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Abstract
Let k be an algebraically closed field. Let Λ be a noetherian commutative ring annihilated

by an integer invertible in k and let ` be a prime number different from the characteristic
of k. We prove that if X is a separated algebraic space of finite type over k endowed with an
action of a k-algebraic group G, the equivariant étale cohomology algebra H∗([X/G], Λ), where
[X/G] is the quotient stack of X by G, is finitely generated over Λ. Moreover, for coefficients
K ∈ D+

c ([X/G],F`) endowed with a commutative multiplicative structure, we establish a
structure theorem for H∗([X/G], K), involving fixed points of elementary abelian `-subgroups
of G, which is similar to Quillen’s theorem [36, Theorem 6.2] in the case K = F`. One key
ingredient in our proof of the structure theorem is an analysis of specialization of points of
the quotient stack. We also discuss variants and generalizations for certain Artin stacks.

Introduction
In [36], Quillen developed a theory for mod ` equivariant cohomology algebras H∗G(X,F`), where `
is a prime number, G is a compact Lie group, and X is a topological space endowed with an action
of G. Recall that, for r ∈ N, an elementary abelian `-group of rank r is defined to be a group
isomorphic to the direct product of r cyclic groups of order ` [36, Section 4]. Quillen showed that
H∗G(X,Λ) is a finitely generated Λ-algebra for any noetherian commutative ring Λ [36, Corollary
2.2] and established structure theorems ([36, Theorem 6.2], [37, Theorem 8.10]) relating the ring
structure of H∗G(X,F`) to the elementary abelian `-subgroups A of G and the components of the
fixed points set XA. We refer the reader to [24, Section 1] for a summary of Quillen’s theory.

In this article, we establish an algebraic analogue. Let k be an algebraically closed field of
characteristic 6= ` and let Λ be noetherian commutative ring annihilated by an integer invertible in
k. Let G be an algebraic group over k (not necessarily affine) and let X be a separated algebraic
space of finite type over k endowed with an action of G. We consider the étale cohomology ring
H∗([X/G],Λ) of the quotient stack [X/G]. One of our main results is that this ring is a finitely
generated Λ-algebra (Theorem 4.6) and the ring homomorphism

H∗([X/G],F`)→ lim←−
A
H∗(BA,F`)

given by restriction maps is a uniform F -isomorphism (Theorem 6.11), i.e. has kernel and cokernel
killed by a power of F : a 7→ a` (see Definition 6.10 for a review of this notion introduced by
Quillen [36, Section 3]). Here A is the category of pairs (A,C), where A is an elementary abelian
`-subgroup of G and C is a connected component of XA. The morphisms (A,C)→ (A′, C ′) of A
are given by elements g ∈ G such that Cg ⊃ C ′ and g−1Ag ⊂ A′. We also establish a generalization
(Theorem 6.17) for H∗([X/G],K), where K ∈ D+

c ([X/G],F`) is a constructible complex of sheaves
on [X/G] endowed with a commutative ring structure.

A key ingredient in Quillen’s original proofs is the continuity property [36, Proposition 5.6]. In
the algebraic setting, this property is replaced by an analysis of the specialization of points of the
quotient stack [X/G]. In order to make sense of this, we introduce the notions of geometric points
and of `-elementary points of Artin stacks. Our structure theorems for equivariant cohomology
algebras are consequences of the following general structure theorem (Theorem 8.3): if X = [X/G]
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or X is a Deligne-Mumford stack of finite presentation and finite inertia over k, and if K ∈
D+
c (X ,F`) is endowed with a commutative ring structure, then the ring homomorphism

H∗(X ,K)→ lim←−
x : S→X

H∗(S, x∗K)

given by restriction maps is a uniform F -isomorphism. Here the limit is taken over the category
of `-elementary points of X .

In [26] we established an algebraic analogue [26, Theorem 8.1] of a localization theorem of
Quillen [36, Theorem 4.2], which he had deduced from his structure theorems for equivariant
cohomology algebras. This was one of the motivations for us to investigate algebraic analogues of
these theorems. We refer the reader to [25] for a report on the present article and on some results
of [26].

In Part I we review background material on quotient and classifying stacks (Section 1), and
collect results on the cohomology of Artin stacks (Section 2) that are used at different places in this
article. The ring structures of the cohomology algebras we are considering reflect ring structures
on objects of derived categories. We discuss this in Section 3.

The reader familiar with the general nonsense recalled in Part I could skip it and move directly
to Part II, which contains the main results of the paper. In Section 4, we prove the above-mentioned
finiteness theorem (Theorem 4.6) for equivariant cohomology algebras. One key step of the proof
amounts to replacing an abelian variety by its `-divisible group, which was communicated to us
by Deligne. In Section 5, we present a crucial result on the finiteness of orbit types, which is an
analogue of [36, Lemma 6.3] and was communicated to us by Serre.

In Section 6, we state the above-mentioned structure theorems (Theorems 6.11, 6.17) for equiv-
ariant cohomology algebras. In Section 7, we introduce and discuss the notions of geometric points
and of `-elementary points of Artin stacks. Using them we state in Section 8 the main result of
this paper, the structure theorem (Theorem 8.3) for cohomology algebras of certain Artin stacks,
and show that it implies the structure theorems of the equivariant case. In Section 9, we establish
some Künneth formulas needed in the proof of Theorem 8.3, which is given in Section 10. Finally,
in Section 11 we prove an analogue of Quillen’s stratification theorem [37, Theorems 10.2, 12.1]
for the reduced spectrum of mod ` étale equivariant cohomology algebras.

The results of this paper have applications to the structure of varieties of supports. We hope
to return to this in a future article.
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Conventions
We fix a universe U , which we will occasionally enlarge. We say “small” instead of “U-small” when
there is no ambiguity. We say that a category is essentially small (resp. essentially finite) if it is
equivalent to a small (resp. finite) category. Schemes are assumed to be small. Presheaves take
values in the category of U-sets. For any category C, we denote by Ĉ the category of presheaves
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on C, which is a U-topos if C is essentially small. If f : C → D is a fibered category, we denote by
C(U) (or sometimes CU ) the fiber category of f over an object U of D.

By a stack over a U-site C we mean a stack in groupoids over C [44, 02ZI] whose fiber categories
are essentially small.1 By a stack, we mean a stack over the big fppf site of Spec(Z). Unlike [31], we
do not assume algebraic spaces and Artin stacks to be quasi-separated. We say that a morphism
f : X → Y of stacks is representable (this property is called “representable by an algebraic space”
in [44, 02ZW]) if for every scheme U and every morphism y : U → Y, the 2-fiber product U×y,Y,fX
is representable by an algebraic space. By an Artin stack (resp. Deligne-Mumford stack), we mean
an “algebraic stack” (resp. Deligne-Mumford stack) over Spec(Z) in the sense of [44, 026O] (resp.
[44, 03YO]), namely a stack X such that the diagonal ∆X : X → X ×X is representable and such
that there exists an algebraic space X and a smooth (resp. étale) surjective morphism X → X .

By an algebraic group over a field k, we mean a group scheme over k of finite type. Unless
otherwise stated, groups act on the right.
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Part I

Preliminaries
1 Groupoids and quotient stacks
Classically, if G is a compact Lie group, a classifying space BG for G is the base of a contractible
(right) G-torsor PG. Such a classifying space exists and is essentially unique (up to homotopy
equivalence). If X is a G-space (i.e. a topological space endowed with a continuous (right) action
of G), one can twist X by PG and get a space PG ∧G X, defined as the quotient of PG ×X by

1The fiber categories of prestacks over C are also assumed to be essentially small.
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the diagonal action of G, ((p, x), g) 7→ (pg, xg). This space PG ∧G X is a fiber bundle over BG of
fiber X, and PG×X is a G-torsor over PG∧GX. If Λ is a ring, the equivariant cohomology of X
with value in Λ is defined by

H∗G(X,Λ) := H∗(PG ∧G X,Λ) ' H∗(BG,Rπ∗Λ)

where π : PG ∧G X → BG is the projection. The functorial properties of this cohomology, intro-
duced by Borel, are discussed by Quillen in [36, Section 1].

A well-known similar formalism exists in algebraic geometry, with classifying spaces replaced
by classifying stacks. We review this formalism in this section.

Construction 1.1. Let C be a category in which finite limits are representable. We define the
category

Eq(C)

of equivariant objects in C as follows. The objects of Eq(C) are pairs (X,G) consisting of a group
object G of C and an object X of C endowed with an action of G, namely a morphism X×G→ X
satisfying the usual axioms for composition and identity. A morphism (X,G)→ (Y,H) in Eq(C) is
a pair (f, u) consisting of a homomorphism u : G→ H and a u-equivariant morphism f : X → Y .
Here the u-equivariance of f is the commutativity of the following diagram in C:

X ×G //

f×u
��

X

f

��
Y ×H // Y.

While Eq(C) is a category, groupoids in C form a (2,1)-category2

Grpd(C).

We regard groupoids X• in C as internal categories, consisting of two objects X0 and X1 of C,
called respectively the object of objects and the object of morphisms, together with four morphisms
in C,

e : X0 → X1, s, t : X1 → X0, m : X1 ×sX ,X0,tX X1 → X1,

called respectively identity, source, target, and composition. A 1-morphism of groupoids f• : X• →
Y• is an internal functor between the underlying internal categories, namely a pair of morphisms
f0 : X0 → Y0, f1 : X1 → Y1, compatible with e, s, t, m. For 1-morphisms of groupoids f•, g• : X• →
Y•, a 2-morphism f• → g• is an internal natural isomorphism, namely, a morphism r : X0 → Y1 of
C such that sY r = f0, tY r = g0, and mY (g1, rsX) = mY (rtX , f1). The last identity can be stated
informally as for any (u : a→ b) ∈ X1, g1(u)r(a) = r(b)f1(u).

We define a functor

(1.1.1) Eq(C)→ Grpd(C).

as follows. To an object (X,G) of Eq(C), we assign a groupoid in C

(X,G)•

with (X,G)0 = X, (X,G)1 = X × G, e(x) = (x, 1), s(x, g) = xg, t(x, g) = x, and composition
given by (x, g)(xg, h) = (x, gh). The inverse-assigning morphism is (x, g) 7→ (xg, g−1). Here we
follow the conventions of [31, 3.4.3] (see also [44, 0444] where groups act on the left). A morphism
(f, u) : (X,G) → (Y,H) in Eq(C) gives a morphism of groupoids (f, u)• : (X,G)• → (Y,H)•,
(f, u)0 = f , (f, u)1 = f × u : (x, g) 7→ (f(x), u(g)).

The functor (1.1.1) is faithful, but not fully faithful. The maximal 2-subcategory GrpdEq(C)
of Grpd(C) spanned by the objects in the image of (1.1.1) can be described as follows.

Proposition 1.2. Let (X,G), (Y,H), and (Z, I) be objects of Eq(C).
2A (2,1)-category is a 2-category whose 2-morphisms are invertible.
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(a) For any morphism of groupoids ϕ = (ϕ0, ϕ1) : (X,G)• → (Y,H)•, there exist a unique pair
of morphisms f : X → Y , u : X × G → H such that ϕ1(x, g) = (f(x), u(x, g)), and the pair
(f, u) satisfies the following relations:
(i) f is u-equivariant, i.e. f(xg) = f(x)u(x, g),
(ii) u(x, g)u(xg, g′) = u(x, gg′).
Conversely, any pair (f, u) satisfying (i), (ii) defines a morphism of groupoids ϕ•. Moreover,
if (a, u) : (X,G)• → (Y,H)• and (b, v) : (Y,H)• → (Z, I)• are morphisms of groupoids, the
composition is given by (ba, w), where w : X ×G→ I is given by w(x, g) = v(a(x), u(x, g)).

(b) Let ϕi = (fi, ui) : (X,G)• → (Y,H)• (i = 1, 2) be 1-morphisms of groupoids. Then a 2-
morphism from ϕ1 to ϕ2 is a morphism r : X → H satisfying the relations
(i) f1(x) = f2(x)r(x),
(ii) r(x)u1(x, g) = u2(x, g)r(xg).
Composition of 2-morphisms is given by multiplication in H.

We will sometimes call a morphism u : X×G→ H satisfying (a) (ii) a crossed homomorphism.

Proof. In (a), the uniqueness of (f, u) are clear, while the existence (resp. (i), resp. (ii)) expresses
the compatibility of ϕ with the target (resp. source, resp. composition) morphism. The other
statements are straightforward.

Definition 1.3. We say that a pseudofunctor F : C → D between 2-categories is faithful (resp.
fully faithful) if for every pair of objectsX and Y in C, the functor HomC(X,Y )→ HomD(FX,FY )
induced by F is fully faithful (resp. an equivalence of categories). We say that F is essentially
surjective if for every object Y of D, there exists an object X of C and an equivalence FX ' Y
in D.

Construction 1.4. Let E be a U-topos (we will be mostly interested in the case where E is the
topos of fppf sheaves on some algebraic space), endowed with its canonical topology. A groupoid
X• in E defines a category [X•]′ fibered in groupoids over E whose fiber at U is X•(U). This is
an E-prestack, and, as in [31, 3.4.3], we denote the associated E-stack [44, 02ZP] by [X•]. If π
denotes the canonical composite morphism

π : X0 → [X•]′ → [X•],

the groupoid can be recovered from π: there is a natural isomorphism

(1.4.1) X1
∼−→ X0 ×[X•] X0

identifying the projections p1, p2 : X0 ×[X•] X0 → X0 with s and t, and identifying the second
projection id×π× id : X0×[X•]X0×[X•]X0 → X0×[X•]X0 with m. Here X0×[X•]X0 denotes the
sheaf carrying U to the set of isomorphism classes of triples (x, y, α), x, y ∈ X0(U), α : π(x) ' π(y).
More generally, there is a natural isomorphism of simplicial objects

(1.4.2) Ner(X•)
∼−→ cosk0(π)

between the nerve of the groupoid X• and the 0-th coskeleton of π.
We denote by Stack(E) (resp. PreStack(E)) the (2,1)-category of E-stacks (E-prestacks). The

pseudofunctor Grpd(E)→ PreStack(E) sending X• to [X•]′ is fully faithful and the pseudofunctor
PreStack(E) → Stack(E) sending an E-prestack to its associated E-stack is faithful. Therefore,
the composite pseudofunctor

(1.4.3) Grpd(E)→ Stack(E)

sending X• to its associated E-stack [X•] is faithful. In other words, if X•, Y• are groupoids in E,
and ϕi : X• → Y• (i = 1, 2) is a morphism of groupoids, then the natural map

Hom(ϕ1, ϕ2)→ Hom([ϕ1], [ϕ2])

is bijective. However, in general, not every morphism f : [X•] → [Y•] is of the form [ϕ] for a
morphism of groupoids ϕ : X• → Y• (see Remark 1.7 below). On the other hand, (1.4.3) is
essentially surjective.
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Notation 1.5. In the case of the groupoid (X,G)• associated with a G-object X of E, the stack
[(X,G)•] is denoted by

(1.5.1) [X/G]

and called the quotient stack of X by G. For X = e the final object of E (with the trivial action
of G), it is called the classifying stack of G and denoted by

(1.5.2) BG := [e/G].

Recall ([31, 2.4.2], [44, 04WM]) that the projection X → [X/G] makes X into a universal G-
torsor over [X/G], i.e. for U in E, the groupoid [X/G](U) is canonically equivalent to the category
of pairs (P, a), where P is a right GU -torsor and a is a G-equivariant morphism from P to X;
morphisms from (P, a) to (Q, b) are G-equivariant morphisms c : P → Q such that a = bc.

The action of G on X is recovered from π: the isomorphism (1.4.1) takes the form

(1.5.3) X ×G ∼−→ X ×[X/G] X,

identifying the projections p1, p2 with (x, g) 7→ xg, (x, g) 7→ x.
For X = e, BG(U) is the groupoid of G-torsors on U for U in E, which justifies the terminology

“classifying stack”. For general X, the projection [X/G]→ BG induces X → e by the base change
B{1} → BG, so that one can think of [X/G]→ BG as a “fibration” with fiber X. In other words,
[X/G] plays the role of the object PG ∧G X recalled at the beginning of Section 1.

In order to describe morphisms from [X/G] to [Y/H] associated to morphisms of groupoids
from (X,G)• to (Y,H)•, we need to introduce the following notation. Let (X,G) be an object of
Eq(E), and let u : X ×G→ H be a crossed homomorphism (Proposition 1.2). We denote by

(1.5.4) X ∧G,u H

the quotient of X × H by G acting by (x, h)g = (xg, u(x, g)−1h). This is an H-object of E, the
action of H on it being deduced from its action by right translations on X ×H. For any H-object
Y of E, the map

(1.5.5) Homu(X,Y )→ HomH(X ∧G,u H,Y )

sending a u-equivariant morphism f (Proposition 1.2 (a) (i)) to the morphism fu : (x, h) 7→ f(x)h
is bijective.

When u : X × G → H is defined by u(x, g) = u0(g) for a group homomorphism u0 : G → H,
X ∧G,uH coincides with the usual contracted product [20, Définition III.1.3.1], i.e. the quotient of
X ×H by the diagonal action of G, (x, h)g := (xg, u0(g)−1h).

The following proposition, whose verification is straightforward, describes the restriction of
(1.4.3) to GrpdEq(E).

Proposition 1.6. Let (X,G) and (Y,H) be objects of Eq(E).
(a) Let (f, u) : (X,G)• → (Y,H)• be a morphism of groupoids (Proposition 1.2), and let

[f/u] : [X/G]→ [Y/H]

be the associated morphism of stacks. For (P, a) ∈ [X/G](U), [f/u](P, a) is the pair consisting
of the H-torsor P ∧G,v H (where v is the composition of a × idG : P × G → X × G and u)
and the H-equivariant morphism av : P ∧G,v H → Y defined by a via (1.5.5).

(b) Let ϕ1, ϕ2, r be as in Proposition 1.2 (b). Then the 2-morphism [r] : [f1/u1]→ [f2/u2] induced
by r is given by the Y -morphism P ∧G,v1 H → P ∧G,v2 H sending (p, h) to (p, r(a(p))−1h).

For a crossed homomorphism u : X × G → H, the unit section of H defines a u-equivariant
morphism

(1.6.1) X → X ∧G,u H.

The morphism of E-stacks

(1.6.2) [X/G]→ [(X ∧G,u H)/H]

induced by (1.6.1) sends T → X to T ∧G,u H → X ∧G,u H.
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Remark 1.7. The restriction of (1.4.3) to GrpdEq(E) is not fully faithful in general. In other
words, for objects (X,G), (Y,H) of Eq(E), a morphism of stacks [X/G]→ [Y/H] does not neces-
sarily come from a morphism of groupoids (X,G)• → (Y,H)•. In fact, in the case G = {1} and
Y is a nontrivial H-torsor over X, any quasi-inverse of the equivalence [Y/H]→ X does not come
from a morphism of groupoids. See Proposition 1.19 for a useful criterion. See also [47, Proposition
5.1] for a calculus of fractions for the composite functor Eq(E)→ Stack(E) of (1.1.1) and (1.4.3).

Definition 1.8. We say that a morphism X → Y in a 2-category C is faithful (resp. a monomor-
phism) if for every object U of C, the functor Hom(U,X) → Hom(U, Y ) is faithful (resp. fully
faithful).

In a 2-category, we need to distinguish between 2-limits [18, Definition 1.4.26] and strict 2-
limits (called “2-limits” in [4, Definition 7.4.1]). Strict 2-products are 2-products. If a diagram
X → Y ← X ′ in C admits a 2-fiber product X ×Y X ′ and a strict 2-fiber product Z, the canonical
morphism Z → X ×Y X ′ is a monomorphism.

In a (2,1)-category C admitting 2-fiber products, a morphism X → Y is faithful (resp. a
monomorphism) if and only if its diagonal morphism X → X ×Y X is a monomorphism (resp. an
equivalence).

A morphism of E-prestacks X → Y is faithful (resp. a monomorphism, resp. an equivalence) if
and only if X (U) → Y(U) is a faithful functor (resp. a fully faithful functor, resp. an equivalence
of categories) for every U in E. If X ′ is an E-prestack and X is its associated E-stack, then the
canonical morphism X ′ → X is a monomorphism.

Let (f, u) : (X,G)→ (Y,H) be a morphism of Eq(E). If u is a monomorphism, then [f/u] : [X/G]→
[Y/H] is faithful.

Remark 1.9. The category Eq(C) admits finite limits, whose formation commutes with the
projection functors (X,G) 7→ X and (X,G) 7→ G from Eq(C) to C and to the category of group
objects of C, respectively. The 2-category Grpd(C) admits finite strict 2-limits, whose formation
commutes with the projection 2-functors X• 7→ X0 and X• 7→ X1 from Grpd(C) to C. The functor
Eq(C)→ Grpd(C) (1.1.1) sending (X,G) to (X,G)• carries finite limits to finite strict 2-limits.

The 2-category Grpd(C) admits finite 2-limits as well. The 2-fiber product of a diagram
X•

f−→ Y•
g←− Y ′• in Grpd(C) is the groupoid W• of triples (x, y, α), where x ∈ X0, y ∈ Y ′0 , and

(α : f(x) ∼−→ g(y)) ∈ Y1. More formally, W0 = X0 ×Y0,sY Y1 ×tY ,Y0 Y
′
0 and W1 is the limit of the

diagram
X1 → Y1

p1←− Y1 ×Y0 Y1
m−→ Y1

m←− Y1 ×Y0 Y1
p2−→ Y1 ← Y ′1 .

A morphism X• → Y• in Grpd(C) is faithful (resp. a monomorphism) if and only if the morphism
X1 → (X0 ×X0)×Y0×Y0,(sY ,tY ) Y1 is a monomorphism (resp. isomorphism).

The category Stack(E) admits small 2-limits. The pseudofunctor Grpd(E)→ Stack(E) (1.4.3)
preserves finite 2-limits and thus preserves faithful morphisms and monomorphisms.

Remark 1.10. A commutative square in Eq(E),

(1.10.1) (X ′, G′)
(f ′,γ′) //

(p,u)
��

(Y ′, H ′)

(q,v)
��

(X,G)
(f,γ) // (Y,H)

induces a 2-commutative square of E-stacks

(1.10.2) [X ′/G′] //

��

[Y ′/H ′]

��
[X/G] // [Y/H].

It is not true in general that if (1.10.1) is cartesian, (1.10.2) is 2-cartesian, as (1.5.3) already shows.
However, we have the following result, which is a partial generalization of [47, Proposition 5.4].
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Proposition 1.11. Consider a cartesian square (1.10.1) in Eq(E). If the morphism

(1.11.1) H ′ ×G→ H

in E given by (h, g) 7→ v(h)γ(g) is an epimorphism, then (1.10.2) is 2-cartesian.

Proof. Let
α : [X ′/G′]→ X := [X/G]×[Y/H] [Y ′/H ′]

be the induced morphism of E-stacks. By Remark 1.9 and the remark following Definition 1.8, α is a
monomorphism. We need to show that for any object V of E, the functor αV : [X ′/G′]V → XV is es-
sentially surjective. By definition, XV is the category of triples ((T, t), (T ′, t′), s), where (T, t : T →
X) is an object of [X/G]V , (T ′, t′ : T ′ → Y ′) is an object of [Y ′/H ′]V , and s : [f/u]V (T, t) →
[q/v]V (T ′, t′) is an isomorphism. In other words (Proposition 1.6 (b)), s : T ∧G,γ H → T ′ ∧H′,v H
is an isomorphism of H-torsors over V , compatible with the morphisms to Y (induced by qt′ and
ft). The functor αV sends an object (P,w) of [X ′/G′]V to ([p/u]V (P,w), [f ′/γ′]V (P,w), σ), where
σ : [fp/γu]V (P,w) → [qf ′/vγ′]V (P,w) is the obvious isomorphism. Let a = ((T, t), (T ′, t′), s) be
an object of XV . It remains to show that there exist a cover (Vi → V )i∈I and, for every i ∈ I,
an object (Pi, wi) of [X ′/G′]Vi such that α(Pi, wi) ' aVi . Take a cover (Vi → V )i∈I such that for
every i, TVi and T ′Vi are both trivial and choose trivializations of them. Then sVi is represented
by the left multiplication by some hi ∈ H(Vi). By the assumption on (1.11.1), we may assume
hi = v(h′i)γ(gi), h′i ∈ H ′(Vi), gi ∈ G(Vi). In this case, the square

(1.11.2) HVi

sVi //

λγ(gi)

��

HVi

λ−1
v(h′

i
)

��
HVi

1 // HVi

commutes, where λh is the left multiplication by h. Thus (1.11.2) gives an isomorphism aVi ' bi,
where bi = ((GVi , tλ−1

gi ), (H ′Vi , t
′λh′

i
), 1). Taking the product of (GVi , tλ−1

gi ) and (H ′Vi , t
′λh′

i
) over

(HVi , (tλ−1
gi )γ = (t′λh′

i
)v) gives us an element (Pi, wi) of [X/G]Vi whose image under α is bi.

Corollary 1.12. Suppose u : G→ Q is an epimorphism of groups of E, with kernel K. Then the
natural morphism

BK
∼−→ e×BQ BG

is an equivalence.

In other words, we can view Bu : BG→ BQ as a fibration of fiber BK.

Definition 1.13. We say that a groupoid X• in E is an equivalence relation if (sX , tX) : X1 →
X0 × X0 is a monomorphism. In this case, the associated E-stack [X•] is represented by the
quotient sheaf in E. We say that the action of G on X is free if the associated groupoid (X,G)•
is an equivalence relation. In this case, [X/G] is represented by the sheaf X/G.

Proposition 1.14. Let (X,G) be an object in Eq(E), and let K be a normal subgroup of G acting
freely on X. Then the morphism f : [X/G]→ [(X/K)/(G/K)] is an equivalence.

Proof. Indeed, for every U in E, [(X/K)/(G/K)]U is the category of pairs (T, α), where T is a
G/K-torsor and α : T → X/K is a G-equivariant map, and the functor fU admits a quasi-inverse
carrying (T, α) to its base change by the projection X → X/K.

The following induction formula will be useful later in the calculation of equivariant cohomology
groups (cf. [36, (1.7)]).

Corollary 1.15. Let (X,G) be an object of Eq(E) and let u : X ×G→ H be a crossed homomor-
phism. Assume that the action of G on X×H, as defined in Notation 1.5, is free (Definition 1.8).
Then f : [X/G]→ [X ∧G,u H/H] (1.6.2) is an equivalence.
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Proof. The morphism f can be decomposed as

[X/G] α−→ [X ×H/G×H] β−→ [X ∧G,u H/H],

where β is an equivalence by Proposition 1.14, and α is induced by the morphism X → X × H
given by the unit section of H and the crossed homomorphism X × G → G × H sending (x, g)
to (g, u(x, g)). Since α is a 2-section of the morphism [X × H/G × H] → [X/G], which is an
equivalence by Proposition 1.14, α is also an equivalence.

Corollary 1.16. Let u : H ↪→ G be a monomorphism of group objects in E. Then
(a) The morphism of stacks BH → [(H\G)/G] is an equivalence.
(b) The natural morphism H\G→ e×BG BH is an isomorphism.

In other words, (a) says that, for any homogeneous space X of group G, if H is the stabilizer
of a section x of X, then the morphism BH → [X/G] given by x : e→ X is an equivalence, while
(b) can be thought as saying that BH → BG is a fibration of fiber H\G.

Proof. Assertion (a) follows from Corollary 1.15. Assertion (b) follows from Proposition 1.11
applied to the cartesian square

(H\G, {1}) //

��

(e, {1})

��
(H\G,G) // (e,G)

(cf. the paragraph following (1.5.3)) and from (a).

Construction 1.17. We will apply the above formalism to a relative situation, which we now
describe. Let X be an E-stack. We denote by Stack/X the (2,1)-category of E-stacks over X . An
object of Stack/X is a pair (Y, y), where Y is an E-stack and y : Y → X is a morphism of E-stacks.
A morphism in Stack/X from (Y, y) to (Z, z) is a pair (f, α), where f : Y → Z is a morphism of
E-stacks and α : y → zf is a 2-morphism:

(1.17.1) Y
f //

y   

Z

z

��
X .

<D

A 2-morphism (f, α)→ (g, β) in Stack/X is a 2-morphism η : f → g in the (2,1)-category Stack(E)
such that β = (z ∗ η) ◦ α.

A morphism y : Y → X of E-stacks is faithful (Definition 1.8) if and only if for any object U of
E and any morphism x : U → X , the 2-fiber product U ×x,X ,y Y is isomorphic to a sheaf. Consider
the 2-subcategory S of Stack/X spanned by objects (Y, y) with y faithful. For any morphism
(f, α) : (Y, y) → (Z, z) in S, f is necessarily faithful. A 2-morphism η : (f, α) → (g, β) in S, if it
exists, is uniquely determined by (f, α) and (g, β). In other words, if we denote by Stackfaith

/X the
category obtained from S by identifying isomorphic morphisms, then the 2-functor S → Stackfaith

/X
is a 2-equivalence.

For any morphism φ : X → Y of E-stacks, base change by φ induces a functor Stackfaith
/Y →

Stackfaith
/X . If S is an object of E, Stackfaith

/S is equivalent to E/S . More generally, if U• is a groupoid
in E, Stackfaith

/[U•] is equivalent to the category of descent data relative to U•. In particular, if (X,G)
is an object of Eq(E), Stackfaith

/[X/G] is equivalent to the category of G-objects of E, equivariant over
X. For example, Stackfaith

/BG is equivalent to the topos BG of Grothendieck.

Proposition 1.18.
(a) The category Stackfaith

/X is a U-topos.
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(b) Let X be a stack. For any stack Y over X , associating to any stack Z faithful over X the
groupoid HomX (Z,Y) defines a stack Y over Stackfaith

/X . The 2-functor

(1.18.1) Stack/X → Stack(Stackfaith
/X ), Y 7→ Y

is a 2-equivalence.

Proof. (a) We apply Giraud’s criterion [50, IV Théorème 1.2]. If T is a small generating family
of E, then

∐
U∈T Ob(X (U)) is an essentially small generating family of Stackfaith

/X . Let us now
show that every sheaf F on Stackfaith

/X for the canonical topology is representable. Consider, for
every object U of E, the category of pairs (x, s) consisting of x ∈ X (U) and s ∈ Γ(x,F), where
the last occurrence of x is to be understood as the object x : U → X in Stackfaith

/X . A morphism
(x, s) 7→ (y, t) is a morphism α : x → y in X (U) such that α∗t = s. This defines an E-stack X ′.
The faithful morphism X ′ → X of E-stacks defined by the first projection (x, s) 7→ x represents
F . The other conditions in Giraud’s criterion are trivially satisfied. Thus Stackfaith

/X is a U-topos.
(b) We construct a 2-quasi-inverse to (1.18.1) as follows. Let C be a stack over Stackfaith

/X . For
every object U of E, consider the category of pairs (x, s) consisting of x ∈ X (U) and s ∈ C(x).
A morphism (x, s) → (y, t) is a pair (α, β) consisting of a morphism α : x → y in X (U) and a
morphism β : α∗t → s in C(x). This defines an E-stack Y. The first projection (x, s) 7→ x defines
a morphism Y → X of E-stacks. The construction C 7→ (Y → X ) defines a pseudofunctor

(1.18.2) Stack(Stackfaith
/X )→ Stack/X ,

which is a 2-quasi-inverse to (1.18.1).

The composition of (1.4.3) and (1.18.2) is a faithful and essentially surjective (Definition 1.3)
pseudofunctor

(1.18.3) Grpd(Stackfaith
/X )→ Stack/X .

We denote the image of a groupoid X• in Stackfaith
/X under (1.18.3) by [X•/X ], and the image of a

morphism f• of groupoids under (1.18.3) by [f•/X ]. For (X,G) in Eq(Stackfaith
/X ), we denote the

image of (X,G)• under (1.18.3) by [X/G/X ]. For (f, u) : (X,G)• → (Y,H)•, we denote the image
under (1.18.3) by [f/u/X ].

We now apply the above formalism to the big fppf topoi of algebraic spaces. Recall that a stack
is a stack over the big fppf site of SpecZ. The following result will be useful in Sections 7 and 8.

Proposition 1.19. Let X be a stack, and let X•, Y• be objects in Grpd(Stackfaith
/X ). Assume that

X0 is a strictly local scheme and the morphisms Y1 ⇒ Y0 are representable and smooth. Then the
functor induced by (1.18.3):

F : HomGrpd(Stackfaith
/X )(X•, Y•)→ HomStack/X ([X•/X ], [Y•/X ])

is an equivalence of categories.

Proof. It remains to show that F is essentially surjective. Let φ : [X•/X ]→ [Y•/X ] be a morphism
in Stack/X . For the 2-cartesian square

X ′0 //

��

Y0

��
X0 // [X•/X ] φ // [Y•/X ].

Since X ′0 is representable and smooth over X0, it admits a section by [22, Corollaire 17.16.3 (ii),
Proposition 18.8.1], which induces a 2-commutative square

X0

��

f0 // Y0

��
[X•/X ] φ // [Y•/X ].

10



Let f1 = f0 ×φ f0 : X1 → Y1. Then f• : X• → Y• is a morphism of groupoids in Stackfaith
/X and

φ ' [f•/X ].

Remark 1.20. Let X be a stack. We denote by Stackrep
/X the full subcategory of Stackfaith

/X con-
sisting of representable morphisms X → X . A morphism in this category from X → X to Y → X
is an isomorphism class of pairs (f, α) (1.17.1). The morphisms f : X → Y are necessarily repre-
sentable. Assume that X is an Artin stack. For any object X → X of Stackrep

/X , X is necessarily
an Artin stack. For any object X• in Grpd(Stackrep

/X ), if sX and tX are flat and locally of finite
presentation, then [X•/X ] is an Artin stack. In particular, for any object (X,G) in Eq(Stackrep

/X )
with G flat of and locally of finite presentation over X , [X/G/X ] is an Artin stack.

2 Miscellany on the étale cohomology of Artin stacks
Notation 2.1. Let X be an Artin stack. We denote by AlgSp/X the full subcategory of Stackrep

/X
(Remark 1.20) consisting of morphisms U → X with U an algebraic space. We let Spsm

/X denote
the full subcategory of AlgSp/X spanned by smooth morphisms U → X . The covering families of
the smooth pretopology on Spsm

/X are those (Ui → U)i∈I such that
∐
i∈I Ui → U is smooth and

surjective. The covering families for the étale pretopology on Spsm
/X are those (Ui → U)i∈I such that∐

i∈I Ui → U is étale and surjective. Since every smooth cover in Spsm
/X has an étale refinement by

[22, Corollaire 17.16.3 (ii)], the smooth pretopology and the étale pretopology generate the same
topology on Spsm

/X (cf. [31, Définition 12.1]). We let Xsm denote the associated topos, and call it
the smooth topos of X .

Notation 2.2. The category of sheaves in Xsm is equivalent to the category of systems (Fu, θφ),
where u : U → X runs through objects of Spsm

/X , φ : u→ v runs through morphisms of Spsm
/X , Fu is

an étale sheaf on U , and θφ : φ∗Fv → Fu, satisfying a cocycle condition [31, 12.2] and such that
θφ is an isomorphism for φ étale. Following [31, Définition 12.3], we say that a sheaf F on X is
cartesian if θφ is an isomorphism for all φ, or, equivalently, for all φ smooth (cf. [34, Lemma 3.8]).
We denote by Shcart(X ) the full subcategory of Sh(Xsm) consisting of cartesian sheaves.

Let Λ be a commutative ring. Following [31, Définition 18.1.4], we say, if Λ is noetherian,
that a sheaf F of Λ-modules on X is constructible if F is cartesian and if Fu is constructible for
some smooth atlas u : U → X , or equivalently, for every smooth atlas u : U → X . We denote
by Modcart(X ,Λ) (resp. Modc(X ,Λ)) the full subcategory of Mod(Xsm,Λ) consisting of cartesian
(resp. constructible) sheaves.

We denote by Dcart(X ,Λ) (resp. Dc(X ,Λ)) the full subcategory of D(Xsm,Λ) consisting of com-
plexes with cartesian (resp. constructible) cohomology sheaves. We have Dc(X ,Λ) ⊂ Dcart(X ,Λ).
We will work exclusively with Dcart(X ,Λ) rather than D(Xsm,Λ). We have functors

⊗LΛ : Dcart(X ,Λ)×Dcart(X ,Λ)→ Dcart(X ,Λ), RHom : Dcart(X ,Λ)op×Dcart(X ,Λ)→ Dcart(X ,Λ)

defined on unbounded derived categories.
If X is a Deligne-Mumford stack, we denote by Xet or simply X its étale topos. The inclusion

of the étale site in the smooth site induces a morphism of topoi (ε∗, ε∗) : Xsm → Xet. Note that ε∗
is exact and ε∗ induces an equivalence from Xet to Shcart(Xsm). For any commutative ring Λ, ε∗
induces D(X ,Λ) ∼−→ Dcart(X ,Λ).

Notation 2.3. Let f : X → Y be a morphism of Artin stacks and let Λ be a commutative ring.
Although the smooth topos is not functorial, we have a pair of adjoint functors

f∗ : Shcart(Y)→ Shcart(X ), f∗ : Shcart(X )→ Shcart(Y).

and a pair of adjoint functors [32]

f∗ : Dcart(Y,Λ)→ Dcart(X ,Λ), Rf∗ : Dcart(X ,Λ)→ Dcart(Y,Λ),

where f∗ is t-exact and Rf∗ is left t-exact for the canonical t-structures. Note that Rf∗ is defined
on the whole category Dcart, not just on D+

cart. For M,N ∈ Dcart(Y,Λ), we have a natural
isomorphism

f∗(M ⊗LΛ N) ∼−→ f∗M ⊗LΛ f∗N.
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If f is a surjective morphism, then the functors f∗ are conservative and the functor f∗ : Shcart(Y)→
Shcart(X ) is faithful.

A 2-morphism α : f → g of morphisms of Artin stacks X → Y induces natural isomorphisms
α∗ : g∗ → f∗ and Rα∗ : Rf∗ → Rg∗. The following squares commute

1Dcart(Y,Λ) //

��

Rf∗f
∗

Rα∗

��

g∗Rf∗

α∗

��

Rα∗ // g∗Rg∗

��
Rg∗g

∗ α∗ // Rg∗f∗ f∗Rf∗ // 1Dcart(X ,Λ).

Recall that a morphism of Artin stacks f : X → Y is universally submersive [44, 06U6] if for
every morphism of Artin stacks Y ′ → Y, the base change Y ′ ×Y X → Y ′ is submersive (on the
underlying topological spaces).

Proposition 2.4. Let f : X → Y be a morphism of Artin stacks. Assume that f is universally
submersive (resp. faithfully flat and locally of finite presentation). Then f is of descent (resp.
effective descent) for cartesian sheaves.

Here effective descent means f∗ induces an equivalence Shcart(Y) ∼−→ DD(f) to the category of
descent data, whose objects are cartesian sheaves F on X endowed with an isomorphism p∗1F →
p∗2F satisfying the cocycle condition, where p1, p2 : X ×Y X → X are the two projections.

Proof. By general properties of descent [19, Proposition 6.25, Théorème 10.4] and the case of
schemes [50, VIII Proposition 9.1] (resp. [50, VIII Théorème 9.4]), it suffices to show that smooth
atlases are of effective descent for cartesian sheaves. In other words we may assume f is smooth
and X is an algebraic space. In this case, we construct a quasi-inverse F of Shcart(Y) → DD(f)
as follows. Let A be a descent datum for f . For every object u : U → Y of Spsm

/Y , A induces
a descent datum Au for étale sheaves for the base change fu : X ×Y U → U of f by u, and we
take (FA)u to be the corresponding étale sheaf on U . For a morphism φ : u→ v in Spsm

/Y , we take
φ∗(FA)v → (FA)u to be the isomorphism induced by the isomorphism of descent data φ∗Av → Au
for étale sheaves for fu.

Corollary 2.5. Let S be an algebraic space, let G be a flat group algebraic S-space locally of finite
presentation, and let X be an algebraic space over S, endowed with an action of G. Denote by
α : G ×S X → X the action and by p : G ×S X → X the projection, and let f : X → [X/G] be
the canonical morphism. Then f∗ induces an equivalence of categories from Modcart([X/G]) to
the category of pairs (F , a), where F ∈ Sh(X) and a : α∗F → p∗F is a map satisfying the usual
cocycle condition.

Such pairs are called G-equivariant sheaves on X. The cocycle condition implies that i∗a : F →
F is the identity, where i : X → G×S X is the morphism induced by the unit section of G.

Proof. This follows from Proposition 2.4 and the fact that f is faithfully flat of finite presentation.

Corollary 2.6. Let S and G be as in Corollary 2.5. Assume that G has connected geometric
fibers. Let f : S → BG be a morphism corresponding to a G-torsor T on S. Then the functor

f∗ : Shcart(BG)→ Sh(S),

is an equivalence.

Proof. By Proposition 2.4, since f is faithfully flat locally of finite presentation, f∗ induces an
equivalence of categories from Shcart(BG) to the category of pairs (F , a), where F is a sheaf on
S and a : p∗F → p∗F is a descent datum with respect to f . As S ×f,BG,f S is the sheaf H on S
of G-automorphisms of T , and p1 = p2 is the projection p : H → S, a corresponds to an action of
H on F . This action is trivial. Indeed, this can be checked over geometric points s → S, so we
may assume that S is the spectrum of an algebraically closed field. In this case, H ' G. As p∗F
is constant and G is connected, and as the restriction of a to the unit section is the identity, a is
the identity.
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Remark 2.7. Corollary 2.6 implies that f∗ and f∗ are quasi-inverse to each other and the natural
transformations idShcart(BG) → f∗f

∗, f∗f∗ → idSh(S) are natural isomorphisms. Since f is a
2-section of the projection π : BG→ S, we get natural isomorphisms

π∗ ' π∗f∗f∗ ' f∗, π∗ ' f∗f∗π∗ ' f∗.

In particular, we have natural isomorphisms f∗π∗ ' id and π∗f∗ ' id.

Lemma 2.8. Let X be an Artin stack, let Λ be a commutative ring, and let I ⊂ Z be an interval.
For M ∈ Dcart(X ,Λ), the following conditions are equivalent:
(a) For every N ∈ Modcart(X ,Λ), Hq(M ⊗LΛ N) = 0 for all q ∈ Z− I.
(b) For every finitely presented Λ-module N , Hq(M ⊗LΛ N) = 0 for all q ∈ Z− I.
(c) For every geometric point i : x → X, i∗M as an element of D(x,Λ) is of tor-amplitude

contained in I.

If the conditions of the lemma are satisfied, we say M is of cartesian tor-amplitude contained
in I. If M ∈ Dcart(X ,Λ) has cartesian tor-amplitude contained in [a,+∞) and N ∈ D≥bcart(X ,Λ),
then M ⊗LΛ N is in D≥a+b

cart (X ,Λ).

Proof. Obviously (a) implies (b) and (b) implies (c). Since the family of functors i∗ : Dcart(X ,Λ)→
D(x,Λ) is conservative, where i runs through all geometric points of X , (c) implies (a).

Proposition 2.9 (Projection formula). Let f : X → Y be a morphism of Artin stacks and let Λ
be a commutative ring. Let L ∈ Dcart(X ,Λ), and let K ∈ Dcart(Y,Λ) such that HqK is constant
for all q. Assume one of the following:
(a) Λ is noetherian regular and K ∈ D+

c , L ∈ D+.
(b) Λ is noetherian and K ∈ Db

c(Λ) has finite cartesian tor-amplitude.
(c) Rf∗ : Dcart(X ,Λ)→ Dcart(Y,Λ) has finite cohomological amplitude, Λ is noetherian, K ∈ Dc,

and either K,L ∈ D− or L has finite cartesian tor-amplitude.
(d) f is quasi-compact quasi-separated, Λ is annihilated by an integer invertible on Y, K ∈ D+,

L ∈ D+, and either Λ is noetherian regular or K has finite cartesian tor-amplitude.
(e) f is quasi-compact quasi-separated, Λ is annihilated by an integer invertible on Y, and

Rf∗ : Dcart(X ,Λ)→ Dcart(Y,Λ) has finite cohomological amplitude.
Then the map

K ⊗LΛ Rf∗L→ Rf∗(f∗K ⊗LΛ L)

induced by the composite map

f∗(K ⊗LΛ Rf∗L) ∼−→ f∗K ⊗LΛ f∗Rf∗L→ f∗K ⊗LΛ L

is an isomorphism.

Proof. In case (a), we may assume that K is a (constant) Λ-module and we are then in case (b).
In case (b), we may assume that Λ is local and it then suffices to take a finite resolution of K by
finite projective Λ-modules. In the first case of (c), we may assume K is a constant Λ-module.
It then suffices to take a resolution of K by finite free Λ-modules. In the second case of (c), we
reduce to the first case of (c) using Corollary 2.10 below of the first case of (c). In the first case
of (d), we may assume K ∈ Db

c and we are in the second case of (d). In the second case of (d),
we may assume that K is a flat Λ-module, thus a filtered colimit of finite free Λ-modules. Since
Rqf∗ commutes with filtered colimits, we are reduced to the trivial case where K is a finite free
Λ-module. In case (e), since Rf∗ preserves small coproducts, we may assume that L ∈ D− and K
is represented by a complex in C−(Λ) of flat Λ-modules. We may further assume that L ∈ Db and
K is a flat Λ-module. We are thus reduced to the second case of (d).

Corollary 2.10. Let f : X → Y be a morphism of Artin stacks and let Λ be a noetherian com-
mutative ring. Assume that the functor Rf∗ : Dcart(X ,Λ) → Dcart(Y,Λ) has finite cohomological
amplitude. Then, for every L ∈ D−cart(X ,Λ) of cartesian tor-amplitude contained in [a,+∞), Rf∗L
has cartesian tor-amplitude contained in [a,+∞).

Proof. This follows immediately from the first case of Proposition 2.9 (c) and Lemma 2.8.
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The following statement on generic constructibility and generic base change generalizes [34,
Theorem 9.10].

Proposition 2.11. Let Z be an Artin stack and let f : X → Y be a morphism of Artin stacks of
finite type over Z. Let Λ be a noetherian commutative ring annihilated by an integer invertible
on Z, and let L ∈ D+

c (X ,Λ). Then for every integer i there exists a dense open substack Z◦ of Z
such that
(a) The restriction of Rif∗L to Z◦ ×Z Y ⊂ Y is constructible.
(b) Rif∗L is compatible with arbitrary base change of Artin stacks Z ′ → Z◦ ⊂ Z.

Proof. Recall first that for any 2-commutative diagram of Artin stacks of the form

X ′′ h′ //

f ′′

��

X ′
g′ //

f ′

��

X

f

��
Y ′′ h // Y ′

g // Y

the following diagram commutes:

(2.11.1) (gh)∗Rf∗L
bgh //

'
��

Rf ′′∗ (g′h′)∗L

'
��

h∗g∗Rf∗L
h∗bg // h∗Rf ′∗g

′∗L
bh // Rf ′′∗ h

′∗g′
∗
L

where bgh, bg, bh are base change maps.
If Z is a scheme, then, as in [34, Theorem 9.10], cohomological descent and the case of schemes

[11, Th. finitude 1.9] imply that there exists a dense open subscheme Z◦ of Z such that (a) holds
and that Rif∗L is compatible with arbitrary base change of schemes Z ′ → Z◦ ⊂ Z. This implies
(b). In fact, for any base change of Artin stacks g : Z ′ → Z◦ ⊂ Z, take a smooth atlas p : Z ′ → Z ′
where Z ′ is a scheme. Then bp is an isomorphism and bgp is an isomorphism by assumption. It
follows that p∗bg and hence bg are isomorphisms.

In the general case, let p : Z → Z be a smooth atlas. By the preceding case, there exists a
dense open subscheme Z◦ ⊂ Z such that after forming the 2-commutative diagram with 2-cartesian
squares

XZ
pX

��

fZ // YZ
pY

��

// Z

p

��
X

f // Y // Z

the restriction of RifZ∗p∗XL to Z◦ ×Z YZ is constructible and that RifZ∗p∗XL commutes with
arbitrary base change of Artin stacks W → Z◦ ⊂ Z. We claim that Z◦ = p(Z◦) satisfies (a) and
(b). To see this, let p◦ : Z◦ → Z◦ be the restriction of p. By definition p◦ is surjective. Then (a)
follows from the fact that

p◦∗Y (Rif∗L|Z◦ ×Z Y) ' RifZ∗p∗XL|Z◦ ×Z YZ

is constructible. For any base change of Artin stacks Z ′ → Z◦, form the following 2-cartesian
square:

Z ′
h //

p′

��

Z◦

p◦

��
Z ′

g // Z◦.

By (2.11.1), bp′(p′∗bg) can be identified with bh(h∗bp◦). Since p◦ and p′ are smooth, bp◦ and bp′ are
isomorphisms. By the construction of p◦, bh is an isomorphism. It follows that p′∗bg and hence bg
are isomorphisms.
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Remark 2.12. For Z = BG, where G is an algebraic group over a field k, f : X → Y a quasi-
compact and quasi-separated morphism of Artin stacks over Z, and Λ is a commutative ring
annihilated by an integer invertible in k, the above proof combined with the remark following [11,
Th. finitude 1.9] shows that Rf∗ : D+

cart(X ,Λ)→ D+
cart(Y,Λ) commutes with arbitrary base change

of Artin stacks Z ′ → Z.

3 Multiplicative structures in derived categories
Definition 3.1. For us, a ⊗-category is a symmetric monoidal category [33, Section VII.7], that is,
a category T endowed with a bifunctor ⊗ : T ×T → T , a unit object 1 and functorial isomorphisms

aLMN : L⊗ (M ⊗N)→ (L⊗M)⊗N,
cMN : M ⊗N → N ⊗M,

uM : M ⊗ 1→M, vM : 1⊗M →M,

satisfying the axioms of loc. cit.. We define a pseudo-ring in T to be an object K of T endowed
with a morphism m : K ⊗K → K such that the following associativity diagram commutes:

K ⊗ (K ⊗K)

aKKK

��

idK⊗m// K ⊗K
m

""
(K ⊗K)⊗K m⊗idK// K ⊗K m // K.

A pseudo-ring (K,m) is called commutative if the following diagram commutes

K ⊗K
m

##
cKK

��
K ⊗K m // K.

A homomorphism of pseudo-rings (K,m) → (K ′,m′) is a morphism f : K → K ′ of T such that
the following diagram commutes:

K ⊗K m //

f⊗f
��

K

f

��
K ′ ⊗K ′ m′ // K ′.

We define a left (K,m)-pseudomodule to be an object M of T endowed with a morphism n : K ⊗
M →M such that the following diagram commutes

K ⊗ (K ⊗M) idK⊗n//

aKKM

��

K ⊗M
n

##
(K ⊗K)⊗M m⊗idM// K ⊗M n // M.

A homomorphism of left (K,m)-pseudomodules (M,n)→ (M ′, n′) is a morphism h : M →M ′ of T
such that the following diagram commutes

K ⊗M n //

idK⊗h
��

M

h
��

K ⊗M ′ n′ // M ′.
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Definition 3.2. Let f : (K,m) → (K ′,m′) be a homomorphism of pseudo-rings. We define a
splitting of f to be a morphism n : K ′ ⊗ K → K, making K into a (K ′,m′)-pseudomodule and
such that the following diagram commutes

K ⊗K

m
%%

f⊗idK // K ′ ⊗K

n

��

idK′⊗f// K ′ ⊗K ′

m′

��
K

f // K ′.

Definition 3.3. We define a ring in T to be a pseudo-ring (K,m) in T endowed with a morphism
e : 1→ K such that the following diagrams commute:

K ⊗ 1 idK⊗e//

uK
%%

K ⊗K

m

��

1⊗K e⊗idK //

vK
%%

K ⊗K

m

��
K K.

(Thus a ring in our sense is a “monoid” in the terminology of [33, Section VII.3].) The unit 1
endowed with u1 : 1⊗ 1→ 1 and id1 : 1→ 1 is a commutative ring in T . A ring homomorphism
(K,m, e) → (K ′,m′, e′) is a homomorphism of pseudo-rings f : (K,m) → (K ′,m′) such that the
following diagram commutes:

1 e //

e′   

K

f

��
K ′.

A left (K,m, e)-module is a left (K,m)-pseudomodule (M,n) such that the following diagram
commutes

1⊗M

vM
%%

e⊗M // K ⊗M

n

��
M.

A homomorphism of left (K,m, e)-modules (M,n) → (M ′, n′) is a homomorphism between the
underlying left (K,m)-pseudomodules.

Construction 3.4. Let T = (T ,⊗, a, c, u, v) and T ′ = (T ′,⊗, a′, c′, u′, v′) be ⊗-categories, and
let ω : T → T ′ be a functor. A left-lax ⊗-structure on ω is a natural transformation of functors
T × T → T ′ consisting of morphisms of T ′

oMN : ω(M ⊗N)→ ω(M)⊗ ω(N),

such that the following diagrams commute:

ω(L⊗ (M ⊗N))
oL,M⊗N //

ω(aLMN )
��

ω(L)⊗ ω(M ⊗N)
ω(L)⊗oMN // ω(L)⊗ (ω(M)⊗ ω(N))

a′ω(L)ω(M)ω(N)
��

ω((L⊗M)⊗N)
oL⊗M,N // ω(L⊗M)⊗ ω(N)

oLM⊗ω(N)// (ω(L)⊗ ω(M))⊗ ω(N)

ω(M ⊗N) oMN //

ω(cMN )
��

ω(M)⊗ ω(N)

c′ω(M)ω(N)
��

ω(N ⊗M) oNM // ω(N)⊗ ω(M).

A right-lax ⊗-structure on ω is a left-lax ⊗-structure on ωop : T op → T ′op. It is given by functorial
morphisms

tMN : ω(M)⊗ ω(N)→ ω(M ⊗N),
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such that the above diagrams with arrows o inverted and replaced by t commute. A ⊗-structure
on ω is a left-lax ⊗-structure o such that oMN is an isomorphism for all M and N . In this case
tMN = o−1

MN defines a right-lax ⊗-structure. If t is a right-lax ⊗-structure on ω and (K,m) is a
pseudo-ring in T , we endow ω(K) with the pseudo-ring structure

ω(K)⊗ ω(K) tKK−−−→ ω(K ⊗K) ω(m)−−−→ ω(K).

If, moreover, (M,n) is a left (K,m)-pseudomodule, we endow ω(M) with the left ω(K)-pseudomodule
structure

ω(K)⊗ ω(M) tKM−−−→ ω(K ⊗M) ω(n)−−−→ ω(M).

If (K,m) is commutative, then ω(K) is commutative. This construction sends homomorphisms
of pseudo-rings to homomorphisms of pseudo-rings and homomorphisms of left pseudomodules to
homomorphisms of left pseudomodules.

If (ω, t), (ω′, t′) are functors endowed with right-lax ⊗-structures, we say that a natural trans-
formation α : ω → ω′ preserves the right-lax ⊗-structures if the following diagram commutes

ω(M)⊗ ω(N) tMN //

αM⊗αN
��

ω(M ⊗N)

αM⊗N

��
ω′(M)⊗ ω′(N)

t′MN // ω′(M ⊗N).

In this case, for any pseudo-ring K in T , αK : ω(K)→ ω′(K) is a homomorphism of pseudo-rings.

Construction 3.5. Now suppose that ω : T → T ′ admits a right adjoint τ : T ′ → T . For any left-
lax ⊗-structure o on ω, endow τ with the right-lax ⊗-structure t such that tMN : τ(M)⊗ τ(N)→
τ(M ⊗N) is adjoint to the composition

ω(τ(M)⊗ τ(N))
oτ(M)τ(N)−−−−−−→ ω(τ(M))⊗ ω(τ(N)) αM⊗αN−−−−−→M ⊗N,

where αM : ω(τ(M)) → M , αN : ω(τ(N)) → N are adjunction morphisms. It is straightforward
to check that this construction defines a bijection from the set of left-lax ⊗-structures on ω to the
set of right-lax ⊗-structures on τ .

In the above construction, if o is a ⊗-structure on ω, then the adjunction morphisms α : ωτ →
idT ′ and β : idT → τω preserve the resulting right-lax ⊗-structures.

Construction 3.6. This formalism has a unital variant. A left-lax unital ⊗-structure on a functor
ω : T → T ′ is a left-lax ⊗-structure endowed with a morphism p : ω(1) → 1′ in T ′ such that the
following diagrams commute

ω(M ⊗ 1) oM1 //

ω(uM )
��

ω(M)⊗ ω(1)

idω(M)⊗p
��

ω(1⊗M) o1M //

ω(vM )
��

ω(1)⊗ ω(M)

p⊗idω(M)

��
ω(M) ω(M)⊗ 1′

u′ω(M)

oo ω(M) 1′ ⊗ ω(M)
v′ω(M)

oo

A right-lax unital ⊗-structure is a left-lax unital ⊗-structure on ωop : T op → T ′op. It consists of a
right-lax ⊗-structure endowed with a morphism s : 1′ → ω(1) in T ′ such that the above diagrams,
with arrows o inverted and replaced by t, arrows p inverted and replaced by s, commute. A unital
⊗-structure is a left-lax unital ⊗-structure (o, p) such that o is a ⊗-structure and p is invertible.
Constructions 3.4 and 3.5 can be carried over to the unital case.

Let T be a ⊗-category, and let C be a category. Then the category T C of functors C → T has
a natural ⊗-structure. The constant functor T → T C defined by M 7→ (M)C has a natural unital
⊗-structure.

Construction 3.7. Let X = (X,OX) be a commutatively ringed topos. Two ⊗-categories will
be of interest to us:
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(a) The (unbounded) derived categoryD(X) = D(X,OX), equipped with⊗LOX : D(X)×D(X)→
D(X) [27, Theorem 18.6.4].

(b) The category GrMod(X) = GrMod(X,OX) of graded OX -modules H =
⊕

n∈ZH
n, with ⊗

given by (H ⊗K)n =
⊕

i+j=nH
i⊗OX Kj , the isomorphism c : H ⊗K → K ⊗H being given

by the usual sign rule.
The cohomology functor

H∗ : D(X)→ GrMod(X)

has a natural right-lax unital ⊗-structure given by the canonical mapsH∗L⊗H∗M → H∗(L⊗LM).
(This is a unital ⊗-structure when OX is a constant field, which is the case we are mostly interested
in).

Let f : X = (X,OX)→ Y = (Y,OY ) be a morphism of commutatively ringed topoi. We endow
f∗ : GrMod(Y )→ GrMod(X) with the unital ⊗-structure defined by the functorial isomorphisms

f∗(M ⊗N)→ f∗M ⊗ f∗N, f∗OY → OX .

We endow Lf∗ : D(Y ) → D(X) [27, Theorem 18.6.9] with the unital ⊗-structure defined by the
functorial isomorphisms

Lf∗(M ⊗L N)→ Lf∗M ⊗L f∗N, Lf∗OY → OX .

We endow the right adjoint functors f∗ : GrMod(X)→ GrMod(Y ) and Rf∗ : D(X)→ D(Y ) with
the induced right-lax unital ⊗-structures.

Construction 3.8. Let X be an Artin stack, and let Λ be a commutative ring. We consider
the ⊗-categories Dcart(X ,Λ) and GrModcart(X ,Λ), the category of graded cartesian sheaves of
Λ-modules.

Let f : X → Y be a morphism of Artin stacks. As in Construction 3.7, we endow the functors
f∗ : GrModcart(Y,Λ) → GrModcart(X ,Λ) and f∗ : Dcart(Y,Λ) → Dcart(X ,Λ) with the natural
unital ⊗-structures. We endow the right adjoint functors f∗ : GrModcart(Y,Λ)→ GrModcart(X ,Λ)
and Rf∗ : Dcart(X ,Λ)→ Dcart(Y,Λ) with the induced right-lax unital ⊗-structures.

Assume that Λ is annihilated by an integer n invertible on Y and f is locally of finite presen-
tation. Then we have Rf ! : Dcart(Y,Λ) → Dcart(X ,Λ). As in [11, Cycle (1.2.2.3)], for M and N
in Dcart(Y,Λ), we have a morphism

f∗M ⊗L Rf !N → Rf !(M ⊗L N)

given by the morphism Rf !N → Rf !RHom(M,M ⊗L N) ' RHom(f∗M,Rf !(M ⊗L N)). For a
pseudo-ring (L,m) in Dcart(Y,Λ), we endow Rf !L with the left f∗L-pseudomodule structure given
by the composition

f∗L⊗L Rf !L→ Rf !(L⊗L L) Rf !m−−−−→ Rf !L

Assume moreover that f = i is a closed immersion. Then the right-lax ⊗-structure on i∗ = Ri∗
is an isomorphism and its inverse is a ⊗-structure consisting of a functorial isomorphism

i∗(M ⊗L N)→ i∗M ⊗L i∗N.

We endow the right adjoint functor Ri! of i∗ with the induced right-lax ⊗-structure. Note that the
right unital ⊗-structure on i∗ is not invertible in general. For a pseudo-ring (L,m) in Dcart(Y,Λ),
the above left i∗L-pseudomodule structure on Ri!L is a splitting of the homomorphism of pseudo-
rings Ri!L→ i∗L (Definition 3.2).

In the rest of this section, we discuss multiplicative structures on spectral objects. We will only
consider spectral objects of type Z̃, where Z̃ is the category associated to the ordered set Z∪{±∞}.

Definition 3.9. Let T be category endowed with a bifunctor ⊗ : T ×T → T . Let J be a category
endowed with a bifunctor ∗ : J × J → J . Let X,X ′, X ′′ be functors J → T . A pairing from X,X ′
to X ′′ is a natural transformation of functors J × J → T consisting of morphisms of T

X(j)⊗X ′(j′)→ X ′′(j ∗ j′).
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Assume moreover that (T ,⊗) and (J, ∗) are endowed with structures of ⊗-categories. A pairing
from X, X to X is called associative if for j, j′, j′′ ∈ J , the following diagram commutes

X(j)⊗ (X(j′)⊗X(j′′)) //

a

��

X(j)⊗X(j′ ∗ j′′) // X(j ∗ (j′ ∗ j′′))

a

��
(X(j)⊗X(j′))⊗X(j′′) // X(j ∗ j′)⊗X(j′′) // X((j ∗ j′) ∗ j′′),

and is called commutative if for j, j′ ∈ J , the following diagram commutes

(3.9.1) X(j)⊗X(j′) //

c

��

X(j ∗ j′)

c

��
X(j′)⊗X(j) // X(j′ ∗ j).

Assume moreover that T is additive and ⊗ is an additive bifunctor. Let S be the ⊗-category
given by the discrete category {±1} and the ordinary product. Let σ : J → S be a ⊗-functor.
A pairing from X, X to X is called σ-commutative if for j, j′ ∈ J , the diagram (3.9.1) is
max{σ(j), σ(j′)}-commutative.

Construction 3.10. Let Ar(Z̃) be the category of morphisms of Z̃ = Z ∪ {±∞}. We represent
objects of Ar(Z̃) by pairs (p, q), p, q ∈ Z̃, p ≤ q. We endow Ar(Z̃) with a structure of ⊗-category
by the formula

(p, q) ∗ (p′, q′) = (max{p+ q′ − 1, p′ + q − 1}, q + q′ − 1).

Here we adopt the convention that (−∞) + (+∞) = −∞ = (+∞) + (−∞).

Definition 3.11. Let D be a triangulated category endowed with a triangulated bifunctor ⊗ : D×
D → D [27, Definition 10.3.6]. Let (X, δ), (X ′, δ), (X ′′, δ′′) be spectral objects with values in D
[46, II 4.1.2]. A pairing from (X, δ), (X ′, δ′) to (X ′′, δ′′) consists of a pairing from X, X ′ to X ′′,
namely a natural transformation of functors Ar(Z̃)×Ar(Z̃)→ D consisting of morphisms of D

X(p, q)⊗X ′(p′, q′)→ X ′′((p, q) ∗ (p′, q′)),

such that for p ≤ q ≤ r, p′ ≤ q′ ≤ r′ in Z̃ satisfying q+ r′ = q′+ r and p+ r′ = p′+ r, the diagram

X(q, r)⊗X ′(q′, r′) //

(δ⊗id,id⊗δ′)
��

X ′′(q′′, r′′)

δ′′

��
(X(p, q)[1]⊗X ′(q′, r′))⊕ (X(q, r)⊗X ′(p′, q′)[1]) // X ′′(p′′, q′′)[1]

commutes. Here (q′′, r′′) = (q, r) ∗ (q′, r′), (p′′, q′′) = (p, q) ∗ (q′, r′) = (q, r) ∗ (p′, q′).
Assume moreover that (D,⊗) is endowed with a structure of ⊗-category3. A pairing from

(X, δ), (X, δ) to (X, δ) is called associative (resp. commutative) if the underlying pairing from X,
X to X is.

Example 3.12. Let X be a commutatively ringed topos, and let K,K ′,K ′′ ∈ D(X). We consider
the second spectral object (K, δ) associated to K [46, III 4.3.1, 4.3.4], with K(p, q) = τ [p,q−1]K,
where τ [p,q−1] is the canonical truncation functor. Similarly, we have spectral objects (K ′, δ′),
(K ′′, δ′′). A map K ⊗LK ′ → K ′′ in D(X) defines a pairing from (K, δ), (K ′, δ′) to (K ′′, δ′′) given
by

τ [p,q−1]K ⊗L τ [p′,q′−1]K ′ → τ≥p
′′
(τ [p,q−1]K ⊗L τ [p′,q′−1]K ′) ' τ≥p

′′
(τ≤q−1K ⊗L τ≤q

′−1K ′)
α−→ τ [p′′,q′′−1](K ⊗L K ′)→ τ [p′′,q′′−1]K ′′,

3Here we do not assume that the constraints of the ⊗-category are natural transformations of triangulated
functors [27, Definition 10.1.9 (ii)] in each variable.
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where (p′′, q′′) = (p, q) ∗ (p′, q′), α is given by the map τ≤q−1K ⊗L τ≤q′−1K ′ → τ≤q
′′−1(K ⊗LK ′′)

induced by adjunction from the map τ≤q−1K ⊗L τ≤q′−1K ′ → K ⊗L K ′. Moreover, if K is a
pseudo-ring (resp. commutative pseudo-ring), then the induced pairing from (K, δ), (K, δ) to (K, δ)
is associative (resp. commutative).

The above also holds with D(X) replaced by Dcart(X ,Λ), where X is an Artin stack and Λ is
a commutative ring.

Definition 3.13. Let A be an abelian category endowed with an additive bifunctor ⊗ : A×A → A.
Let (Hn, δ), (H ′n, δ′), (H ′′n, δ′′) be spectral objects with values in A [46, II 4.1.4]. A pairing
from (Hn, δ), (H ′n, δ′) to (H ′′n, δ′′) consists of a pairing from H∗, H ′∗ to H ′′∗, namely a natural
transformation of functors (Z×Ar(Z̃))× (Z×Ar(Z̃))→ A consisting of morphisms of A

Hn(p, q)⊗H ′n
′
(p′, q′)→ H ′′n+n′((p, q) ∗ (p′, q′)),

such that for p ≤ q ≤ r, p′ ≤ q′ ≤ r′ in Z̃ satisfying q+ r′ = q′+ r and p+ r′ = p′+ r, the diagram

Hn(q, r)⊗H ′n′(q′, r′) //

(δ⊗id,(−1)nid⊗δ′)
��

H ′′n+n′(q′′, r′′)

δ′′

��
(Hn+1(p, q)⊗H ′n′(q′, r′))⊕ (Hn(q, r)⊗H ′n′+1(p′, q′)) // H ′′n+n′+1(p′′, q′′)

commutes. Here (q′′, r′′) = (q, r) ∗ (q′, r′), (p′′, q′′) = (p, q) ∗ (q′, r′) = (q, r) ∗ (p′, q′). Note that
if (Hn, δ), (H ′n, δ′), and (H ′′n, δ′′) are stationary [46, II 4.4.2], then the pairing from H∗, H ′∗
to H ′′∗ is uniquely determined by the pairing from H∗ | Ar−, H ′∗ | Ar− to H ′′∗ | Ar−, where
Ar− = Ar(Z ∪ {−∞}). In fact, in this case, for every n, there exists an integer u(n) such that for
every q ≥ u(n), the morphism Hn(−∞, q)→ Hn(−∞,+∞) is an isomorphism.

Consider the induced spectral sequences (Epq2 ⇒ Hn), (E′pq2 ⇒ H ′n), (E′′pq2 ⇒ H ′′n) given
by [46, II (4.3.3.2)]. A pairing from (Hn, δ), (H ′n, δ′) to (H ′′n, δ′′) induces compatible pairings of
differential bigraded objects of A

Epqr ⊗ E′p
′q′

r → E′′p+p
′,q+q′

r

for 2 ≤ r ≤ ∞ (satisfying d′′r (xy) = dr(x)y + (−1)p+qxd′r(y) for x ∈ Epqr , y ∈ E′p′q′r ) and a pairing
of filtered4 graded objects of A

F pHn ⊗ F p
′
H ′n

′
→ F p+p

′
H ′′n+n′ ,

compatible with the pairing on E∞.
Assume moreover that (A,⊗) is endowed with a structure of⊗-category. A pairing from (Hn, δ),

(Hn, δ) to (Hn, δ) is called associative (resp. commutative) if the underlying pairing fromH∗, H∗ to
H∗ is associative (resp. σ-commutative, where σ : Z×Ar(Z̃)→ S is given by (n, (p, q)) 7→ (−1)n).
An associative (resp. commutative) pairing from (Hn, δ), (Hn, δ) to (Hn, δ) induces associative
(resp. commutative) pairings on Epqr and F pHn. Here the commutativity for Epqr and F pHn are
relative to the functors Z× Z→ S given by (p, q) 7→ (−1)p+q and (p, n) 7→ (−1)n, respectively.

Remark 3.14. Let D, D′ be triangulated categories endowed with triangulated bifunctors ⊗ : D×
D → D, ⊗ : D′×D′ → D′. Let τ : D → D′ be a triangulated functor endowed with a natural trans-
formation of functors D×D → D′ consisting of morphisms τ(M)⊗τ(N)→ τ(M⊗N) of D′ that is
a natural transformation of triangulated functors in each variable. Let (X, δ), (X ′, δ′), (X ′′, δ′′) be
spectral objects with values in D. Then a pairing from (X, δ), (X ′, δ′) to (X ′′, δ′′) induces a pairing
from τ(X, δ), τ(X ′, δ′) to τ(X ′′, δ′′). If (D,⊗), (D′,⊗) are endowed with structures of ⊗-categories
and τ is a right-lax ⊗-functor (Construction 3.4), then an associative (resp. commutative) pair-
ing from (X, δ), (X, δ) to (X, δ) induces an associative (resp. commutative) pairing from τ(X, δ),
τ(X, δ) to τ(X, δ).

Similarly, let A be an abelian category endowed with an additive bifunctor ⊗ : A × A → A
and let H : D → A be a cohomological functor endowed with a natural transformation of functors

4For the filtration, we use the convention F pHn = Im(Hn(−∞, n − p + 1) → Hn(−∞,∞)). In particular, in
Example 3.15 below, F pHn(X,K) = Im(Hn(X, τ≤n−pK)→ Hn(X,K)).
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D×D → A consisting of morphisms H(M)⊗H(N)→ H(M ⊗N) of A. We adopt the convention
that for p ≤ q ≤ r in Z̃, the map δn : Hn(X(q, r)) → Hn+1(X(p, q)) is (−1)n times the map
obtained by applying H to δ[n] : X(q, r)[n]→ X(p, q)[n+ 1]. Then a pairing from (X, δ), (X ′, δ′)
to (X ′′, δ′′) induces a pairing from H∗(X, δ), H∗(X ′, δ′) to H∗(X ′′, δ′′) given by

H(X(p, q)[n])⊗H(X ′(p′, q′)[n′])→ H(X(p, q)[n]⊗X ′(p′, q′)[n′])
' H((X(p, q)⊗X ′(p′, q′))[n+ n′])→ H(X ′′((p, q) ∗ (p′, q′))[n+ n′]).

Here we have used the composite of the isomorphisms

M [m]⊗N [n] ' (M ⊗N [n])[m] ' (M ⊗N)[m+ n]

given by the structure of bifunctor of additive categories with translation [27, Definition 10.1.1
(v)] on ⊗ : D × D → D. If (D,⊗), (A,⊗) are endowed with structures of ⊗-categories and H
is a right-lax ⊗-functor, and if the associativity (resp. commutativity) constraint of (D,⊗) is a
natural transformation of triangulated functors in each variable, then an associative (resp. com-
mutative) pairing from (X, δ), (X, δ) to (X, δ) induces an associative (resp. commutative) pairing
from H∗(X, δ), H∗(X, δ) to H∗(X, δ). Indeed, the assumption on the commutativity constraint
implies the (−1)mn-commutativity of the following diagram

M [m]⊗N [n] ∼ //

'
��

(M ⊗N [n])[m] ∼ // (M ⊗N)[m+ n]

'
��

N [n]⊗M [m] ∼ // (N ⊗M [m])[n] ∼ // (N ⊗M)[m+ n].

Example 3.15. Let X be a commutatively ringed topos and let K be an object of D(X). The
second spectral sequence of hypercohomology

Epq2 = Hp(X,HqK)⇒ Hp+q(X,K)

is induced from the spectral object H∗(K, δ), where (K, δ) is the second spectral object associated
to K. If K is a pseudo-ring in D(X), then Remark 3.14 applied to Example 3.12 endows the
spectral sequence with an associative multiplicative structure, which is graded commutative when
K is commutative.

Part II

Main results
4 Finiteness theorems for equivariant cohomology rings
We will first discuss Chern classes of vector bundles on Artin stacks. Let X be an Artin stack, let
n ≥ 2 be an integer invertible on X , and let L be a line bundle on X . The isomorphism class of L
defines an element in H1(X ,Gm). We denote by

(4.0.1) c1(L) ∈ H2(X ,Z/nZ(1))

the image of this element by the homomorphism H1(X ,Gm) → H2(X ,Z/nZ(1)) induced by the
short exact sequence

1→ Z/nZ(1)→ Gm
n−→ Gm → 1,

where the map marked by n is raising to the n-th power. For any integer i, we write Z/nZ(i) =
Z/nZ(1)⊗i. We say a quasi-coherent sheaf [44, 06WG] E on X is a vector bundle if there exists a
smooth atlas p : X → X such that p∗E is a locally free OX -module of finite rank. The following
theorem generalizes the construction of Chern classes of vector bundles on schemes ([39, Théorème
1.3] and [51, VII 3.4, 3.5]). If X is a Deligne-Mumford stack, it yields the Chern classes over the
étale topos of X locally ringed by OX , defined by Grothendieck in [21, (1.4)]. In particular, it also
generalizes [21, (2.3)].
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Theorem 4.1. There exists a unique way to define, for every Artin stack X over Z[1/n] and every
vector bundle E on X , elements ci(E) ∈ H2i(X ,Z/nZ(i)) for all i ≥ 0 such that the formal power
series ct(E) =

∑
i≥0 ci(E)ti satisfies the following conditions:

(a) (Functoriality) If f : Y → X is a morphism of stacks over Z[1/n], then f∗(ct(E)) = ct(f∗E);
(b) (Additivity) If 0 → E ′ → E → E ′′ → 0 is an exact sequence of vector bundles, then ct(E) =

ct(E ′)ct(E ′′);
(c) (Normalization) If L is a line bundle on X , then c1(L) coincides with the class defined

in (4.0.1) and ct(L) = 1X + c1(L)t. Here 1X denotes the image of 1 by the adjunction
homomorphism Z/nZ→ H0(X ,Z/nZ).

Moreover, we have:
(d) c0(E) = 1X and ci(E) = 0 for i > rk(E).

The ci(E) are called the (étale) Chern classes of E . It follows from (b) and (d) that ct(E) only
depends on the isomorphism class of E .

To prove Theorem 4.1, we need the following result, which generalizes [51, VII Théorème 2.2.1]
and [39, Théorème 1.2].

Proposition 4.2. Let X be an Artin stack and let E be a vector bundle of constant rank r on
X . Let n be an integer invertible on X and let Λ be a commutative ring over Z/nZ. We denote
by π : P(E) → X the projective bundle of E. Let ξ = c1(OP(E)(1)) ∈ H2(P(E),Λ(1)) as in (4.0.1).
Then the powers ξi ∈ H2i(P(E),Λ(i)) of ξ define an isomorphism in D(X ,Λ)

(4.2.1) (1, ξ, . . . , ξr−1) :
r−1⊕
i=0

Λ(−i)[−2i] ∼−→ Rπ∗Λ.

Proof. By base change [32], we reduce to the case of schemes, which is proven in [51, VII Théorème
2.2.1].

The uniqueness of Chern classes is a consequence of the following lemma, which generalizes [39,
Propositions 1.4, 1.5].

Lemma 4.3. Let X be an Artin stack, let n be an integer invertible on X , and let Λ be a commu-
tative ring over Z/nZ.
(a) (Splitting principle) Let E be a vector bundle on X of rank r and let π : F lag(E) → X

be the fibration of complete flags of E. Then π∗E admits a canonical filtration by vector
bundles such that the graded pieces are line bundles, and the morphism Λ→ Rπ∗Λ is a split
monomorphism.

(b) Let E : 0 → E ′ → E p−→ E ′′ → 0 be a short exact sequence of vector bundles and let
π : Sect(E)→ X be the fibration of sections of p. Then Sect(E) is a torsor under Hom(E ′′, E ′)
and π∗E is canonically split. Moreover, the morphism Λ→ Rπ∗Λ is an isomorphism.

Proof. (a) follows from Proposition 4.2, as π is a composite of r successive projective bundles. For
(b), up to replacing X by an atlas, we may assume that π is the projection from an affine space.
In this case the assertion follows from [50, XV Corollaire 2.2].

To define ci(E), we may assume E is of constant rank r. As usual, we define

ci(E) ∈ H2i(X ,Z/nZ(i)), 1 ≤ i ≤ r,

as the unique elements satisfying

ξr +
∑

1≤i≤r
(−1)ici(E)ξr−i = 0,

where ξ = c1(OP(E)(1)) ∈ H2(P(E),Z/nZ(1)). We put c0(E) = 1 and ci(E) = 0 for i > r. The
properties (a) to (d) follow from the case of schemes. If ci(E) = 0 for all i > 0, in particular if E is
trivial, then (4.2.1) is an isomorphism of rings in D(X ,Λ).
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Theorem 4.4. Let S be an algebraic space, let n be an integer invertible on S, and let Λ be a
commutative ring over Z/nZ. Let N ≥ 1 be an integer, let G = GLN,S, and let T =

∏N
i=1 Ti ⊂ G be

the subgroup of diagonal matrices, where Ti = Gm,S. Let π : BG→ S, τ : BT → S, f ′ : G/T → S
be the projections, let k : S → BG be the canonical section, let f : BT → BG be the morphism
induced by the inclusion T → G and let h : G/T → BT be the morphism induced by the projection
G→ S, as shown in the following 2-commutative diagram

(4.4.1) G/T

f ′

��

h // BT

f

��

τ

!!
S

k // BG
π // S.

Let E be the standard vector bundle of rank N on BG, corresponding to the natural representation
of G in ONS . The i-th Chern class ci(E) of E induces a morphism

αi : Ki = ΛS(−i)[−2i]→ Rπ∗Λ.

Let Li be the inverse image on BT of the standard line bundle on BTi. Its first Chern class c1(Li)
induces a morphism

βi : Li = ΛS(−1)[−2]→ Rτ∗Λ.
For a graded sheaf of Λ-modulesM =

⊕
i∈ZMi on S, we letM∆ =

⊕
iMi(−i)[−2i] ∈ D(S,Λ). Let

ΛS [x1, . . . , xN ] (resp. ΛS [t1, . . . , tN ]) be a polynomial algebra on generators xi of degree i (resp. ti of
degree 1). The corresponding object ΛS [x1, . . . , xN ]∆ (resp. ΛS [t1, . . . , tN ]∆) is naturally identified
with SΛ(

⊕
1≤i≤N Ki) (resp. SΛ(

⊕
1≤i≤N Li)). Then the ring homomorphisms

α : ΛS [x1, . . . , xN ]∆ → Rπ∗Λ,(4.4.2)
β : ΛS [t1, . . . , tN ]∆ → Rτ∗Λ,(4.4.3)

defined respectively by αi and βi, are isomorphisms of rings in D(S,Λ), and fit into a commutative
diagram of rings in D(S,Λ)

(4.4.4) ΛS [x1, . . . , xN ]∆ σ //

α '
��

ΛS [t1, . . . , tN ]∆

β '
��

ρ // (ΛS [t1, . . . , tN ]/(σ1, . . . , σN ))∆

γ '
��

Rπ∗Λ
af // Rτ∗Λ

ah // Rf ′∗Λ,

which commutes with arbitrary base change of algebraic spaces S′ → S. Here σ sends xi to the i-th
elementary symmetric polynomial σi in t1, . . . , tN , ρ is the projection, af is induced by adjunction
by f and ah is induced by adjunction by h. Moreover, as graded module over R2∗π∗Λ(∗), R2∗τ∗Λ(∗)
is free of rank N !.

In particular, we have canonical decompositions

Rπ∗Λ '
⊕
q

R2qπ∗Λ[−2q], Rτ∗Λ '
⊕
q

R2qτ∗Λ[−2q], Rf ′∗Λ '
⊕
q

R2qf ′∗Λ[−2q],

ah induces an epimorphismR∗τ∗Λ→ R∗f ′∗Λ and af induces an isomorphismR∗π∗Λ
∼−→ (R∗τ∗Λ)SN ,

where SN is the symmetric group on N letters. Moreover, (4.4.4) induces a commutative diagram
of sheaves of Λ-algebras on S

(4.4.5) ΛS [x1, . . . , xN ] σ //

α '
��

ΛS [t1, . . . , tN ]

β '
��

ρ // ΛS [t1, . . . , tN ]/(σ1, . . . , σN )

γ '
��

R2∗π∗Λ(∗)
af // R2∗τ∗Λ(∗) ah // R2∗f ′∗Λ(∗),

where α carries xi to the image of ci(E) under the edge homomorphism

H2i(BG,Λ(i))→ H0(S,R2iπ∗Λ(i)),
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and β carries ti to the image of c1(Li) under the edge homomorphism

H2i(BT,Λ(i))→ H0(S,R2iτ∗Λ(i)).

We will derive from Theorem 4.4 a formula for Rf∗ (see Corollary 4.5).

Proof. As in [2, Lemma 2.3.1], we approximate BG by a finite Grassmannian G(N,N ′) = M∗/G,5
where N ′ ≥ N ,M is the algebraic S-space of N ′×N matrices (aij)1≤i≤N ′

1≤j≤N
,M∗ is the open subspace

of M consisting of matrices of rank N . Let B ⊂ G be the subgroup of upper triangular matrices.
The square on the right of the diagram with 2-cartesian squares

M∗

y

��

// M∗/T
p //

ψ

��
w

%%

M∗/B //

v

��

M∗/G

φ

��
u

~~

S
g // BT

f //

τ

**

BG

π

��
S

induces a commutative square

(4.4.6) Rπ∗Λ //

��

Rτ∗Λ

��
Ru∗Λ // Rv∗Λ

ap // Rw∗Λ.

Here ap is induced by the adjunction Λ → Rp∗Λ. The latter is an isomorphism by [50, XV
Corollaire 2.2], because p is a (B/T )-torsor and B/T is isomorphic to the unipotent radical of B,
which is an affine space over S. The diagram

M −M∗ i //

z
$$

M

x

��

M∗

y
}}

oo

S

induces an exact triangle
Rz∗Ri

!Λ→ Rx∗Λ→ Ry∗Λ→ .

Since M is an affine space over S, the adjunction Λ→ Rx∗Λ is an isomorphism [50, XV Corollaire
2.2]. Since x is smooth and the fibers of z are of codimension N ′ − N + 1, we have Ri!Λ ∈
D≥2(N ′−N+1) by semi-purity [11, Cycle 2.2.8]. It follows that the adjunction Λ→ τ≤2(N ′−N)Ry∗Λ
is an isomorphism. By smooth base change by g (resp. fg) [32], this implies that the adjunction
Λ→ τ≤2(N ′−N)Rψ∗Λ (resp. Λ→ τ≤2(N ′−N)Rφ∗Λ) is an isomorphism, so that the right (resp. left)
vertical arrow of τ≤2(N ′−N)(4.4.6) is an isomorphism.

The assertions then follow from an explicit computation of Ru∗Λ and Rv∗Λ. Note thatM∗/B is
a partial flag variety of the free OS-module ON ′S of type (1, . . . , 1, N ′−N). By [51, VII Propositions
5.2, 5.6 (a)] applied to u and v, we have a commutative square

A∆ ∼ //

σ

��

Ru∗Λ

��
C∆ ∼ // Rv∗Λ.

5This approximation argument was explained by Deligne to the first author in the context of de Rham cohomology
in 1967.

24



Here

A = ΛS [x1, . . . , xN , y1, . . . , yN ′−N ]/(
∑

i+j=m
xiyj)m≥1,

C = ΛS [t1, . . . , tN , y1, . . . , yN ′−N ]/(
∑

i+j=m
σiyj)m≥1,

the upper horizontal arrow sends xi to the i-th Chern class ci(EN ′) of the canonical bundle EN ′
of rank N on the Grassmannian M∗/G, the lower horizontal arrow sends ti to the first Chern
class c1(Li,N ′) of the i-th standard line bundle Li,N ′ of the partial flag variety M∗/B, and the
upper (resp. lower) horizontal arrow sends yi to the i-th Chern class ci(E ′N ′) of the canonical
bundle E ′N ′ of rank N ′ − N on M∗/G (resp. on M∗/B). In the definition of the ideals, we put
x0 = y0 = 1, xi = 0 for i > N and yi = 0 for i > N ′ − N , and we used the fact that cm of the
trivial bundle of rank N ′ is zero for m ≥ 1. As EN ′ (resp. Li,N ′) is induced from E (resp. Li),
by the functoriality of Chern classes (Theorem 4.1), these isomorphisms are compatible with the
morphisms α (4.4.2) and β (4.4.3). We can rewrite A as Λ[x1, . . . , xN ]/(Pm(x1, . . . , xm))m>N ′−N
and rewrite C as Λ[t1, . . . , tN ]/(Qm(t1, . . . , tm))m>N ′−N , where Pm is an isobaric polynomial of
weight m in x1, . . . , xm, xi being of weight i, and Qm is a homogeneous polynomial of degree m in
t1, . . . , tm. As the vertical arrows of (4.4.6) induce isomorphisms after application of the truncation
functor τ≤2(N ′−N), it follows that τ≤2(N ′−N) of the square on the left of (4.4.4) is commutative
and the vertical arrows induce isomorphisms after application of τ≤2(N ′−N). To get the square on
the right of (4.4.4), it suffices to apply the preceding computation of Rw∗Λ (via Rv∗Λ) to the case
N ′ = N , because, in this case, f ′ = w. The fact that (4.4.4) commutes with base change follows
from the functoriality of Chern classes. The last assertion of the theorem then follows from [51,
VII Lemme 5.4.1].

Corollary 4.5. With assumptions and notation as in Theorem 4.4:
(a) For every locally constant Λ-module F on S, the projection formula maps

F ⊗LΛ Rπ∗Λ→ Rπ∗π
∗F , F ⊗LΛ Rτ∗Λ→ Rτ∗τ

∗F

are isomorphisms.
(b) The classes c1(Li) induce an isomorphism of rings ΛBG[t1, . . . , tN ]∆/J → Rf∗Λ in D(BG,Λ),

where J is the ideal generated by σi − ci(E). Moreover, the left square of (4.4.1) induces an
isomorphism of Rπ∗Λ-modules Rτ∗Λ ' Rπ∗Λ⊗LΛ Rf ′∗Λ.

Proof. (a) We may assume that F is a constant Λ-module of value F . Then the assertion follows
from Theorem 4.4 applied to Λ and to the ring of dual numbers Λ ⊕ F (with m1m2 = 0 for
m1,m2 ∈ F ).

(b) Since f∗E '
⊕N

i=1 Li, f∗ci(E) = ci(f∗E) is the i-th elementary symmetric polynomial in
c1(L1), . . . , c1(LN ). Thus the ring homomorphism ΛBG[t1, . . . , tN ]∆ → Rf∗Λ induced by c1(Li)
factorizes through a ring homomorphism ΛBG[t1, . . . , tN ]∆/J → Rf∗Λ. By Proposition 1.11 ap-
plied to the square

(G,T ) //

��

(S, T )

��
(G,G) // (S,G),

the left square of (4.4.1) is 2-cartesian. By smooth base change by k, we have k∗Rf∗Λ ' Rf ′∗Λ. The
first assertion then follows from Theorem 4.4. By Remark 2.7, it follows that Rf∗Λ ' π∗k∗Rf∗Λ '
π∗Rf ′∗Λ. Thus Rτ∗Λ ' Rπ∗Rf∗Λ ' Rπ∗π∗Rf ′∗Λ and the second assertion follows from (a).

Let k be a separably closed field, let n be an integer invertible in k, and let Λ be a noetherian
commutative ring over Z/nZ. The next sequence of results are analogues of Quillen’s finiteness
theorem [36, Theorem 2.1, Corollaries 2.2, 2.3]. Recall that an algebraic space over Spec k is of
finite presentation if and only if it is quasi-separated and of finite type.
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Theorem 4.6. Let G be an algebraic group over k, let X be an algebraic space of finite presentation
over Spec k equipped with an action of G, and let K be an object of Db

c([X/G],Λ) (see Notation 2.2).
Then H∗(BG,Λ) is a finitely generated Λ-algebra and H∗([X/G],K) is a finite H∗(BG,Λ)-module.
In particular, if K is a ring in the sense of Definition 3.3, then the graded center ZH∗([X/G],K)
of H∗([X/G],K) is a finitely generated Λ-algebra.

Initially the authors established Theorem 4.6 for G either a linear algebraic group or a semi-
abelian variety. The finiteness of H∗(BG,Λ) in the general case was proved by Deligne in [12].

Corollary 4.7. Let G be an algebraic group over k and let f : X → BG be a representable mor-
phism of Artin stacks of finite presentation over Spec k, and let K ∈ Db

c(X ,Λ). Consider H∗(X ,K)
as an H∗(BG,Λ)-module by restriction of scalars via the map f∗ : H∗(BG,Λ)→ H∗(X ,Λ). Then
H∗(X ,K) is a finite H∗(BG,Λ)-module.

Proof. It suffices to apply Theorem 4.6 to Rf∗K ∈ Db
c(BG,Λ).

Corollary 4.8. Let X (resp. Y ) be an algebraic space of finite presentation over Spec k, equipped
with an action of an algebraic group G (resp. H) over k. Let (f, u) : (X,G)→ (Y,H) be an equiv-
ariant morphism. Assume that u is a monomorphism. Then the map [f/u]∗ makes H∗([X/G],Λ)
a finite H∗([Y/H],Λ)-module.

Indeed, since the map [X/G] → BH induced by u is representable, H∗([X/G],Λ) is a finite
H∗(BH,Λ)-module by Corollary 4.7, hence a finite H∗([Y/H],Λ)-module.

Proof of Theorem 4.6. By the invariance of étale cohomology under schematic universal homeo-
morphisms, we may assume k algebraically closed and G reduced (hence smooth). Then G is an
extension 1 → G0 → G → F → 1, where F is the finite group π0(G) and G0 is the identity
component of G. By Chevalley’s theorem (cf. [8, Theorem 1.1.1] or [9, Theorem 1.1]), G0 is an
extension 1 → L → G0 → A → 1, where A is an abelian variety and L = Gaff is the largest
connected affine normal subgroup of G0. Then L is also normal in G, and if E = G/L, then E is
an extension 1→ A→ E → F → 1. We will sum up this dévissage by saying that G is an iterated
extension G = L ·A · F .

By [20, VIII 7.1.5, 7.3.7], for every algebraic group H over k, the extensions of F by H with
given action of F on H by conjugation are classified by H2(BF,H). In particular, the extension
E of F by A defines an action of F on A and a class in H2(BF,A), which comes from a class α in
H2(BF,A[m]), where m is the order of F and A[m] denotes the kernel of m : A→ A. Indeed the
second arrow in the exact sequence

H2(BF,A[m])→ H2(BF,A) ×m−−→ H2(BF,A)

is equal to zero. This allows us to define an inductive system of subgroups Ei = A[mni] · F
of E, given by the image of α in H2(F,A[mni]). This induces an inductive system of subgroups
Gi = L ·A[mni] · F of G, fitting into short exact sequences

1 // L // Gi //

��
�

Ei //

��

1

1 // L // G // E // 1.

Form the diagram with cartesian squares

[X/Gi] //

fi

��

BGi

��

G/Gioo

��
[X/G] // BG Spec k.oo

Note that G/Gi = A/A[mni] and the vertical arrows in the above diagram are proper representable.
By the classical projection formula [50, XVII (5.2.2.1)], Rfi∗f∗i K ' K ⊗LΛ Rfi∗Λ. Moreover,
fi∗Λ ' Λ. Thus we have a distinguished triangle

(4.8.1) K → Rfi∗f
∗
i K → K ⊗LΛ τ≥1Rfi∗Λ→ .
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The first term forms a constant system and the third term Ni = K⊗LΛ τ≥1Rfi∗Λ forms an AR-null
system of level 2d in the sense that Ni+2d → Ni is zero for all i, where d = dimA. Indeed the
stalks of Rqfi∗Λ are Hq(A/A[mni],Λ), which is zero for q > 2d. For q = 0, the transition maps
of (H0(A/A[mni],Λ)) are idΛ and for q > 0, the transition maps of (Hq(A/A[mni],Λ)) are zero.
Thus, in the induced long exact sequence of (4.8.1)

H∗−1([X/G], Ni)→ H∗([X/G],K) αi−→ H∗([X/Gi], f∗i K)→ H∗([X/G], Ni),

the system (H∗([X/G], Ni)) is AR-null of level 2d. Therefore, αi is injective for i ≥ 2d and
Imαi = Im(H∗([X/Gi+2d], f∗i+2dK) → H∗([X/Gi], f∗i K)) for all i. Taking i = 2d, we get
H∗([X/G],K) = Im(H∗([X/G4d], f∗4dK) → H∗([X/G2d], f∗2dK)). In particular, H∗(BG,Λ) is
a quotient Λ-algebra of H∗(BG4d,Λ), and H∗([X/G],K) is a quotient H∗(BG,Λ)-module of
H∗([X/G4d], f∗4dK). Therefore, it suffices to show the theorem with G replaced by G4d. In partic-
ular, we may assume that G is a linear algebraic group.

Let G → GLr be an embedding into a general linear group. By Corollary 1.15, the morphism
of Artin stacks over BGLr,

[X/G]→ [(X ∧G GLr)/GLr],

is an equivalence. Replacing G by GLr and X by X ∧G GLr, we may assume that G = GLr.
Let f : [X/G] → BG. Then Rf∗K ∈ Db

c(BG,Λ). Thus we may assume X = Spec k. The full
subcategory of objects K satisfying the theorem is a triangulated category. Thus we may further
assume K ∈ Modc(BG,Λ). In this case, since G is connected, K is necessarily constant (Corollary
2.6) so that K ' π∗M for some finite Λ-module M , where π : BG → Spec k. In this case, by
Theorem 4.4, H∗(BG,Λ) ' Λ[c1, . . . , cr] is a noetherian ring and H∗(BG,K) 'M⊗Λ Λ[c1, . . . , cr]
is a finite H∗(BG,Λ)-module.

Remark 4.9. We have shown in the proof of Theorem 4.6 thatH∗([X/G],K) ' Im(H∗([X/G4d], f∗4dK)→
H∗([X/G2d], f∗2dK)). In particular,H∗([X/G],K) is a quotientH∗(BG,Λ)-module ofH∗([X/G4d], f∗4dK).
Here G2d < G4d are affine subgroups of G, independent of X and K, and f2d : [X/G2d]→ [X/G],
f4d : [X/G4d]→ [X/G].

In the following examples, we write H∗(−) for H∗(−,Λ), with Λ as in Theorem 4.6.

Example 4.10. Let G/k be an extension of an abelian variety A of dimension g by a torus T of
dimension r. Then
(a) H1(A), H1(T ), H1(G) are free over Λ of ranks 2g, r and 2g+r respectively, and the sequence

0 → H1(A) → H1(G) → H1(T ) → 0 is exact. The inclusion H1(G) ↪→ H∗(G) induces an
isomorphism of Λ-modules

(4.10.1) ∧H1(G) ∼−→ H∗(G).

(b) The homomorphism
d01

2 : H1(G)→ H2(BG)

in the spectral sequence

Epq2 = Hp(BG)⊗Hq(G)⇒ Hp+q(Spec k)

of the fibration Spec k → BG is an isomorphism.
(c) We have H2i+1(BG) = 0 for all i, and the inclusion H2(BG) ↪→ H∗(BG) extends to an

isomorphism of Λ-algebras
S(H2(BG)) ∼−→ H∗(BG).

Let us briefly sketch a proof.
Assertion (a) is standard. By projection formula, we may assume Λ = Z/nZ. As the mul-

tiplication by n on T is surjective, the sequence 0 → T [n] → G[n] → A[n] → 0 is exact. The
surjection π1(G) → G[n] induces an injection Hom(G[n],Z/nZ) → H1(G). The fact that this
injection and (4.10.1) are isomorphisms follows (after reducing to n = ` prime) from the structure
of Hopf algebra of H∗(G), as H2g+r(G) ∼−→ Hr(T ) ⊗ H2g(A) is of rank 1 (cf. [42, Chapter VII,
Proposition 16]).
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Assertion (b) follows immediately from (a).
To prove (c) we calculate H∗(BG) using the nerve B•G of G (cf. [10, 6.1.5]):

H∗(BG) = H∗(B•G),

which gives the Eilenberg-Moore spectral sequence:

(4.10.2) Eij1 = Hj(BiG)⇒ Hi+j(BG).

One finds that
E•,j1 ' L ∧j (H1(G)[−1]).

By [23, I 4.3.2.1 (i)] we get
E•,j1 ' LSj(H1(G))[−j].

Thus

Eij2 '

{
Sj(H1(G)) if i = j,
0 if i 6= j.

The E2 term is concentrated on the diagonal, hence (4.10.2) degenerates at E2, and we get an
isomorphism

H∗(BG) = S(H1(G)[−2]),

from which (c) follows.

Example 4.11. Let G be a connected algebraic group over k. Assume that for every prime number
` dividing n, Hi(G,Z`) is torsion-free for all i. Classical results due to Borel [5] can be adapted as
follows.
(a) H∗(G) is the exterior algebra over a free Λ-module having a basis of elements of odd degree

[5, Propositions 7.2, 7.3].
(b) In the spectral sequence of the fibration Spec k → BG,

Eij2 = Hi(BG)⊗Hj(G)⇒ Hi+j(Spec k),

primitive and transgressive elements coincide [5, Proposition 20.2], and the transgression gives
an isomorphism dq+1 : P q ∼−→ Qq+1 from the transgressive part P q = E0q

q+1 of Hq(G) ' E0q
2

to the quotient Qq+1 = Eq+1,0
q+1 of Hq+1(BG) ' Eq+1,0

2 . Moreover, Q∗ is a free Λ-module
having a basis of elements of even degrees, and every section of H∗(BG) → Q∗ provides an
isomorphism between H∗(BG) and the polynomial algebra SΛ(Q∗) [5, Théorèmes 13.1, 19.1].

Now assume that G is a connected reductive group over k. Let T be the maximal torus in G,
and W = NormG(T )/T the Weyl group. Recall that G is `-torsion-free if ` does not divide the
order of W , cf. [6], [43, Section 1.3]. As in [11, Sommes trig., 8.2], the following results can be
deduced from the classical results on compact Lie groups by lifting G to characteristic zero.
(c) The spectral sequence

(4.11.1) Eij2 = Hi(BG)⊗Hj(G/T )⇒ Hi+j(BT )

degenerates at E2, Eij2 being zero if i or j is odd6. In particular, the homomorphism

H∗(BT )→ H∗(G/T )

induced by the projection G/T → BT is surjective. In other words, in view of Theorem 4.4,
H∗(G/T ) is generated by the Chern classes of the invertible sheaves Lχ obtained by pushing
out the T -torsor G over G/T by the characters χ : T → Gm.

(d) The Weyl group W acts on (4.11.1), trivially on H∗(BG), and H∗(G/T ) is the regular
representation ofW [5, Lemme 27.1]. In particular, the homomorphism H∗(BG)→ H∗(BT )
induced by the projection BT → BG induces an isomorphism

(4.11.2) H∗(BG) ∼−→ H∗(BT )W .
6The vanishing of Hj(G/T ) for j odd follows for example from the Bruhat decomposition of G/B for a Borel B

containing T .
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5 Finiteness of orbit types
Let k be a field of characteristic p ≥ 0, let G be an algebraic group over k, and let A be a finite
group. The presheaf of sets Homgroup(A,G) on AlgSp/k is represented by a closed subscheme X of
the product

∏
a∈AG of copies of G indexed by A. In the case where A ' (Z/`Z)r is an elementary

abelian `-group of rank r, Homgroup(A,G)(T ) can be identified with the set of commuting r-
tuples of `-torsion elements of G(T ). The group G acts on X by conjugation. Let x ∈ X(k)
be a rational point of X and let c : G → X be the G-equivariant morphism sending g to xg,
where xg : a 7→ g−1x(a)g. Let H = c−1(x) ⊂ G be the inertia subgroup at x. The morphism c
decomposes into

G→ H\G f−→ X,

where f is an immersion [13, III, § 3, Proposition 5.2]. The orbit of x under G is the (scheme-
theoretic) image of f , which is a subscheme of X. The orbits of X are disjoint with each other.

The following result is probably well known. It was communicated to us by Serre.

Theorem 5.1 (Serre). Assume that the order of A is not divisible by p. Then the orbits of X
under the action of G are open subschemes. Moreover, if G is smooth, then X is smooth.

The condition on the order of A is essential. For example, if p > 0, A = Z/pZ and G = Ga is
the additive group, then G acts trivially on X ' G.

Note that for any field extension k′ of k, if Y is an orbit of X under G, then Yk′ is an orbit of
Xk′ under Gk′ .

Corollary 5.2. The orbits are closed and the number of orbits is finite. Moreover, if k is alge-
braically closed, then the orbits form a disjoint open covering of X.

Proof. It suffices to consider the case when k is algebraically closed. In this case, rational points
of X form a dense subset [22, Corollaire 10.4.8]. Thus, by Theorem 5.1, the orbits form a disjoint
open covering of the quasi-compact topological space X. Therefore, the orbits are also closed and
the number of orbits is finite.

Corollary 5.3. Let G be an algebraic group over k and let ` be a prime number distinct from p.
There are finitely many conjugacy classes of elementary abelian `-subgroups of G. Moreover, if
k is algebraically closed and k′ is an algebraically closed extension of k, then the natural map
Sk → Sk′ from the set Sk of conjugacy classes of elementary abelian `-subgroups of G to the set
Sk′ of conjugacy classes of elementary abelian `-subgroups of Gk′ is a bijection.

Proof. By Corollary 5.2, it suffices to show that the ranks of the elementary abelian `-subgroups
of G are bounded. For this, we may assume k algebraically closed, and G smooth. As in the proof
of Theorem 4.6, let L be the maximal connected affine normal subgroup of the identity component
G0 of G. Let d be the dimension of the abelian variety G0/L, and let m be the maximal integer
such that `m|[G : G0]. Choose an embedding of L into some GLn. Then every elementary abelian
subgroup of G has rank ≤ n+ 2d+m.

To prove the theorem, we need a lemma on tangent spaces. Let S be an algebraic space, and
let X be an S-functor, that is, a presheaf of sets on AlgSp/S . Recall [49, II 3.1] that the tangent
bundle to X is defined to be the S-functor

TX/S = HomS(Spec(OS [ε]/(ε2)), X),

which is endowed with a projection to X. For every point u ∈ X(S), the tangent space to X at u
is the S-functor [49, II 3.2]

TuX/S = TX/S ×X,u S.
Recall [49, II 3.11] that, for S-functors Y and Z, we have an isomorphism

THomS(Y,Z)/S ' HomS(Y, TZ/S).

For a morphism f : Y → Z of S-functors, this induces an isomorphism

(5.3.1) T fHomS(Y,Z)/S ' HomZ/S((Y, f), TZ/S).
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Assume that Z is an S-group, that is, a presheaf of groups on AlgSp/S . Then we have an iso-
morphism of schemes TZ/S ' Z ×S Lie(Z/S), where Lie(Z/S) = T 1

Z/S . Thus (5.3.1) induces an
isomorphism

(5.3.2) T fHomS(Y,Z)/S
∼−→ HomS(Y,Lie(Z/S)).

Furthermore, if Y is an S-group and f is a homomorphism of S-groups, then the image of
T fHomS-group(Y,Z)/S by (5.3.2) is Z1

S(Y,Lie(Z/S)) [49, II 4.2], where Y acts on Lie(Z/S) by the
formula y 7→ Ad(f(y)).7

Lemma 5.4. Let f : Y → Z be a homomorphism of S-groups as above. Let c : Z → HomS-group(Y, Z)
be the morphism given by

z 7→ (y 7→ (z−1f(y)z)).

Then the composition

Lie(Z/S)
T 1
c/S−−−→ T fHomS-group(Y,Z)/S → HomS(Y,Lie(Z/S))

is given by t 7→ (y 7→ Ad(f(y))t− t), and the image is B1
S(Y,Lie(Z/S)).

Proof. The exact sequence
1→ Lie(Z/S)→ TZ/S → Z → 1

has a canonical splitting, which allows one to identify TZ/S with the semidirect product Lie(Z/S)o
Z. An element (t, z) of the semidirect product (evaluated at an S-scheme S′) corresponds to
the image of dRz(t) ∈ T zZ/S(S′), where Rz : Z ×S S′ → Z ×S S′ is the right translation by z.
Multiplication in the semidirect product is given by

(t, z)(t′, z′) = (t+ Ad(z)t′, zz′).

The image of t under T 1
c/S in T fHomS(Y,Z)/S

∼−→ HomZ/S(Y, TZ/S) is Tc/S(t, 1), given by

y 7→ (t, 1)−1(0, f(y))(t, 1) = (Ad(f(y))t− t, f(y)).

Hence the image in HomS(Y,Lie(Z/S)) is y 7→ Ad(f(y))t− t.

Proof of Theorem 5.1. We may assume k algebraically closed and G smooth. As in the beginning
of Section 5, let u : A→ G be a rational point of X, let H be the inertia at u, let Y = H\G, and let
c : G→ X be the G-equivariant morphism sending g to ug, which factorizes through an immersion
j : Y → X. Since H1(A,Lie(G)) = 0 for any action of A on Lie(G), it follows from Lemma 5.4
that T 1

c : Lie(G) → TuX is an epimorphism. Thus the map T {H}j : T {H}Y → TuX is an isomorphism.
Since Y is smooth [49, VIB 9.2], j is étale [22, Corollaire 17.11.2] and hence an open immersion at
this point. In other words, the orbit of u contains an open neighborhood of u. Since the rational
points of X form a dense subset [22, Corollaire 10.4.8], the orbits of rational points form an open
covering of X, which implies that X is smooth.

6 Structure theorems for equivariant cohomology rings
Throughout this section κ is a field and k is an algebraically closed field.

Definition 6.1. For a functor F : C → D and an object d of D, let (d ↓ F ) = C ×D Dd/ (strict
fiber product) be the category whose objects are pairs (c, φ) of an object c of C and a morphism
φ : d → F (c) in D, and arrows are defined in the natural way. Recall that F is said to be cofinal
if, for every object d of D, the category (d ↓ F ) is nonempty and connected.

If F is cofinal and G : D → E is a functor such that lim−→GF exists, then lim−→G exists and the
morphism lim−→GF → lim−→G is an isomorphism [33, Theorem IX.3.1].

7For compatibility with [49, II 4.1], we write the adjoint action as left action.
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Lemma 6.2. Let F : C → D be a full and essentially surjective functor. Then F is cofinal.

Proof. Let d be an object of D. As F is essentially surjective, there exist an object c of C and an
isomorphism f : d ∼−→ F (c) in D, which give an object of (d ↓ F ). As F is full, for any morphism
g : d→ F (c′), with c′ an object of C, there exists a morphism h : c→ c′ in C such that F (h) = gf−1,
which gives a morphism (c, f)→ (c′, g) in (d ↓ F ).

We now introduce some enriched categories, which will be of use in the structure theorems,
especially Theorem 6.17.

Definition 6.3. Let D be a category enriched in the category AlgSp/κ of algebraic κ-spaces,
with Cartesian product as the monoidal operation [29, Section 1.2]. For objects X and Y of D,
HomD(X,Y ) is an algebraic κ-space and composition of morphisms in D is given by morphisms of
algebraic κ-spaces. We denote by D(κ) the category having the same objects as D, in which

HomD(κ)(X,Y ) = (HomD(X,Y ))(κ).

Assume that κ is separably closed. We denote by D(π0) the category having the same objects as
D, in which

HomD(π0)(X,Y ) = π0(HomD(X,Y )).

Note that, if HomD(X,Y ) is of finite type, HomD(π0)(X,Y ) is a finite set. We have a functor

η : D(κ)→ D(π0),

which is the identity on objects, and sends f ∈ HomD(X,Y )(κ) to the connected component
containing it. Assume that HomD(X,Y ) is locally of finite type. If κ is algebraically closed, or if
for all X, Y in D, HomD(X,Y ) is smooth over κ, then η is full, hence cofinal by Lemma 6.2.

Construction 6.4. Let G be an algebraic group over k, let X be an algebraic space of finite
presentation over k, endowed with an action of G, and let ` be a prime number. We define a
category enriched in the category Schft

/k of schemes of finite type over k,

AG,X,`,

as follows. Objects of AG,X,` are pairs (A,C) where A is an elementary abelian `-subgroup of
G and C is a connected component of the algebraic space of fixed points XA (which is a closed
algebraic subspace of X if X is separated). For objects (A,C) and (A′, C ′) of AG,X , we denote
by TransG((A,C), (A′, C ′)) the transporter of (A,C) into (A′, C ′), namely the closed subgroup
scheme of G representing the functor

S 7→ {g ∈ G(S) | g−1ASg ⊂ A′S , CSg ⊃ C ′S}.

In fact, TransG((A,C), (A′, C ′)) is a closed and open subscheme of the scheme TransG(A,A′)
defined by the cartesian square

TransG(A,A′) //

��

∏
a∈AA

′

��
G // ∏

a∈AG

where the lower horizontal arrow is given by g 7→ (g−1ag)a∈A. Indeed, if we consider the morphism

F : TransG(A,A′)×XA′ → XA (g, x) 7→ xg−1

and the induced map

φ : π0(TransG(A,A′))→ π0(XA) Γ 7→ π0(F )(Γ, C ′),
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then TransG((A,C), (A′, C ′)) is the union of the connected components of TransG(A,A′) corre-
sponding to φ−1(C). We define

HomAG,X,`((A,C), (A′, C ′)) := TransG((A,C), (A′, C ′)).

Composition of morphisms is given by the composition of transporters

TransG((A′, C ′), (A′′, C ′′))× TransG((A,C), (A′, C ′))→ TransG((A,C), (A′′, C ′′)),

which is a morphism of k-schemes. When no confusion arises, we omit ` from the notation. We
will denote AG,Spec(k) by AG.

For an object (A,C) of AG,X , we denote by CentG(A,C) its centralizer, namely the closed
subscheme of G representing the functor

S 7→ {g ∈ G(S) | CSg = CS and g−1ag = a for all a ∈ A}.

For objects (A,C), (A′, C ′) of AG,X , we have natural injections (cf. [37, (8.2)])

(6.4.1) CentG(A,C)\TransG((A,C), (A′, C ′))→ CentG(A)\TransG(A,A′)→ Hom(A,A′).

We let A[G,X denote the category having the same objects as AG,X , but with morphisms defined
by the left hand side of (6.4.1). We call the finite group

(6.4.2) WG(A,C) := CentG(A,C)\TransG((A,C), (A,C))

the Weyl group of (A,C). This is a subgroup of the finite group

WG(A) = CentG(A)\NormG(A) ⊂ Aut(A).

The functors
AG,X(k)→ AG,X(π0)→ A[G,X

(the second one defined via (6.4.1)) are cofinal by Lemma 6.2.
Let k′ be an algebraically closed extension of k. We have a functor AG,X(k) → AGk′ ,Xk′ (k

′)
carrying (A,C) to (A,Ck′). Since the map

π0(TransG((A,C), (A′, C ′))→ π0(TransGk′ ((A,Ck′), (A
′, C ′k′)))

is a bijection, this induces a functor AG,X(π0)→ AGk′ ,Xk′ (π0).

In the rest of the section we assume ` invertible in k.

Lemma 6.5. The category AG,X(π0) is essentially finite, and the functor AG,X(π0)→ AGk′ ,Xk′ (π0)
is an equivalence. In particular, AG(π0) is essentially finite.

Proof. Let S be a set of representatives of isomorphisms classes of objects of AG(π0). In other
words, S is a set of representatives of conjugacy classes of elementary abelian `-subgroups of G.
By Corollary 5.3, this is a finite set. Let T be the set of objects (A,C) of AG,X(π0) such that
A ∈ S. Then T is a finite set. The conclusion follows from the following facts:
(a) For (A,C) and (A′, C ′) in AG,X , HomAG,X(π0)((A,C), (A′, C ′)) is finite (Definition 6.3), and,

by Construction 6.4,

HomAG,X(π0)((A,C), (A′, C ′)) ∼−→ HomAG
k′ ,Xk′

(π0)((A,Ck′), (A′, C ′k′)).

(b) The finite set T is a set of representatives of isomorphism classes of objects of AG,X(π0),
and {(A,Ck′) | (A,C) ∈ T} is a set of representatives of isomorphism classes of objects of
AGk′ ,Xk′ (π0).

Indeed, (b) follows from the following obvious lemma.

Lemma 6.6. Let B, C be sets endowed with equivalence relations denoted by ' and let f : B → C
be a map such that b ' b′ implies f(b) ' f(b′). Let S be a set of representatives of C. For every
s ∈ S, let Ts be a set of representatives of f−1(s). Then

⋃
s∈S Ts is a set of representatives of B if

and only if for every b ∈ B and every c ∈ S such that f(b) ' c, there exists b′ ∈ f−1(c) such that
b ' b′.
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Remark 6.7. Let G be an algebraic group over k and let T be a subtorus of G. Then WG(T ) =
CentG(T )\NormG(T ) is a finite subgroup of Aut(T ). The inclusions

NormG(T ) ⊂ NormG(T [`]), CentG(T ) ⊂ CentG(T [`])

induce a homomorphism ρ : WG(T ) → WG(T [`]). Via the isomorphisms Aut(T ) ' Aut(M) and
Aut(T [`]) ' Aut(M/`M), where M = X∗(T ), ρ is compatible with the reduction homomorphism
Aut(M)→ Aut(M/`M). If T is a maximal torus, then ρ is surjective by the proof of [43, 1.1.1].

For ` > 2, ρ is injective. In fact, for an element g of Ker(Aut(M)→ Aut(M/`M)) and arbitrary
`, the `-adic logarithm log(g) :=

∑∞
m=1

(−1)m−1

m (g−1)m ∈ `End(M)⊗Z` is well defined. If gn = id
for some n ≥ 1, then n log(g) = log(gn) = 0, so that log(g) = 0. In the case ` > 2, we then have
g = exp log(g) = id. For ` = 2, ρ is not injective in general. For example, if G = SL2 and T is a
maximal torus, then WG(T ) ' Z/2 and WG(T [2]) = {1}.

If G = GLn and T is a maximal torus, then ρ is an isomorphism for arbitrary `. In fact, in this
case, NormG(T ) = NormG(T [`]) and CentG(T ) = CentG(T [`]).

Notation 6.8. We will sometimes omit the constant coefficient F` from the notation. We will
sometimes write H∗G for H∗(BG) = H∗(BG,F`).

Construction 6.9. Let T = TransG(A,A′), let g ∈ T (k), and let cg : A → A′ be the map
a 7→ g−1ag. In the above notation, the morphism Bcg : BA → BA′ induces a homomorphism
θg : H∗A′ → H∗A. This defines a presheaf (H∗A, θg) on A[G, hence on A[G,X .

If (A,C) is an object of AG,X , we have

H∗([C/A]) = H∗A ⊗H∗(C).

The restriction H∗([X/G]) → H∗([C/A]) induced by the inclusion (C,A) → (X,G), composed
with the projection

(6.9.1) H∗([C/A])→ H∗A

induced by H∗(C)→ H0(C) = F`, defines a homomorphism

(6.9.2) (A,C)∗ : H∗([X/G])→ H∗A.

For g ∈ Trans((A,C), (A′, C ′))(k) ⊂ T (k), we have the following 2-commutative square of grou-
poids in the category AlgSp/U (Construction 1.1):

(C ′, A)•
(id,cg)//

(g−1,id)
��

�


(C ′, A′)•

��
(C,A)• // (X,G)•

(with trivial action of A and A′ on C ′ and trivial action of A on C), where the 2-morphism is given
by g. The corresponding 2-commutative square of Artin stacks

BA× C ′ //

��

BA′ × C ′

��
BA× C // [X/G]

induces by adjunction (Notation 2.3) the following commutative square:

H∗([X/G]) //

��

H∗([C/A])

[g−1/id]∗

��
H∗([C ′/A′])

[id/cg]∗// H∗([C ′/A]).

33



Composing with the projections (6.9.1), we obtain the following commutative diagram:

H∗([X/G])

(A′,C′)∗

��

(A,C)∗

%%
H∗A′ θ

// H∗A.

Therefore the maps (A,C)∗ (6.9.2) define a homomorphism

(6.9.3) a(G,X) : H∗([X/G])→ lim←−
A[
G,X

(H∗A, θg).

Note that the right-hand side is the equalizer of

(j1, j2) :
∏

(A,C)∈AG,X

H∗A ⇒
∏

g : (A,C)→(A′,C′)

H∗A,

where g runs through morphisms in A[G,X , j1(h(A,C)) = (h(A,C))g, j2(h(A,C)) = (θgh(A′,C′))g.
Moreover, by the finiteness results Corollary 4.8 and Lemma 6.5, the right-hand side of (6.9.3) is
a finite H∗(BG)-module, and, in particular, a finitely generated F`-algebra.

To state our main result for the map a(G,X) (6.9.3), we need to recall the notion of uniform
F -isomorphism. For future reference, we give a slightly extended definition as follows.

Definition 6.10. Let GrVec be the category of graded F`-vector spaces. It is an F`-linear ⊗-
category. The commutativity constraint of GrVec follows Koszul’s rule of signs, such that a (pseudo-
)ring in GrVec is an anti-commutative graded F`-(pseudo-)algebra.

Let C be a category. As a special case of Construction 3.7, the functor category GrVecC :=
Fun(Cop,GrVec) is a F`-linear ⊗-category. The functor lim←−C : GrVecC → GrVec is the right adjoint
to the unital ⊗-functor GrVec → GrVecC , thus has a right unital ⊗-structure. If u : R → S is a
homomorphism of pseudo-rings in GrVecC , we say that u is a uniform F -injection (resp. uniform
F -surjection) if there exists an integer n ≥ 0 such that for any object i of C and any homogeneous
element (or, equivalently, any element) a in the kernel of ui (resp. in Si), a`

n = 0 (resp. a`n is in the
image of ui). Note that a`n = 0 for some n ≥ 0 is equivalent to am = 0 for some m ≥ 1. We say u
is a uniform F -isomorphism if it is both a uniform F -injection and a uniform F -surjection. These
definitions apply in particular to GrVec by taking C to be a discrete category of one object, in
which case the notion of a uniform F -isomorphism coincides with the definition in [36, Section 3].

The following result is an analogue of Quillen’s theorem ([36, Theorem 6.2], [37, Theorem 8.10]):

Theorem 6.11. Let X be a separated algebraic space of finite type over k, and let G be an algebraic
group over k acting on X. Then the homomorphism a(G,X) (6.9.3) is a uniform F -isomorphism
(Definition 6.10).

Remark 6.12. Let A be an elementary abelian `-group of rank r ≥ 0. We identify H1(BA,F`)
with Ǎ = Hom(A,F`). Recall [36, Section 4] that we have a natural identification of F`-graded
algebras

H∗(BA,F`) =
{

S(Ǎ) if ` = 2
∧(Ǎ)⊗ S(βǍ) if ` > 2,

where S (resp. ∧) denotes a symmetric (resp. exterior) algebra over F`, and β : Ǎ → H2(BA,F`)
is the Bockstein operator. In particular, if {x1, . . . , xr} is a basis of Ǎ over F`, then

H∗(BA,F`) =
{
F`[x1, . . . , xr] if ` = 2
∧(x1, . . . , xr)⊗ F`[y1, . . . , yr] if ` > 2

where yi = βxi.
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Corollary 6.13. With X and G as in Theorem 6.11, let K ∈ Db
c([X/G],F`). The Poincaré series

PSt(H∗([X/G],K)) =
∑
i≥0

dimF` H
i([X/G],K)ti

is a rational function of t of the form P (t)/
∏

1≤i≤n(1 − t2i), with P (t) ∈ Z[t]. The order of the
pole of PSt(H∗([X/G])) at t = 1 is the maximum rank of an elementary abelian `-subgroup A of
G such that XA 6= ∅.

Proof. By Theorem 4.6, H∗([X/G],K) is a finitely generated module over H∗([X/G]), which is a
finitely generated algebra over F`. Therefore the Poincaré series PSt(H∗([X/G],K)) is a rational
function of t, and the order of the pole at t = 1 of PSt(H∗([X/G])) is equal to the dimension of the
commutative ring H2∗([X/G]). To show that PSt(H∗([X/G],K)) is of the form given in Corollary
6.13, recall (Remark 4.9) that we have shown in the proof of Theorem 4.6 that H∗([X/G],K) is a
quotient H∗(BH)-module of H∗([X/H], f∗K) for a certain affine subgroup H of G, f denoting the
canonical morphism [X/H]→ [X/G]. EmbeddingH into some GLn and applying Corollary 4.7, we
deduce that H∗([X/G],K) is a finite H∗(BGLn)-module. Since H∗(BGLn) ' F`[c1, . . . , cn], where
ci is of degree 2i (Theorem 4.4), PSt(M∗) is of the form P (t)/

∏
1≤i≤n(1− t2i) with P (t) ∈ Z[t] for

every finite graded H∗(BGLn)-module M∗. The last assertion of Corollary 6.13 is derived from
Theorem 6.11 as in [36, Theorem 7.7]. One can also see it in a more geometric way, observing that
the reduced spectrum of Hε∗([X/G]) (where ε = 1 if ` = 2 and 2 otherwise) is homeomorphic to
an amalgamation of standard affine spaces A = Spec(Hε∗

A )red associated with the objects (A,C)
of AG,X (see Construction 11.1).

Example 6.14. Let G be a connected reductive group over k with no `-torsion, and let T be a
maximal torus of G. Let ι : A′ ↪→ A[G be the full subcategory spanned by T [`]. The functor ι is
cofinal. Indeed, for every object A of A[G, since A is toral, there exists a morphism cg : A → T [`]
in A[G. Moreover, for morphisms cg : A → T [`], cg′ : A → T [`] in A[G, there exists an isomor-
phism ch : T [`] → T [`] such that chcg = cg′ in A[G, by [43, 1.1.1] applied to the conjugation
cg−1g′ : cg(A) → cg′(A). Let W = WG(T ). The map a(G,Spec(k)) can be identified with the
injective F -isomorphism

H∗G ' (H∗T )W → (H∗T [`])W

induced by restriction (where the isomorphism is (4.11.2)). In particular,

lim←−
A∈A[

G

(Hε∗
A )red ' S(T [`]∨)W ,

where ε = 1 if ` = 2 and ε = 2 if ` > 2. Moreover, for ` > 2, a(G,Spec(k)) induces an isomorphism
H2∗
G ' ((H2∗

T [`])red)W .

Example 6.15. Let X = X(Σ) be a toric variety over k with torus T , where Σ is a fan in N ⊗R
and N = X∗(T ). We identify T [`] with N ⊗ µ`. The inertia Iσ ⊂ T of the orbit Oσ corresponding
to a cone σ ∈ Σ is Nσ ⊗ Gm, where Nσ is the sublattice of N generated by N ∩ σ, so that
Aσ = Iσ[`] ' Nσ⊗µ`. The latter can be identified with the image of N ∩σ in N ⊗F`. This defines
an object (Aσ, Cσ) of AT,X , where Cσ is the connected component of XAσ containing Oσ. The
functor Σ→ A[T,X is cofinal. Thus we have a canonical isomorphism

lim←−
A∈A[

T,X

(Hε∗
A )red ' lim←−

σ∈Σ
(Hε∗

Aσ )red.

Note that (H∗Aσ )red can be canonically identified with S(Mσ)⊗ F`, where Mσ = M/(M ∩ σ⊥) and
S(Mσ) is the algebra of integral polynomial functions on σ. In particular, we have a canonical
isomorphism

(6.15.1) lim←−
A∈A[

T,X

(Hε∗
A )red ' PP∗(Σ)⊗ F`,

where
PP∗(Σ) = {f : Supp(Σ)→ R | (f | σ) ∈ S(Mσ) for each σ ∈ Σ}
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is the algebra of piecewise polynomial functions on Σ. Recall that Payne established an isomor-
phism from the integral equivariant Chow cohomology ring A∗T (X) of Edidin and Graham [14,
2.6] onto PP∗(Σ) [35, Theorem 1]. Combining Theorem 6.11 and (6.15.1), we obtain a uniform
F -isomorphism

H∗([X/T ],F`)→ PP∗(Σ)⊗ F`.

If X is smooth, this is an isomorphism, and PP∗(Σ) is isomorphic to the Stanley-Reisner ring of Σ
[3, Section 4].

In the rest of this section, we state an analogue of Theorem 6.11 with coefficients.

Construction 6.16. Let G be an algebraic group over k, X an algebraic k-space endowed with
an action of G, and K ∈ D+

cart([X/G],F`).
If A, A′ are elementary abelian `-subgroups of G and g ∈ G(k) conjugates A into A′ (i.e.

g−1Ag ⊂ A′), A acts trivially on XA′ via cg = A → A′ (where cg is the conjugation s 7→ g−1sg),
and we have an equivariant morphism (1, cg) : (XA′ , A) → (X,G), where 1 denotes the inclusion
XA′ ⊂ X, inducing

[1/cg] : [XA′/A] = BA×XA′ → [X/G].

We thus have, for all q, a restriction map

Hq([X/G],K)→ Hq([XA′/A], [1/cg]∗K).

On the other hand, we have a natural projection

π : [XA′/A] = BA×XA′ → XA′ ,

hence an edge homomorphism for the corresponding Leray spectral sequence

Hq([XA′/A], [1/cg]∗K)→ H0(XA′ , Rqπ∗[1/cg]∗K).

By composition we get a homomorphism

(6.16.1) aq(A,A′, g) : Hq([X/G],K)→ H0(XA′ , Rqπ∗[1/cg]∗K).

SinceR∗π∗F` =
⊕

q R
qπ∗F` is a constant sheaf of valueH∗(BA,F`), R∗π∗[1/cg]∗K =

⊕
q R

qπ∗[1/cg]∗K
is endowed with a H∗(BA,F`)-module structure by Constructions 3.4 and 3.7, which induces a
H∗(BG,F`)-module structure via the ring homomorphism [1/cg]∗ : H∗(BG,F`) → H∗(BA,F`).
The map a(A,A′, g) =

⊕
q a

q(A,A′, g) is H∗(BG,F`)-linear.
If (Z,Z ′, h) is a second triple consisting of elementary abelian `-subgroups Z, Z ′, and h ∈ G(k)

such that ch : Z → Z ′, the datum of elements a and b of G(k) such that g = ahb and ca : A→ Z,
cb : Z ′ → A′, defines a commutative diagram

(6.16.2) A
cg //

ca

��

A′

Z
ch // Z ′,

cb

OO

hence a morphism [b−1/ca] : [XA′/A]→ [XZ′/Z], fitting into a 2-commutative diagram

(6.16.3) [XA′/A]

[b−1/ca]
��

[1/cg ]

zz

π // XA′

b−1

��
[X/G]

��
[XZ′/Z]

[1/ch]
oo π // XZ′ ,

where the 2-morphism of the triangle is induced by b. Consider the homomorphism
(6.16.4)

(a, b)∗ : H0(XZ′ , Rqπ∗[1/ch]∗K)→ H0(XA′ , (b−1)∗Rqπ∗[1/ch]∗K)→ H0(XA′ , Rqπ∗[1/cg]∗K),
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where the first map is adjunction by b−1 and the second map is base change map for the square
in (6.16.3). This fits into a commutative triangle

(6.16.5) Hq([X/G],K)

�� **
H0(XZ′ , Rqπ∗[1/ch]∗K)

(a,b)∗ // H0(XA′ , Rqπ∗[1/cg]∗K),

where the vertical and oblique maps are given by (6.16.1). Denote by

(6.16.6) AG(k)\

the following category. Objects of AG(k)\ are triples (A,A′, g) as above, morphisms (A,A′, g) →
(Z,Z ′, h) are pairs (a, b) ∈ G(k) × G(k) such that g = ahb and ca : A → Z, cb : Z ′ → A′. Via
the maps (a, b)∗ (6.16.4), the groups H0(XA′ , Rqπ∗[1/cg]∗K) form a projective system indexed by
AG(k)\, and by the commutativity of (6.16.5) we get a homomorphism

(6.16.7) aqG(X,K) : Hq([X/G],K)→ RqG(X,K),

where

(6.16.8) RqG(X,K) := lim←−
(A,A′,g)∈AG(k)\

H0(XA′ , Rqπ∗[1/cg]∗K).

Since
⊕

q(a, b)∗ is H∗(BG,F`)-linear, R∗G(X,K) :=
⊕

q R
q
G(X,K) is endowed with a structure of

H∗(BG,F`)-module. The map

(6.16.9) aG(X,K) =
⊕
q

aqG(X,K) : H∗([X/G],K)→ R∗G(X,K)

induced by (6.16.7) is a homomorphism of H∗(BG,F`)-modules. If K is a (pseudo-)ring in
D+

cart([X/G],F`), R∗G(X,K) is a F`-(pseudo-)algebra and aG(X,K) is a homomorphism of F`-
(pseudo-)algebras.

Theorem 6.17. Let G be an algebraic group over k, X a separated algebraic space of finite type
over k endowed with an action of G, and K ∈ D+

c ([X/G],F`).
(a) RqG(X,K) is a finite-dimensional F`-vector space for all q; if K ∈ Db

c([X/G],F`), R∗G(X,K)
is a finite module over H∗(BG,F`).

(b) If K is a pseudo-ring in D+
c ([X/G],F`) (Construction 3.8), the kernel of the homomorphism

aG(X,K) (6.16.9) is a nilpotent ideal of H∗([X/G],K). If, moreover, K is commutative,
then aG(X,K) is a uniform F -isomorphism (Definition 6.10).

Remark 6.18. The projective limit in (6.16.7) is the equalizer of the double arrow

(j1, j2) :
∏

A∈AG

Γ(XA, RqπA∗[1/c1]∗K) ⇒
∏

(A,A′,g)∈AG(k)\
Γ(XA′ , Rqπ(A,A′,g)∗[1/cg]∗K),

where πA = π(A,A,1), [1/c1] : [XA/A] → [X/G], j1 is induced by (1, g) : (A,A′, g) → (A,A, 1) and
j2 is induced by (g, 1) : (A,A′, g)→ (A′, A′, 1).

This is a consequence of the following general fact (applied to C = AG(k)). Let C be a category.
Define a category C\ as follows. The objects of C\ are the morphisms A→ A′ of C. A morphism in
C\ from A→ A′ to Z → Z ′ is a pair of morphisms (A→ Z,Z ′ → A′) in C such that the following
diagram commutes:

A //

��

A′

Z // Z ′.

OO
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Let F be a presheaf of sets on C\. Then the sequence

Γ(Ĉ\,F)→
∏
A∈C
F(idA) ⇒

∏
(a : A→A′)∈C\

F(a)

is exact. Here the two projections are induced by (idA, a) : a → idA and (a, idA′) : a → idA′ ,
respectively.

Indeed, because the two compositions are equal, we have a map s : Γ(Ĉ\,F)→ K, where K is
the equalizer of the double arrow. It is straightforward to check that the map K →

∏
a∈C\ F(a)

factors through Γ(Ĉ\,F) to give the inverse of s.
Note that this statement generalizes the calculation of ends

∫
A∈C F (A,A) [33, Section IX.5] of a

functor F from Cop×C to the category of sets. More generally, for any category D and any functor
F : Cop×C → D,

∫
A∈C F (A,A) can be identified with the limit lim←−a : A→A′ F (A,A′) indexed by C\.

Remark 6.19. For K = F`, the commutative diagram

H∗([X/G],F`) //

((

∏
(A,C)∈AG,X H

∗
A

////

'

��

∏
g : (A,C)→(A′,C′)H

∗
A

'
��∏

A∈AG
Γ(XA, RqπA∗F`) ////

∏
(A,A′,g)∈AG(k)\

Γ(XA′ , Rqπ(A,A′,g)∗F`)

induces a commutative diagram

H∗([X/G],F`)
a(G,X) //

aG(X,F`) ''

lim←−A[G,X
H∗A

'
��

R∗G(X,F`).

Therefore Theorem 6.17 generalizes Theorem 6.11.

Part (b) of Theorem 6.17 will be proved as a corollary of a more general structure theorem
(Theorem 8.3). Part (a) will follow from the next lemma.

Lemma 6.20. Let EG be the category enriched in Schft
/k having the same objects as AG(k)\ and

in which HomEG((A,A′, g), (Z,Z ′, h)) is the subscheme of G×G representing the presheaf of sets
on AlgSp/k:

S 7→ {(a, b) ∈ (G×G)(S) | a−1ASa ⊂ ZS , b−1Z ′Sb ⊂ A′S , g = ahb}

(so that by definition EG(k) = AG(k)\).
(a) The functor F : EG(π0)→ AG(π0)\ carrying (A,A′, g) to (A,A′, γ), where γ is the connected

component of TransG(A,A′) containing g, is an equivalence of categories. In particular,
EG(π0) is equivalent to a finite category, and for every algebraically closed extension k′ of k,
the natural functor EG(π0)→ EGk′ (π0) is an equivalence of categories.

(b) The projective system H0(XA′ , Rqπ∗[1/cg]∗K) indexed by (A,A′, g) ∈ AG(k)\ factors through
EG(π0).

Remark 6.21. The projective system in Lemma 6.20 (b) does not factor through (A[G)\ in gen-
eral. Indeed, if G is a finite discrete group of order prime to `, then AG(π0) and AG(π0)\ are
both connected groupoids of fundamental group G, while A[G is a simply connected groupoid. If
K ∈ Modc(BG,F`), then the projective system in Lemma 6.20 (b) can be identified with the
F`-representation of G corresponding to K.

The proof of Lemma 6.20 will be given after Remark 6.26. We will exploit the fact that the
family of stacks [XA′/A] parameterized by (A,A′, g) ∈ AG(k)\ underlies a family “algebraically
parameterized” by EG. To make sense of this, the following general framework will be convenient.
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Definition 6.22. Let D be a category enriched in AlgSp/κ (Definition 6.3). By a family of Artin
κ-stacks parameterized by D, or, for short, an Artin D-stack, we mean a collection

X = (XA, xA,B , σA, γA,B,C)A,B,C∈D,

where XA is an Artin stack over κ, xA,B : XA×HomD(A,B)→ XB is a morphism of Artin stacks
over κ, σA and γA,B,C are 2-morphisms:

XA

idXA×i//

id
''

XA ×HomD(A,A)

xA,A

��
XA

CKσA

XA ×HomD(A,B)×HomD(B,C)

xA,B×idHomD(B,C)

��

idXA×c//

γA,B,C

XA ×HomD(A,C)

xA,C

��
XB ×HomD(B,C)

xB,C // XC ,

GO

satisfying identities of 2-morphisms expressing the unit and associativity axioms. Here i : Spec(κ)→
HomD(A,A) is the unit section and c : HomD(A,B)×HomD(B,C)→ HomD(A,C) is the compo-
sition.

A morphism f : X → Y of Artin D-stacks is a collection ((fA)A∈D, (φA,B)A,B∈D), where
fA : XA → YA is a morphism of Artin stacks over κ and φA,B is a 2-morphism:

XA ×Spec(κ) HomD(A,B)
xA,B //

fA×id
��

��
φA,B

XB

fB

��
YA ×Spec(κ) HomD(A,B)

yA,B // YB

satisfying certain identities of 2-morphisms with respect to the unit section i and the composition c.

Definition 6.23. Let Λ be a commutative ring and let X be an Artin D-stack. We define a
category Dcart(X,Λ) as follows. An object of Dcart(X,Λ) is a collection ((KA)A∈D, (αA,B)A,B∈D),
where KA ∈ Dcart(XA,Λ), αA,B : x∗A,BKB → p∗KA, p : XA×HomD(A,B)→ XA is the projection,
such that the following diagrams commute

i∗x∗A,AKA

i∗αA,A //

σ∗A

'

%%

i∗p∗KA

'
��

x∗A,CKC

αA,C //

γ∗A,B,C '
��

p∗KA

KA x∗A,Bx
∗
B,CKC

αB,C // p∗x∗A,BKB .

αA,B

OO

A morphism K → L in Dcart(X,Λ) is a collection (KA → LA)A∈D of morphisms in Dcart(XA,Λ)
commuting with αA,B . If S is an Artin stack over κ, we denote by SD the constant Artin D-
stack. If κ is separably closed and HomD(A,B) is noetherian for every A and every B in D, then
Modcart(Spec(κ)D,Λ) is equivalent to the category of projective systems of Λ-modules indexed by
D(π0). Indeed, in this case, αA,B : p∗KB → p∗KA is a morphism between constant sheaves on
HomD(A,B), and has to be constant on every connected component of HomD(A,B).

Remark 6.24. If D is discrete (i.e. induced from a usual category) and X is a D-scheme, i.e.
a functor from D to the category of κ-schemes, the category Dcart(X,Λ) consists of families of
objects KA ∈ D(XA,Λ) and compatible transition maps X∗fKB → KA for f : A→ B, and should
not be confused with the derived category of sheaves of Λ-modules on the total étale topos of X
over D.
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Construction 6.25. Let f = ((fA)A∈D, (φA,B)A,B∈D) be a morphism of Artin D-stacks. The
functors f∗A induce a functor f∗ : Dcart(Y,Λ) → Dcart(X,Λ). On the other hand, for K ∈
Dcart(X,Λ) we have a diagram

(6.25.1) y∗A,BRfB∗KB

��

p∗RfA∗KA

��
R(fA × id)∗x∗A,BKB

αA,B // R(fA × id)∗p∗KA

where the left (resp. right) vertical arrow is base change for the square φA,B (resp. for the obvious
cartesian square).

Assume that Λ is annihilated by an integer invertible in κ, and that the condition (a) (resp.
(b)) below holds:
(a) HomD(A,B) is smooth over κ for all objects A, B in D;
(b) fA is quasi-compact and quasi-separated and KA ∈ D+

cart for every object A of D.
Then the right vertical arrow is an isomorphism by smooth base change (resp. generic base
change (Remark 2.12)) from Spec(κ) to HomD(A,B), and thus the diagram (6.25.1) defines a
map y∗A,BRfB∗KB → p∗RfA∗KA. These maps endow (RfA∗KA) with a structure of object of
Dcart(Y,Λ). We thus get a functor

Rf∗ : Dcart(X,Λ)→ Dcart(Y,Λ) (resp. D+
cart(X,Λ)→ D+

cart(Y,Λ)).
The adjunctions idDcart(XA,Λ) → RfA∗f

∗
A induce a natural transformation id→ Rf∗f

∗.
Remark 6.26. The construction of Rf∗ above encodes the homotopy-invariance of étale coho-
mology [52, XV Lemme 2.1.3]. More precisely, assume κ separably closed. Let Y, Y ′ be two Artin
stacks over κ, L ∈ Dcart(Y,Λ), L′ ∈ Dcart(Y ′,Λ). A morphism c : (Y,L)→ (Y ′, L′) is a pair (g, φ),
where g : Y → Y ′, φ : g∗L′ → L. Following [52, XV Section 2.1], we say that two morphisms
c0, c1 : (Y, L) → (Y ′, L′) are homotopic if there exists a connected scheme T of finite type over κ,
two points 0, 1 ∈ T (κ), a morphism (Y ×Spec(κ) T, pr∗1L) → (Y,L′) inducing c0 and c1 by taking
fibers at 0 and 1, respectively. This is equivalent to the existence of an Artin DT -stack X and an
object K ∈ Dcart(X,Λ) such that XA = Y , XA′ = Y ′, KA = L, KA′ = L′ and inducing c0 and
c1 by taking fibers at 0 and 1. Here DT is the Schft

/κ-enriched category with Ob(DT ) = {A,A′},
HomDT (A,A) = HomDT (A′, A′) = Spec(κ), HomDT (A′, A) = ∅ and HomDT (A,A′) = T . If c0 and
c1 are homotopic, then c∗0 = c∗1 : H∗(Y ′, L′)→ H∗(Y,L). To prove this, we may assume that T is
a smooth curve as in [52, XV Lemme 2.1.3]. Let a : X → Spec(κ)DT be the projection. By the
above, R∗a∗K is a projective system of graded Λ-modules indexed by DT (π0), and c∗0 = c∗1 is the
image of the nontrivial arrow of DT (π0).
Proof of Lemma 6.20. By construction, F is essentially surjective. Consider the morphism of
schemes φ : HomEG((A,A′, g), (Z,Z ′, h)) → HomAG(Z ′, A′) = TransG(Z ′, A′) given by (a, b) 7→ b.
It fits into the following Cartesian diagram

HomEG((A,A′, g), (Z,Z ′, h))

��

φ // TransG(Z ′, A′)

��
{t ∈ Hom(Z ′, A′) | t(ch(Z)) ⊃ cg(A)} �

� // Hom(Z ′, A′).

In particular, φ is an open and closed immersion and induces an injection on
HomEG(π0)((A,A′, g), (Z,Z ′, h))→ HomAG(π0)(Z ′, A′).

In other words, the composite functor p2◦F : EG(π0)→ AG(π0)op is faithful, where p2 : AG(π0)\ →
AG(π0)op. Therefore, F is faithful. To show that F is full, let (α, β) : F (A,A′, g)→ F (Z,Z ′, h) be
a morphism in AG(π0)\. Choose b ∈ β(k) ⊂ G(k). Then we have a Cartesian diagram

TransG(A,Z) ψ //

��

TransG(A,A′)

��
Hom(A,Z) �

� // Hom(A,A′),
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where ψ : a 7→ ahb. In particular, ψ is an open and closed immersion. The map π0(TransG(A,Z))→
π0(TransG(A,A′)) induced by ψ carries α to γ = αηβ, where γ ∈ π0(TransG(A,A′)) and η ∈
π0(TransG(Z,Z ′)) are the connected components of g and h, respectively. Thus there exists
a ∈ α(k) ⊂ G(k) such that g = ψ(a) = ahb. Then (a, b) : (A,A′, g) → (Z,Z ′, h) is a morphism in
EG(k) = AG(k)\, and induces a morphism τ in EG(π0) such that F (τ) = (α, β). Therefore, F is
an equivalence of categories. The second assertion of (a) follows from this and Lemma 6.5.

Let us prove (b). For (A,A′, g) and (Z,Z ′, h) in EG(k), consider the scheme

T = HomEG((A,A′, g), (Z,Z ′, h))

and the tautological section t = (a, b) ∈ T (T ). Then, if [XA′/A]T (resp. [XZ′/Z]T ) denotes
the product of [XA′/A] (resp. [XZ′/Z]) with T over Spec(k), t defines a morphism of stacks
[b−1/ca] : [XA′/A]T → [XZ′/Z]T over T , whose fiber at (a, b) is [b−1/ca]. These morphisms are
compatible with composition of morphisms up to 2-morphisms, and define a structure of EG-stack
(Definition 6.22) on the family of stacks [XA′/A] for (A,A′, g) ∈ EG(k). Moreover, we have a
diagram over T

(6.26.1) [XA′/A]T

[b−1/ca]
��

[1/cg ]

yy

π // XA′

T

b−1

��
[X/G]T [XZ′/Z]T[1/ch]

oo π // XZ′

T ,

where the 2-morphism of the triangle is induced by b. The fiber of (6.26.1) at (a, b) is (6.16.3).
Therefore we get morphisms of Artin EG-stacks

[X/G]EG ← ([XA′/A])(A,A′,g)
π−→ (XA′)(A,A′,g).

Thus the system H0(XA′ , Rqπ∗[1/cg]∗K) indexed by (A,A′, g) ∈ AG(k)\ can be extended to an
object of Modcart(Spec(k)EG ,F`), which amounts to a system indexed by EG(π0). More concretely,
the morphism (a, b)∗ (6.16.4) is the stalk at (a, b) of a morphism of constant sheaves on T

(6.26.2) (a, b)∗ : H0(XZ′ , Rqπ∗[1/ch]∗K)T → H0(XA′ , Rqπ∗[1/cg]∗K)T ,

defined by (a, b) via (6.26.1). Therefore it depends only on the connected component of (a, b) in
T .

We need the following lemma for the proof of Theorem 6.17 (a).

Lemma 6.27. Let Y be an algebraic space over k, and let A be a finite discrete group. Let
L ∈ Db

c([Y/A],F`), where A acts trivially on Y . Let π : [Y/A] = BA × Y → Y be the second
projection. Consider the structure of H∗(BA,F`)-module on R∗π∗L given by Constructions 3.4
and 3.7, as R∗π∗F` is a constant sheaf of value H∗(BA,F`). Then R∗π∗L is a sheaf of constructible
H∗(BA,F`)-modules.

Proof. We may assume L concentrated in degree zero. Suppose first that L is locally constant.
Then R∗π∗L is a locally constant, constructible sheaf ofH∗(BA,F`)-modules. Indeed, by definition
there is an étale covering (Uα) of Y such that L | [Uα/A] (considered as a sheaf of F`[A]-modules
on Uα) is a constant F`[A]-module of finite dimension over F` of value Lα. Then R∗π∗L | Uα is
a constant H∗(BA,F`)-module of value H∗(BA,Lα). By Theorem 4.6, H∗(BA,Lα) is a finite
H∗(BA,F`)-module, so the lemma is proved in this case. In general, we may assume Y to be
an affine scheme. Take a finite stratification Y =

⋃
Yα into disjoint locally closed constructible

subsets such that L | Yα is locally constant, or equivalently, that L | [Yα/A] is locally constant.
Then, if πα = π | [Yα/A]→ Yα, (R∗π∗L) |Yα ' Rπα∗(L |Yα) by the finiteness of A, and we conclude
by the preceding case.

Proof of Theorem 6.17 (a). By Lemma 6.20 (b) we can rewrite RqG(X,K) in the form

RqG(X,K) := lim←−
(A,A′,g)∈EG(π0)

H0(XA′ , Rqπ∗[1/cg]∗K).
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As EG(π0) is essentially finite (Lemma 6.20 (a)) and Rqπ∗[1/cg]∗K is constructible, the first asser-
tion follows. Let us now prove the second assertion. As EG(π0) is equivalent to a finite category, it is
enough to show that, for all (A,A′, g), H0(XA′ , R∗π∗[1/cg]∗K) is a finite H∗(BG,F`)-module. As
A acts trivially on XA′ , R∗π∗[1/cg]∗K is a constructible sheaf of H∗(BA,F`)-modules by Lemma
6.27. Therefore H0(XA′ , R∗π∗[1/cg]∗K) is a finite H∗(BA,F`)-module, thus, by Corollary 4.8, a
finite H∗(BG,F`)-module.

7 Points of Artin stacks
In this section we discuss two kinds of points of Artin stacks which will be of use to us:
(a) geometric points, which generalize the usual geometric points of schemes,
(b) `-elementary points, which depend on a prime number `, and are adapted to the study of the

maps a(G,X) (6.9.3) and aG(X,K) (Theorem 6.17).
The statement of the main structure theorem on Artin stacks (Theorem 8.3) requires only the

notion (b). The notion (a) is a technical tool used in the proof.

Definition 7.1. Let X be a Deligne-Mumford stack. By a geometric point of X we mean a
morphism x→ X , where x is the spectrum of a separably closed field. The geometric points of X
form a category

PX ,

where a morphism from x → X to y → X is defined as an X -morphism X(x) → X(y) of the
corresponding strict henselizations [31, Remarque 6.2.1]. The category PX is essentially U-small.
One shows as in [50, VIII Théorème 7.9] that the functor (x → X ) 7→ (F 7→ Fx) from PX to the
category of points of the étale topos Xet is an equivalence of categories.

When X is a scheme, PX is the usual category of geometric points of X . If X = Spec k, k a
field, PX is a connected groupoid whose fundamental group is isomorphic to the Galois group of k.

As PX is an essentially U-small category, we have a morphism of topoi

(7.1.1) p : P̂X → Xet,

where P̂X denotes the topos of presheaves on PX . For a sheaf F on X , p∗F is the presheaf
(x → X ) 7→ Fx on PX , and p∗ applied to a presheaf (Kx)x∈PX is the sheaf whose set of sections
on U is lim←−x∈PU Kx. In particular we have an adjunction map

(7.1.2) bX ,F : F → p∗p
∗F ,

which is a monomorphism, as Xet has enough points and p∗bX ,F is a split monomorphism (this
fact holds of course more generally for any topos X with an essentially small conservative family
of points PX , cf. [50, IV 6.7]).

Proposition 7.2. Let X be a locally noetherian Deligne-Mumford stack, Λ a noetherian commuta-
tive ring, F a constructible sheaf of Λ-modules on X . Then the adjunction map bX ,F : F → p∗p

∗F
(7.1.2) is an isomorphism. In particular, the homomorphism

(7.2.1) φ : F(X )→ lim←−
x∈PX

Fx

is an isomorphism.

Proof. If f : Y → X is a morphism of Deligne-Mumford stacks, the square of topoi

P̂Y
pY //

Pf
��

Yet

fet

��
P̂X

pX // Xet
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commutes and induces base change morphisms

(7.2.2) p∗X f∗ → Pf∗p
∗
Y

and

(7.2.3) f∗pX∗ → pY∗P
∗
f

and commutative diagrams

(7.2.4) f∗G
f∗bY,G //

bX ,f∗G

��

f∗pY∗p
∗
YG

'
��

f∗F
bY,f∗F //

f∗bX ,F

��

pY∗p
∗
Yf
∗F

'
��

pX∗p
∗
X f∗G

(7.2.2)// pX∗Pf∗p∗YG f∗pX∗p
∗
XF

(7.2.3)// pY∗P ∗f p
∗
XF .

If f is a closed immersion, (7.2.2) is an isomorphism. If f is étale, (7.2.3) is an isomorphism.
Let i : Z → X be a closed immersion, and let j : U → X be the complementary open immersion.

Then the following diagram with exact rows commutes (where we write p for pX ):

0 // j!j∗F //

bX ,j!j∗F

��

F //

bX ,F

��

i∗i
∗F //

bX ,i∗i∗F

��

0

0 // p∗p∗j!j∗F // p∗p∗F // p∗p∗i∗i∗F .

Thus, to show that bX ,F is an isomorphism, it suffices to show that both bX ,i∗i∗F and bX ,j!j∗F are
isomorphisms. By the square on the left of (7.2.4) applied to G = i∗F , bX ,i∗i∗F is an isomorphism
if bZ,i∗F is an isomorphism. On the other hand, the following diagram commutes:

(7.2.5) j∗F

bU,j∗F

��

j∗j!j
∗F∼oo

j∗bX ,j!j∗F//

bU,j∗j!j∗F

��

j∗p∗p
∗j!j

∗F

(7.2.3)'
��

pU∗p
∗
Uj
∗F pU∗p

∗
Uj
∗j!j

∗F∼oo ∼ // pU∗P ∗j p
∗j!j

∗F .

We now prove that

(7.2.6) i∗(p∗p∗j!j∗F) = 0.

By the commutativity of (7.2.5), this will imply that bX ,j!j∗F is an isomorphism if bU,j∗F is an
isomorphism. For any geometric point z → Z,

(7.2.7) (p∗p∗j!j∗F)z ' lim−→
U∈NX (z)op

lim←−
u∈PU

(j!j∗F)u,

where NX (z) is the category of étale neighborhoods of z in X that are quasi-compact and quasi-
separated schemes. Let U be any such neighborhood. Take a finite stratification (Uα)α∈A of U
by connected locally closed constructible subschemes such that the restrictions F | Uα are locally
constant. Let PU,(Uα)α∈A be the category obtained from PU by inverting all arrows in the full
subcategories PUα . Geometric points of the same stratum are isomorphic in PU,(Uα)α∈A . Let
B ⊂ A be the subset of indices α such that there exists a morphism from a geometric point of
Uα to z in PU,(Uα)α∈A . Let V =

⋃
α∈B Uα. Since the geometric points of V are closed under

generization in U , V is an open subset of U . Since specialization maps on the same stratum
are isomorphisms, the projective system ((j!j∗F)v)v∈PV factors uniquely through a projective
system ((j!j∗F)x)x∈PV,(Uα)α∈B

(where on each stratum Uα, α ∈ B all specialization maps are
isomorphisms) and

lim←−
v∈PV

(j!j∗F)v ' lim←−
x∈PV,(Uα)α∈B

(j!j∗F)x
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by Lemma 7.3 below. Note that PV contains z and that for any object x of PV,(Uα)α∈B there exists
a morphism from x to z. Therefore, as (j!j∗F)z = 0, this limit is zero. This implies that the
full subcategory of NX (z)op consisting of the neighborhoods U such that lim←−v∈PU (j!j∗F)v = 0 is
cofinal. It follows that the limit (7.2.7) is zero and hence (7.2.6) holds, as claimed. To sum up, we
have shown that bX ,F is an isomorphism if both bZ,i∗F and bU,j∗F are isomorphisms.

By induction, we may therefore assume F locally constant. Using the square on the right of
(7.2.4), we may assume F constant. In this case it suffices to show that (7.2.1) is an isomorphism.
We may further assume that X is connected and noetherian. Then PX is a connected category
and the assertion is trivial.

Lemma 7.3. Let C be a category and let S be a set of morphisms in C. If we denote by F : C →
S−1C the localization functor, then F and F op are cofinal (Definition 6.1).

Proof. It suffices to show that F is cofinal. Let X be an object of S−1C, let Y be an object of C
and let f : X → FY be a morphism in S−1C. Then f = tns

−1
n . . . t1s

−1
1 with ti in C and si ∈ S.

Using ti and si, f can be connected to idX : X → FX in (X ↓ S−1C).

Remark 7.4. If, in Proposition 7.2, the sheaf F is not assumed constructible, then the monomor-
phism φ is not an isomorphism in general, as shown by the following example. Let X be a scheme
of dimension ≥ 1 of finite type over a separably closed field k and let F =

⊕
x∈|X| ix∗Λ, where |X|

is the set of closed points of X and let ix : {x} → X be the inclusion. Then Γ(X,F) ' Λ(|X|) (by
commutation of Γ(X,−) with filtered inductive limits). On the other hand, for x ∈ PX , Fx = Λ if
the image of x is a closed point, and Fx = 0 otherwise, hence lim←−x∈PX Λ ' Λ|X|. The monomor-
phism ϕ in Proposition 7.2 can be identified with the inclusion Λ(|X|) ⊂ Λ|X|, which is not an
isomorphism, as |X| is infinite.

Remark 7.5. In the situation of Proposition 7.2, the morphism

RΓ(X ,F)→ R lim←−
x∈PX

Fx

is not an isomorphism in general. In fact, if X = Spec(k), then the left hand side computes
the continuous cohomology of the Galois group G of k while the right hand side computes the
cohomology of G as a discrete group.

Definition 7.6. Let X be an Artin stack. By a geometric point of X we mean a morphism
a : S → X , where S is a strictly local scheme. If a : S → X and b : S → X are geometric points of
X , a morphism (a : S → X )→ (b : T → X ) is a morphism u : S → T together with a 2-morphism

(7.6.1) S //

  

T

��
X .

<D

We thus get a full subcategory P ′X of AlgSp/X (Notation 2.1). We define the category of geometric
points of X as the category

PX = M−1
X P

′
X ,

localization of P ′X by the set MX of morphisms (a→ b) in P ′X sending the closed point of S to the
closed point of T .

Although P ′X is a U-category and not essentially small in general, we will show in Proposition
7.9 that PX is essentially small. The next proposition shows that the definition above is consistent
with Definition 7.1.

Proposition 7.7. For any Deligne-Mumford stack X , the functor PX → P ′X sending every ge-
ometric point x → X to the strict henselization X(x) → X induces an equivalence of categories
ι : PX → PX .
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Proof. Consider the functor F ′ : P ′X → PX sending S → X to its closed point s → X . For any
morphism in P ′X as in (7.6.1), its image under F ′ is the induced morphism X(s) → X(t), where s
and t are the closed points of S and T , respectively. The functor F : PX → PX induced by F ′ gives
a quasi-inverse to ι : PX → PX . In fact Fι = idPX and we have a natural isomorphism idPX → ιF
given by the morphism S → X(s) in MX for S → X in PX of closed point s.

Remark 7.8. The reason why we do not consider the category of points Point(Xsm) of the smooth
topos Xsm is that already in the case X is an algebraic space, the functor Point(Xsm)→ Point(Xet)
induced by the morphism of topoi ε : Xsm → Xet is not an equivalence. For example, if U → X is
a smooth morphism and y is a geometric point of U lying above a geometric point x of X such
that the image of y in the fiber U ×X x is not a closed point, then the points x̃ : F 7→ (FX )x and
ỹ : F 7→ (FU )y of Xsm are not equivalent, but have equivalent images in Point(Xet). Indeed, if we
denote by ε! : Xet → Xsm the right adjoint of ε∗, then the stalk of ε!G is Gx at x̃, but is e at ỹ.

Proposition 7.9. Let X be an Artin stack, and let P̃ ′X be the full subcategory of P ′X consisting of
morphisms S → X , such that S → X is the strict henselization of some smooth atlas X → X at
some geometric point of X. Let M̃X = MX ∩ Ar(P̃ ′X ). Then the inclusion P̃ ′X ⊂ P ′X induces an
equivalence of categories M̃−1

X P̃ ′X → PX .

Note that P̃ ′X and hence P̃X are essentially small. Thus Proposition 7.9 shows that PX is
essentially small,

Proof. We write P̃X = M̃−1
X P̃ ′X . For x : S → X in P ′X , let Ax be the full subcategory of

(AlgSp/X )x/ consisting of diagrams

(7.9.1) S //

x ��

X

p

��
X

<D

such that p is a smooth atlas. Then Ax is nonempty since every smooth surjection to S admits a
section [22, Corollaire 17.16.3 (ii)]. Moreover, Ax admits finite nonempty products. Consider the
functor Fx : Ax → P̃ ′X sending (7.9.1) to the strict localization X(s) → X at the closed point s of
S. For any pair of morphisms (f, g) : X ⇒ Y with the same source and target in Ax, Fx(f) and
Fx(g) have the same image in P̃X . Indeed, f | S = g | S implies Fx(f)t = Fx(g)t, where t ∈ M̃X
is the inclusion of the closed point of X(s). Thus there exists a unique functor Gx making the
following diagram commutative

Ax
Fx //

��

P̃ ′X

��
|Ax|

Gx // P̃X

where |Ax| is the simply connected groupoid having the same objects as Ax. This construction is
functorial in x, in the sense that for x→ y in P ′X , we have a natural transformation

|Ay|

��

Gy

!!
|Ax|

Gx

// P̃X .

>F

Choosing an object X in Ax for every x, we obtain a functor P ′X → P̃X sending x to X(s). This
functor factors through PX → P̃X and defines a quasi-inverse of P̃X → PX .

Remark 7.10. For any morphism f : X → Y of Artin stacks, composition with f defines a functor
P ′f : P ′X → P ′Y , which induces Pf : PX → PY .
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(a) If f is a schematic universal homeomorphism, then Pf is an equivalence of categories. In
fact, for any object T → Y of P ′Y , the base change S = T ×Y X → T is a schematic universal
homeomorphism, so that S is a strictly local scheme by [22, Proposition 18.8.18 (i)]. The
functor P ′Y → P ′X carrying T → Y to T ×Y X → X carries MY to MX and induces a
quasi-inverse of Pf .

(b) For morphisms X → Y and Z → Y of Artin stacks, the functor P ′X×YZ → P
′
X ×P′Y P

′
Z is an

equivalence of categories.

Example 7.11. Let k be a separably closed field, and let G be an algebraic group over k. Then
PBG is a connected groupoid whose fundamental group is isomorphic to π0(G).

To prove this, by Remark 7.10 (a), we may assume k algebraically closed and G smooth.
Then, for every object S → BG of P ′BG, the corresponding GS-torsor is trivial and we fix a
trivialization. For any strictly local scheme S over Spec(k), we denote by pS : S → BG the object
of PBG corresponding to the trivial GS-torsor and by aS : S → Spec(k) the projection. By the
definition of BG (1.5.2), morphisms pS → pT in P ′BG correspond bijectively to pairs (f, r), where
f : S → T is a morphism of schemes and r ∈ G(S). We denote the morphism corresponding
to (f, r) by θ(f, r). If s is the closed point of S, r(s) ∈ G(s) belongs to the inverse image of
a unique connected component of G, denoted [r]. Let Π be the groupoid with one object and
fundamental group π0(G). The above construction defines a full functor P ′BG → Π sending θ(f, r)
to [r], which induces a functor still denoted by F : PBG → Π. Since θ(aS , r) : pS → pSpec(k) is in
MBG and θ(f, r)θ(aT , 1) = θ(aS , r), θ(f, r) is an isomorphism in PBG. Thus PBG is a connected
groupoid. To show that F is an equivalence of categories, it suffices to check that for all r ∈ G0(S),
θ(aS , r) ≡ θ(aS , 1). Here ≡ stands for equality in PBG. For this, we may assume that S is a point,
say S = Spec(k′). We regard r : Spec(k′)→ G as a geometric point of G. Since G0 is irreducible,
X = G(1) ×G G(r) is nonempty. Let x be a geometric point of X, and let t ∈ G(G) be the
tautological section. Then

θ(aG(1) , t)θ(s1, 1) = θ(aSpec(k), 1) = θ(aG(1) , 1)θ(s1, 1),

where s1 : Spec(k) → G(1) is the closed point. It follows that θ(aG(1) , t) ≡ θ(aG(1) , 1), θ(ax, t) ≡
θ(ax, 1), and hence θ(aG(r) , t) ≡ θ(aG(r) , 1). Therefore, if sr : Spec(k′) → G(r) denotes the closed
point, we have

θ(aSpec(k′), r) = θ(aG(r) , t)θ(sr, 1) ≡ θ(aG(r) , 1)θ(sr, 1) = θ(aSpec(k′), 1).

Construction 7.12. Let X be a locally noetherian Artin stack. If F is a cartesian sheaf on X ,
then the presheaf

p′F : (a : S → X ) 7→ Γ(S, a∗F) ' Fs
(where s is the closed point of S) on P ′X defines a presheaf on PX , which will denote by pF . We
thus get an exact functor

(7.12.1) p : Shcart(X )→ P̂X .

If X is a Deligne-Mumford stack, then p∗ ' ι∗p, where p : P̂X → Xet is the projection (7.1.1) and
ι : PX → PX the equivalence of Proposition 7.7.

The following result generalizes Proposition 7.2.

Proposition 7.13. Let X be an Artin stack, let Λ be a noetherian commutative ring, and let F
be a constructible sheaf of Λ-modules on X . Then the map

(7.13.1) Γ(X ,F)→ lim←−
x∈PX

Fx

defined by the restriction maps Γ(X ,F)→ (pF)(x) = Fx is an isomorphism.

The proof will be given after a couple of lemmas.
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Lemma 7.14. Let F : C → D be a functor between small categories. Assume that for any morphism
f : X → Y in D, there exists a morphism a : A → B in C and a commutative square in D of the
following form:

X
f //

'
��

Y

'
��

F (A)
F (a) // F (B).

Then F is of descent for presheaves. More precisely, for any presheaf F on D, with the notation
of [50, IV 4.6], the sequence

F → F∗F
∗F ⇒ F2∗F

∗
2F

is exact, where C ×D C is the 2-fiber product, F2 : C ×D C → D is the projection, and the double
arrow is induced by the two projections from C ×D C to C. In particular, the sequence

(7.14.1) Γ(D̂,F)→ Γ(Ĉ, F ∗F) ⇒ Γ(Ĉ ×D C, F ∗2F)

is exact.
Proof. For any X in D, F(X)→ (F∗F ∗F)(X) ⇒ (F2∗F

∗
2F)(X) is (7.14.1) applied to the functor

F ′ : C/X → D/X induced by F and the presheaf F |(D/X). Since F ′ also satisfies the assumption of
the lemma, it suffices to prove that (7.14.1) is exact. By definition, Γ(Ĉ, F ∗F) consists of families
s = (sX) ∈ lim←−X∈C F(F (X)). Similarly, Γ(Ĉ ×D C, F ∗2F) = lim←−(Y,Z,α)∈C×DC

F(F2(Y, Z, α)). Let E
be the equalizer of the double arrow in (7.14.1). We construct ε : E → Γ(D̂,F) as follows. Let
s ∈ E. For any object X of D, put ε(s)X = F(e)(sA) ∈ F(X), for a choice of e : X ∼−→ F (A).
This does not depend on the choice of e, because if e′ : X ∼−→ F (A′), then (A,A′, e′e−1) defines
an object of C ×D C, and s ∈ E implies F(e)(sA) = F(e′)(sA′). For any morphism f : X → Y
in D, the hypothesis implies that F(f)(ε(s)Y ) = ε(s)X . This finishes the construction of ε It is
straightforward to check that ε is an inverse of Γ(D̂,F)→ E.

Lemma 7.15. Let f : X → Y be a smooth surjective morphism of Artin stacks. If U is a universe
containing P ′X and P ′Y , then the functor P ′f : P ′X → P ′Y satisfies the condition of Lemma 7.14 for
U .
Proof. Let (h, α) : (S, u) → (T, v) be a morphism in P ′Y . Since X ×Y T is an Artin stack smooth
over T , it admits a section, giving rise to the following 2-commutative diagram

S
h //

u
++

T
g //

v   

X

f

��
Y.

CKα <Dβ

Then the following diagram commutes

(S, u)
(h,α) //

��

(T, v)

��
P ′f ((S, gh))

P′f ((h,id))
// P ′f ((T, g)),

where the left (resp. right) vertical arrow is the isomorphism (idS , βα : u→ fgh) (resp. (idT , β : v →
fg)).

Proof of Proposition 7.13. Note that lim←−x∈PX Fx → lim←−x∈P′X
Fx is an isomorphism by Lemma 7.3.

Let f : X → X be a smooth atlas. The following diagram commutes:

Γ(X ,F)

��

// Γ(X, f∗F) ////

��

Γ(X ×X X, g∗F)

��
lim←−x∈P′X

Fx // lim←−x∈P′X
Fx //// lim←−x∈P′X×XX

Fx.

47



Here g : X ×X X → X and the double arrows are induced by the two projections from X ×X X
to X. The top row is exact by the definition of a sheaf. The bottom row is exact by Lemmas 7.14,
7.15 and Remark 7.10 (b). The middle and right vertical arrows are isomorphisms by Propositions
7.2 and 7.7. It follows that the left vertical arrow is also an isomorphism.

Example 7.16. For X = BG as in Example 7.11, F corresponds (by Corollaries 2.5 and 2.6) to
a Λ-module of finite type M equipped with an action of π0(G). Thus Γ(BG,F) is the module
of invariants Mπ0(G). By Example 7.11, lim←−x∈PBG Fx is the set of zero cycles Z0(π0(G),M), and
(7.13.1) is the tautological isomorphism.

If G is finite, the isomorphism (7.13.1) extends to an isomorphism

RΓ(BG,F) ∼−→ R lim←−
x∈PBG

Fx = RΓ(Bπ0(G),M).

However, this no longer holds for G general, as the example of G = Gm and F = Λ already shows
(Theorem 4.4).

In the rest of this section, we fix a prime number `.

Definition 7.17. Let X be an Artin stack. By an `-elementary point of X we mean a representable
morphism x : S → X , where S is isomorphic to a quotient stack [S/A], where S is a strictly local
scheme endowed with an action of an elementary abelian `-group A acting trivially on the closed
point of S. If x : [S/A]→ X , y : [T/B]→ X are `-elementary points of X , a morphism from x to y
is an isomorphism class of pairs (ϕ, α), where ϕ : [S/A]→ [T/B] is a morphism and α : x→ yϕ is
a 2-morphism. An isomorphism between two pairs (ϕ, α)→ (ψ, β) is a 2-morphism c : ϕ→ ψ such
that β = (y ∗ c) ◦ α. We thus get a category C′X ,`, full subcategory of Stackrep

/X (Remark 1.20).

Proposition 7.18. Let X be an Artin stack.
(a) Let x : S = [S/A]→ X be an `-elementary point of X , let s be the closed point of S, and let

ε be the composition s → S → S. Then AutS(s)(ε) = A, and the morphism x induces an
injection

AutS(s)(ε) ↪→ AutX (s)(x).

(b) Let x : [S/A] → X , y : [T/B] → X be `-elementary points of X , and let (ϕ, α) : x → y be a
morphism in C′X ,`. Then there exists a pair (f, u), where u : A→ B is a group monomorphism
and f : S → T is a u-equivariant morphism of X -schemes, such that the morphism of X -
stacks (ϕ, α) is induced by the morphism of groupoids (f, u) : (S,A)• → (T,B)• over X . If
(f, u) is such a pair and r ∈ B, then (fr, u) is also such a pair. If (f1, u1) and (f2, u2) are
two such pairs, then u1 = u2 and there exists a unique r ∈ B such that f1 = f2r.

(c) Assume that X = [X/G] for an algebraic space X over a base algebraic space U , endowed
with an action of a smooth group algebraic space G over U . Then every `-elementary point
x : [S/A] → [X/G] lifts to a morphism of U -groupoids (x0, i) : (S,A)• → (X,G)•, where
x0 : S → X and i : S × A → G. Moreover, in the situation of (b), if (x0, i), (y0, j), (f, u)
are liftings of x, y, ϕ to U -groupoids, respectively, then there exists a unique 2-morphism of
U -groupoids (Proposition 1.2) lifting α

(7.18.1) (S,A)•

(x0,i) %%

(f,u) // (T,B)•

(y0,j)
��

(X,G)•

AI

given by r : S → G satisfying x0(z) = (y0f)(z)r(z) and i(z, a) = r(z)−1j(f(z), u(a))r(za).

Proof. (a) The first assertion follows from the definition of [S/A] (Notation 1.5), and the second
one from the assumption that x is representable, hence faithful.

(b) Applying Proposition 1.19 to the groupoids (S,A)• and (T,B)• over X , we get a pair (f, u),
with u : S × A → B given by Proposition 1.2 (a), such that [f/u] = (ϕ, α). The morphism u is
constant on S, hence induced by a homomorphism, still denoted u, from A to B. Since ϕ is
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representable, u is a monomorphism. Such a pair (f, u) is unique up to a unique 2-isomorphism.
If (f1, u1) and (f2, u2) are two choices, a 2-isomorphism from (f1, u1)• to (f2, u2)• is given by
r : S → B (Proposition 1.2 (b)), which is necessarily constant, of value denoted again r ∈ B. Then
we have f1 = f2r and ru1 = u2r, hence u1 = u2.

(c) The existence of the liftings follows from Proposition 1.19 applied to the three groupoids.
The description of the morphisms and the 2-morphism of groupoids comes from Proposition 1.2
(b).

Remark 7.19. As the referee points out, Definition 7.17 is related to the `-torsion inertia stack
I(X , `) considered in [1, Proposition 3.1.3]. Indeed, P ′I(X ,`) can be identified with the subcategory
of C′X ,` spanned by `-elementary points of the form S × BA → X and morphisms inducing idA,
where A = Z/`.
Definition 7.20. For a stack of the form S = [S/A] as in Definition 7.17, the group A is, in view
of Proposition 7.18 (a), uniquely determined by S (up to an isomorphism). We define the rank of
S to be the rank of A, and for an `-elementary point x : S → X , we define the rank of x to be
the rank of S. `-elementary points of rank zero are just geometric points (Definition 7.6). The full
subcategory of C′X (Definition 7.17) spanned by `-elementary points of rank zero is the category
P ′X (Definition 7.6).
Definition 7.21. We define the category of `-elementary points of X to be the category

(7.21.1) CX ,` = N−1
X ,`C

′
X ,`

deduced from C′X ,` by inverting the set NX ,` of morphisms given by pairs (f, u) (Proposition 7.18
(b)) such that f : S → T carries the closed point of S to the closed point of T and u is a group
isomorphism. When no ambiguity can arise, we will remove the subscript ` from the notation.

Although C′X ,` is only a U-category, we will see that CX ,` is essentially small if X is a Deligne-
Mumford stack of finite inertia or a global quotient stack (Proposition 7.26 and Remark 8.10).

We may interpret CX ,` with the help of an auxiliary category C̄′X ,` as follows.

Construction 7.22. Objects of C̄′X ,` are pairs (x,A) such that x : S → X is a geometric point
of X , A is an elementary abelian `-group acting on x by X -automorphisms with trivial action
on the closed point of S, and the morphism [S/A] → X is representable. Morphisms of C̄′X ,`
are pairs (f, u) : (x,A) → (y,B), where u : A → B is a homomorphism and f : x → y is an
equivariant morphism in P ′X . Note that u is necessarily a monomorphism. By definition, C̄′X ,` is a
full subcategory of Eq(Stackrep

/X ).
We have a natural functor ρ′ : C̄′X ,` → C′X ,` sending (x,A) to [S/A] → X . By Proposition 7.18

(a) and (b), the functor is full and essentially surjective, and in particular cofinal (Lemma 6.2). If
$′ : P ′X ↪→ C′X ,` is the inclusion functor, and $̄′ : P ′X → C̄′X ,` is the functor sending x to (x, {1}),
which is also fully faithful, we have a 2-commutative diagram

(7.22.1) C̄′X ,`

ρ′

��
P ′X

$′ //

$̄′
==

C′X ,`.

Let

(7.22.2) C̄X ,` = N̄−1
X ,`C̄

′
X ,`

be the category deduced from C̄′X ,` by inverting the set N̄X ,` of morphisms (f, u) : (S,A)→ (T,B)
such that f sends the closed point s of S to the closed point t of T and u : A→ B is an isomorphism.
The diagram (7.22.1) induces a diagram

(7.22.3) C̄X ,`

ρ

��
PX

$ //

$̄

==

CX ,`.
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The functor ρ is essentially surjective, and its effects on morphisms can be described as follows.
Let (x,A) and (y,B) be objects of C̄X . The action of B on (y,B) by automorphisms in C̄′X
induces an action of B on (y,B) by automorphisms in C̄X , and, in turn, an action of B on
HomC̄X ((x,A), (y,B)). This action is compatible with composition in the sense that if f : (x,A)→
(y,B), g : (y,B)→ (z, C) are morphisms of C̄X , and b ∈ B, then g ◦ (fb) = (g(θ(g)(b))) ◦ f , where
θ : C̄X → A is the functor induced by the functor C̄′X → A carrying (x,A) to A. Here A denotes the
category whose objects are elementary abelian `-groups and whose morphisms are monomorphisms.

Proposition 7.23.
(a) The functor ρ induces a bijection

(7.23.1) HomC̄X ((x,A), (y,B))/B ∼−→ HomCX (ρ(x,A), ρ(y,B)).

(b) The functors $̄ and $ are fully faithful.

Proof. (a) Indeed, consider the quotient category C]X having the same objects as C̄X with morphisms
defined by

HomC]X ((x,A), (y,B)) = HomC̄X ((x,A), (y,B))/B,

and the quotient functor ρ] : C̄X → C]X . By the universal properties of ρ, ρ], and the localization
functors C̄′X → C̄X , C′X → CX , we obtain an equivalence between C]X and CX , compatible with ρ
and ρ].

(b) It follows from (a) that ρ induces an equivalence of categories from the full subcategory of
C̄X spanned by the image of PX to the full subcategory of CX spanned by the image of PX . Thus
it suffices to show that $̄ is fully faithful. The functor C̄′X → P ′X sending (x,A) to x is a quasi-
retraction of $̄′, and induces a quasi-retraction of $̄. Here, by a quasi-retraction of a functor F , we
mean a functor G endowed with a natural isomorphism GF ' id. Thus $̄ is faithful. Let us show
that $̄ is full. Let x, x′ be geometric points of X . By definition, any morphism f : x→ x′ in C̄X is
of the form (tn, vn)(sn, un)−1 . . . (t1, v1)(s1, u1)−1, where (ti, vi) : (xi, Ai) → (yi+1, Bi+1) is in C̄′X
and (si, ui) : (xi, Ai)→ (yi, Bi) is in N̄X for 1 ≤ i ≤ n, y1 = x, yn+1 = x′, B1 = Bn+1 = {1}. Then
ui : Ai → Bi is an isomorphism and vi : Ai → Bi+1 is a monomorphism. Thus Ai = Bi = {1}.
Moreover, ti is in P ′X and si is in MX . It follows that f = $̄(a), where a = tns

−1
n . . . t1s

−1
1 is in

PX .

Remark 7.24. For any representable morphism f : X → Y of Artin stacks, composition with
f induces functors Cf : CX → CY and C̄f : C̄X → C̄Y . As in Remark 7.10 (a), Cf and C̄f are
equivalences of categories if f is a schematic universal homeomorphism.

Definition 7.25. Morphisms in the categories C̄X ,` and CX ,` are in general difficult to describe.
When X is a Deligne-Mumford stack of finite inertia, the categories C̄X ,` and CX ,` admit simpler
descriptions, as in Proposition 7.7. Let us call a DM `-elementary point of X a pair (x,A), where
x : s→ X is a geometric point of X and A an `-elementary abelian subgroup of AutX (s)(x). Define
a morphism from (x : s → X , A) to (y : t → X , B) to be an X -morphism X(x) → X(y) such that
f(A) ⊂ B, where f : AutX (s)(x)→ AutX (t)(y) is defined as follows. Note that I(y) := IX ×X X(y)
is finite and unramified over X(y), thus is a finite disjoint union of closed subschemes of X(y) by
[22, Corollaire 18.4.7]. For a ∈ AutX (s)(x), the point s → I(y) given by a lies in same component
as the point t → I(y) given by f(a). We thus get a category C̄X ,`. We define the category of DM
`-elementary points of X to be the category CX ,` having the same objects as C̄X ,` and such that
HomCX ,`((x,A), (y,B)) = HomC̄X ,`

((x,A), (y,B))/B. We omit the subscript ` from the notation
when no ambiguity arises.

Note that for (x,A) ∈ C̄X , the morphism [X(x)/A]→ X is representable.

Proposition 7.26. Let X be a Deligne-Mumford stack of finite inertia. Then the functor CX → C̄′X
carrying (x,A) to (X(x) → X , A) induces an equivalence of categories ι : C̄X → C̄X and, in turn,
an equivalence of categories CX → CX .

Proof. A quasi-inverse of ι is induced by the functor C̄′X → C̄X carrying (S → X , A) to (s→ X , A),
where s is the closed point of S.
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In the sequel, for X a Deligne-Mumford stack of finite inertia, we will often identify the cat-
egories CX and CX by the equivalence of Proposition 7.26 and call DM `-elementary points just
`-elementary points.

Construction 7.27. Let X be an Artin stack. Let F be a cartesian sheaf on X . If x : [S/A]→ X
is an `-elementary point of X , let Fx := x∗F , and

Γ(x,Fx) := Γ([S/A],Fx) ' Γ(BA,Fs) ' FAs .

If (ϕ, α) : [S/A] → [Y/B] is a morphism in C′X , we have a natural map Γ(x,Fx) → Γ(y,Fy) given
by restriction, and in this way we get a presheaf q′F : x 7→ Γ(x,Fx) on C′X , which factors through
a presheaf qF on CX . The canonical restriction maps Γ(X,F)→ Γ(x,Fx) yield a map

(7.27.1) Γ(X,F)→ lim←−
x∈CX

Γ(x,Fx).

If x : [S/A]→ X is an elementary point of rank zero, i.e. a geometric point of X (Definition 7.17),
Γ(x,Fx) = Fx, and by restriction via $ : PX ↪→ CX , the presheaf qF induces the presheaf pF
(Construction 7.12). Therefore we have a commutative diagram

(7.27.2) Γ(X,F)

''

// lim←−x∈CX Γ(x,Fx)

��
lim←−x∈PX Fx,

where the horizontal (resp. oblique) map is (7.27.1) (resp. (7.13.1)), and the vertical one is restric-
tion via $.

Proposition 7.28. Let X be a locally noetherian Artin stack, Λ a noetherian commutative ring,
and F a constructible sheaf of Λ-modules on X . Then (7.27.1) is an isomorphism.

Proof. The oblique map of (7.27.2) is an isomorphism by Proposition 7.13. By Lemma 7.3, the
vertical map is obtained by applying the functor Γ(Ĉ′X ,−) = lim←−C′X

(−) to the adjunction map

α : q′F → $′∗$
′∗q′F = $′∗p

′F ,

where $′ : P ′X → C′X . Thus it suffices to show that α is an isomorphism. Here

($′∗, $′∗) : P̂ ′X → Ĉ′X

is the morphism of topoi defined by ($′∗E)(z) = E($′(z)) and ($′∗G)(x) = lim←−(t,φ)∈($′↓x) Gt,
where for an `-elementary point x : [S/A]→ X , ($′ ↓ x) is the category of pairs (t, φ), where t is a
geometric point of X and φ : $′t→ x is a morphism in C′X , which is equivalent to P ′[S/A]. Let A be
the groupoid with one object ∗ and fundamental group A. Consider the functor F : A → ($′ ↓ x)
sending ∗ to (xε, ε), where ε : S → [S/A], and a ∈ A to the morphism xε → xε induced by the
action of a. For any object (t, φ) of ($′ ↓ x), the category ((t, φ) ↓ F ) is a simply connected
groupoid. Therefore, F is cofinal and

α(x) : Γ(x,Fx)→ lim←−
(t,φ)∈($′↓x)

Ft
∼−→ lim←−

A
Fxε ' FAs

is an isomorphism. Here s is the closed point of S.

In the next section we study higher cohomological variants of (7.27.1).
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8 A generalization of the structure theorems to Artin stacks
In this section we fix an algebraically closed field k and a prime number ` invertible in k.

Construction 8.1. Let X be an Artin stack, and let K ∈ Dcart(X ,F`). For q ∈ Z, consider the
presheaf of F`-vector spaces on CX (7.21.1)

(x : [S/A]→ X ) 7→ Hq([S/A],Kx) ' Hq(BA,Ks)

(where Kx := x∗K and s is the closed point of S), and let

(8.1.1) Rq(X ,K) := lim←−
(x : S→X )∈CX

Hq(S,Kx).

The restriction maps Hq(X ,K)→ Hq(S,Kx) define a map

(8.1.2) aqX ,K : Hq(X ,K)→ Rq(X ,K).

We denote by aX ,K the direct sum of these maps:

(8.1.3) aX ,K =
⊕
q

aqX ,K : H∗(X ,K)→ R∗(X ,K).

If K has a (pseudo-)ring structure (Construction 3.8), then both sides of (8.1.3) are F`-(pseudo-
)algebras, and aX ,K is a homomorphism of F`-(pseudo-)algebras.

Definition 8.2. We say that an Artin stack X over k is a global quotient stack if X is equivalent to
a stack of the form [X/G] for X a separated algebraic space of finite type over k and G an algebraic
group over k. We say that an Artin stack X of finite presentation over k has a stratification by
global quotients if there exists a stratification of Xred by locally closed substacks such that each
stratum is a global quotient stack.

Recall that an Artin stack over k is of finite presentation if and only if it is quasi-separated
and of finite type over k. Note that our Definition 8.2 differs from [15, Definition 2.9] and [30,
Definition 3.5.3] because we allow quotients by non-affine algebraic groups.

The following theorem is our main result.

Theorem 8.3. Let X be an Artin stack of finite presentation over k admitting a stratification by
global quotients, K ∈ D+

c (X ,F`).
(a) Rq(X ,K) is a finite-dimensional F`-vector space for all q. Moreover, R∗(X ,F`) is a finitely

generated F`-algebra and, for K in Db
c(X ,F`), R∗(X ,K) is a finitely generated R∗(X ,F`)-

module.
(b) If K is a pseudo-ring in D+

c (X ,F`), then Ker aX ,K (8.1.2) is a nilpotent ideal of H∗(X ,K).
If, moreover, K is commutative and X is a Deligne-Mumford stack with finite inertia or a
global quotient stack, then aX ,K is a uniform F -isomorphism (Definition 6.10).

Remark 8.4. (a) A non separated scheme of finite presentation over k is not a global quotient
stack in the sense of Definition 8.2 in general. Michel Raynaud gave the example of an affine
plane with doubled origin. More generally, if Y is a separated smooth scheme of finite type
over k, and Y ′ is obtained by gluing two copies of Y , Y (1) and Y (2), along the complement of
a nonempty closed subset of codimension ≥ 2, then, for any algebraic group G, every G-torsor
X over Y ′ is non separated. To see this, we may assume G smooth. By étale localization on
Y , we may further assume that X admits a section si over Y (i), i = 1, 2. Assume that X
is separated. The restrictions of s1 and s2 to V = Y (1) ∩ Y (2) provide a section of G × V ,
which extends by Weil’s extension theorem (see [7, Theorem 4.4.1] for a generalization) to
a section of G × Y (2). Via this section, s1 and s2 can be glued to give a trivialization of X
over Y ′, contradicting the separation assumptions.

(b) Recall [30, Proposition 3.5.9] that, if for every geometric point η → X , the inertia Iη =
η ×X IX is affine, where IX = X ×∆X ,X×X ,∆X X , then X has a stratification by global
quotients in the sense of [30, Definition 3.5.3], and a fortiori in the sense of Definition 8.2.
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(c) On the other hand, the fact that X has a stratification by global quotients in the sense of
Definition 8.2 imposes restrictions on its inertia groups. In fact, if k has characteristic zero,
then, for any geometric point η = Spec(K) → X with K algebraically closed, I0

η/(Iη)aff is
an abelian variety over K defined over k. Here I0

η is the identity component of Iη and (Iη)aff
is the largest connected affine normal subgroup of Iη. Indeed, if X = [X/G], then Iη is a
subgroup of G⊗kK, so that I0

η/(Iη)aff is isogenous to an abelian subvariety of (G0/Gaff)⊗kK,
hence is defined over k (for an abelian variety A over k, torsion points of order invertible in
k of A⊗k K are defined over k as k is algebraically closed).

(d) For an Artin stack X of finite presentation over k and a commutative ring K in Db
c(X ,F`),

we do not know whether H∗(X ,K) is a finitely generated F`-algebra or whether aX ,K is a
uniform F -isomorphism in general, even under the assumption that X has a stratification
by global quotients. It may be the case that to treat the general case we would need to
reformulate the theory in a relative setting.

The proof of Theorem 8.3 will be given in Section 10. In the rest of this section we show that
Theorem 8.3 (b) implies Theorem 6.17 (b).

Construction 8.5. Let G be an algebraic group over k and X an algebraic space over k endowed
with an action of G (here we do not assume X to be of finite type over k). To show that Theorem
8.3 (b) implies Theorem 6.17 (b), we will proceed in two steps.
(1) For K ∈ D+

cart([X/G],F`) we will construct a homomorphism

(8.5.1) α : R∗([X/G],K)→ R∗G(X,K),

which will be a homomorphism of F`-(pseudo-)algebras if K has a (pseudo-)ring structure,
and whose composition with a[X/G],K : H∗([X/G],K) → R∗([X/G],K) will be aG(X,K)
(6.16.7).

(2) We will show that α is an isomorphism.
Let us construct α. Recall that

Rq([X/G],K) = lim←−
(x : S→[X/G])∈C[X/G]

Hq(S,Kx),

and RqG(X,K) = lim←−(A,A′,g)∈AG(k)\ H
0(XA′ , Rqπ∗[1/cg]∗K) (6.16.8). We first compare the cat-

egories AG(k)\ and C[X/G] by means of a third category CX,G mapping to them by functors E
and Π:

(8.5.2) CX,G
E

{{

Π

$$
C[X/G] AG(k)\.

The category CX,G is cofibered over AG(k)\ by Π. The fiber category of CX,G at an object (A,A′, g)
of AG(k)\ is the category of points PXA′ of the fixed point space of A′ in X. If (a, b) : (A,A′, g)→
(Z,Z ′, h) is a morphism in AG(k)\ (cf. (6.16.2)), we define the pushout functor Pb−1 : PXA′ → PXZ′

to be the functor induced by b−1 : XA′ → (XA′)b−1 = XbA′b−1 ⊂ XZ′ . If x : s → XA′ is a
geometric point of XA′ , let E(A,A′,g)(x) : [s/A]→ [X/G] be the `-elementary point of [X/G] defined
by the composition

E(A,A′,g)(x) : [s/A] [x/A]−−−→ [XA′/A] [1/cg ]−−−−→ [X/G].

For (x : s → XA′) ∈ PXA′ , (y : t → XZ′) ∈ PXZ′ , let u : x → y be a morphism in CX,G above
(a, b) : (A,A′, g)→ (Z,Z ′, h). The morphism

E(u) : E(A,A′,g)(x)→ E(Z,Z′,h)(y)
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is defined as follows. By definition, u is a commutative square

XA′

b−1

��

(XA′)(x)

f

��

xoo

XZ′ (XZ′)(y),
yoo

where the horizontal arrows denote by abuse of notation the morphisms induced by strict localiza-
tions. It gives the (2-commutative) square on the right of the diagram

(8.5.3) [XA′/A]
[1/cg ]

zz
[b−1/ca]
��

[(XA′)(x)/A]
[x/A]oo

[f/ca]
��

[X/G]
��
[XZ′/Z]

[1/ch]
oo [(XZ′)(y)/Z],

[y/Z]oo

whose composition with the 2-morphism (given by b) in the left triangle of (8.5.3) (appearing in
(6.16.3)) is the morphism E(u). This defines the functor E in (8.5.2).

Fix q ∈ Z. Denote by Hq(K•) the projective system ((ξ : S → [X/G]) 7→ Hq(S,Kξ)) on C[X/G],
whose projective limit is Rq([X/G],K) (8.1.1). In other words, Rq([X/G],K) = Γ(Ĉ[X/G], H

q(K•)).
We have an inverse image map

(8.5.4) Γ(Ĉ[X/G], H
q(K•))→ Γ(ĈX,G, E∗Hq(K•)) ' Γ(ÂG(k)\,Π∗E∗Hq(K•)).

By the cofinality lemma (Lemma 8.6) below,

(Π∗E∗Hq(K•))(A,A′,g) ' lim←−
x∈P

XA
′

Hq([x/A],Kx).

By Proposition 7.2 (applied to the algebraic space XA′), we have a natural isomorphism

lim←−
x∈P

XA
′

Hq([x/A],Kx) ∼−→ H0(XA′ , Rqπ∗([1/cg]∗K))

where π : [XA′/A] = BA × XA′ → XA′ is the projection, and [1/cg] : [XA′/A] → [X/G] is the
morphism in (6.16.3). Finally, we find a natural isomorphism

Γ(ÂG(k)\,Π∗E∗Hq(K•))
∼−→ lim←−

(A,A′,g)∈AG(k)\
H0(XA′ , Rqπ∗([1/cg]∗K)),

which, by the definition of RqG(X,K) (6.16.8), can be rewritten

(8.5.5) Γ(ÂG(k)\,Π∗E∗Hq(K•))
∼−→ RqG(X,K).

The composition of (8.5.4) and (8.5.5) yields the desired map α (8.5.1).

Lemma 8.6. Let Π: C → E be a cofibered category, let e be an object of E, and let Πe be the
fiber category of Π above e. Then the functor F : Πe → (Π ↓ e) is cofinal. In particular, for every
presheaf F on C, (Π∗F)(e) ∼−→ lim←−c∈Πe

F(c).

Proof. For every object (c, f : Πc→ e) of (Π ↓ e), (c, f)→ F (f∗c) is an initial object of ((c, f) ↓ F ).
Thus ((c, f) ↓ F ) is connected.

Proposition 8.7. Under the assumptions of Construction 8.5, the functor E is cofinal. In par-
ticular, (8.5.1) is an isomorphism.

Corollary 8.8. Theorem 8.3 (b) implies Theorem 6.17 (b).
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Proof of Proposition 8.7. The second assertion follows from the first assertion and the construction
of (8.5.1). To show the first assertion, since the functor CX,Gred → CX,G is an isomorphism and
the functor C[X/Gred] → C[X/G] is an equivalence of categories by Remark 7.24, we may assume G
smooth.

Let N be the set of morphisms in CX,G whose image under E is an isomorphism in C[X/G].
Then E factors as

CX,G → B := N−1CX,G
F−→ C[X/G].

By Lemma 7.3, CX,G → B is cofinal. Thus it suffices to show that F is cofinal. We will show that:
(a) F is essentially surjective;
(b) F is full.

This will imply that F is cofinal by Lemma 6.2. For the proof it is convenient to use the following
notation. For an object x of PXA′ above an object (A,A′, g) of AG(k)\, we will denote the resulting
object of B by the notation

(x, (A,A′, g)).

Let us prove (a). For every `-elementary point ξ : [S/A] → [X/G], we choose an algebraic
closure s̄ of the closed point s of S and we let ξ̄ denote the composite [s̄/A] → [S/A] ξ−→ [X/G].
We say that a lifting

σ = (a ∈ X(s̄), α ∈ Hom(A,G)(s̄), ι : [a/α] ' ξ̄)

of ξ̄ (Proposition 7.18 (c)) is rational if α ∈ Hom(A,G)(k). Recall that α is injective. Here
Hom(A,G) is the scheme of group homomorphisms from A to G (Section 5). A rational lifting σ
of ξ̄ defines an object

ωσ = ωa,α = (a, (α(A), α(A), 1))

of B and an isomorphism
ψξ,σ : F (ωσ)→ ξ̄ → ξ

in C[X/G]. By Corollary 5.2, every element of Hom(A,G)(s̄) is conjugate by an element of G(s̄) to
an element of Hom(A,G)(k). Thus every ξ̄ admits a rational lifting. It follows that F is essentially
surjective.

Let us prove (b). For any object µ = (x, (A,A′, g)) of B, σµ = (x̄, cg : A → G, id) is a rational
lifting of F (µ) and ψF (µ),σµ = F (mµ), where

mµ : ωσµ = (x̄, (g−1Ag, g−1Ag, 1))→ (x, (A,A′, g)) = µ

is the inverse of the obvious morphism in N above the morphism (g, 1) : (g−1Ag, g−1Ag, 1) ←
(A,A′, g) of AG(k)\. Now if µ and ν are objects of B and f : F (µ)→ F (ν) is a morphism in CX,G,
then f = F (mνum

−1
µ ), where u is obtained from the following lemma applied to f , σ = σµ, τ = σν .

Thus F is full.

Lemma 8.9. Let ξ : [S/A]→ [X/G], and let η : [T/B]→ [X/G] be `-elementary points of [X/G].
For every morphism f : ξ → η in C[X/G], every rational lifting σ of ξ̄, and every rational lifting τ
of η̄, there exists a morphism u : ωσ → ωτ in B making the following diagram commute:

F (ωσ)
F (u) //

ψξ,σ

��

F (ωτ )

ψη,τ

��
ξ

f // η.

Proof. Given a triple (f, σ, τ) as in the lemma, we say that L(f, σ, τ) holds if there exists u satisfying
the condition of the lemma. Given f : ξ → η, we say that L(f) holds if for every rational lifting σ
of ξ̄ and every rational lifting τ of η̄, L(f, σ, τ) holds.

Step 1. First reductions. If L(f : ξ → η, σ, τ) and L(g : η → ζ, τ, κ) hold, where σ, τ , κ are
rational liftings of ξ, η, ζ, respectively, then L(gf, σ, κ) holds, where (gf, σ, κ) is the composed
triple (gf, σ, κ) = (g, τ, κ)(f, σ, τ). In particular, if L(f : ξ → η) and L(g : η → ζ) hold, then L(gf)
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holds. Moreover, if L(f) holds for an isomorphism f , then L(f−1) holds. Thus we may assume
that f is a morphism of C′[X/G]. Then f = ([h/γ], θ), where (h : S → T, γ : A→ B) is an equivariant
morphism and θ : ξ → η′′ := η[h/γ] is a 2-morphism. Note that f can be decomposed as

ξ
f1−→ η′′

f2−→ η′
f3−→ η,

where η′ = η[idT /γ], f1 = (id[S/A], θ), f2 = ([h/idA], idη′′), f3 = ([idT /γ], idη′), as shown by the
diagram

[S/A]

00ξ

EM
θ

[S/A]
[h/idA] //

η′′ $$

[T/A]
[idT /γ] //

η′

��

[T/B]

η
zz

[X/G].

Step 2. L(f) holds for any morphism of the form f = (id[S/A], θ), and in particular L(f1) holds.
Let σ = (a, α, ι) and τ = (b, β, ε) be rational liftings of ξ̄ and η̄, respectively. Via the liftings, θ is
given by g ∈ J(s̄), where J = TransG(β(A), α(A)), and a = bg. Let g′ ∈ J(k) be a rational point
of the connected component of J containing g. Then h := g′−1g ∈ H(s̄), where H is the identity
component of NormG(α(A)). Let e be the generic point of Hs̄. Note that P[Hs̄/Hs̄] is equivalent
to Ps̄, and hence is a simply connected groupoid. Thus the morphism in P[Hs̄/Hs̄] induced by the
diagram 1 ← e → h in PHs̄ can be identified with the 2-morphism i1 → ih given by h, where
i1, ih : s̄ → [Hs̄/Hs̄] are the morphisms induced by 1 and h, respectively. Then we can take u to
be the morphism

(a, (α(A), α(A), 1)) v−→ (bg′, (α(A), α(A), 1)) w−→ (b, (β(A), β(A), 1)).

in B, where v is given by the diagram 1← e→ h in PHs̄ via the H-equivariant morphism Hs̄ → XA

carrying 1 to a (and carrying h to bg′), and w is the obvious morphism of CX,G above the morphism
(g′−1, g′) : (α(A), α(A), 1)→ (β(A), β(A), 1) of AG(k)\.

Step 3. If L(f, σ, τ) holds for a triple (f, σ, τ), then L(f) holds. Indeed, if σ′ and τ ′ are rational
liftings of ξ̄ and η̄, respectively, then, by Step 2, L(idξ, σ′, σ) and L(idη, τ, τ ′) hold, so L(f, σ′, τ ′)
holds because (f, σ′, τ ′) = (idη, τ, τ ′)(f, σ, τ)(idξ, σ′, σ).

Step 4. L(f3) holds. Indeed, a rational lifting τ = (b, β, ε) of η̄ induces a rational lifting of η′,
and with respect to these liftings we can take u to be the morphism in B induced by the diagram
in CX,G

(b, (A,A, 1))← (b, (A,B, 1))→ (b, (B,B, 1))
above the diagram in AG(k)\

(A,A, 1) (idA,γ)←−−−− (A,B, 1) (γ,idA)−−−−→ (B,B, 1).

Step 5. L(f2) holds. By Proposition 7.18 (c), η′ can be lifted to a morphism of groupoids
(b, α), where b : T → X, and α : T × A → G is a crossed homomorphism, which restricts to a
homomorphism TA ×A→ G, corresponding to a morphism, denoted by α | TA, from the (strictly
local) scheme TA to the scheme Hom(A,G) of group homomorphisms from A to G (Section 5).
We will first show that, up to replacing TA by a finite radicial extension, α | TA is conjugate to
a k-rational point of Hom(A,G). For this, recall (Corollary 5.2) that the orbits of G acting by
conjugation onHom(A,G) form a finite cover by open and closed subschemes. Let C ⊂ Hom(A,G)
be the orbit containing the image of α | TA. Choose a k-rational point α′ ∈ Hom(A,G)(k) of C.
Then the homomorphism g 7→ cg(α′) = g−1α′g from G onto C factors through an isomorphism

H\G ∼−→ C,

for a subgroup H of G. Let T ′ be defined by the cartesian square

T ′ //

��

Hred\G

��
TA

α|TA // C.
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Since the projection G→ Hred\G is smooth, the upper horizontal arrow can be lifted to a morphism
g : T ′ → G. Then cg−1(α | T ′) : T ′ → Hom(A,G) is the constant map of value α′. Let π : T ′ →
TA ↪→ T be the composite. We obtain a lifting (bπ, α′) : (T ′, A) → (X,G) of [T ′/A] → [X/G],
which induces rational liftings of η′ and η′′. With respect to these liftings, we can take u to be the
morphism s̄→ t̄ in PXA above (A,A, 1).

Remark 8.10. The categories CX,G and hence N−1CX,G are essentially small. It follows from (a)
and (b) in the proof of Proposition 8.7 that C[X/G] is essentially small.

9 Künneth formulas
The main results of this section are the Künneth formulas of Propositions 9.5 and 9.6. One may
hope for more general formulas involving derived categories of modules over derived rings. We will
not tackle this question. Instead, we use an elementary approach, based on module structures on
spectral sequences, described in Construction 9.1 and Lemma 9.2.

Construction 9.1. Let (C, T ) be an additive category with translation. For objectsM and N in C,
the extended homomorphism group is the graded abelian group Hom∗(M,N) with Homn(M,N) =
Hom(M,TnN). The extended endomorphism ring End∗(M) = Hom∗(M,M) is a graded ring and
Hom∗(M,N) is a (End∗(N),End∗(M))-bimodule. Let A∗ be a graded ring. A left A∗-module
structure on an object M of C is by definition a homomorphism λM : A∗ → End∗(M) of graded
rings. More precisely, such a structure is given by morphisms λa : M → TnM , a ∈ An, n ∈ Z such
that λa+b = λa + λb for a, b ∈ An and the diagram

M
λb //

λab $$

TnM

Tnλa
��

Tm+nM

commutes for a ∈ Am, b ∈ An. A morphism M → M ′ in C, with M and M ′ endowed with
A∗-module structures, is said to preserve the A∗-module structures if it commutes with all λa,
a ∈ An, n ∈ Z. Let B∗ be a graded right A∗-module. A morphism B∗⊗A∗M → N is by definition
a homomorphism B∗ → Hom∗(M,N) of right A∗-modules. More precisely, it is given by a family
of morphisms fb : M → TnN , b ∈ Bn, n ∈ Z in C such that fb+c = fb + fc for b, c ∈ Bn and the
diagram

M
λa //

fba $$

TmM

Tmfb
��

Tm+nN

commutes for a ∈ Am, b ∈ Bn. We thus get a functor N 7→ Hom(B∗ ⊗A∗ M,N) from C to
the category of abelian groups, contravariant in M . In the category of graded abelian groups
with translation given by shifting, the notion of left A∗-module coincides with the usual notion
of graded left A∗-module and the above functor is represented by the usual tensor product. Let
F : (C, T )→ (C′, T ) be a functor of additive categories with translation [27, Definition 10.1.1 (ii)].
A left A∗-module structure on M induces a left A∗-module structure on FM and a morphism
B∗ ⊗A∗ M → N induces a morphism B∗ ⊗A∗ FM → FN .

Let D be a triangulated category, and let A be an abelian category. We consider the additive
categories of spectral objects SpOb(D), SpOb(A) of type Z̃ [46, II 4.1.2, 4.1.4, 4.1.6]. Here Z̃ is the
category associated to the ordered set Z∪{±∞}. Form ∈ Z, (X, δ) ∈ SpOb(D), (H, δ) ∈ SpOb(A),
we put

(X, δ)[m] = (X[m], (−1)mδ[m]), (Hn, δn)n[m] = (Hn+m, (−1)mδn+m)n.

For a ∈ Z ∪ {∞}, let SpSeqa(A) be the category of spectral sequences Ea ⇒ H in A. We define

(Epqa ⇒ Hn)[m] = (Ep+m,qa ⇒ Hn+m)
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by multiplying all dr by (−1)m. We endow SpOb(D), SpOb(A) and SpSeqa(A) with the translation
functor [1]. The resulting categories with translation are covariant in D and A for exact functors. If
H : D → A is a cohomological functor, the induced functor SpOb(D)→ SpOb(A) commutes with
translation. For b ≥ a, the restriction functor SpSeqa(A)→ SpSeqb(A) commutes with translation.
Using the notation of [46, II (4.3.3.2)], we obtain a functor SpOb(A) → SpSeq2(A), which also
commutes with translation. A left A∗-module structure on an object of SpSeqa(A) induces left A∗-
module structures on H∗ and E∗qr for all q ∈ Z and r ∈ [a,∞]. If we put GqHn = Fn−qHn, so that
the abutment is of the form Epq∞

∼−→ grGq Hp+q, then Gq preserves the A∗-module structure. The
differentials d∗qr : E∗qr → E∗+r,q−r+1

r and the abutment E∗q∞
∼−→ grGq H∗ are A∗-linear. A morphism

B∗ ⊗A∗ (Ea ⇒ H)→ (E′a ⇒ H ′) induces morphisms on E∗qr , H∗, GqH∗, grGq H∗, compatible with
dr, abutment, the projection Gq → grGq and the inclusions Gq−1H

∗ → GqH
∗ → H∗.

Lemma 9.2. Let H and H ′ be filtered graded abelian groups, H endowed with a left A∗-module
structure. We let G denote the (increasing) filtrations. Assume that GqH∗ = GqH

′∗ = 0 for q
small enough and Hn =

⋃
q∈ZGqH

n, H ′n =
⋃
q∈ZGqH

′n for all n. Let B∗ ⊗A∗ H → H ′ be a
morphism such that the homomorphism B∗ ⊗A∗ grGq H∗ → grGq H ′∗ is an isomorphism for all q.
Then the homomorphism B∗ ⊗A∗ H∗ → H ′

∗ is an isomorphism.

Proof. Since GqH∗ = GqH
′∗ = 0 for q small enough, one shows by induction that the morphism

of exact sequences

B∗ ⊗A∗ Gq−1H
∗ //

��

B∗ ⊗A∗ GqH∗ //

��

B∗ ⊗A∗ grGq H∗ //

'
��

0

0 // Gq−1H
′∗ // GqH ′

∗ // grGq H ′
∗ // 0

is an isomorphism. Then we apply the hypotheses lim−→q∈ZGqH
∗ = H∗, lim−→q∈ZGqH

′∗ = H ′
∗ and

the fact that tensor product commutes with colimits.

Construction 9.3. Let

(9.3.1) X ′
h //

f ′

��

X

f

��
Y ′

g // Y

be a 2-commutative square of commutatively ringed topoi, K ∈ D(OY ′), L ∈ D(OX). An element
s ∈ Hm(Y ′,K) corresponds to a morphism OY ′ → K[m] in D(OY ′), and an element t ∈ Hn(X,L)
corresponds to a morphism OX → L[n] in D(OX). Then

Lf ′
∗
s⊗LOX′ Lh

∗t : OX′ → Lf ′
∗
K ⊗LOX′ Lh

∗L

is a morphism in D(OX′). This defines a graded map

H∗(Y ′,K)×H∗(X,L)→ H∗(X ′, Lf ′∗K ⊗LOX′ Lh
∗L)

which is H∗(Y,OY )-bilinear, hence induces a homomorphism

(9.3.2) H∗(Y ′,K)⊗H∗(Y,OY ) H
∗(X,L)→ H∗(X ′, Lf ′∗K ⊗LOX′ Lh

∗L),

which is a homomorphism of (H∗(Y ′,OY ′), H∗(X,OX))-bimodules.

Construction 9.4. Let f : X → Y be a morphism of commutatively ringed topoi, and let L ∈
D(OY ), K ∈ D(OX). We consider the second spectral object (L, δ) associated to L [46, III 4.3.1,
4.3.4], with L(p, q) = τ [p,q−1]L. For s ∈ Hn(Y,OY ) corresponding to OY → OY [n], the functor
s ⊗LOY − induces a morphism of spectral objects (L, δ) → (L, δ)[n]. This endows (L, δ) with a
structure of H∗(Y,OY )-module (Construction 9.1). For t ∈ Hn(X,K) corresponding to OX →
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K[n], the functor t⊗LOX− induces a morphism of spectral objects Lf∗(L, δ)→ K⊗LOX Lf
∗(L, δ)[n].

This defines a morphism

H∗(X,K)⊗H∗(Y,OY ) Lf
∗(L, δ)→ K ⊗LOX Lf

∗(L, δ).

Applying Rf∗ and composing with the adjunction idD(OY ) → Rf∗Lf
∗, we get a morphism

H∗(X,K)⊗H∗(Y,OY ) (L, δ)→ Rf∗(K ⊗LOX Lf
∗(L, δ)).

Further applying the cohomological functor H0(Y,−), we obtain a morphism

H∗(X,K)⊗H∗(Y,OY ) (E2 ⇒ H)→ (E′2 ⇒ H ′),

where the two spectral sequences are

Epq2 = Hp(Y,HqL)⇒ Hp+q(Y,L),(9.4.1)
E′

pq
2 = Hp(X,K ⊗LOX Lf

∗HqL)⇒ Hp+q(X,K ⊗LOX Lf
∗L).(9.4.2)

By construction, the induced morphisms on E∗q2 and on H∗ coincide with (9.3.2) for (9.3.1) given
by idf .

The results of Constructions 9.3 and 9.4 have obvious analogues for Artin stacks and complexes
in Dcart(−,Λ), where Λ is a commutative ring.

Proposition 9.5. Let
X ′ h //

f ′

��

X

f

��
Y ′

g // Y

be a 2-commutative square of Artin stacks. Let K ∈ D+
cart(Y ′,F`) and L ∈ D+

cart(X ,F`). Suppose
that
(a) The Leray spectral sequence for (f, L)

(9.5.1) Epq2 = Hp(Y, Rqf∗L)⇒ Hp+q(X , L)

degenerates at E2.
(b) For every q, Rqf∗L is a constant constructible F`-module on Y.
(c) The base change morphism BC: g∗Rf∗L→ Rf ′∗h

∗L is an isomorphism.
(d) The morphism PFf ′ : Rg∗(K⊗Rf ′∗h∗L)→ Rg∗Rf

′
∗(f ′∗K⊗h∗L) deduced from the projection

formula morphism K ⊗Rf ′∗h∗L→ Rf ′∗(f ′∗K ⊗ h∗L) is an isomorphism.
Then the spectral sequence (of type (9.4.2))

(9.5.2) Epq2 = Hp(Y ′,K ⊗Rqf ′∗h∗L)⇒ Hp+q(Y ′,K ⊗Rf ′∗h∗L)

degenerates at E2 and the homomorphism (9.3.2)

(9.5.3) H∗(Y ′,K)⊗H∗(Y,F`) H
∗(X , L)→ H∗(X ′, f ′∗K ⊗ h∗L)

is an isomorphism.

Proof. Take any geometric point t→ Y ′. By (b), the E2-term of (9.5.1) is

Epq2 = Hp(Y, Rqf∗L) ' Hp(Y,F`)⊗ (Rqf∗L)t.

By (c), (9.5.2) is isomorphic to

(9.5.4) E′
pq
2 = Hp(Y ′,K ⊗ g∗Rqf∗L)⇒ Hp+q(Y ′,K ⊗ g∗Rf∗L).

By (b), E′pq2 ' Hp(Y ′,K)⊗ (Rqf∗L)t. Thus the morphism

H∗(Y ′,K)⊗H∗(Y,F`) E
∗q
2 → E′

∗q
2
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is an isomorphism. Il then follows from (a) and Lemma 9.2 that (9.5.4) degenerates at E2 and the
homomorphism

(9.5.5) H∗(Y ′,K)⊗H∗(Y,F`) H
∗(X , L)→ H∗(Y ′,K ⊗ g∗Rf∗L)

is an isomorphism. Thus (9.5.2) degenerates at E2 and (9.5.3) is an isomorphism since it is the
composition of (9.5.5) with the morphism induced by the composition

Rg∗(K ⊗ g∗Rf∗L) Rg∗(idK⊗BC)−−−−−−−−−→
∼

Rg∗(K ⊗Rf ′∗h∗L)
PFf′−−−→
∼

Rg∗Rf
′
∗(f ′

∗
K ⊗ h∗L),

of the isomorphisms in (c) and (d).

In the rest of this section, let k be a separably closed field of characteristic 6= `.

Proposition 9.6. Let G be a connected algebraic group over k, and let X be an algebraic space of
finite presentation over k endowed with an action of G. Let

X ′ h //

f ′

��

[X/G]

f

��
Y ′

g // BG

be a 2-cartesian square of quasi-compact, quasi-separated Artin stacks, where f is the canonical
projection. Let K ∈ D+

cart(Y ′,F`). Suppose that the map e : H∗([X/G]) → H∗(X) induced by the
projection X → [X/G] is surjective. Then H∗([X/G]) is a finitely generated free H∗(BG)-module,
the spectral sequence

Epq2 = Hp(Y ′,K ⊗Rqf ′∗F`)⇒ Hp+q(Y ′,K ⊗Rf ′∗F`)

degenerates at E2, and the homomorphism

H∗(Y ′,K)⊗H∗(BG) H
∗([X/G])→ H∗(X ′, f ′∗K)

is an isomorphism.

Proof. For the second and the third assertions, we apply Proposition 9.5. By Corollary 2.6 and
generic base change (Remark 2.12), conditions (b) and (c) of Proposition 9.5 are satisfied. For
L ∈ D+

cart([X/G],F`), the diagram

Rg∗K ⊗Rf∗L
PFg //

PFf ))

Rg∗(K ⊗ g∗Rf∗L) BC // Rg∗(K ⊗Rf ′∗h∗L)
PFf′ // R(gf ′)∗(f ′∗K ⊗ h∗L)

'
��

Rf∗(f∗Rg∗K ⊗ L) BC′ // Rf∗(Rh∗f ′∗K ⊗ L) PFh // R(fh)∗(f ′∗K ⊗ h∗L)

commutes. Take L = F`. Then generic base change (Remark 2.12) and Proposition 2.9 (d) imply
that BC, BC′, PFf , PFg, PFh are isomorphisms, hence PFf ′ is an isomorphism as well, which
proves condition (d) of Proposition 9.5. Next we check condition (a) of Proposition 9.5. The Leray
spectral sequence for f is

(9.6.1) Epq2 = Hp(BG,Rqf∗F`)⇒ Hp+q([X/G]).

Since Rqf∗F` is constant of value Hq(X), we have Epq2 ' Hp(BG) ⊗ Hq(X). As e is an edge
homomorphism for (9.6.1), its surjectivity implies d0q

r = 0 for all r ≥ 2. It then follows from the
H∗(BG)-module structure of (9.6.1) that it degenerates at E2. The first assertion of Proposition
9.6 then follows from the fact that H∗(X) is a finite-dimensional vector space.

Proposition 9.7. Let G = GLn,k, T be a maximal torus of G, A = Ker(−` : T → T ). Then the
map H∗(BA,F`)→ H∗(G/A,F`) induced by the projection G/A→ BA is surjective.
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Proof. Let us recall the proof on [36, page 566]. Consider the following diagram with 2-cartesian
squares (Proposition 1.11):

G/A //

��

G/T

��

// Spec k

��
BA // BT // BG.

Note that the arrow BA→ BT can be identified with the composition BA ∼−→ [X/T ]→ BT , where
X = A\T , and the first morphism is an isomorphism by Corollary 1.16. The map H∗(BA) →
H∗(X) induced by the projection π : X = A\T → BA is surjective. Indeed, using Künneth formula
this reduces to the case where T has dimension 1, which follows from Lemma 9.8 below. Note that
π can be identified with the composition X → [X/T ] ' BA. Thus, by Proposition 9.6 applied to
f : [X/T ]→ BT , the map

H∗(G/T )⊗H∗(BT ) H
∗(BA)→ H∗(G/A)

is an isomorphism. We conclude by applying the fact that H∗(BT ) → H∗(G/T ) is surjective
(Theorem 4.4).

Lemma 9.8. Let A be an elementary abelian `-group, and let X be a connected algebraic space
endowed with an A-action such that X is the maximal connected Galois étale cover of [X/A] whose
group is an elementary abelian `-group. Then the homomorphism

(9.8.1) H1(BA,F`)→ H1([X/A],F`)

induced by the projection [X/A]→ BA is an isomorphism.

Proof. For any connected Deligne-Mumford stack X , H1(X ,F`) is canonically identified with
Hom(π1(X ),F`), and (9.8.1) is induced by the morphism

π1([X/A])→ π1(BA) ' A.

The assumption means that A is the maximal elementary abelian `-quotient of π1([X/A]).

Proposition 9.9. Let X be an abelian variety over k, A = X[`] = Ker(` : X → X). Then the
map H∗(BA,F`)→ H∗(X/A,F`) induced by the projection X/A→ BA is surjective.

Proof. We apply Lemma 9.8 to the morphism ` : X → X, which identifies the target with X/A.
By Serre-Lang’s theorem [48, XI Théorème 2.1], this morphism is the maximal étale Galois cover
of X by an elementary abelian `-group. Thus H1(BA) → H1(X/A) is an isomorphism. It then
suffices to apply the fact that H∗(X/A) is the exterior algebra of H1(X/A).

10 Proof of the structure theorem
We proceed in several steps:
(1) We first prove Theorem 8.3 (b) when X is a Deligne-Mumford stack with finite inertia, and

whose inertia groups are elementary abelian `-groups.
(2) We prove Theorem 8.3 (b) for X a quotient stack [X/G].
(3) For certain quotient stacks [X/G] we establish estimates for the powers of F annihilating the

kernel and the cokernel of aG(X,K) (6.16.9).
(4) Using (3), we prove Theorem 8.3 (b) for Deligne-Mumford stacks with finite inertia.
(5) We prove Theorem 8.3 (a) and the first assertion of (b) for Artin stacks having a stratification

by global quotients.

Construction 10.1. Let f : X → Y be a morphism of commutatively ringed topoi such that
`OY = 0, K ∈ D(X). The Leray spectral sequence of f ,

Eij2 = Hi(Y,Rjf∗K)⇒ Hi+j(X,K),
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gives rise to an edge homomorphism

(10.1.1) ef,K : H∗(X,K)→ H0(Y,R∗f∗K),

which is a homomorphism of F`-(pseudo-)algebras if K ∈ D(X) is a (pseudo-)ring. The following
crucial lemma is similar to Quillen’s result [36, Proposition 3.2].

Lemma 10.2. Let K be a pseudo-ring in D(X). Assume that c = cd(Y ) <∞. Then (Ker ef,K)c+1 =
0. Moreover, if K is commutative, then ef,K is a uniform F -isomorphism; more precisely, for
b ∈ E0,∗

2 , we have b`n ∈ Im ef,K , where n = max{c− 1, 0}.

Proof. We imitate the proof of [36, Proposition 3.2] (for the case of finite cohomological dimension).
We have Eij2 = 0 for i > c. Consider the multiplicative structure on the spectral sequence
(Example 3.15). As Ker ef,K = F 1H∗(X,K), where F • denotes the filtration on the abutment,
(Ker ef,K)c+1 ⊂ F c+1H∗(X,K) = 0. If K is commutative and b ∈ E0,∗

r , then the formula dr(b`) =
`b`−1dr(b) = 0 implies that b` ∈ E0,∗

r+1. Thus for b ∈ E
0,∗
2 , b`n ∈ E0,∗

2+n = E0,∗
∞ = Im ef,K .

Construction 10.3. Let X be a Deligne-Mumford stack of finite presentation and finite inertia
over k. By Keel-Mori’s theorem [28] (see [40, Theorem 6.12] for a generalization), there exists a
coarse moduli space morphism

f : X → Y,

which is proper and quasi-finite. Let K ∈ D+
cart(X ,F`). Then Construction 10.1 and Lemma 10.2

apply to f and K with cd`(Y ) ≤ 2 dim(Y ).
For any geometric point t of Y , consider the following diagram of Artin stacks with 2-cartesian

squares:
Xt //

��

X(t) //

��

X

f

��
t // Y(t) // Y.

We have canonical isomorphisms

(10.3.1) (Rqf∗K)t
∼−→ Hq(X(t),K) ∼−→ Hq(Xt,K),

the second one by the proper base change theorem (cf. [34, Theorem 9.14]). Therefore, if we let
PY denote the category of geometric points of Y (Definition 7.1), the map

(10.3.2) H0(Y,Rqf∗K)→ lim←−
t∈PY

Hq(X(t),K) ∼−→ lim←−
t∈PY

Hq(Xt,K),

is an isomorphism if K ∈ D+
c (X ,F`), by Proposition 7.2. On the other hand, recall (8.1.1) that

Rq(X ,K) = lim←−
(x : S→X )∈CX

Hq(S,Kx) = Γ(ĈX , Hq(K•)),

where Kx = x∗K and Hq(K•) denotes the presheaf on CX whose value at x is Hq(S,Kx). We
define a category Cf and functors

Cf
ψ

  

ϕ

~~
CX PY

as follows. The category Cf is cofibered over PY by ψ. The fiber category of ψ at a geometric
point t→ Y is CX(t) . The pushout functor CX(t) → CX(z) for a morphism of geometric points t→ z
is induced by the morphism X(t) → X(z) (Remark 7.24). The functors ϕt : CX(t) → CX induced by
the morphisms X(t) → X define ϕ. Thus we have an inverse image map

(10.3.3) ϕ∗ : Rq(X ,K)→ Γ(Ĉf , ϕ∗Hq(K•)).
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By Lemma 8.6 we have
ψ∗ϕ

∗Hq(K•)t ' Γ(ĈX(t) , ϕ
∗
tH

q(K•)).

Thus we have

(10.3.4) Γ(Ĉf , ϕ∗Hq(K•)) ' Γ(P̂Y , ψ∗ϕ∗Hq(K•))
∼−→ lim←−

t∈PY
lim←−

(x : S→X(t))∈CX(t)

Hq(S,Kx)

Proposition 10.4.
(a) The following diagram commutes

Hq(X ,K)
eq
f,K //

aqX ,K

��

H0(Y,Rqf∗K)
(10.3.2) // lim←−t∈PY H

q(X(t),K)

lim←−t∈PY a
q
X(t),K

��
Rq(X ,K) ϕ∗ // Γ(Ĉf , ϕ∗Hq(K•))

(10.3.4)
∼
// lim←−t∈PY lim←−(x : S→X(t))∈CX(t)

Hq(S,Kx).

(b) ϕ∗ is an isomorphism.
(c) Consider the commutative square

Hq(X(t),K)

aqX(t),K

��

∼ // Hq(Xt,K)

aqXt,K

��
lim←−S∈CX(t)

Hq(S,K) ι∗ // lim←−S∈CXt
Hq(S,K)

defined by the functor ι : CXt → CX(t) induced by the inclusion Xt → XT , in which the upper
horizontal map is the second isomorphism of (10.3.1). The map ι∗ is an isomorphism.

Proof. Assertion (a) follows from the definitions. For (b) it suffices to show that ϕ is cofinal. Let
τ : CX → Cf be the functor carrying an `-elementary point x : [S/A]→ X , with s the closed point
of S, to the induced `-elementary point τ(x) : [S/A] → X(f(s)). Then we have ϕτ ' idCX , and
a canonical natural transformation τϕ → idCf , carrying an object ξ : [S/A] → X(t) of Cf to the
cocartesian morphism τϕ(ξ) → ξ in Cf above the morphism f(s) → t in PY . These exhibit τ as
a left adjoint to ϕ. Therefore, by Lemma 10.5 below, ϕ is cofinal. For (c), it suffices again to
show that ι is cofinal. Let X → X(t) be an étale atlas. As f is quasi-finite, up to replacing X by
a connected component, we may assume that X is a strictly local scheme, finite over Y(t). Then
X(t) ' [X/G], where G = AutX(t)(x), x is the closed point of X. Let ξ : [S/A] → [X/G] be an
`-elementary point of [X/G]. The `-elementary point [x/A]→ Xt, endowed with the morphism in
C[X/G] given by the diagram

[S/A]→ [X/A]← [x/A]

in C′[X/G], defines an initial object of (ξ ↓ ι). Therefore, ι is cofinal.

Lemma 10.5. Let G : A → B be a functor. If G has a left adjoint, then G is cofinal.

Proof. Let F : B → A be a left adjoint to G. Then, for every object b of B, (Fb, b → GFb) is an
initial object of (b ↓ G). Thus (b ↓ G) is connected.

Corollary 10.6. The assertion of Theorem 8.3 (b) holds if X is a Deligne-Mumford stack with
finite inertia, whose inertia groups are elementary abelian `-groups. More precisely, if c = cd`(Y ),
where Y is the coarse moduli space of X , then (Ker aX ,K)c+1 = 0 and for K commutative and
b ∈ E0,∗

2 , we have b`n ∈ Im aX ,K , where n = max{c− 1, 0}.

Proof. It suffices to show that, for all t ∈ PY ,

aqXt,K : Hq(Xt,K)→ lim←−
(x : S→Xt)∈CXt

Hq(S,Kx)
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is an isomorphism. Indeed, by Proposition 10.4 (c) this will imply that the right vertical arrow
in the diagram of Proposition 10.4 (a) is an isomorphism. As (10.3.2) is an isomorphism, ϕ∗
is an isomorphism (Proposition 10.4 (b)), and ef,K =

⊕
eqf,K has nilpotent kernel and, if K is

commutative, is an F -isomorphism (Lemma 10.2), it will follow that aX ,K =
⊕
aqX ,K has the

same properties with the same bounds for the exponents. As f : X → Y is a coarse moduli space
morphism, there exists a finite radicial extension t′ → t and a geometric point y′ of X above t′ such
that (Xt′)red ' BAutX (y′). Therefore we are reduced to showing that aX ,K is an isomorphism
for X = BAk, where A is an elementary abelian `-group. In this case, idBAk : BAk → BAk is
a final object of CBAk , so we can identify Rq(BAk,K) with Hq(BAk,K), and aqBAk,K with the
identity.

Corollary 10.7. Suppose X = [X/G] is a global quotient stack (Definition 8.2), where the action
of G on X satisfies the following two properties:
(a) The morphism γ : G×X → X ×X, (g, x) 7→ (x, xg) is finite and unramified.
(b) All the inertia groups of G are elementary abelian `-groups.

Then the assertions of Corollary 10.6 hold.
Proof. As γ in (a) can be identified with the morphism X ×[X/G] X → X ×X, which is the pull-
back of the diagonal morphism ∆[X/G] : [X/G] → [X/G] × [X/G] by X × X → [X/G] × [X/G],
(a) implies that ∆[X/G] is finite and unramified. In particular, [X/G] is a Deligne-Mumford stack.
Moreover, as the inertia stack is the pull-back of ∆[X/G] by ∆[X/G], [X/G] has finite inertia. Taking
(b) into account, we see that [X/G] satisfies the assumptions of 10.6, and therefore 8.3 (b) holds
for [X/G].

Proposition 10.8. Theorem 8.3 (b) for global quotient stacks [X/G] (Definition 8.2) follows from
Theorem 8.3 (b) for G linear.
Proof. Consider the system of subgroups Gi = L · A[m`i] · F of G = L · A · F as in the proof of
Theorem 4.6 (with Λ = F` and n = `), where m is the order of F . Note that every elementary
abelian `-subgroup of A · F is contained in A[m`] · F . As a consequence, every elementary abelian
`-subgroup of G is contained in G1, so that the restriction map R∗G(X,K) → R∗Gi(X,K) is an
isomorphism for i ≥ 1. Consider the commutative diagram

H∗([X/G],K) //

aG(X,K)
��

H∗([X/G4d],K)

aG4d (X,K)
��

α // H∗([X/G2d],K)

aG2d (X,K)
��

R∗G(X,K) ∼ // R∗G4d
(X,K) ∼ // R∗G2d

(X,K),

where d = dimA. By Remark 4.9, H∗([X/G],K) is the image of α. Thus it suffices to show that
aG2d(X,K) has nilpotent kernel and, if K is commutative, aG4d(X,K) is a uniform F -surjection.

Proposition 10.9. Theorem 8.3 (b) holds for global quotient stacks of the form [X/G], where G
is either a linear algebraic group, or an abelian variety.
Proof. Although by Proposition 10.8 it would suffice to treat the case where G is linear, we prefer to
treat both cases simultaneously, in order to later get better bounds for the power of F annihilating
the kernel and the cokernel of the map aX ,K (Corollary 10.10). We follow closely the arguments of
Quillen for the proof of [36, Theorem 6.2]. If G is linear, choose an embedding of G into a linear
group L = GLn over k [13, Corollaire II.2.3.4], and a maximal torus T of L. If G is an abelian
variety, let L = T = G. In both cases, denote by S the kernel of ` : T → T , which is an elementary
abelian `-group of order n. We let L act on F = S\L by right multiplication. If g ∈ L(k), and if
{S} denotes the rational point of F defined by the coset S, the inertia group of L at {S}g is g−1Sg.
Let us show that the diagonal action of G on X × F (resp. X × F × F ) satisfies assumptions (a)
and (b) of Corollary 10.7. It suffices to show this for X × F . Consider the commutative square

L× L

��

∼ // L× L

��
F × L // F × F
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where the horizontal morphisms are the morphisms γ : (x, g) 7→ (x, xg). As the vertical morphisms
are finite and surjective, so is the lower horizontal morphism. Moreover, the latter is unramified.
Hence the morphism γ : F ×G→ F ×F is finite and unramified. The same holds for the morphism
γ : (X × F ) × G → (X × F ) × (X × F ), (x, y, g) 7→ (x, y, xg, yg), because it is the composite
X×F ×G→ X×X×F ×G→ X×F ×X×F , where the first morphism (x, y, g) 7→ (x, xg, y, g) is
a closed immersion by the assumption that X is separated and the second morphism (x, x′, y, g) 7→
(x, y, x′, yg) is a base change of F × G → F × F . So (a) is satisfied for X × F . Moreover, the
inertia groups of G on X × F are conjugate in L to subgroups of S, so (b) is satisfied for X × F .

As in [36, 6.2], consider the following commutative diagram
(10.9.1)
H∗([X/G],K) //

aG(X,K)
��

H∗([X × F/G], [pr1/idG]∗K) // //

aG(X×F,[pr1/idG]∗K)
��

H∗([X × F × F/G], [pr1/idG]∗K)

aG(X×F×F,[pr1/idG]∗K)
��

R∗G(X,K) // R∗G(X × F, [pr1/idG]∗K) // // R∗G(X × F × F, [pr1/idG]∗K),

in which the double horizontal arrows are defined by pr12 and pr13. By Corollary 10.7, aG(X ×
F, [pr1/idG]∗K) and aG(X ×F ×F, [pr1/idG]∗K) have nilpotent kernels and, if K is commutative,
are uniform F -surjections. To show that aG(X,K) has the same properties it thus suffices to show
that the rows of (10.9.1) are exact.

First consider the lower row. The component of degree q is isomorphic by definition (6.16.8)
to the projective limit over (A,A′, g) ∈ AG(k)\ of

(10.9.2) Γ(XA′ , Rqπ∗r
∗K)→ Γ(XA′ × FA

′
, Rqπ∗r

∗[pr1/idG]∗K)

⇒ Γ(XA′ × FA
′
× FA

′
, Rqπ∗r

∗[pr1/idG]∗K),

where we have put r := [1/cg]. In order to identify the second and third terms of (10.9.2), consider
the following commutative diagram, where the middle and right squares are cartesian:

[X × F/G]

[pr1/idG]
��

BA×XA′ × FA′

id×pr1
��

roo π // XA′ × FA′

pr1
��

pr2 // FA
′

��
[X/G] BA×XA′roo π // XA′ // Spec k

.

We have (by base change for the middle square)

pr∗1Rqπ∗(r∗K) ∼−→ Rqπ∗(id× pr1)∗r∗K ' Rqπ∗r∗[pr1/idG]∗K.

By the Künneth formula for the right square, we have

Γ(XA′ × FA
′
,pr∗1Rqπ∗r∗K) ∼−→ Γ(XA′ , Rqπ∗r

∗K)⊗ Γ(FA
′
,F`).

Therefore we get a canonical isomorphism

Γ(XA′ × FA
′
, Rqπ∗r

∗[pr1/idG]∗K) ∼−→ Γ(XA′ , Rqπ∗r
∗K)⊗ Γ(FA

′
,F`).

We have a similar identification for XA′ ×FA′ ×FA′ , and these identifications produce an isomor-
phism between (10.9.2) and the tensor product of Γ(XA′ , Rqπ∗r

∗K) with

(10.9.3) Γ(Spec k,F`)→ Γ(FA
′
,F`) ⇒ Γ(FA

′
× FA

′
,F`).

As A′ is an elementary abelian `-subgroup of G, A′ is conjugate in L to a subgroup of S, hence
FA

′ 6= ∅. It follows that (10.9.3), (10.9.2) and hence the lower row of (10.9.1) are exact.
In order to prove the exactness of the upper row of (10.9.1), consider the square of Artin stacks

with representable morphisms,

(10.9.4) [(Y × F )/G] //

��

[Y/G]

��
[F/L] // BL,
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where Y is an algebraic space of finite presentation over k endowed with an action of G, the
horizontal morphisms are induced by projection from F and the vertical morphisms are induced
by the embedding G → L. The square is 2-cartesian by Proposition 1.11 and BS ' [(S\L)/L] =
[F/L]. By Propositions 9.6, 9.7 and 9.9, H∗([F/L]) is a finitely generated free H∗(BL)-module
and the homomorphism

H∗([Y/G],K)⊗H∗(BL) H
∗([F/L])→ H∗([Y × F/G], [pr1/idG]∗K)

defined by (10.9.4) is an isomorphism. Applying the above to Y = X and Y = X × F , we obtain
an identification of the upper row of (10.9.1) with the sequence

H∗([Y/G],K)→ H∗([Y/G],K)⊗H∗(BL) H
∗([F/L])

⇒ H∗([Y/G],K)⊗H∗(BL) H
∗([F/L])⊗H∗(BL) H

∗([F/L]),

which is exact by the usual argument of faithfully flat descent.

Corollary 10.10. Let X = [X/G] be a global quotient stack, and assume that either (a) G is
embedded in L = GLn, n ≥ 1, or (b) G is an abelian variety. Let K ∈ D+

c ([X/G],F`) be a pseudo-
ring. Let d = dimX. In case (a), let e = dimL/G, f = 2 dimL − dimG. In case (b), let e = 0,
f = dimG. Then
(i) (Ker aG(X,K))m = 0, where m = 2d+ 2e+ 1,
(ii) for K commutative and y ∈ R∗G(X,K), we have y`N ∈ Im aG(X,K) for N ≥ max{2d+ 2e−

1, 0}+ log`(2d+ 2f + 1).

Proof. As in the proof of Proposition 10.9, let F = S\L. We have cd`((X × F )/G) ≤ 2 dim((X ×
F )/G) = 2d + 2e. As all inertia groups of G acting on X × F are elementary abelian `-groups,
by Corollary 10.7 we have (Ker aG(X × F,pr∗1K))m = 0, hence (i) by (10.9.1). For (ii), set
aG(X,K) = a0, aG(X×F,pr∗1K) = a1, aG(X×F×F,pr∗1K) = a2. Denote by u0 : H∗([X/G],K)→
H∗([X × F/G], [pr1/idG]∗K) (resp. v0 : R∗G(X,K)→ R∗G(X × F, [pr1/idG]∗K)) the left horizontal
map in (10.9.1), and u1 = d0−d1 : H∗([X×F/G], [pr1/idG]∗K)→ H∗([X×F×F/G], [pr1/idG]∗K)
(resp. v1 = d0 − d1 : R∗G(X × F, [pr1/idG]∗K) → R∗G(X × F × F,pr∗1K)), the map deduced from
the double map (d0, d1) in (10.9.1). As d0 and d1 are compatible with raising to the `-th power,
so is u1 (resp. v1). Let N1 = max{2d + 2e − 1, 0}. By Corollary 10.7 we have v0(y)`N1 = a1(x1)
for some x1 ∈ H∗([X × F/G], [pr1/idG]∗K). By (10.9.1) we have a2u1(x1) = v1a1(x1) = 0. Let h
be the least integer ≥ log`(2d+ 2f + 1). As above we have cd`((X × F × F )/G) ≤ 2d+ 2f , so by
Corollary 10.7 we get u1(x1)`h = 0, hence by (10.9.1) x`h1 = u0(x0) for some x0 ∈ H∗([X/G],K),
and finally y`N1+h = a0(x0).

Remark 10.11.
(a) If in case (a) of Corollary 10.10, we assume moreover that X is affine, then cd`((X×F )/G) ≤

d+ e and cd`((X × F × F )/G) ≤ d+ f by the affine Lefschetz theorem [50, XIV Corollaire
3.2]. Thus in this case (i) holds for m = d+ e+ 1 and (ii) holds for N ≥ max{d+ e− 1, 0}+
log`(d+ f + 1).

(b) Let f : Y → X be a finite étale morphism of Artin stacks of constant degree d. As the
composite H∗(X ,K) f∗−→ H∗(Y, f∗K) trf,K−−−→ H∗(X ,K) is multiplication by d, f∗ is injective
if d is prime to `. Thus, in this case, if Ker aY,f∗K is a nilpotent ideal, then Ker aX ,K is
a nilpotent ideal with the same bound for the exponent. This applies in particular to the
morphism [X/H]→ [X/G], where H < G is an open subgroup of index prime to `.

Proposition 10.12. Theorem 8.3 (b) holds if X is a Deligne-Mumford stack of finite inertia.
More precisely, if c = cd`(Y ), where Y is the coarse moduli space of X , and if r (resp. s) is the
maximal number of elements of the inertia groups (resp. `-Sylow subgroups of the inertia groups)
of X , then (Ker a(X ,K))(c+1)((s−1)2+1) = 0, and for K commutative and b ∈ R∗(X ,K), we have
b`
N ∈ Im a(X ,K) for N ≥ max{c−1, 0}+max{r2−2r, 0}+dlog`(2(r−1)2+1)e+dlog`((s−1)2+1)e.

Here dxe for a real number x denotes the least integer ≥ x.
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Proof. Consider the coarse moduli space morphism f : X → Y . For every geometric point t of Y ,
there exists a finite radicial extension t′ → t and a geometric point y′ of X above t′ such that
(Xt′)red ' BAutX (y′). Note that for any field E, a finite group G of order m can be embedded
into GLm(E), given for example by the regular representation E[G] of G. Moreover, if m 6=
2 or the characteristic of E is not 2, then G can be embedded into GLm−1(E), because the
subrepresentation of E[G] generated by g− h, where g, h ∈ G, is faithful. Thus, by Remark 10.11,
the map aXt,K in Proposition 10.4 (c) satisfies (Ker aXt,K)(s−1)2+1 = 0, and, for K commutative,
aXt,K is a uniform F -surjection for all geometric points t→ Y with bound for the exponent given
by max{r2−2r, 0}+dlog`(2(r−1)2 +1)e, independent of t. Thus (Ker lim←−t∈PY aXt,K)(s−1)2+1 = 0,
and Lemma 10.13 below implies that lim←−t∈PY aXt,K is a uniform F -surjection, with bound for the
exponent given by max{r2− 2r, 0}+ dlog`(2(r− 1)2 + 1)e+ dlog`((s− 1)2 + 1)e. Hence, by Lemma
10.2 and Proposition 10.4, aX ,K has the stated properties.

Lemma 10.13. Let C be a category, and let u : R → S be a homomorphism of pseudo-rings in
GrVecC. If u is a uniform F -injection (resp. uniform F -isomorphism) (Definition 6.10), then
lim←−C u is also a uniform F -injection (resp. uniform F -isomorphism). More precisely, if m ≥ 0 is
an integer such that for every object i of C and every a ∈ Kerui, am = 0 (resp. and if n ≥ 0 is an
integer such that for every object i of C and every b ∈ Si, b`

n ∈ Im ui), then for every x ∈ Ker lim←−C u,
xm = 0 (resp. for every y ∈ lim←−C S and every integer N ≥ n+ log`(m), yN ∈ Im lim←−C u).

Proof. Let x = (xi) be an element in the kernel of lim←−C u. Since xi is in Kerui, xm = (xmi ) = 0.
Assume now that u is a uniform F -isomorphism with bounds for the exponents given by m

and n, and let y = (yi) be an element of lim←−C S. For every object i of C, take ai in Ri such that
ui(ai) = y`

n

i . For every morphism α : i→ j in C, the following diagram commutes

Rj
uj //

Rα

��

Sj

Sα

��
Ri

ui // Si.

It follows that
ui(Rα(aj)− ai) = Sα(uj(aj))− ui(ai) = Sα(y`

n

j )− y`
n

i = 0.

Let h be the least integer ≥ log`(m). Then 0 = (Rα(aj)−ai)`
h = Rα(aj)`

h−a`hi , so that w = (a`hi )
is an element of lim←−C R. By definition, u(w) = y`

n+h .

In order to deal with the general case, we need the following lemma.

Lemma 10.14. Let u : R → S be a homomorphism of pseudo-rings in GrVecC endowed with a
splitting (Definition 3.2). Then (Keru)R = 0. In particular, (Keru)2 = 0.

Proof. Let a ∈ Keru, b ∈ R. Since u(a) = 0, ab = u(a)b = 0.

Proposition 10.15. The first assertion of Theorem 8.3 (b) holds.

Proof. If i : Y → X is a closed immersion, j : U → X is the complement, then the following diagram
of graded rings commutes:

H∗(Y, Ri!K) //

aY,Ri!K

��

H∗(X ,K)

aX ,K

��

// H∗(U , j∗K)

aU,j∗K

��
R∗(Y, Ri!K) u // R∗(X ,K) // R∗(U ,K).

The first row is exact and u is the composition of the inverse of the isomorphism R∗(X , i∗Ri!K) ∼−→
R∗(Y, Ri!K) and the map R∗(X , i∗Ri!K) → R∗(X ,K) induced by adjunction i∗Ri!K → K. The
composition

R∗(Y, Ri!K) u−→ R∗(X ,K)→ R∗(Y, i∗K)
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is induced by Ri!K → i∗K, hence has square-zero kernel by Lemma 10.14. Thus (Keru)2 = 0.
It follows that if both aY,Ri!K and aU,j∗K have nilpotent kernels, then aX ,K has nilpotent kernel.
Using this, we reduce by induction to the global quotient case. In this case, the assertion follows
from Propositions 10.8 and 10.9.

This finishes the proof of the structure theorem (Theorem 8.3 (b)).

Lemma 10.16. Let C be a category having finitely many isomorphism classes of objects. Let A
be the category whose objects are the elementary abelian `-groups and whose morphisms are the
monomorphisms. Let F : C → A be a functor. Let F be the presheaf of F`-algebras on A given
by F(A) = S(A∨). Let G be a presheaf of F ∗F-modules on C. Assume that, for every object x of
C, G(x) is a finitely generated F(F (x))-module. Then R = lim←−x∈C F(F (x)) is a finitely generated
F`-algebra and S = lim←−x∈C G(x) is a finitely generated R-module.

Proof. We may assume that C has finitely many objects. For any monomorphism u : A → B of
elementary abelian `-groups, F(u) : F(B) → F(A) carries S(B∨)GL(B) into S(A∨)GL(A). Thus
A 7→ E(A) = S(A∨)GL(A) ⊂ F(A) defines a subpresheaf E of F`-algebras of F . As GL(A) is a finite
group, by [48, V Corollaire 1.5] F(A) is finite over E(A) and E(A) is a finitely generated F`-algebra.
For given A and B, since GL(B) acts transitively on the set of monomorphisms u : A → B, the
map S(B∨)GL(B) → S(A∨), restriction of F(u), does not depend on u. Thus E(u) only depends
on A and B. Therefore, via the functor rk : A → N carrying A to its rank, E factorizes through a
presheaf R on the totally ordered set N: we have a 2-commutative diagram

C F //

f

��

A

E
��

rk

}}
N R // Bop,

where B denotes the category of F`-algebras of finite type, and R(n) = S((Fn` )∨)GLn(F`), with, for
m ≤ n, Fm` included in Fn` by any monomorphism. For a morphism u : A→ B of A, F(u) : F(B)→
F(A) is surjective, hence, as F(B) is finite over E(B), F(A) is finite over E(B), and E(A) ⊂ F(A)
is finite over E(B). By Lemma 10.19 below, for each x in C, E(F (x)) is finite over

Q = lim←−
y∈C
E(F (y)) ' lim←−

y∈C
R(f(y)).

The rest of the proof is similar to the proof of the last assertion of loc. cit. As C has finitely many
objects, there exists a finitely generated F`-subalgebra Q0 of Q such that, for each x in C, E(F (x))
is integral, hence finite over Q0. Note that R is a Q-submodule, a fortiori a Q0-submodule, of∏
x∈C F(F (x)). For each x in C, F(F (x)) is finite over E(F (x)), hence finite over Q0. It follows

that
∏
x∈C F(F (x)) is finite over Q0. As Q0 is a noetherian ring, R is finite over Q0, hence a finitely

generated F`-algebra. Similarly, S is a finitely generated Q0-module, hence a finitely generated
R-module. Note that Q is also finite over Q0, hence a finitely generated F`-algebra, though we do
not need this fact.

The first step of the proof of Lemma 10.19 consists of simplifying the limit Q using cofinality.
Among the functors

f1 : •(• •)// // f2 : •
•OO OO //

•
•OO

f3 : •
•GG
•
WW //

•
•OO

f4 : •
•WW •GG //

•
•OO

f1, f2, and f3 are cofinal, while f4 is not cofinal. It turns out that after making contractions of
types f1, f2, and f3, we obtain a rooted forest, of which the source of f4 is a prototype.

For convenience we adopt the following order-theoretic definitions. We define a rooted forest
to be a partially ordered set P such that P≤x = {y ∈ P | y ≤ x} is a finite chain for all x ∈ P.
We define a rooted tree to be a nonempty connected rooted forest. Let P be a rooted tree. For
x, y ∈ P, we say that y is a child of x if x < y and there exists no z ∈ P such that x < z < y. By
the connectedness of P, m(x) = minP≤x is independent of x ∈ P, hence P has a least element r,
equal to m(x) for all x. We call r the root of P.
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Remark 10.17. Although we do not need it, let us recall the comparison with graph-theoretic
definitions. A graph-theoretic rooted tree T is a connected acyclic (undirected) graph with one
vertex designated as the root [41, page 30]. For a graph-theoretic rooted tree T , we let V (T )
denote the set of vertices of T equipped with the tree-order, with x ≤ y if and only if the unique
path from the root r to y passes through x. For any x ∈ V (T ), V (T )≤x consists of vertices on
the path from r to x, so that V (T )≤x is a finite chain. Thus V (T ) is a rooted tree. Conversely,
for any rooted tree P, we construct a graph-theoretic rooted tree Γ(P) as follows. Let G be the
graph whose set of vertices is P and such that two vertices x and y are adjacent if and only if y is
a child of x or x is a child of y. Note that each x ≤ x′ in P can be decomposed into a sequence
x = x0 < x1 < · · · < xn = x′, n ≥ 0, each xi+1 being a child of xi, which defines a path from
x to x′ in G. Thus the connectedness of P implies the connectedness of G. If G admits a cycle,
then there exists y ∈ P that is a child of distinct elements x and x′ of P, which contradicts the
assumption that P≤y is a chain. Let r be the root of P. Then Γ(P) = (G, r) is a graph-theoretic
rooted tree. We have P = V (Γ(P)) and T = Γ(V (T )).

The next lemma is probably standard but we could not find an adequate reference.

Lemma 10.18. Let C be a category and let f : C → N be a functor. Let P be the set of full
subcategories of C that are connected components of f−1(N≥n) for some n ∈ N. Order P by
inverse inclusion: for elements S and T of P, we write S ≤ T if S ⊃ T . Let ψ : C → P be the
functor carrying an object x to the connected component ψ(x) of f−1(N≥f(x)) containing x, and
let φ : P → N be the functor carrying S to min f(S). Then:
(a) f = φψ.
(b) ψ : C → P is cofinal (Definition 6.1) and φ : P → N is strictly increasing.
(c) P is a rooted forest. Moreover, if C has finitely many isomorphism classes of objects, then P

is a finite set.

Proof. (a) Let x be an object of C. As x ∈ ψ(x), φ(ψ(x)) = min f(ψ(x)) ≤ f(x). Conversely, as
ψ(x) ⊂ f−1(N≥f(x)), f(ψ(x)) ⊂ N≥f(x), so that φ(ψ(x)) ≥ f(x). Thus φ(ψ(x)) = f(x).

(b) Let S ∈ P. Note that S is a connected component of f−1(N≥φ(S)). By definition, (S ↓ ψ)
is the category of pairs (x, S ≤ ψ(x)). Note that S ⊃ ψ(x) implies that x is in S. Conversely, for
x in S, S is a connected component of f−1(N≥n) for n ≤ f(x), hence S ⊃ ψ(x). Thus (S ↓ ψ) can
be identified with S, hence is connected. This shows that ψ is cofinal. Now let S < T be elements
of P. We have φ(S) ≤ φ(T ). If φ(S) = φ(T ) = n, then S and T are both connected components
of f−1(N≥n), which contradicts with the assumption S ) T . Thus φ(S) < φ(T ).

(c) Let S ∈ P. Let T, T ′ ∈ P≤S . Then T (resp. T ′) is a connected components of f−1(N≥n)
(resp. f−1(N≥n′)), and T and T ′ both contain S. Thus T ⊃ T ′ if n ≤ n′ and T ⊂ T ′ if n ≥ n′.
Therefore, P≤S is a chain. As φ is strictly increasing, φ induces an injection P≤S → N≤φ(S), hence
P≤S is a finite set. Therefore, P is a rooted forest. Note that for S ∈ P and x in S, every object y
of C isomorphic to x is also in S. Thus, if C has finitely many isomorphism classes of objects, then
P is a finite set.

Lemma 10.19. Let C be a category having finitely many isomorphism classes of objects and let
f : C → N be a functor. Let R be a presheaf of commutative rings on N such that, for each m ≤ n,
R(m) is finite over R(n). Let Q = lim←−x∈CR(f(x)). Then:
(a) For each object x of C, R(f(x)) is finite over Q.
(b) For each connected component S of C and each r in S satisfying f(r) = min f(S), we have

Im(Q→ R(f(r))) = Im(R(max f(S))→ R(f(r))).

Proof. By Lemma 10.18, we may assume that C is a finite rooted tree with root r. We prove this
case by induction on #C. Let B ⊂ C be the set of children of r. For each c ∈ B, C≥c is a rooted tree
with root c and Q is the fiber product over R(f(r)) of the rings Qc = lim←−x∈C≥c R(f(x)) for c ∈ B.
If B is empty, then C = {r} and the assertions are trivial. If B = {c}, then Q ' Qc and it suffices
to apply the induction hypothesis to Qc. Assume #B > 1. Let n = max f(C), nc = max f(C≥c),
and let c0 ∈ B be such that nc0 = minc∈B nc. The complement C′ of C≥c0 in C is a rooted tree
with root r, and Q is the fiber product over R(f(r)) of the rings Qc0 and Q′ = lim←−x∈C′ R(f(x)).
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By the induction hypothesis, A = Im(Qc0 → R(f(r))) = Im(R(nc0) → R(f(r))) and Im(Q′ →
R(f(r))) = Im(R(n)→ R(f(r))), so that we have a cartesian square of commutative rings

Q
α′ //

β′

��

Q′

β

��
Qc0

α // A.

As α is surjective, we have Ker(α′) ' Ker(α) and α′ is surjective (cf. [17, Lemme 1.3]), which
implies (b). Moreover, as β is finite, β′ is finite. Indeed, if A =

∑
i aiβ(Q′), then for liftings a′i

of ai, Qc0 =
∑
i a
′
iβ
′(Q). The assertion (a) then follows from the induction hypothesis applied to

Qc0 and Q′.

Proof of Theorem 8.3 (a). Let (ji : Xi → X )i be a finite stratification of X by locally closed sub-
stacks. The system of functors (CXi → CX )i is essentially surjective. Thus the map

R∗(X ,K)→
∏
i

R∗(Xi, j∗iK)

is an injection. Thus, for the first assertion of Theorem 8.3 (a), we may assume that X is a global
quotient stack, in which case the assertion follows from Theorem 6.17 (a) and Proposition 8.7.

Let Hq(K•) denote the presheaf on CX whose value at x : S → X is Hq(S,Kx), where
Kx = x∗K, so that Rq(X ,K) = lim←−CX H

q(K•). Let N be the set of morphisms f in CX
such that (H∗(F`•))(f) and (H∗(K•))(f) are isomorphisms. By Lemma 7.3, lim←−CX H

q(K•) '
lim←−N−1CX

Hq(K•) and similarly for H∗(F`•). We claim that N−1CX has finitely many isomor-
phism classes of objects. Then lim←−N−1CX

commutes with direct sums, and, by Lemma 10.16,
R∗(X ,F`) and R∗(X ,K) are finitely generated R-modules for a finitely-generated F`-algebra R,
hence the second assertion of Theorem 8.3 (a). Using again the fact that the system of functors
(CXi → CX )i is essentially surjective, we may assume in the above claim that X = [X/G] is a
global quotient. Consider the diagram (8.5.2). Note that the functor AG(k)\ → EG(π0) induces
a bijection between the sets of isomorphism classes of objects, and EG(π0) is essentially finite by
Lemma 6.20 (a), thus AG(k)\ has finitely many isomorphism classes of objects. Moreover, as E is
essentially surjective, it suffices to show that, for every object (A,A′, g) of AG(k)\, the category
M−1PXA′ has finitely many isomorphism classes of objects. Here M is the set of morphisms f in
PXA′ such that (E∗(A,A′,g)H

∗(K•))(f) is an isomorphism. Let (Xi) be a finite stratification of XA′

into locally closed subschemes such that K | Xi has locally constant cohomology sheaves. For a
given i, all objects in the image of PXi →M−1PXA′ are isomorphic. Moreover, the system of func-
tors (PXi → PXA′ )i is essentially surjective. Therefore, M−1PXA′ has finitely many isomorphism
classes of objects.

11 Stratification of the spectrum
In this section we fix an algebraically closed field k and a prime number ` invertible in k.

Construction 11.1. Let X be a separated algebraic space of finite type over k, and let G be an
algebraic group over k acting on X. Define

(11.1.1) (G,X) := SpecHε∗([X/G])red,

where ε = 1 if ` = 2, and ε = 2 otherwise. In particular, for an elementary abelian `-group A,

A := (A,Spec k) = Spec(Hε∗
A )red

is a standard affine space of dimension equal to the rank of A. The map (A,C)∗ (6.9.2) induces a
morphism of schemes

(11.1.2) (A,C)∗ : A→ (G,X),
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hence a(G,X) (6.9.3) induces a morphism of schemes

(11.1.3) Y := lim−→
(A,C)∈A[(G,X)

A→ (G,X).

It follows from Theorem 6.11 that (11.1.3) is a universal homeomorphism.
By Corollary 4.8, (A,C)∗ is finite. Moreover, A[(G,X) is essentially finite by Lemma 6.5. It

follows that Y ' Spec(lim←−(A,C)∈A[(G,X)
(Hε∗

A )red) is finite over (G,X) and is a colimit of A in the
category of locally ringed spaces and in particular a colimit of A in the category of schemes. This
remark gives another proof of the second assertion of Corollary 6.13, as promised. Moreover,
the F`-algebras Hε∗([X/G])red and lim←−(A,C)∈A[(G,X)

(Hε∗
A )red are equipped with Steenrod opera-

tions (see Construction 11.6 below), compatible with the ring homomorphism Hε∗([X/G])red →
lim←−(A,C)∈A[(G,X)

(Hε∗
A )red.

The structure of Y is described more precisely by the following stratification theorem, similar
to [37, Theorems 10.2, 12.1].

Theorem 11.2. Denote by V(A,C) the reduced subscheme of Y that is the image of the (finite)
morphism A→ Y induced by (A,C). Let

A+ := A−
⋃
A′<A

A′,

V +
(A,C) := V(A,C) −

⋃
A′<A

V(A′,C|A′),

where A′ < A means A′ ⊂ A and A′ 6= A, and C |A′ denotes the component of XA′ containing C.
Then
(a) The Weyl group WG(A,C) (6.4.2) acts freely on A+ and the morphism A+ → Y given by

(A,C) induces a homeomorphism

(11.2.1) A+/WG(A,C)→ V +
(A,C).

(b) The subschemes V(A,C) of Y are the integral closed subcones of Y that are stable under the
Steenrod operations on lim←−(A,C)∈A[(G,X)

(Hε∗
A )red.

(c) Let (Ai, Ci)i∈I be a finite set of representatives of isomorphism classes of objects of A[(G,X).
Then the V(Ai,Ci) form a finite stratification of Y , namely Y is the disjoint union of the
V +

(Ai,Ci), and V(Ai,Ci) is the closure of V +
(Ai,Ci).

The proof is entirely analogous to that of [37, Theorems 10.2, 12.1]. One key step in the proof
is the following analogue of [37, Proposition 9.6].

Proposition 11.3. Let (A,C), (A′, C ′) be objects of A[(G,X). The square of topological spaces

(11.3.1) A+ ×HomA[
G,X

((A,C), (A′, C ′))

pr1

��

// A′

(A′,C′)

��
A+ (A,C) // Y

is cartesian. Here the upper horizontal arrow is induced by

HomA[
G,X

((A,C), (A′, C ′))→ Hom(A,A′), u 7→ Spec(Bu)∗red,

where (Bu)∗ : Hε∗
A′ → Hε∗

A .

As in [37, Proposition 9.6], this follows from the fact that A[(G,X) admits fiber products, whose
proof is very similar to that of [37, Lemma 9.1].
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Remark 11.4. The morphism (11.2.1) is not an isomorphism of schemes in general. In particular,
the square (11.3.1) is not cartesian in the category of schemes. This is already shown by the example
G = GL`, X = Spec(k), A = µ` embedded diagonally in G. Let T be the standard maximal torus,
and let {e1, . . . , e`} be the standard basis of T [`]. Then WG(T ) ' WG(T [`]) ' S` acts on T [`] by
permuting this basis, and WG(A) = {1}. Note that T [`] ' Spec(S(T [`]∨)) ' Spec(F`[t1, . . . , t`]),
and VT [`] = Y ' T [`]/WG(T [`]) can be identified with the spectrum of the symmetric polynomials
in t1, . . . , t`. As the image of the d-th fundamental symmetric polynomial in t1, . . . , t` under
homomorphism φ : F`[t1, . . . , t`]→ F`[t] carrying ti to t is 0 for 1 ≤ d ≤ `− 1 and t` for d = `, the
diagram of schemes

A //

��

T [`]

��
VA // VT [`]

is given by the diagram of rings

F`[t] F`[t1, . . . , t`]
φoo

F`[t`]
?�

OO

F`[t1, . . . , t`]S` .
?�

OO

oo

Therefore, (11.2.1) is given by the Frobenius map on F`[t, t−1].

Let (f, u) : (X,G)→ (Y,H) be an equivariant morphism with (X,G) and (Y,H) as before. The
induced morphism of quotient stacks [f/u] : [X/G]→ [Y/H] induces maps

[f/u]∗ : Hε∗([Y/H])→ Hε∗([X/G]), (f, u) : (Y,H)→ (X,G).

Moreover, (f, u) induces a functor A[(u,f) : A[(G,X) → A
[
(H,Y ) sending (A,C) to (uA,C ′), where uA

is the image of A under u and C ′ is the component of Y uA containing fC, the image of C under f .
We have the following analogue of [37, Proposition 10.9], with essentially the same proof.

Proposition 11.5. The following conditions are equivalent.
(a) A[(u,f) is an equivalence of categories.
(b) [f/u]∗ is a uniform F -isomorphism.
(c) (f, u) is a universal homeomorphism.

Construction 11.6. As Michèle Raynaud observed in [38, Section 4], the formalism of Steenrod
operations [16] applies to the F`-cohomology of any topos. Let us review the construction of the
operations in this case.

Let X be a topos, let K be a commutative ring in D+(X,F`), and let i be an integer. The
Steenrod operations are F`-linear maps

P i : H∗(X,K)→
{
H∗+i(X,K) if ` = 2,
H∗+2(`−1)i(X,K) if ` > 2.

For ` = 2, P i is sometimes denoted Sqi.
First note that for every complex M ∈ C(X,F`), S` acts on L⊗` by permutation of factors

(with the usual sign rule). This induces a (non triangulated) functor

(11.6.1) (−)⊗` : D(X,F`)→ D([X/S`],F`).

Here we used the notation [X/G] for the topos of sheaves in X endowed with an action of a finite
group G. For a morphism c : F` →M [q] in D(X,F`), applying (11.6.1), we obtain a morphism

c⊗` : F` ' F⊗`` → (M [q])⊗` 'M⊗` ⊗ S⊗q[q`]
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in D([X/S`],F`), where S ∈ Mod([X/S`],F`) is the pullback of the sheaf on BS` given by the
sign representation sgn : S` → F×` . This defines a map

(11.6.2) Hq(X,M)→ Hq`([X/S`],M⊗` ⊗ S⊗q), c 7→ c⊗`.

Now choose a cyclic subgroup C of S` of order ` and a basis x of H1(BC,F`) ' Hom(C,F`).
Note that sgn | C is constant of value 1. Consider the composite map

DC,x : Hq(X,K) (11.6.2)−−−−−→ Hq`([X/S`],K⊗` ⊗ S⊗q)
π−→ Hq`([X/S`],K ⊗ S⊗q)

→ Hq`([X/C],K) '
⊕
k

Hk(BC,F`)⊗Hq`−k(X,K),

which turns out to be F`-linear. Here π is given by multiplication K⊗` → K. Recall (Remark
6.12) that for k ≥ 0, Hk(BC,F`) = F`wk, where wk = x(βx)(k−1)/2 for k odd and wk = (βx)k/2
for k even. We define

Dk
C,x : Hq(X,K)→ Hq`−k(X,K)

by the formula DC,xu =
∑
k wk ⊗Dk

C,xu. Let m = `−1
2 . We define

P iC,x =


(−1)i+m(q2−q)/2(m!)−qD(q−2i)(`−1)

C,x if ` > 2, q ≥ 2i,
Dq−i
C,x if ` = 2, q ≥ i,

0 otherwise.

For ` = 2, we have C = S2 and x is unique. For ` > 2, σ ∈ S` and a ∈ F×` , D2k
σCσ−1,a(x◦cσ) =

sgn(σ)qa−kD2k
C,x, where cσ : σCσ−1 → C is the homomorphism g 7→ σ−1gσ. Thus

P iσCσ−1,a(x◦cσ) = sgn(σ)q(am)qP iC,x,

where am = ±1. In particular, up to a sign, P iC,x is independent of the choices of C and x. Let
T ∈ S` be the permutation defined by T (n) = n + 1 for n ∈ Z/`Z. In the following we will take
C to be the subgroup generated by T and take x to be the dual basis of T , and omit them from
the indices.

For a homomorphism of commutative rings K → K ′, the induced homomorphism H∗(X,K)→
H∗(X,K ′) is compatible with Steenrod operations on H∗(X,K) and H∗(X,K ′). Moreover, for
a morphism of topoi f : X → Y , Steenrod operations are compatible with the isomorphism
H∗(X,K) ' H∗(Y,Rf∗K).

It is easy to check the following properties of Steenrod operations, where we write H∗ for
H∗(X,K):
• For x ∈ Hi (resp. x ∈ H2i), P ix = x` if ` = 2 (resp. ` > 2);
• If one defines

Pt : H∗ → H∗[t, t−1]

by Pt(x) =
∑
i∈Z P

i(x)ti, then Pt is a ring homomorphism (Cartan’s formula).
In the case where X has enough points and K ∈ Mod(X,F`), Epstein showed the following

additional properties [16, Theorem 8.3.4]:
• Pt : H∗ → H∗[t]. In other words, P i = 0 for i < 0.
• P 0 = id for K = F` (this depends on the choices of C and x above).

In particular, Pt(x) = x+ x`t for x ∈ H1(X,F`), ` = 2 (resp. x ∈ H2(X,F`), ` > 2).
The above can be easily adapted to D+

cart of Artin stacks. For a morphism of Artin stacks
f : X → Y and a commutative ring K ∈ D+

cart(X ,F`), Steenrod operations are compatible with the
isomorphism H∗(X,K) ' H∗(Y,Rf∗K). Therefore, for K ′ ∈ D+

cart(Y,F`), Steenrod operations are
compatible with the restriction homomorphism H∗(Y,K ′)→ H∗(X, f∗K ′).

For related results on the Chow rings of classifying spaces and much more, we refer the reader
to Totaro’s book [45] and the bibliography thereof.
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