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Compatible systems and ramification
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Abstract

We show that compatible systems of ℓ-adic sheaves on a scheme of finite
type over the ring of integers of a local field are compatible along the bound-
ary up to stratification. This extends a theorem of Deligne on curves over a
finite field. As an application, we deduce the equicharacteristic case of classi-
cal conjectures on ℓ-independence for proper smooth varieties over complete
discrete valuation fields. Moreover, we show that compatible systems have
compatible ramification. We also prove an analogue for integrality along the
boundary.

1 Introduction

Let S = Spec(OK) be the spectrum of an excellent Henselian discrete valuation ring
OK of finite residue field k = Fq of characteristic p. Let K be the fraction field of
OK . Given a scheme X of finite type over S and a prime ℓ 6= p, we let K(X,Qℓ)
denote the Grothendieck group of constructible Qℓ-sheaves on X, where Qℓ denotes
an algebraic closure of Qℓ. We fix a field Q, an index set I, and for each i ∈ I, a
prime number ℓi and an embedding ιi : Q → Qℓi

. Let |X| be the set of locally closed
points of X. In other words, |X| = |Xk| ∪ |XK | is the union of the sets of closed
points of the two fibers. Note that the residue field of x ∈ |X| is a finite extension of
k or K, and the local Weil group W (x̄/x) ⊆ Gal(x̄/x) is defined for any geometric
point x̄ above x. We say that a system (Li) ∈

∏

i∈I K(X,Qℓi
) is compatible if for

every x̄ above x ∈ |X|, and for every F ∈ W (x̄/x), the local traces are compatible:
there exists a ∈ Q such that tr(F, (Li)x̄) = ιi(a) for all i ∈ I [Z2, Définition 4.13].

In this paper, we study the compatibility of compatible systems along the bound-
ary. We let Klisse(X,Qℓ) denote the Grothendieck group of lisse Qℓ-sheaves on X.
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Definition 1.1. Let X̄ be a normal scheme of finite type over S and let X be
a dense open subscheme. We say that (Li) ∈

∏

i∈I Klisse(X,Qℓi
) is compatible on

X̄, if for every x ∈ |X̄|, every geometric point ā of X(x) := X̄(x) ×X̄ X, and every
F ∈ W (X(x), ā), (tr(F, (Li)ā))i∈I is compatible. Here X̄(x) denotes the Henselization
of X̄ at x, and W (X(x), ā) denotes the Weil group, namely the inverse image of
W (x̄/x) ⊆ Gal(x̄/x) by the surjective homomorphism π1(X(x), ā) → π1(X̄(x), ā) ≃
Gal(x̄/x).

In the case where X̄ is an integral smooth curve over k or K and x ∈ X̄ −X, X(x)

is the spectrum of a field extension of the function field E of X and its fundamental
group is the decomposition group of E at x, subgroup of the Galois group of E.

We call X ⊆ X̄ a normal compactification over S if X̄ is normal, proper over S,
and contains X as a dense open subscheme. Our first result is that compatible
systems are compatible along the boundary up to stratification.

Theorem 1.2. Let X be a scheme of finite type over S and let (Li) ∈
∏

i∈I Klisse(X,Qℓi
)

be a compatible system with I finite. Then there exists a finite stratification X =
⋃

α Xα by normal subschemes such that each Xα admits a normal compactification
X̄α over S such that (Li|Xα

)i∈I is compatible on X̄α.

We refer to Corollary 2.17 for the equivalent statement that compatible systems
are compatible along the boundary up to modification. In the case of a curve over a
finite field we recover a theorem of Deligne [D, Théorème 9.8] (see Corollary 2.15).
Takeshi Saito gave an example of a compatible system on a smooth surface X that
is not compatible on a given smooth compactification X̄ (private communication
with Hiroki Kato).

Theorem 1.2 implies the following valuative criterion for compatible systems,
analogous to Gabber’s valuative criterion for Vidal’s ramified part of the fundamen-
tal group [V2, Section 6.1].

Corollary 1.3. Let X be a scheme of finite type over S and let (Li) ∈
∏

i∈I K(X,Qℓi
).

Consider commutative squares of schemes

(1.1) η
� _

��

// X

��
V // S

where V = Spec(OL) with OL a Henselian valuation ring, and η = Spec(L) is the
generic point of V . Let η̄ → η be a geometric point and let t ∈ V be the closed point.

(1) (Li)i∈I is a compatible system if and only if for every commutative square (1.1)
with t quasi-finite over S, (tr(F, (Li)η̄))i∈I is compatible for all F ∈ W (η̄/η).

(2) If (Li)i∈I is a compatible system and (1.1) is a commutative square with V
strictly Henselian, then (tr(F, (Li)η̄))i∈I is compatible for all F ∈ Gal(η̄/η).

Note that here we do not assume OL to be a discrete valuation ring or that
V → S is local.

As an application, we deduce the equicharacteristic case of some classical con-
jectures by Serre on ℓ-independence (Conjectures C4, C5, and C8 of [S, Section 2.3],
cf. [ST, Appendix, Problems 1 and 2]).
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Theorem 1.4. Let OL be a Henselian discrete valuation ring of characteristic p > 0,
of fraction field L and residue field κ. Let X be a proper smooth scheme over L. Let
L̄ be a separable closure of L and let κ̄ be the residue field of L̄. Let XL̄ = X ⊗L L̄.

(1) For each m and each F ∈ I(L̄/L) := Ker(Gal(L̄/L) → Gal(κ̄/κ)), tr(F, Hm(XL̄,Qℓ))
is a rational integer independent of ℓ 6= p.

(2) (cf. [T, Theorem 3.3]) Assume that κ is a finite field. Then for each m, each i,
and each F ∈ W (L̄/L) whose image in W (κ̄/κ) is the n-th power of the
geometric Frobenius for n ≥ 0, we have
(2a) tr(F, grM

i Hm(XL̄,Qℓ)) is a rational integer independent of ℓ 6= p, where
M denotes the monodromy filtration; in particular,

(2b) tr(F, Hm(XL̄,Qℓ)) is a rational integer independent of ℓ 6= p.

Part (2) was claimed in [CL, Theorem 6.1], but the proof given there is incom-
plete1. A weaker form of (2) was proved by Terasoma [T, Theorem 3.3].

Remark 1.5. Theorem 1.4 (1) is the equicharacteristic p > 0 case of Serre’s Con-
jecture C4. Theorem 1.4 (2a) implies the equicharacteristic case of Conjecture C5

(Remark 2.18 (2)), while (2b) implies the equicharacteristic case of Conjecture C8.
Parts (1) and (2b) of Theorem 1.4 hold more generally over a Henselian valuation
field of characteristic p > 0 without assuming that the valuation is discrete (Remark
2.18 (3)).

The alternating sum
∑

m(−1)mtr(F, Hm(XL̄,Qℓ)) of the traces in (1) and (2b)
was known to be a rational integer independent of ℓ 6= p more generally for X
separated of finite type over L without the equicharacteristic assumption. See Vidal
[V, Proposition 4.2] (combined with Laumon [L, Théorème 1.1]), Ochiai [O], [Z] and
[Z2] (Theorems 2.3 and 3.5 below). Our valuative criterion allows to further extend
the results on the alternating sum to Henselian valuation fields [LZ].

In the case where X is defined over a curve over a finite field, Theorem 1.4 (2b)
follows from Deligne’s theorem for curves mentioned above and results of Weil II
[D2]. In the general case, after spreading out, the base becomes a variety over a
finite field and we apply Corollary 1.3.

In Section 2, we give the proofs of Theorems 1.2 and 1.4. The proof of Theorem
1.2 relies on the preservation of compatible systems under direct images [Z2, Propo-
sition 4.15]. Over a finite field the latter is a theorem of Gabber [F, Theorem 2].

In Section 3, we study integrality along the boundary and prove an analogue of
Theorem 1.2. This generalizes a theorem of Deligne on non-Archimedean absolute
values of liftings of local Frobenius for curves over finite fields [D2, Théorème 1.10.3].

Our original motivation for studying compatibility along the boundary is to
understand the relationship between compatible systems of Qℓ-sheaves and systems
of Fℓ-sheaves with compatible wild ramification. The latter and variants were studied
in recent work of Saito, Yatagawa ([SY], [Y]) and Guo [G2], generalizing earlier work
of Deligne [I] and Vidal [V,V2]. In Section 4, we deduce from our valuative criterion
for compatible systems that compatible systems have compatible ramification, and
consequently, their reductions have compatible wild ramification. These notions are
defined using Vidal’s ramified part of the fundamental group, which involve images
of local inertia groups at geometric points of compactifications X̄ of X. We define

1The authors of [CL] have been made aware of this and have submitted a corrigendum.
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the decomposed part of the fundamental group by taking instead images of the local
decomposition groups at x ∈ |X̄|. We show, as another application of Theorem 1.2,
that the union of the images of the local decomposition (or Weil) groups for x ∈ |X|
is dense in the decomposed part.

Acknowledgment We thank Hélène Esnault, Yongquan Hu, and Luc Illusie for
many useful discussions. We thank the referee for a careful reading of the manuscript
and for many helpful suggestions.

2 Compatible systems along the boundary

The strategy of the proof of Theorem 1.2 is to reduce to the case of lisse sheaves
tamely ramified along a normal crossing divisor with unipotent local monodromy.
For this we need to work with finite group actions. We now review the notion of
compatible systems on Deligne-Mumford stacks [Z2, Section 5] and finite quotient
stacks in particular. In this paper, Deligne-Mumford stacks are assumed to be
quasi-separated with separated diagonal.

Let k̄ be a separable closure of k. Each F ∈ W (k̄/k) is the n-th power of the
geometric Frobenius Fr: a 7→ a1/q for some n ∈ Z. We call n the degree of F . For
an integer N , we let W ≥N(k̄/k) denote the subset {Frn | n ≥ N}.

Notation 2.1. For any connected Deligne-Mumford stack Y over S and any geo-
metric point ā → Y , we define the Weil group W (Y, ā) to be the inverse image of
the Weil group W (k̄/k) by the homomorphism

r : π1(Y, ā) → π1(S, ā) ≃ Gal(k̄/k).

We define the degree of F ∈ W (Y, ā) to be the degree of r(F ). We let W ≥N(Y, ā)
denote the subset r−1(W ≥N(k̄/k)) of elements of degree ≥ N .

Let X be a Deligne-Mumford stack. For a point ξ of X, we let Xξ denote the
residual gerbe, which is necessarily a quotient stack [x/G] by a finite group G of the
spectrum of a field x (cf. [IZ, page 13]). For a geometric point x̄ above x, we have

π1([x/G], x̄) ≃ Gal(x̄/y) ×Gal(x/y) G,

where y = x/G.
Assume X of finite type over S. We let |X| denote the set of locally closed points

of X. For ξ ∈ |X|, x is quasi-finite over S, spectrum of a finite field extension of k
or K. The Weil group W ([x/G], x̄) ⊆ π1([x/G], x̄) is the inverse image of the Weil
group W (x̄/y) ⊆ Gal(x̄/y) by the homomorphism π1([x/G], x̄) → Gal(x̄/y), which
is surjective of kernel the inertia group.

Definition 2.2. We say that (Li) ∈
∏

i∈I K(X,Qℓi
) is compatible if it satisfies the

following equivalent conditions.
(1) For every ξ ∈ |X|, every geometric point x̄ above ξ, and every F ∈ W (Xξ, x̄),

(tr(F, (Li)x̄))i∈I is compatible.
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(2) For every quasi-finite morphism f : x → X where x is the spectrum of a field,
(f ∗Li)i∈I is a compatible system on x (Section 1).

(3) For every smooth morphism f : Y → X of finite type with Y a scheme,
(f ∗Li)i∈I is a compatible system on Y (Section 1).

The implications (1) ⇒ (2) ⇒ (3) are trivial. (3) ⇒ (2) follows from the existence
of smooth neighborhoods [LMB, Théoème 6.3]. (2) ⇒ (1) follows from [Z2, Propo-
sition 5.6] applied to the quotient stack Xξ, which is based on a method of Deligne
and Lusztig [DL, proof of Proposition 3.3].

In the case where X = [Y/G] is a quotient stack of a scheme Y by a finite
group, the residual gerbe at the image of y ∈ Y is [y/D(y)], where D(y) < G is the
decomposition group.

The main result of [Z2] can be stated as follows.

Theorem 2.3. Compatible systems on Deligne-Mumford stacks of finite type over S
are stable under Grothendieck’s six operations and duality.

This is stated for Deligne-Mumford stacks of finite type over k or K in [Z2,
Proposition 5.8], but the same proof applies over S with [Z2, Théorème 1.16] replaced
by the more general [Z2, Proposition 4.15]. The case of schemes of finite type over
k is a theorem of Gabber [F, Theorem 2].

We will only need the stability under Rj∗ for an open immersion j.

Remark 2.4. Let x be quasi-finite over S and let (Li) ∈
∏

i∈I K(x,Qℓi
). If there

exists an integer N such that (tr(F, (Li)x̄))i∈I is compatible for all F ∈ W ≥N(x, x̄),
then the same holds for all F ∈ W (x, x̄) by [Z2, Proposition 1.15] (consequence of
Grothendieck’s arithmetic local monodromy theorem [ST, Appendix] and a ratio-
nality lemma [I3, Lemma 8.1]).

In the regular case, compatibility of systems of unramified lisse sheaves extends
to the boundary by the following variant of [Z2, Proposition 3.10].

Proposition 2.5. Let X be a regular Deligne-Mumford stack of finite type over S
and let (Li) ∈

∏

i∈I Klisse(X,Qℓi
). Assume that (Li|U)i∈I is compatible for some

dense open substack U ⊆ X. Then (Li)i∈I is compatible.

Proof. The proof is very similar to that of [Z2, Proposition 3.10]. A related argument
will be used in the proof of Proposition 2.10 below. By induction, we may assume
that D = X − U is regular and purely of codimension d ≥ 1. Let j : U → X be
the open immersion. By Theorem 2.3, (Rj∗(Li|U))i∈I is compatible. By projection
formula,

Li ⊗Qℓi
Rj∗Qℓi

≃ Rj∗(Li|U).

Gabber’s absolute purity theorem ([F2, Theorem 2.1.1], [R, Théoème 3.1.1])
extends to Deligne-Mumford stacks: the refined cycle class clf ∈ H2d

D (X,Qℓ(d))
induces an isomorphism Qℓ

∼
−→ Rf !Qℓ(d)[2d], where f : D → X denotes the closed

immersion. Indeed, the definition of clf [F2, Definition 1.1.2] holds without change
(with Chern classes defined by Grothendieck [G, Section 1]) and the fact that it
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induces an isomorphism reduces to the case of schemes. It follows that we have

Rmj∗Qℓ ≃















Qℓ m = 0,

(Qℓ)D(−d) m = 2d − 1,

0 otherwise.

Alternatively we can reduce Proposition 2.5 to the case of schemes using Definition
2.2 (3).

For x → D quasi-finite and F ∈ W (x̄/x) of degree n, tr(F, (Rj∗Qℓ)x̄) = 1 − qnd.
Thus, for n 6= 0, tr(F, (Li)x̄) can be recovered from tr(F, (Rj∗(Li|U))x̄). Therefore,
(Li)i∈I is compatible by Remark 2.4.

Next we define compatibility on the boundary in the equivariant setting. Let
X̄ be a scheme equipped with the action of a finite group G. For x ∈ X̄, the
decomposition group D(x) acts on X̄(x). For any geometric point x̄ above x, we
have π1([x/D(x)], x̄) ≃ π1([X̄(x)/D(x)], x̄). For X̄ normal, X ⊆ X̄ a G-stable dense
open subscheme, and ā → X(x) a geometric point, the homomorphism

(2.1) π1([X(x)/D(x)], ā) → π1([X̄(x)/D(x)], ā) ≃ π1([x/D(x)], x̄)

is surjective.

Definition 2.6. Let X̄ be a normal scheme of finite type over S equipped with an
action of G by S-automorphisms and let X be a G-stable dense open subscheme. We
say that (Li) ∈

∏

i∈I Klisse([X/G],Qℓi
) is compatible on [X̄/G] if for every x ∈ |X̄|,

every geometric point ā → X(x), and every F ∈ W ([X(x)/D(x)], ā), (tr(F, (Li)ā))i∈I

is compatible.

Remark 2.7.
(1) (Li) ∈

∏

i∈I Klisse([X/G],Qℓi
) is compatible on [X/G] in the sense of Definition

2.6 if and only if it is compatible in the sense of Definition 2.2. This follows
from the isomorphism in (2.1).

(2) Let U ⊆ X ⊆ X̄ be a G-stable dense open subscheme. Then (Li) ∈
∏

i∈I Klisse([X/G],Qℓi
)

is compatible on [X̄/G] if and only if (Li|[U/G])i∈I is compatible on [X̄/G].
This follows from the fact for x ∈ X̄, the homomorphism π1([U(x)/D(x)], ā) →
π1([X(x)/D(x)], ā) is surjective.

(3) Assume that G acts freely on X. Let Y = X/G and Ȳ = X̄/G be the
quotient spaces. Then, for all x ∈ X̄, if y ∈ Ȳ denotes its image, then
[X(x)/D(x)] ≃ Y(y). Thus, in this case, (Li)i∈I on X/G is compatible on
[X̄/G] if and only if it is compatible on X̄/G.

Remark 2.8. Let x ∈ |X̄| be a point that is not closed. The closure Y = {x} ⊆ X̄
admits a Zariski open cover by schemes finite over S. Thus Y =

⋃

y Y(y), y running

through closed points of Y . We have x → Y(y) → X̄(y), which induces a morphism
X(x) → X(y). If X̄ is separated, then Y = Y(y) and D(x) < D(y). Thus in Definition
2.6, if X̄ is separated or G = {1}, then we may restrict to closed points of X̄.

Remark 2.9. Given a point ξ of a Deligne-Mumford stack Y , one can define the
Henselization of Y at ξ to be the limit of Deligne-Mumford stacks V for decompo-

sitions of the residual gerbe Yξ → Y into Yξ → V
φ
−→ Y with φ representable and
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étale. Using [IZ, Lemma 3.5], one can show that the Henselization of [X̄/G] at the
image of x ∈ X̄ is [X̄(x)/D(x)]. Thus Definition 2.6 depends only on the quotient
stacks and can be extended to Deligne-Mumford stacks.

Let X̄ be a regular Deligne-Mumford stack and let D ⊆ X̄ be a normal crossing
divisor. We say that a lisse Qℓ-sheaf F on X = X̄ − D is tamely ramified on X̄ if
for every geometric point x̄ above a generic point of D and every geometric point ā
of X(x̄) := X̄(x̄) ×X̄ X, the wild inertia group of X(x̄) acts trivially on Fā. Here X̄(x̄)

denotes the strict Henselization. We say that L ∈ Klisse(X,Qℓ) is tamely ramified
on X̄ if L = [F ] − [G] with F and G lisse and tamely ramified on X̄.

Proposition 2.10. Let X̄ be a regular scheme of finite type over S equipped with
an action of a finite group G by S-automorphisms. Let D ⊆ X̄ be a normal crossing
divisor such that X = X̄ − D is G-stable. Let (Li) ∈

∏

i∈I Klisse([X/G],Qℓi
) be a

compatible system. Assume that one of the following conditions holds:
(1) For each i there exist lisse Zℓi

-sheaves Fi and Gi such that Li|X = ([Fi] −
[Gi]) ⊗Zℓi

Qℓi
, and Fi ⊗Zℓi

Zℓi
/ℓc

iZℓi
and Gi ⊗Zℓi

Zℓi
/ℓc

iZℓi
are constant for some

rational number c > 1
ℓi−1

. Here Zℓi
denotes the ring of integers of Qℓi

.

(2) G = {1} and each Li is tamely ramified on X̄.
Then (Li)i∈I is compatible on [X̄/G].

For the proof of Theorem 1.2, we will only need part (1). For the proof of
Proposition 2.10, we need a variant of Grothendieck’s arithmetic local monodromy
theorem [ST, Appendix]. We say that a family of matrices ρ : E → GLn(Qℓ) is
quasi-unipotent if each ρ(g), g ∈ E is quasi-unipotent. By Remark 2.11 below, a
continuous representation ρ : I → GLn(Qℓ) of a profinite group I is quasi-unipotent
if and only if ρ is unipotent on an open subgroup I0 < I.

Remark 2.11. Let P n
ℓ ≃ Qℓ

n
be the space of monic polynomials of degree n. The

subset P n,qu
ℓ ⊆ P n

ℓ of polynomials whose roots are roots of unity is discrete and
closed. This follows from continuity of roots and the fact that the only root of unity
in 1 + ℓcZℓ is 1, where c > 1

ℓ−1
is any rational number.

The function Mn(Qℓ) → P n
ℓ carrying an n × n matrix to its characteristic poly-

nomial is continuous. It follows that the subset QUnipn(Qℓ) ⊆ Mn(Qℓ) of quasi-
unipotent matrices is closed, and the subgroup of unipotent matrices Unipn(Qℓ) <
QUnipn(Qℓ) is open.

Lemma 2.12. Consider short exact sequences of profinite groups

1 → P → I → Iℓ → 1, 1 → I → G → Gs → 1,

with P of supernatural order prime to ℓ and Iℓ pro-ℓ Abelian. Assume that the
conjugation action of Gs on Iℓ is given by a character χ : Gs → Z×

ℓ of infinite
order. Then any continuous representation ρ : G → GLn(Qℓ) is quasi-unipotent
on I. Moreover, for any rational number c > 1

ℓ−1
, we have

QUnipn(Qℓ) ∩ (1 + ℓcMn(Zℓ)) ⊆ Unipn(Qℓ).

7



Proof. Let U ∈ QUnipn(Qℓ)∩(1+ℓcMn(Zℓ)). Then Ua is unipotent for some integer
a > 0, and log(U) = 1

a
log(Ua) is nilpotent, so that U = exp(log(U)) is unipotent.

This proves the second assertion.
The proof of the first assertion is identical to that of Grothendieck. Up to

replacing G by an open subgroup, we may assume that ρ factors through the open
subgroup 1 + ℓcMn(Zℓ). Then ρ(P ) = 1. Take g ∈ Gs such that χ(g) is not a
root of unity. For t ∈ I, ρ(t) is conjugate to ρ(t)χ(g), so that M = log(ρ(t)) is
conjugate to log(ρ(t)χ(g)) = χ(g) log(ρ(t)) = χ(g)M . Thus χ(g)mtr(Mm) = tr(Mm),
so that tr(Mm) = 0 for all m ≥ 1. Therefore, M is nilpotent and ρ(t) = exp(M) is
unipotent.

Proof of Proposition 2.10. The proof is similar to a part of Deligne’s proof of [D,
Théorème 9.8].

We may assume that the index set I is finite. Let Li = [Fi] − [Gi] for Fi and Gi

lisse on [X/G]. Let x ∈ |D|. Lemma 2.12 applies to the tame fundamental group
πt

1([X(x)/D(x)], ā) (cf. [D2, 1.7.12.1] in the case x above k). Indeed, by Abhyankar’s
lemma [SGA1, XIII Corollaire 5.3], we have a short exact sequence

1 → It → πt
1([X(x)/D(x)], ā)

r
−→ π1([x/D(x)], x̄) → 1,

where It =
∏

ℓ Zℓ(1)d, d is the number of irreducible components of D ×X̄ X̄(x) and
ℓ runs through primes different from the characteristic of x. Note that for any
semisimple continuous representation ρ : πt

1([X(x)/D(x)], ā) → GLn(Qℓ) and any
g ∈ It with ρ(g) unipotent, we have ρ(g) = 1. Indeed, on each graded piece of the
monodromy filtration given by the nilpotent operator log(ρ(g)), g acts by 1.

In case (1) It acts unipotently on (Fi)ā and (Gi)ā. In case (2) there exists
an open subgroup I ′

t of It that acts unipotently on (Fi)ā and (Gi)ā. Each g ∈
W (X(x), ā) of degree 0 acts quasi-unipotently on (Fi)ā and (Gi)ā. As in the proof
of [Z2, Proposition 1.15], there exists a subgroup G < W (X(x), ā) of finite index
such that the action of g commutes with that of G up to semisimplification. By
[I3, Lemma 8.1], it suffices to consider F ∈ W (X(x), ā) of degree 6= 0. There exists
an open subgroup H < πt

1(X(x), ā) containing the image of F such that H ∩ It ⊆ I ′
t.

We may further assume that H ∩It has the form NIt for an integer N > 0 invertible
on x. Let Ȳ(y) be the normalization of X̄(x) in the pointed finite étale cover (Y(y), b̄)

of (X(x), ā) corresponding to H . Then F ∈ W (Y(y), b̄). Moreover, Ȳ(y) is regular and
the inverse image of D is a normal crossing divisor. Indeed, if X̄(x̄) and Ȳ(ȳ) denote
the strict Henselizations and the irreducible components of D ×X̄ X̄(x̄) are defined

by t1, . . . , td, then Ȳ(ȳ) ≃ X̄(x̄)[t
1/N
1 , . . . , t

1/N
d ]. Therefore, up to replacing X̄ by Ȳ

quasi-finite over X̄ giving rise to Ȳ(y), we may assume that It acts unipotently on
(Fi)ā and (Gi)ā.

Then the semisimplifications of Fi|[X(x)/D(x)] and Gi|[X(x)/D(x)] factor through r,

so that Li|[X(x)/D(x)] is the pullback of Mi ∈ K(ξ,Qℓ) via r, where ξ = [x/D(x)].

Let j : [X/G] → [X̄/G] be the open immersion. By Theorem 2.3, (Rj∗Li)i∈I is
compatible. By projection formula,

Mi ⊗Qℓi
(Rj∗Qℓi

)ξ ≃ (Rj∗Li)ξ.
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Gabber’s absolute purity theorem, extended to Deligne-Mumford stacks in the proof
of Proposition 2.5, implies (see [I2, Theorem 7.2], [R, Corollaire 3.1.4])

(Rmj∗Qℓ)ξ ≃







Qℓ(−m)(
d

m) 0 ≤ m ≤ d,

0 otherwise.

Thus for F ∈ W (ξ, x̄) of degree n,

tr(F, (Rj∗Qℓ)x̄) = (1 − qn)d.

It follows that for n 6= 0, tr(F, (Mi)x̄) can be recovered from tr(F, (Rj∗Li)x̄). There-
fore, (Mi)i∈I is compatible by Remark 2.4.

Proposition 2.13. Let X be an integral normal scheme separated of finite type
over S and let (Li) ∈

∏

i∈I Klisse(X,Qℓi
) be a compatible system with I finite. Then

there exist a proper morphism f : X ′ → X with X ′ integral normal inducing a
universal homeomorphism f−1(U) → U for some nonempty open U ⊆ X, and a
normal compactification X ′ ⊆ X̄ ′ over S, such that (f ∗Li)i∈I is compatible on X̄ ′.

Proof. We write Li = ([Fi] − [Gi]) ⊗Zℓi

Qℓi
. There exists a connected finite étale

cover Y → X, Galois of group G, such that Fi ⊗Zℓi

Zℓi
/2ℓZℓi

and Gi ⊗Zℓi

Zℓi
/2ℓZℓi

are constant.
Let S0 be the closed point of S if XK is empty and S otherwise. We apply

Gabber’s refinement of de Jong’s equivariant alterations [dJ] in the form of [Z2,
Lemme 3.8], to the G-equivariant morphism Y → T , where T is the normalization
of S0 in Y . There exists a Galois alteration (Z, H) → (Y, G) and an H-equivariant
open immersion Z ⊆ Z̄ with Z̄ regular and projective over S. Moreover, there exists
an H-stable open subscheme V ⊆ Z whose complement in Z̄ is a normal crossing
divisor. Let f : X ′ := Z/H → Y/G ≃ X. By the definition of Galois alteration,
there exists a nonempty H-stable affine open subscheme V0 ⊆ V on which H acts
freely and a nonempty open subscheme U ⊆ X such that f induces a universal
homeomorphism f−1(U) → U .

By Proposition 2.10, (Li|[V/H])i∈I is compatible on [Z̄/H ]. By Remark 2.7 (3),
(Li|V0/H)i∈I is compatible on X̄ ′ := Z̄/H , and the proposition follows.

Lemma 2.14. Let f : Y → X be a universal homeomorphism between normal
schemes separated of finite type over a Noetherian Nagata scheme T . Then for
any normal compactification Ȳ of Y over T , there exists a commutative diagram
over T

Y � � //

f

��

Ȳ

f̄
��

X � � // X̄,

where X̄ is a normal compactification of X over T and f̄ is a universal homeomor-
phism identifying Ȳ with the normalization of X̄ in Y .

Proof. We may assume X connected and that f is not an isomorphism. Let K(X) ⊆
K(Y ) be the fraction fields. There exists n such that K(Y )pn

⊆ K(X), where p > 0

9



is the characteristic of K(X). Up to replacing T by a closed subscheme, we may

assume X → T dominant. The n-th relative Frobenius factors as Y
f
−→ X → Y (pn).

We take X̄ to be the normalization of Ȳ (pn) in X. The morphism f̄ : Ȳ → X̄ is
finite, surjective, and radicial, hence a universal homeomorphism.

Proof of Theorem 1.2. We may assume X reduced. By Proposition 2.13 and Lemma
2.14, there exist an integral normal open subscheme X0 ⊆ X and a normal com-
pactification X0 ⊆ X̄0 such that (Li|X0)i∈I is compatible on X̄0. We conclude by
Noetherian induction.

The theorem takes the following form in the case of curves, which is a theorem
of Deligne [D, Théorème 9.8] in the case of curves over finite fields.

Corollary 2.15. Let X̄ be a smooth curve over k or K and let X ⊆ X̄ be a dense
open subscheme. Then any compatible system (Li) ∈

∏

i∈I Klisse(X,Qℓi
) is compatible

on X̄.

In this case, one may also directly adapt the proof of Proposition 2.10 with πt
1

replaced by π1.

Remark 2.16. Every pair of compactifications Y ⊆ Ȳ1 and Y ⊆ Ȳ2 over S (inclusions
of dense open subschemes with Ȳ1 and Ȳ2 proper over S) are dominated by a third
one: there exist a compactification Y ⊆ Ȳ over S and morphisms Ȳ → Ȳ1 and
Ȳ → Ȳ2 over S inducing the identity on Y . It suffices to take Ȳ to be the closure of
the diagonal embedding Y ⊆ Ȳ1 ×S Ȳ2. In the case where Y is normal, we may even
take Ȳ to be normal by normalization.

It follows that in the situation of Theorem 1.2, every compactification Xα ⊆ X̄ ′
α is

dominated by a normal compactification Xα ⊆ X̄ ′′
α such that (Li|Xα

)i∈I is compatible
on X̄ ′′

α. This implies the following refinement of Proposition 2.13, which says that
compatible systems are compatible along the boundary up to modification.

Corollary 2.17. Let X̄ be a reduced scheme separated of finite type over S and let
X ⊆ X̄ be a dense open subscheme. Let (Li) ∈

∏

i∈I Klisse(X,Qℓi
) be a compatible

system with I finite. Then there exists a proper birational morphism f : X̄ ′ → X̄
with X̄ ′ normal such that (f ∗

XLi)i∈I is compatible on X̄ ′. Here fX : f−1(X) → X is
the restriction of f .

Proof. Up to replacing X̄ by a compactification, we may assume X̄ proper over
S. By Theorem 1.2, there exist a dense open subscheme U and a normal com-
pactification U ⊆ Ū such that (Li|U)i∈I is compatible on Ū . Let U ⊆ X̄ ′ be a
normal compactification dominating U ⊆ X̄ and U ⊆ Ū and let f : X̄ ′ → X̄ be the
morphism. Then ((f ∗

XLi)|U)i∈I is compatible on X̄ ′. We conclude by Remark 2.7
(2).

Proof of Corollary 1.3. The “if” part of (1) follows from the definition. We prove
(2) and the “only if” part of (1). We may assume I finite. Up to replacing X by
the closure of the image τ ∈ X of η, we may assume that X is irreducible of generic
point τ . Up to shrinking X, we may assume X separated and Li ∈ Klisse(X,Qℓi

)
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for all i. Let X ⊆ X̄ be a compactification over S. We apply Corollary 2.17. Let
X ′ = f−1(X). Note that (1.1) gives rise to a commutative square

η
� _

��

// X̄ ′

��
V

g
??
⑦

⑦

⑦

⑦

// S.

By the valuative criterion of properness, there exists a slashed arrow g as indicated,
making the diagram commutative. In case (1), g induces η → X ′

(x) and W (η̄/η) →

W (X ′
(x), η̄), where x = g(t). In case (2), g induces η → X ′

(g(t̄)) := X̄ ′
(g(t̄)) ×X̄′ X ′,

where X̄ ′
(g(t̄)) denotes the strict Henselization of X̄ ′ at the geometric point g(t̄), image

of the geometric point t̄ = t of V under g. The geometric point g(t̄) of X̄ ′ specializes
to a geometric point x̄ above x ∈ |X̄ ′|. We have η → X ′

(g(t̄)) → X ′
(x̄) → X ′

(x), which

induces Gal(η̄/η) → π1(X ′
(x̄), η̄) ⊆ W (X ′

(x), η̄).

Proof of Theorem 1.4. Let us first show (1) and (2b). We write Vℓ = Hm(XL̄,Qℓ).
By standard limit arguments, there exists a finitely generated sub-algebra R ⊆ L
over Fp such that X is defined over B = Spec(R): there exists f : X → B proper
smooth such that X ≃ X ×B η, where η = Spec(L). By Grothendieck trace formula,
the system (Rf∗Qℓ)ℓ on B is compatible. Each Rmf∗Qℓ is lisse and pure of weight m.
It follows that (Rmf∗Qℓ)ℓ is compatible. By base change, (Rmf∗Qℓ)η̄ ≃ Vℓ ⊗Qℓ

Qℓ.
Applying Corollary 1.3 to composition of the commutative square

η
� _

��

// B

��
Spec(OL) // Spec(Fp)

and the closed immersion Spec(Fp) → Spec(OK), where OK is any Henselian dis-
crete valuation ring of residue field Fp, we see that tr(F, Vℓ) is a rational number
independent of ℓ. In case (1), the eigenvalues are roots of unity by Grothendieck’s
geometric local monodromy theorem [SGA7-1, Variante 1.3]. In case (2b), the eigen-
values are algebraic integers by a theorem of Ochiai [O, Proposition A]. It follows
that in both cases tr(F, Vℓ) is a rational integer independent of ℓ.

Part (2a) follows from (2b) and the monodromy weight conjecture, which is a
theorem of Terasoma [T, Lemma 1.2] and more generally Ito [I, Proposition 7.1] in
equal characteristic. Indeed, grM

i V is pure of weight m+ i, so that the characteristic
polynomial of F on grM

i V can be extracted from the characteristic polynomial of F
on V .

The proof of Theorem 1.4 relies only on the special case of Theorem 1.2 with S
replaced by Spec(Fp).

Remark 2.18.
(1) Ito’s proof of the monodromy weight conjecture [I] in equal characteristic and

Grothendieck’s proof of the geometric local monodromy theorem both use
Néron’s desingularization. For Theorem 1.4, the reduction to the tame case is
more involved and Néron’s desingularization does not suffice.

11



(2) Theorem 1.4 (2) implies that for each F ∈ W ≥0(κ̄/κ), tr(F, Hm(XL̄,Qℓ)
I) is a

rational integer independent of ℓ. Here I = I(L̄/L) denotes the inertia group.
The eigenvalues being algebraic integers, it suffices to show that the trace is
in Q and independent of ℓ. Consider the primitive parts of Vℓ = Hm(XL̄,Qℓ)
defined by Pi = grM

−iKer(N) for i ≥ 0. Here N : Vℓ → Vℓ(−1) is the logarithmic
of the unipotent part of the local monodromy. By the identity grM

−iVℓ = Pi ⊕
grM

−i−2Vℓ(−1), i ≥ 0, the primitive parts Pi and consequently Ker(N) are
compatible. Moreover V I

ℓ = Ker(N)I and there exists an open subgroup U of
I acting trivially on Ker(N), so that tr(F, V I

ℓ ) = 1
[I:U ]

∑

F ′ tr(F ′, Ker(N)) ∈ Q

is independent of ℓ. Here F ′ runs through liftings of F in Gal(L̄/L)/U .
(3) Theorem 1.4 (1) and (2b) hold in fact without the assumption that the val-

uation on OL is discrete. The proof that tr(F, Hm(XL̄,Qℓ)) is rational and
independent of ℓ is the same as above. For integrality, we apply Corollary 3.10
below.

3 Integrality along the boundary

Fix an integrally closed sub-ring A of Qℓ. A typical example is the integral closure
of Z in Qℓ. Recall from [Z, Variantes 5.11, 5.13] that a Qℓ-sheaf F on a scheme
X of finite type over S is said to be integral if for every x ∈ |X|, the eigenvalues
of F ∈ W ≥0(x̄/x) on Fx̄ belong to A. In this section, we study the integrality of
integral sheaves on the boundary.

Definition 3.1. Let X̄ be a normal scheme of finite type over S and let X be a
dense open subscheme. Let F be a lisse Qℓ-sheaf on X. We say that F is integral
on X̄ if for every x ∈ |X̄| and every geometric point ā → X(x), the eigenvalues of
every F ∈ W ≥0(X(x), ā) on Fā belong to A.

We have the following analogues of Remarks 2.7 (1) and 2.8. A lisse Qℓ-sheaf F
on X is integral on X if and only if it is integral. Moreover, in Definition 3.1 we
may restrict to x closed in X̄.

Remark 3.2. Let f : X̄ → Ȳ be a finite surjective morphism of integral normal
schemes of finite type over S and let X ⊆ X̄, Y ⊆ Ȳ be nonempty open subschemes
satisfying f(X) ⊆ Y . Let g : X → Y be the restriction of f . Then a lisse Qℓ-sheaf
F on Y is integral on Ȳ if and only if g∗F is integral on X̄.

The “only if” part is obvious. For the “if” part, up to shrinking X and Y as in
Remark 2.7 (2), we may assume that g is the composition of a universal homeomor-
phism with a finite étale morphism. In this case, for every x ∈ X̄, π1(X(x), ā) is an
open subgroup of π1(Y(f(x)), f(ā)), say of index m. Then for each eigenvalue λ of
F ∈ W ≥0(Y(f(x)), f(ā)) acting on Fā, we have λm ∈ A so that λ ∈ A.

We have the following analogue of Theorem 1.2.

Theorem 3.3. Let X be a scheme of finite type over S and let F be an integral
lisse Qℓ-sheaf on X. Then there exists a finite stratification X =

⋃

α Xα by normal
subschemes such that each Xα admits a normal compactification X̄α over S such
that F|Xα

is integral on X̄α.
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The theorem implies, by Remark 2.16, that every compactification Xα ⊆ X̄ ′
α is

dominated by a normal compactification Xα ⊆ X̄ ′′
α such that F|Xα

is integral on
X̄ ′′

α.

Corollary 3.4. Let X̄ be a projective smooth curve over k or K and let X ⊆ X̄ be
a dense open subscheme. Then any integral lisse Qℓ-sheaf F on X is integral on X̄.

The case of a curve over a finite field is a theorem of Deligne [D2, Théorème
1.10.3].

The proof of Theorem 3.3 relies on the case m = 0 of the following theorem
[Z, Théorème 2.5, Variantes 5.11, 5.13].

Theorem 3.5. Let f : X → Y be a morphism of schemes of finite type over S. Let
F be an integral Qℓ-sheaf on X. Then Rmf∗F is integral for all m.

The analogue for Rmf! was proved by Deligne and Esnault ([SGA7-2, XXI
Théorème 5.2.2], [E, Appendix, Theorem 0.2]). We refer to [Z] for a description
of the behavior of integral sheaves under other operations.

Corollary 3.6. Let X be a scheme of finite type over S and let F be a lisse Qℓ-sheaf
on X. Assume that F|U is integral for some dense open subscheme U ⊆ X. Then
F is integral.

In the case X of finite type over k, this was noted in [Z4, Proposition 2.4].

Proof. Up to replacing X by its normalization, we may assume X normal. Let
j : U → X be the open immersion. Then F ≃ j∗(F|U) in integral by Theorem
3.5.

Proposition 3.7. Let X̄ be a regular scheme of finite type over S and let D be a
normal crossing divisor. Let F be an integral lisse Qℓ-sheaf on X = X̄ − D, tamely
ramified on X̄. Then F is integral on X̄. Moreover, Rmj∗F(m) is integral for all
m, where j : X → X̄ is the open immersion.

We will only need the first assertion. Some cases of the second assertion were
proved in [Z2, Proposition 3.8, Variantes 5.11, 5.13].

Proof. We may assume that D =
∑

i∈I Di is a strict normal crossing divisor with
Di regular and defined globally by ti = 0, and F is L-ramified, where L is the set
of prime numbers invertible on X̄. We apply the construction of [D2, 1.7.9]. For
J ⊆ I, let D∗

J =
⋂

j∈J Dj ∩
⋂

i∈J−I(X̄ − Di). For each locally constant constructible

sheaf of sets G on X, L-ramified on X̄, there exists an integer n invertible on X̄
such that G extends to G′ on the cover X̄[t

1/n
i ]i∈I of X̄, and we let G[D∗

J ] denote the
restriction of G′ to D∗

J , which is locally constant constructible. The action of µI
n on

X̄[t
1/n
i ]i∈I induces an action of µJ

n on G[D∗
J ] (as µJ

n acts trivially on D∗
J). Extending

this construction to Qℓ-sheaves by taking limits, we obtain a lisse Qℓ-sheaf F [D∗
J ]

on D∗
J equipped with an action of IJ

L , where IL = ẐL(1).
Let us show that F [D∗

J ] is integral. For J ⊆ J ′ ⊆ I, F [D∗
J ′] = F [D∗

J ][D∗
J ′].

Thus by induction we may assume #J = 1. Changing notation, it suffices to show
that F [D] is integral for D a regular divisor defined by t = 0. By Grothendieck’s
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arithmetic local monodromy theorem applied to the Henselization of X̄ at the generic
point of D, the action of IL = ẐL(1) on F [D] is quasi-unipotent. Up to replacing
X̄ by X̄[t1/n], we may assume that the action of IL on F [D] is unipotent. Let
N : F [D] → F [D](−1) be the logarithm of the action of IL and let M be the local
monodromy filtration on F [D]. Then Ker(N) = F [D]IL ≃ (j∗F)|D, which is integral
by Theorem 3.5. Thus the primitive parts Pi = grM

−iKer(N) are integral. It follows
that grM

i F [D] ≃
⊕

j Pj(−
j+i

2
) is integral. Here j runs through integers j ≥ |i|

satisfying j ≡ i (mod 2). Therefore F [D] is integral.
Let x ∈ D∗

J . We have an exact sequence

(3.1) 1 → It → πt
1(X(x), ā)

r
−→ Gal(x̄/x) → 1.

By Lemma 2.12, there exists an open subgroup V of It acting unipotently on Fā.
Assume x ∈ |D∗

J | and let F ′ denote the semisimplification of F|X(x)
. Then V acts

trivially on F ′
ā. The choice of a geometric point of limn X(x)[t

1/n
i ]i∈I above ā gives a

section s of r and F [D∗
J ]x corresponds to the action of Gal(x̄/x) on Fā via s. Then

U = V · Im(s) is an open subgroup of πt
1(X(x), ā). For F ∈ U , the eigenvalues of

F acting on Fā are the same as the eigenvalues of r(F ) acting on F [D∗
J ]x̄, which

belong to A if F ∈ W ≥0. It follows that F is integral on X̄.
For the second assertion of the proposition, note that the restriction of Rmj∗F to

D∗
J is Hm(IJ

L , F [D∗
J ]). Since taking invariants H0(IL, −) = (−)IL and coinvariants

H1(IL, −)(1) ≃ (−)IL
preserve integral sheaves, the same holds for Hm(IJ

L, −)(m) ≃
⊕

K(−)
IJ−K

L

IK

L

, where K ⊆ J runs through subsets of cardinality m.

The rest of the proof of Theorem 3.3 is similar to that of Theorem 1.2. We
proceed by Noetherian induction and reduce by Lemma 2.14 to proving the following.

Proposition 3.8. Let X be an integral normal scheme separated of finite type over
S and let F be an integral lisse Qℓ-sheaf on X. Then there exist a proper mor-
phism f : X ′ → X with X ′ connected normal inducing a universal homeomorphism
f−1(U) → U for some nonempty open U ⊆ X, and a normal compactification
X ′ ⊆ X̄ ′ over S such that f ∗F is integral on X̄ ′.

Proof. The proof is similar to that of Proposition 2.13, except that here we do not
need to work with stacks. We write F = (F0) ⊗Zℓ

Qℓ. There exists a finite étale

cover Y → X, Galois of group G, such that F0 ⊗Zℓ
Zℓ/ℓZℓ is constant. We apply

the second paragraph of the proof of Proposition 2.13. Since F|V is tamely ramified
on Z̄, F|V is integral on Z̄ by Proposition 3.7. Thus, by Remark 3.2, f ∗F is integral
on X̄ ′, and the proposition follows.

The same proof, with Proposition 3.7 replaced by Lemma 2.12 applied to (3.1),
yields the following result on quasi-unipotence.

Theorem 3.9. Let X be a scheme of finite type over S and let F be a lisse Qℓ-sheaf
on X. Then there exists a finite stratification X =

⋃

α Xα by normal subschemes
such that each Xα admits a normal compactification X̄α over S such that for every
geometric point x̄ → X̄, and every geometric point ā → (Xα)(x̄) := (X̄α)(x̄) ×X̄α

Xα,
the action of π1((Xα)(x̄), ā) on Fā is quasi-unipotent. Here (X̄α)(x̄) denotes the strict
Henselization.
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The analogues of Corollaries 2.17 and 1.3 hold with the same proofs. Let us
state the analogue of Corollary 1.3.

Corollary 3.10. Let X be a scheme of finite type over S and let F be Qℓ-sheaf
on X. Then F is integral if and only if for every commutative square (1.1) with
t quasi-finite over S, the eigenvalues of every F ∈ W ≥0(η̄/η) acting on Fη̄ belong
to A. Moreover, if (1.1) is a commutative square with V strictly Henselian, then
the action of Gal(η̄/η) on Fη̄ is quasi-unipotent.

4 Ramified and decomposed parts of the funda-

mental group

In this section we give applications related to Vidal’s ramified part of the funda-
mental group [V2, Section 1.2]. We show that compatible systems have compatible
ramification (Corollary 4.6), and consequently, their reductions have compatible wild
ramification (Corollary 4.14).

Let us first review the definition of the ramified part of the fundamental group.
Let T be the spectrum of an excellent Henselian discrete valuation ring of residue
characteristic exponent p ≥ 1.

Definition 4.1 (Vidal). Let X be an integral normal scheme separated of finite
type over T and let ā be a geometric generic point of X. Let X ⊆ X̄ be a normal
compactification over T . Let x̄ → X̄ be a geometric point above x ∈ X̄ and let X̄(x̄)

denote the strict Henselization. Let b̄ → X(x̄) := X ×X̄ X̄(x̄) be a geometric point
above ā. We define the following closed subsets of π1(X, ā), each of which is a union
of subgroups:

• The subgroup EX,X̄,x,b̄ = Im(π1(X(x̄), b̄) → π1(X, ā)). See Remark 4.2 (1)
below for the justification of the subscript x instead of x̄.

• EX,X̄ is the closure of
⋃

x,b̄ EX,X̄,x,b̄, where x runs through points of X̄ and b̄
runs through geometric points above ā.

• The ramified part EX/T =
⋂

X̄ EX,X̄ , where X̄ runs through normal compacti-
fications of X over T .

The subsets EX,X̄ and EX/T are stable under conjugation.

Remark 4.2.
(1) We have a short exact sequence

1 → π1(X(x̄), b̄)
i

−→ π1(X(x), b̄)
ρ
−→ π1(X̄(x), b̄) → 1,

where π1(X̄(x), b̄) ≃ Gal(x̄/x). The image of i depends on x̄ only via x and

depends on b̄ as a geometric point of X(x).
(2) For any specialization x̄ → X(ȳ), we have EX,X̄,x,b̄ ⊆ EX,X̄,y,b̄. Thus in the

definition of EX,X̄ , we may restrict to closed points x ∈ X̄.
(3) It follows from Gabber’s valuative criterion [V2, Section 6.1] that for any finite

stratification X =
⋃

α Xα into integral normal subschemes, EX/T is the closure
of

⋃

α,γα
γα(EXα/T ), where γα runs through paths from a geometric generic

point āα → Xα to ā → X.
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Recall that S is the spectrum of an excellent Henselian discrete valuation ring
of finite residue field.

Definition 4.3. Let X be a scheme of finite type over S. We say that a system
(Li) ∈

∏

i∈I K(X,Qℓi
) has compatible ramification if for every separated integral

normal subscheme Y ⊆ X, (tr(g, (Li)ā))i∈IY
is compatible for all g ∈ EY/T . Here

ā is a geometric generic point of Y , IY ⊆ I is the subset of i such that Li|Y is in
Klisse(Y,Qℓi

).

Remark 4.4. Let X be an integral normal scheme separated of finite type over S and
let F be a lisse Qℓ-sheaf on X. Then the action of EX/S on Fā is quasi-unipotent.
This follows from Theorem 3.9, Remark 4.2 (3), and the fact that quasi-unipotent
matrices form a closed subset of GLn(Qℓ) (Remark 2.11).

Combining this with Gabber’s valuative criterion [V2, Section 6.1], we obtain
the following valuative criterion for compatible ramification.

Lemma 4.5. Let X be a scheme of finite type over S. Then (Li) ∈
∏

i∈I K(X,Qℓi
)

has compatible ramification if and only if for every commutative square (1.1) with
V strictly Henselian, tr(F, (Li)η̄)i∈I is compatible for all F ∈ Gal(η̄/η).

Proof. We may assume I finite, X integral normal separated, and Li = [Fi] − [Gi]
with Fi and Gi lisse, respectively of rank mi and ni. Consider the continuous map

σ : EX/S → C =
∏

i∈I

(P mi,qu
ℓi

× P ni,qu
ℓi

)

carrying g to (det(g − T · 1, (Fi)ā), det(g − T · 1, (Gi)ā)), where P r,qu
ℓi

is as in Remark
2.11. Gabber’s criterion says that EX/S is the closure of the union of the images of
Gal(η̄/η). Since C is discrete, σ(EX/S) is the union of the images of Gal(η̄/η).

Corollary 1.3 (2) now takes the following form.

Corollary 4.6. Let X be a scheme of finite type over S. Then any compatible
system (Li) ∈

∏

i∈I K(X,Qℓi
) has compatible ramification.

Let P be a set of prime numbers. Given a profinite group G, we let GP ⊆ G
denote the subset of elements g such that all prime factors of the supernatural order
of g are contained in P . Note that GP is a closed subset stable under conjuga-
tion, union of subgroups of G. For a continuous homomorphism of profinite groups
α : G → H , we have α(GP ) = α(G) ∩ HP .

We write (p) = {p} for p > 1 and (p) = ∅ for p = 1. Then G(p) is the union of
the p-Sylow subgroups of G.

Notation 4.7. In the situation of Definition 4.1, for G = π1(X, ā), we write

EP
X,X̄,x,b̄ = EX,X̄,x,b̄ ∩ GP , EP

X,X̄ = EX,X̄ ∩ GP , EP
X/T = EX/T ∩ GP .

Remark 4.8. Alternatively we can define these subsets as follows:
• EP

X,X̄,x,b̄
= Im(π1(X(x̄), b̄)P → π1(X, ā)).

• EP
X,X̄

is the closure of
⋃

x,b̄ EP
X,X̄,x,b̄

, where x runs through points of X̄ and b̄
runs through geometric points above ā.
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• EP
X/T =

⋂

X̄ EP
X,X̄

, where X̄ runs through normal compactifications of X
over T .

For P = (p), E
(p)
X/T is called the wildly ramified part of the fundamental group

and was defined by Vidal [V, 2.1]. Our notation differs from that of Vidal, who

writes E ′
X/T and EX/T for our EX/T and E

(p)
X/T , respectively.

Next we define compatible P -ramification for systems of Fℓ-sheaves, where Fℓ

denotes an algebraic closure of Fℓ. For a profinite group G, an element g ∈ G that is
ℓ-regular (namely, of supernatural order prime to ℓ), and a virtual Fℓ-representation
M of G, the Brauer trace is defined by trBr(g, M) =

∑

λ[λ], where λ runs through
eigenvalues of g acting on M (with multiplicities), and [λ] denotes the Teichmüller
lift. Note that trBr(g, M) is a sum of roots of unity (of order prime to ℓ) in Qℓ.

Let X be a scheme of finite type over T . Let K(X,Fℓ) denote the Grothendieck
group of constructible Fℓ-sheaves. Recall that we fixed field embeddings ιi : Q → Qℓi

for i ∈ I.

Definition 4.9. Assume that P does not contain any ℓi. We say that a system
(Li) ∈

∏

i∈I K(X,Fℓi
) has compatible P -ramification if for every separated integral

normal subscheme Y ⊆ X, (trBr(g, (Li)ā))i∈IY
is compatible for all g ∈ EP

Y/T . Here
ā is a geometric generic point of Y , IY ⊆ I is the subset of i such that Li|Y is in
Klisse(Y,Fℓi

). We say that (Li)i∈I has compatible wild ramification if it has compat-
ible (p)-ramification.

In the special case ℓi = ℓ and Q = Qℓ, one recovers the notion of same wild
ramification of Deligne [I] and Vidal [V]. A weaker condition was recently studied
by Saito and Yatagawa ([SY], [Y]). In [G2] Guo shows that systems of compatible
wild ramification in the sense of Definition 4.9 are preserved by Grothendieck’s six
operations and duality.

Gabber’s valuative criterion [V2, Section 6.1] implies the following valuative
criterion for compatible P -ramification.

Lemma 4.10. Let X be a scheme of finite type over T . Then (Li) ∈
∏

i∈I K(X,Fℓi
)

has compatible P -ramification if and only if for every commutative square

η
� _

��

// X

��
Spec(OL) // T

where OL is a strictly Henselian valuation ring of fraction field L and η = Spec(L),
(trBr(g, (Li)η̄)) is compatible for all g ∈ Gal(η̄/η)P . Here η̄ → η is a geometric point.

Remark 4.11. Let X be an integral normal scheme separated of finite type over T
and let (Li) ∈

∏

i∈I Klisse(X,Fℓi
) with I finite. Then (Li)i∈I has compatible P -

ramification if and only if there exists a normal compactification X ⊆ X̄ over T
such that (trBr(g, (Li)ā))i∈I is compatible for all g ∈ EP

X,X̄
.

Indeed, for any finite quotient G of π1(X, ā), if we let EP
X,X̄

(G) and EP
X/T (G)

denote respectively the images of EP
X,X̄

and EP
X/T in G, then we have EP

X/T (G) =

17



⋂

X̄ EP
X,X̄

(G) by Lemma 4.12 below, and it follows that EP
X/T (G) = EP

X,X̄
(G) for some

X̄. Here we used the fact that any pair of normal compactifications is dominated
by a third one (cf. Remark 2.16).

Lemma 4.12. Let Π be a topological space and let B be a downward directed set of
closed subsets of Π: for E1, E2 ∈ B, there exists E ∈ B such that E ⊆ E1 ∩ E2. Let
σ : Π → C be a map such that all fibers are compact. Then σ(

⋂

E∈B E) =
⋂

E∈B σ(E).

Proof. We have σ(
⋂

E∈B E) ⊆
⋂

E∈B σ(E). Conversely, let g ∈ C −σ(
⋂

E∈B E). Then
σ−1(g) ∩

⋂

E∈B E = ∅. Since σ−1(g) is compact, there exist E1, . . . , En ∈ B such
that σ−1(g) ∩

⋂n
i=1 Ei = ∅. Since B is downward directed, there exists E ∈ B such

that σ−1(g) ∩ E = ∅. In other words, g ∈ C −
⋂

E∈B σ(E).

Definition 4.13. Let Eλ by a finite extension of Qℓ, of ring of integers Oλ and
residue field Fλ. Consider the composition

K(X, Eλ)
(j∗)−1

−−−→
∼

K(X, Oλ)
i∗

−→ K(X,Fλ),

where j∗ is given by −⊗Oλ
Eλ and i∗ is given by −⊗L

Oλ
Fλ. By [Z3, Proposition 9.4],

j∗ is an isomorphism and i∗ is a surjection. Taking colimit, we get the decomposition
map

dX : K(X,Qℓ) → K(X,Fℓ),

which is a surjection.

It follows from the definition that if (Li) ∈
∏

i∈I K(X,Qℓi
) has compatible ramifi-

cation, then (dX(Li)) ∈
∏

i∈I K(X,Fℓi
) has compatible P -ramification. Thus Corol-

lary 4.6 implies the following.

Corollary 4.14. Let X be a scheme of finite type over S. Let (Li) ∈
∏

i∈I K(X,Qℓi
)

be a compatible system. Then (dX(Li)) ∈
∏

i∈I K(X,Fℓi
) has compatible P -ramification,

where P is the set of primes not equal to any ℓi. In particular, (dX(Li))i∈I has com-
patible wild ramification.

Next we define the decomposed part of the fundamental group. The first three
steps of the definition are analogous to Definition 4.1, with inertia groups (associated
to strict Henselizations) replaced by decomposition groups (associated to Henseliza-
tions).

Definition 4.15. Let X be an integral normal scheme separated of finite type
over T and let ā be a geometric generic point of X. Let X ⊆ X̄ be a normal
compactification over T . Let x ∈ X̄ be a point and let b̄ → X(x) be a geometric
point above ā. Let X =

⋃

α Xα be a finite stratification of X into integral normal
subschemes. We define the following closed subsets of π1(X, ā), each of which is a
union of subgroups:

• The subgroup DX,X̄,x,b̄ = Im(π1(X(x), b̄) → π1(X, ā)).
• DX,X̄ is the closure of

⋃

x,b̄ DX,X̄,x,b̄, where x runs through locally closed points

of X̄ and b̄ runs through geometric points above ā.
• Dnaive

X/T =
⋂

X̄ DX,X̄ , where X̄ runs through normal compactifications of X over
T .
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• DX/T,(Xα) is the closure of
⋃

α,γα
γα(Dnaive

Xα/T ), where γα runs through paths from
a geometric generic point āα → Xα to ā → X.

• The decomposed part DX/T =
⋂

DX/T,(Xα), where (Xα) runs through finite
stratifications of X into integral normal subschemes.

Except for DX,X̄,x,b̄, the above subsets are stable under conjugation.
The definition is functorial in an obvious sense, which we specify for Dnaive

X/T and
DX/T . Given a morphism f : X → Y of integral normal schemes of finite type over
T and a path γ from ā → X to a geometric generic point ā′ → Y , the induced
homomorphism γ : π1(X, ā) → π1(Y, ā′) satisfies γ(Dnaive

X/T ) ⊆ Dnaive
Y/T and γ(DX/T ) ⊆

DY/T . We have DX/T ⊆ DX/T,(Xα) ⊆ Dnaive
X/T , where the second inclusion follows from

the functoriality of Dnaive
X/T .

Remark 4.16.
(1) In the absence of a valuative criterion, we performed the last two steps in the

definition to ensure that for any finite stratification (Xα) of X into integral
normal subschemes, DX/T is the closure of

⋃

α,γα
γα(DXα/T ), where γα runs

through paths from a geometric generic point āα → Xα to ā → X.
(2) If a denotes the generic point of X, then DX,X̄,a,ā = π1(X, ā). On the other

hand, for x ∈ X̄ locally closed, the closure {x} is finite over T and if we let y
denote the closed point of {x}, then we have a canonical morphism X(x) → X(y)

as in Remark 2.8, so that DX,X̄,x,b̄ ⊆ DX,X̄,y,b̄. Thus, in the definition of DX,X̄ ,

we may restrict to closed points x ∈ X̄.
(3) For x ∈ X̄ closed, the exact sequence in Remark 4.2 (1) induces an exact

sequence
1 → EX,X̄,x,b̄ → DX,X̄,x,b̄ → π1(X̄(x), b̄) → 1.

Indeed, in the commutative square

π1(X(x), b̄)
ρ

//

τ

��

π1(X̄(x), b̄)

ι

��
π1(X, ā)

σ // π1(T, ā),

ι is an injection, so that Ker(τ) ⊆ Ker(ρ). Let K = Ker(σ). Then

EX,X̄,x,b̄ = K ∩ DX,X̄,x,b̄, EX,X̄ ⊆ K ∩ DX,X̄ , EX/T ⊆ K ∩ DX/T .

(4) Assume T = S. If Xk is geometrically unibranch, then DX/S contains the
image of π1(Xk). Indeed, DXk/S ⊆ π1(Xk) contains the Frobenius element at
every x ∈ |Xk|, so that DXk/S = π1(Xk) in this case by Chebotarev’s density
theorem. If moreover X is proper over S so that π1(Xk) ≃ π1(X) [SGA4-3, XII
Théorème 5.9], then DX/S = π1(X, ā). The equality does not hold in general,
even for X proper over S.

Theorem 1.2 implies the following density result.

Corollary 4.17. Let X be an integral normal scheme separated of finite type over S.
Then DX/S is the closure of

⋃

x̄,γ γ(W (x̄/x)), where x̄ runs through geometric points
of X above x ∈ |X| and γ runs through paths from x̄ → x to ā → X.
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In the corollary, we may replace W (x̄/x) by W ≥N(x̄/x), which is a dense subset
of W (x̄/x) for the profinite topology. Moreover, we may restrict to closed points
x ∈ X as in Remark 2.8.

Proof. Let C be the closure of
⋃

x̄,γ γ(W (x̄/x)). We have C ⊆ DX/S . Let G be a
finite quotient of π1(X, ā) and let C(G) and D(G) denote respectively the images
of C and DX/S in G. It suffices to show that for any pair of Qℓ-characters χ and
χ′ of G satisfying χ|C(G) = χ′|C(G), we have χ|D(G) = χ′|D(G). Let F and F ′ be the
corresponding lisse Qℓ-sheaves on X. Then F and F ′ are compatible (for Q = Qℓ).
We apply Theorem 1.2. Since DX/S ⊆

⋃

α,γα
γα(Dnaive

Xα/S) ⊆
⋃

α,γα
γα(DXα,X̄α

), every

g ∈ D(G) is in the image of some π1((Xα)(x), b̄) for x closed in X̄α, which equals the

image of W ((Xα)(x), b̄). Thus χ|D(G) = χ′|D(G).
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