A(ᾱ)). By [13, Theorem 2.1] Db
Z/lCoh(A(ᾱ)) is again a split closure 

of G · B∨
l (regarded as equivariant sheaves) hence is equivalent to (A∨)Z/l. The freeness 
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of the Z/l further identifies the equivariant derived category to the derived category of 
the quotient (see the lemma before [5, 0.4]), i.e. (A∨)Z/l ∼= Db

Z/l(A(ᾱ)) ∼= Db(A(ᾱ)l). 
Combining this with (5.5) we conclude Theorem 1.4.

Remark 5.9. The identification Db(X/G) ∼= Db
G(X) is well known on schemes when the 

G-action is free. This is due to the existence of a pair of functors that are inverse to 
each other q∗ : Sh(X/G) � ShG(X) : qG∗ , and a direct comparison. In particular, the 
equivalence actually holds on the level of abelian categories. Since the six functors work
similarly on rigid analytic spaces, same conclusion still holds there.

5.4. Derived equivalences between lattice quotients over Λ

Theorem 1.4 reduces our study of Theorem 1.5 to their mirrors. To understand when 
Db(A(ᾱ)l̄) is equivalent to Db(A(ᾱ′)l̄′). We need to recall how to dualize abelian varieties 
and morphisms between them.

Recall that the dual of an abelian variety A, denoted as Â, is the identity component 
of the Picard scheme, i.e. Â = Pic0(A) (see [24]). Given a homomorphism (as group 
schemes) of abelian variety φ : A → B, a dual homomorphism φ̂ is simply defined by the 
pull-back. A homomorphism f : A × Â → B × B̂ can be represented as a matrix

f =
(
f1 f2
f3 f4

)
.

Here f1 : A → B, f2 : Â → B, f3 : A → B̂, f4 : Â → B̂ are again homomorphisms 
between abelian varieties. We define

f̃ =
(

f̂4 −f̂2

−f̂3 f̂1

)
.

Following [28] [25], we say f is an isometric isomorphism if f−1 = f̃ . The following 
general theorem is our main tool:

Theorem 5.10 ([25][28]). Two abelian varieties A and B over a field k with characteristic 
0 are derived equivalent if and only if there is an isometric isomorphism f : A × Â →
B × B̂.

Our next task is to explicitly write down the implication of Theorem 5.10 on an 
analytic torus, i.e. a lattice quotient of (Λ∗)n. First we need to explain how to dualize 
a lattice quotient T = T an/Γ. Let Γ = 〈ei〉ni=1 for ei ∈ (Λ∗)n an integral basis for the 
lattice, and T̂ an = Hom(Γ, Λ∗). This is a split (analytic) torus with character group 
naturally identified by evaluation on Γ
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Hom(Γ,Λ∗) ∼−→(Λ∗)n

ϕ 	→(ϕ(e1), · · · , ϕ(en))
(5.6)

The dual lattice Γ̂ is the restriction of the character group X(T ) to Γ, thus under the 
above identification, can be represented as

Γ̂ = 〈(zi(e1), · · · , zi(en))〉ni=1.

Theorem 5.11 ([10, Theorem 2.1]). If A = T an/Γ is an abelian variety, then

T̂ an/Γ = T̂ an/Γ̂.

The last piece of general framework in rigid geometry we need is a uniformization 
theorem of a morphism between two lattice quotients.

Theorem 5.12 ([19], see also Section 5.3, [27]). Let Hom((T an
A , ΓA), (T an

B , ΓB)) be a 
group of homomorphism of the analytic tori sending ΓA to ΓB. Then the natural map 
Hom((T an

A , ΓA), (T an
B , ΓB)) −→ Hom(T an

A /ΓA, T an
B /ΓB) is a bijection.

In other words, any homomorphism f : T an
A /ΓA → T an

B /ΓB can be lifted uniquely to 
f : T an

A → T an
B so that f(ΓA) ⊂ ΓB . We will call f the uniformization of f .

The above theorems enable us to dualize a morphism h : A → B between lattice 
quotients naturally. Namely, there is a natural pairing

〈·, ·〉 : T̂ × Γ → Λ∗

by evaluation. In particular, this defines a pairing Γ̂ × Γ → Λ∗. Let h : TA → TB be the 
uniformization of h, then ĥ : B̂ → Â can be described by its uniformization

〈ĥ(ŵ), v〉 = 〈ŵ, h(v)〉 (5.7)

for ŵ ∈ Γ̂B , v ∈ ΓA. Note that since components of f̂ are simply group characters, (5.7)
is sufficient to determine ĥ due to the fullness of the lattices.

Example 5.13. For A(ᾱ)l defined in Example 5.6, the dual lattice can be computed 
explicitly as the evaluation of group characters at lattice points in Γ. This yields

Γ̂ᾱ
l = 〈(qα1/l, 1, · · · , 1), (qαi/l, 1, · · · , 1, qαi , · · · , 1)〉ni=2.

We will denote the valuation matrix

Q̃ᾱ
l =

⎛⎜⎜⎜⎜⎝
α1/l

α2/l α2 0
... · · ·

α /l 0 α

⎞⎟⎟⎟⎟⎠

n n
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With these general preparations, we may now explain how to reduce the isometric 
isomorphism condition in Theorem 5.10 to an elementary linear algebra condition. By 
taking the valuation map, we obtain a matrix representation for a lattice Γ by listing 
(σ(e1), · · · , σ(en)) as column vectors. Denote this matrix by MΓ, then the corresponding 
matrix for Γ̂ is precisely its transpose MT

Γ .
Suppose Db(TA/ΓA) ∼= Db(TB/ΓB), by Theorem 5.10, 5.11 and 5.12, there is a uni-

formization map

f : TA × T̂A → TB × T̂B ,

which induces an isomorphism of lattices ΓA × Γ̂A
∼−→ ΓB × Γ̂B . In the rest of the 

computation we again consider all maps and vectors of the lattices as column vectors in 
Rn after taking valuations on components. Let ΓA(B) = 〈eA(B)

1 , · · · , eA(B)
n 〉 and Γ̂A(B) =

〈ê1
A(B), · · · , ̂enA(B)〉. Then

f(eAi ) =
∑
j

F j
i e

B
j +
∑
j

Gij ê
j
B ,

f(êiA) =
∑
j

HijeBj +
∑
j

Iij ê
j
B , for 1 ≤ i, j ≤ n.

(5.8)

We assembly this into a matrix representation

f(eA1 , · · · , eAn , ê1
A, · · · , ênA)T =

(
F G

H I

)
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eB1
...
eBn

ê1
B
...
ênB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.9)

By the isometric assumption, the inverse of f takes the form

f
−1(eB1 , · · · , eBn , ê1

B , · · · , ênB)T =
(

Î −Ĝ

−Ĥ F̂

)
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eA1
...
eAn

ê1
A
...
ênA

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.10)

Note that F , G, H, I, F̂ , Ĝ, Ĥ, Î are all integer matrices, and matrices they formed 
in (5.9), (5.10) are in GL(2n, Z). Recall the pairing between the dual lattice quotients 
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〈·, ·〉 from (5.7), let QA(B) = (〈êiA(B), e
A(B)
j 〉)1≤i,j≤n (j is the running index for columns). 

Then we have:

QBF
T = F̂QA,

IQB = QAÎ
T ,

GQB = QT
AĜ

T ,

HQT
B = QAĤ

T .

(5.11)

Combining (5.9), (5.10), (5.11), a straightforward matrix computation shows:(
F G

H I

)
·
(

0 QT
B

−QB 0

)
·
(
FT HT

GT IT

)
=
(

0 QT
A

−QA 0

)

The reverse direction works equally well. Therefore, we obtain

Lemma 5.14. Db(TA/ΓA) ∼= Db(TB/ΓB) if and only if 
(

0 QT
B

−QB 0

)
and 

(
0 QT

B

−QB 0

)
are congruent by GL(2n, Z).

We now consider the case of an special isogenous torus given in Example 5.6. For 
A = Ã(ᾱ)l, QA is precisely the matrix Q̃ᾱ

l in Example 5.13, after taking êi as the group 
character zi. Note also that (Q̃ᾱ

l̄
)T = (M ᾱ

l )−1 as defined in Section 5.1. Therefore, given 
α′, l′, (

0 (Q̃ᾱ
l )T

−Q̃ᾱ
l 0

)
∼
(

0 (Q̃ᾱ′

l′ )T

−Q̃ᾱ′

l′ 0

)
⇐⇒ Ωᾱ

l ∼ Ωᾱ′

l′ .

Here ∼ is the equivalence relation given by congruence class given by GL(2n, Z). We 
then conclude the main theorem of this section from Lemma 5.2:

Theorem 5.15. T (ᾱ)l is linearly symplectomorphic to T (ᾱ′)l′ if and only if A(ᾱ)l is 
derived equivalent to A(ᾱ′)l′ .

Again, since the lattice computations involved carries over to products with no extra 
complications, Theorem 5.15 works for any special isogenous symplectic/analytic tori. 
Combining 1.4 and 5.15, one concludes the proof of 1.5.
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