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Anst a t We classify compact Kéhler manifolds with semi-positive holomorphic
bisectional and big tangent bundles. We also classify compact complex surfaces with
semi-positive tangent bundles and compact complex 3-folds of the form P(7T*X)
whose tangent bundles are nef. Moreover, we show that if X is a Fano manifold such
i};‘hat P(T*X) has nef tangent bundle, then X = P".
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Since the seminal works of Siu-Yau and Mori on the solutions to the Frankel conjecture
[37] and Hartshorne conjecture [32], it became apparent that positivity properties of
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X. Yang

the tangent bundle define rather restricted classes of manifolds. Combining algebraic
and transcendental tools, Mok proved the following uniformization theoremin [31]: ifa
compact Kidhler manifold (X, w) has semi-positive holomorphic bisectional curvature,
then its universal cover is isometrically biholomorphic to (Ck, wo) x PN, ) x - -+ x
(PNe, we) X (My,n1) X -+ X (Mg, ni) where wq is flat; wg, 1 < k < £, is a Kéhler
metric on PM with semi-positive holomorphic bisectional curvature; (M;, n;) are
some compact irreducible Hermitian symmetric spaces. Along the line of Mori’s work,
Campana-Peternell [7] studied the projective manifolds with nef tangent bundles (see
also [45,47]); Demailly-Peternell-Schneider [12] investigated extensively the structure
of compact complex manifolds with nef tangent bundles by using algebraic techniques
as well as transcendental methods (e.g. the work [10] of Demailly). For more details,
we refer to [6,8,13,34] and the references therein.

In the same spirit, Sold Conde and Wisniewski classified projective manifolds with
1-ample and big tangent bundles:

T + + 1.1 [38, Theoreom 1.1] Let X be a complex projective manifold of dimen-
sion n. Suppose that the tangent bundle T X is big and 1-ample. Then X is isomorphic
either to the projective space P" or to the smooth quadric Q", or if n = 3 to complete
flags F(1; 2; C3) in C3 (which is the same as the projective bundle P(T*P?) over P?).

A vector bundle E is called big if the tautological line bundle Op(g+) (1) of P(E™)
is big. The 1-ampleness is defined by Sommese in [39, Definition 1.3]: E is called 1-
ample, if Op(g+) (1) is semi-ample and suppose for some k > 0, Op(g+) (k) is globally
generated, then the maximum dimension of the fiber of the evaluation map

B(E") — B (HO(B(E"). Opesr) (k)

is < 1. Itis also pointed out in [35, p. 127] that, 1-ampleness is irrelevant to the metric
positivity of E (cf. Theorem 1.6).

In this paper, we investigate big vector bundles and complex manifolds with semi-
positive tangent bundles, i.e. the tangent bundles are semi-positive in the sense of
Griffiths, or equivalently, there exist Hermitian metrics (not necessarily Kéhler) with
semi-positive holomorphic bisectional curvature.

The first main result of our paper can be viewed as a “metric” analogue of
Kawamata-Reid-Shokurov base point free theorem for tangent bundles.

T v v 1.2 Let (X, w) be a compact Kihler manifold with semi-positive holomor-
phic bisectional curvature. Then the following statements are equivalent

1. The anti-canonical line bundle K;l is ample;
2. The tangent bundle T X is big;

3. The anti-canonical line bundle K Uis big;

4. ¢} (X) > 0.

One may wonder whether similar results hold for abstract vector bundles. Unfortu-
nately, there exists a vector bundle E which is semi-positive in the sense of Griffiths,
and det(E) is ample (in particular, det(E) is big), but E is not a big vector bundle.
Indeed, one can see clearly that the underlying manifold structure of the tangent bundle
is essentially used in the proof of Theorem 1.2.
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Big vector bundles and complex manifolds...

Example 1.3 LetE = TP>® Op2(—1) be the hyperplane bundle of P2 Ttis easy to see
that E is semi-ample and semi-positive in the sense of Griffiths and det £ = Op2(1)
is ample. However, E is not a big vector bundle since the second Segre number
s2(E) = c%(E) — c2(E) = 0 (for more details, see Example 4.10).

For abstract vector bundles, we obtain

<4 att 1.4 Let E be a nef vector bundle over a compact Kihler manifold X. If
E is a big vector bundle, then det(E) is a big line bundle.

C a y 15 If X is a compact Kdhler manifold with nef and big tangent bundle,
then K 5 Vis ample.

As an application of Theorem 1.2 and Mok’s uniformization theorem, we can clas-
sify compact Kéhler manifolds with semi-positive holomorphic bisectional curvature
and big tangent bundles, which is also analogues to Theorem 1.1.

T v+ v 1.6 Let (X, w) be a compact Kihler manifold with semi-positive holo-
morphic bisectional curvature. Suppose T X is a big vector bundle. Then there exist
non-negative numbers k, N1, ..., Ny and irreducible compact Hermitian symmetric
spaces My, ..., My of rank > 2 such that (X, w) is isometrically biholomorphic to

(P 1) x o x (PN o) x (M1 1) x -+ x (Mi i) (1.1)

where w;j, 1 < i < ¢, is a Kéihler metric on PNi with semi-positive holomorphic
bisectional curvature and ny, . .., Nk are the canonical metrics on My, . .., M.

Note that, by Theorem 1.1, the Fano manifold ]P’(T*]P’z) has nef and big tangent bun-
dle. On the other hand, it does not admit any smooth Kéhler metric with semi-positive
holomorphic bisectional curvature according to Theorem 1.6 or Mok’s uniformiza-
tion theorem. However, it is still not clear whether the tangent bundle of P(T*P?) is
semi-positive in the sense of Griffiths, or equivalently, whether P(7*P?) has a smooth
Hermitian metric with semi-positive holomorphic bisectional curvature. According to
a weaker version of a conjecture of Griffiths (e.g. Remark 3.4), P(T*P?) should have
a Hermitian metric with Griffiths semi-positive curvature since the tangent bundle
of P(T*P?) is semi-ample. As motivated by this question, we investigate complex
manifolds with semi-positive tangent bundles.

T v+ 1.7 Let (X, w) be a compact Hermitian manifold with semi-positive holo-
morphic bisectional curvature, then

1. X has Kodaira dimension —oo; or
2. X is a complex parallelizable manifold.

We also classify compact complex surfaces with semi-positive tangent bundles
based on results in [12] (see also [7,45]). In this classification, we only assume the
abstract vector bundle 7 X is semi-positive in the sense of Griffiths, or equivalently, X
has a smooth Hermitian metric with semi-positive holomorphic bisectional curvature.
Hence, even if the ambient manifold is Kihler or projective, Mok’s result can not be
applied.
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X. Yang

T v+ + 1.8 Let X be a compact Kdhler surface. If T X is (Hermitian) semi-positive,
then X is one of the following:

1. X is a torus;

2. X isP?%;

3. XisP! x PL;

4. X is a ruled surface over an elliptic curve, and X is covered by C x P!,

We need to point out that it should be a coincidence that we get the same classifica-
tion as in [19] where they considered Kéhler metrics with semi-positive holomorphic
bisectional curvature. As explained in the previous paragraphs, it is still unclear
whether one can derive the same classification in higher dimensional cases. In partic-
ular, we would like to know whether one can get the same results as in Theorem 1.6
if the Kdhler metric is replaced by a Hermitian metric.

For non-Kihler surfaces, we obtain

v v 1.9 Let (X, w) be a compact non-Kdihler surface with semi-positive holo-
T 1.9 Let (X, w) b Kiihl ith semi-positive hol
morphic bisectional curvature. Then X is a Hopf surface.

We also construct explicit Hermitian metrics with semi-positive curvature on Hopf
surface H, ; (cf. [12, Proposition 6.3]).

«4 att  1.10 On every Hopf surface H, p, there exists a Gauduchon metric with
semi-positive holomorphic bisectional curvature.

For complex Calabi-Yau manifolds, i.e. complex manifolds with c¢{(X) = 0, we
have

C a y 1.11 Let X be a complex Calabi-Yau manifold in the Fujiki class € (class
of manifolds bimeromorphic to Kahler manifolds). Suppose X has a Hermitian metric
w with semi-positive holomorphic bisectional curvature, then X is a torus.

By comparing Corollary 1.11 with Proposition 1.10, we see that the Fujiki class
condition in Corollary 1.11 is necessary since every Hopf surface H, j is a Calabi-Yau
manifold with semi-positive tangent bundle.

By using Theorem 1.7 and the positivity of direct image sheaves (Theorem 3.1)
over complex manifolds (possibly non-Kéhler), we obtain new examples on Kihler
and non-Kédhler manifolds whose tangent bundles are nef but not semi-positive. To
the best of our knowledge, it is also the first example in the manifold setting (cf. [12,
Example 1.7]).

C a y 1.12 Let X be a Kodaira surface or a hyperelliptic surface.

1. The tangent bundle T X is nef but not semi-positive (in the sense of Griffiths);
2. The anti-canonical line bundle of P(T* X) is nef, but neither semi-positive nor big.

Hence, for any dimension n > 2, there exist Kédhler and non-Kihler manifolds with
nef but not semi-positive tangent bundles.

Finally, we investigate compact complex manifolds, of the form P(7*X), whose
tangent bundles are nef. It is well-known that P(7*IP"*) is homogeneous, and its tangent
bundle is nef. We obtain a similar converse statement and yield another characterization
of P".
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Big vector bundles and complex manifolds...

<4 ati  1.13 Let X be a Fano manifold of complex dimension n. Suppose P(T* X)
has nef tangent bundle, then X = P".

In particular, for complex 3-folds, we have the following classification.

T v+ 1.14 Foracomplex 3-fold P(T*X), if P(T*X) has nef tangent bundle, then
X is exactly one of the following:

X = P2

X = T2, a flat torus;

X is a hyperelliptic surface;
X is a Kodaira surface;

X is a Hopf surface.

M INES

The paper is organized as follows: in Sect. 2, we introduce several basic terminolo-
gies which will be used frequently in the paper. In Sect. 3, we study the positivity
of direct image sheaves over complex manifolds (possibly non-Kihler). In Sect. 4,
we investigate compact Kéhler manifolds with big tangent bundles and prove Propo-
sition 1.4, Theorems 1.2 and 1.6. In Sect. 5, we study compact complex manifolds
with semi-positive tangent bundles and establish Theorems 1.7, 1.8, 1.9, Proposition
1.10, Corollaries 1.11 and 1.12. In Sect. 6, we discuss complex manifolds of the form
P(T*X) and prove Proposition 1.13 and Theorem 1.14. In the Appendix 1, we include
some straightforward computations on Hopf manifolds for the reader’s convenience.

Remark 1.15 For compact Kidhler manifolds with semi-negative holomorphic bisec-
tional curvature, there are similar uniformization theorems as Mok’s result. We refer to
[27,42] and the references therein. We have obtained a number of results for compact
complex manifolds with semi-negative tangent bundles, which will appear in [43].

2Bakg "d attias

Let E be a holomorphic vector bundle over a compact complex manifold X and &
a Hermitian metric on E. There exists a unique connection V which is compatible
with the metric 4 and the complex structure on E. It is called the Chern connection
of (E, h). Let {7/ }?_, be local holomorphic coordinates on X and {ey}/,_; be a local
frame of E. The curvature tensor RY € I'(X, A2T*X ® E* ® E) has components

25 _
9 haﬁ + hygahag ahyﬂ @2.1)

R~ = — : s Vi
ijop 371977 a7t 97/

Here and henceforth we sometimes adopt the Einstein convention for summation.

D: 11 2.1 AHermitian holomorphic vector bundle (E, &) is called positive (resp.
semi-positive) in the sense of Griffiths if

Rijaguiﬁj WP >0 (resp. > 0)
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for nonzero vectors u = (u!,...,u") and v = (v!,...,v") where n = dim¢ X and
r is the rank of E. (E, h) is called Nakano positive (resp. Nakano semi-positive) if
R~ Bui“ﬁj’s >0 (resp.>0)

ijo

for nonzero vector u = (u'%) € C"".

In particular, if (X, wg) is a Hermitian manifold, (T'OMm, wg) has Chern curvature
components

2 _
R 787 p7 08k 980 2.2)
ijke 37197/ a7t a7/ '

The (first) Chern-Ricci form Ric(wg) of (X, wg) has components

7 32 log det
R5 = gkZ Rije =— g _'(g)
! / 97197/
and it is well-known that the Chern-Ricci form represents the first Chern class of the
complex manifold X (up to a factor 27).

D: 1 2.2 Let (X, w)beacompact Hermitian manifold. (X, @) has positive (resp.
semi-positive) holomorphic bisectional curvature, if for any nonzero vector § =

&' g andn =,
Rimgi? k70 (resp. > 0).

(X, w) has positive (resp. semi-positive) holomorphic sectional curvature, if for any
nonzero vector & = (£, ..., &")

Rimgi?gk? >0 (resp. > 0).

D: 11 23 Let (X, w) be a Hermitian manifold, L — X a holomorphic line
bundle and £ — X a holomorphic vector bundle. Let Opg+)(1) be the tautological
line bundle of the projective bundle P(E*) over X.

1. L is said to be positive (resp. semi-positive) if there exists a smooth Hermitian
metric 4 on L such that the curvature form R = —+/—133 log / is a positive (resp.
semi-positive) (1, 1)-form. The vector bundle E is called ample (resp. semi-ample)
if Op(g=)(1) is a positive (resp. semi-positive) line bundle.

2. L is said to be nef (or numerically effective), if for any & > 0, there exists
a smooth Hermitian metric 2 on L such that the curvature of (L, &) satisfies
—+/—189logh > —ew. The vector bundle E is called nef if Op(g=)(1) is a nef
line bundle.

3. L is said to be big, if there exists a (possibly) singular Hermitian metric # on L
such that the curvature of (L, h) satisfies R = —v/—1 99 logh > ew in the sense
of current for some & > 0. The vector bundle E is called big, if Opg+)(1) is big.
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Big vector bundles and complex manifolds...

D+ 11 2.4 Let X be a compact complex manifold and L — X be a line bundle.
The Kodaira dimension « (L) of L is defined to be

logdime HO(X, L®™
k(L) := lim sup og dime H'( )
m——+00 logm

and the Kodaira dimension k (X) of X is defined as « (X) := «(Kx) where the loga-
rithm of zero is defined to be —oo.

By Riemann-Roch, it is easy to see that E is a big vector bundle if and only if there
are co > 0 and kg > O such that

WX, SKE) > cok" ! (2.3)

for all k > ko where dim¢ X = n and rk(E) = r. Indeed, let Y = P(E™*) and Oy (1)
be the tautological line bundle of Y, then we have

(X, S*E) = h°(Y, Oy (k) > cok" ! (2.4)

where dim¢c Y = n +r — 1. Hence, E is big if and only if Op(g+ (1) is big, if and
only if

The following well-known result will be used frequently in the paper.

v+ a25 Let L be aline bundle over a compact Kihler manifold X. Suppose L
is nef, then L is big if and only if the top self-intersection number c'{ (L) > 0 where
n = dim X.

3quuvity fdi + t1 agso avey vy v aif do

Let X be a compact complex manifold of complex dimension m 4 n, and S a smooth
complex manifold (possibly non-Kdhler) with dimension m. Let w : X — S be a
smooth proper submersion such that for any s € S, Xy := 7~ !({s}) is a compact
Kédhler manifold with dimension n. Suppose for any s € S, there exists an open
neighborhood Uj of s and a smooth (1, 1) form w on 7~ 1(Uy) such that wp = w|xp
is a smooth Kihler form on X, for any p € Uj. Let (&, h¢) — X be a Hermitian
holomorphic vector bundle. In the following, we adopt the setting in [3, Sect. 4] (see
also [29, Sect. 2.3]). Consider the space of holomorphic £-valued (n, 0)-forms on X,

Eg = HO(XSa E® KXS) = Hn’O(Xs’ &)
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where & = £|x,. Here, we assume all E have the same dimension. With a natural
holomorphic structure,

E = J{s) x Eq

seS

is isomorphic to the direct image sheaf 77, (K x /s ® ) if £ has certain positive property.

T v v 30 If(E, ht) is positive (resp. semi-positive) in the sense of Nakano, then
(K x /s ® £) is positive (resp. semi-positive) in the sense of Nakano.

Remark 3.2 When the total space X is Kéhler and £ is a line bundle, Theorem 3.1
is originally proved by Berndtsson in [3, Theorem 1.2]. When (&, h€) is a Nakano
semi-positive vector bundle, Theorem 3.1 is a special case of [33, Theorem 1.1].

It is not hard to see that the positivity of the direct image sheaves does not depend
on the base manifold S. It still works for non-Kihler S. We give a sketched proof
of Theorem 3.1 for reader’s convenience. Let A€ be a smooth Nakano semi-positive
metrics on £. For any local smooth section u of 74 (K x5 ®£), there is a representative
%of u, alocal holomorphic £-valued (r, 0) form on X, then we define the Hodge metric
on 7, (K x /s ® £) by using the sesquilinear pairing

up? = ﬂ/ (). 3.1
X,

Note that we do not specify any metric on & or S. Since X — § has Kéhler fibers, we
can use similar methods as in [3,29] to compute the curvature of the Hodge metric.
To obtain the positivity of the Hodge metric, the key ingredient is to find primitive
representatives on the Kéhler fiber X (e.g. [3, Lemma 4.3] or [29, Theorem 3.10]).
Since all computations are local, i.e. on an open subset 7 ' (U) of X where U is an
open subset of S, the computations do not depend on the property of base manifold S.
In particular, all computations in [29] and all results (e.g. [29, Theorems 1.1 and 1.6])
still work for non-Kihler base manifold S. Note that, if (£, he ) is only semi-positive,
S can be a non-Kéhler manifold.

C a y 3.3 Let X be a compact complex manifold (possibly non-Kdhler) and E —
X be a holomorphic vector bundle of rank r.

L. If Op(g+ (1) is semi-positive, then SFE® det(E) is Nakano semi-positive.
2. If det E is a holomorphic torsion, i.e. (det E)k = Oy for some k € NY, then E is
Nakano semi-positive if and only if Op(gx)(1) is semi-positive.

Proof Let Y = P(E*), L = Op+ (1) and 7 : P(E*) — X be the canonical
projection. 1. By the adjunction formula [24, p. 89], we have

Ky = L7 @ n*(Kx ® det(E)), (3.2)
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and
Ky;x = L™" ® n*(det(E)). 3.3)
Therefore,
T(Kyy)x ® L") = m (L @ n*(det E)) = S'E ® det E.
By Theorem 3.1, we deduce S¥E ® det E is semi-positive in the sense of Nakano if
L is semi-positive.

2. Suppose det E is a holomorphic torsion with (det £)" = Oy, then there exists
a flat Hermitian metric on det E and also on det E*. If L is semi-positive,

L=L"""@nx*(det E*)
is semi-positive. By formula (3.3) and Theorem 3.1, we know
. (Ky)x ® L) = m(L) = E

is semi-positive in the sense of Nakano.
On the other hand, if (E, &) is semi-positive, then the induced Hermitian metric on
L has semi-positive curvature [e.g. formula (4.9)]. O

Remark 3.4 Griffiths conjectured in [17] that E is Griffiths positive if (and only if) the
tautological line bundle Op(g+)(1) is positive. It is also not known in the semi-positive
setting, i.e. whether there exists a Griffiths semi-positive metric on E when Op(g+)(1)
is semi-positive.

4K + aif doewit hptags th' ds
In this section, we prove Theorems 1.6 and 1.2. We begin with an algebraic curva-
ture relation on a Kihler manifold (X, w). At a given point p € X, the minimum

holomorphic sectional curvature is defined to be

min HW),
WeT,y'x,|W|=1

where H(W) := R(W, W, W, W). Since X is of finite dimension, the minimum can
be attained.

+ adl Let (X,w) be a compact Kihler manifold. Let e; € T,}’OX be a unit
vector which minimizes the holomorphic sectional curvature of w at point p, then

2R(e1, 21, W W) = (1+1(W.en) ) Rer @1 e1,20) 1)
for every unit vector W € T[}’OX.
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Proof Letey € T,}’OX be any unit vector orthogonal to e;. Let
f1(0) = H(cos(0)ey +sin(@)er), O €R.

Then we have

f1(0) = R(cos(0)e; + sin(0)ea, cos(@)es + sin(d)ea, cos(d)ey
+sin(6)ez, cos(B)eq +sin(f)ez) = cos4(9)RlTﬁ + sin4(6)R2§2§
+25in(0) cos*(0) [Ry7y3 + Ropyp] + 2¢0s(8) sin® 0) [R50 + Romas ]
+ sin(6) cos”(0) [4R 103 + Ryzyz + Rypa] -

Since f1(0) > Rg g forall® € Rand f1(0) = R,7,7, we have
f1©)=0 and f{(0) > 0.
By a straightforward computation, we obtain

[1O)=2 (R34 Ry717) =0,  f{(0) =2 (4R 155+ Ry313 + Rypoy) — 4R 11720
42)

Similarly, if we set f2(0) = H(cos(0)e1 + +/—1sin(0)ey), then

£20) = cos* () Ry7y +sin* (0) Ryz,5 + 2/~ 1sin(6) cos® 0) [~ Ryyy5 + Ry
+24/=1cos(8) sin’(9) [~ R 555 + Roto3]
+sin’(©) cos’ () [4R 103 — Ryzps — Rypat |-

From f;(0) = 0 and f;(0) > 0, one can see
—Ripz+Rp7 =0, 2(4Ry3; — Rizps — Ropoy) —4Ryqy7 2 0. (43)
Hence, from (4.2) and (4.3), we obtain
Rtz = Ripr =0, and 2Ry1y5 = Ry (“4.4)

For an arbitrary unit vector W € T,}’OX , if W is parallel to ey, i.e. W = Aey with
Al =1,

2R(e1,e1, W, W) = 2R(e1, €1, 1, €1).

Suppose W is not parallel to e;. Let ey be the unit vector

W — (W, e1)e

oH=——.
[W — (W, e1)e1]
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Then e is a unit vector orthogonal to e; and

W =aey +bey, a=(W,ey),
b=I|W—(W,enl, la*+Ib*=1.

Hence
2R(er. @1, W. W) =2lal’Rypy7 + 216 Rypy3.

since we have R 7,3 = R;7,7 = 0 by (4.4). By (4.4) again,
— 772 2 2\ p_ 2 __
2R(er, 21, W W) = (2l + b1) Ry = (1+1a?) Ripy

which completes the proof of the lemma. O
By using similar methods, one has

v+ a42 Lete, € T,} X be a unit vector which maximizes the holomorphic sec-
tional curvature at point p, then

2R (e, W. W) = (14 (W, e)?) R(en, @ €. 0) *5)

for every unit vector W € T;’OX.

Remark 4.3 A special case of Lemma 4.2—when W is orthogonal to e,—is well-
known (e.g. [16, p. 312], [4, p. 136]). When the holomorphic sectional curvature is
strictly negative at point p, one has 2R (e,, e,, W, W) < R(ey, ey, ey, e,), which is
firstly obtained in [5, Lemma 1.4]. In the proofs of Lemmas 4.1 and 4.2, we refine the
methods in [4,16].

T v v+ 44 Let (X, w) be a compact Kihler manifold with semi-positive holomor-
phic bisectional curvature. Then the following statements are equivalent

1. The anti-canonical line bundle K ;1 is ample;
2. The tangent bundle T X is big;

3. The anti-canonical line bundle K 5, Uis big;

4. ¢} (X) > 0.

Proof (1) = (2). Let E = TX and L = Opg) (1) the tautological line bundle
over the projective bundle P(E*). Let’s recall the general setting when (E, hY) is an
arbitrary Hermitian holomorphic vector bundle (e.g. [11,17,28]). Let (eq, ..., e,) be
the local holomorphic frame with respect to a given trivialization on E and the dual
frame on E* is denoted by (e', ..., e"). The corresponding holomorphic coordinates
on E* are denoted by (W1, ..., W,). There is a local section ey« of L* defined by

n
e = E Wee“.
a=1
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Its dual section is denoted by e . Let A% be a fixed Hermitian metric on E and h’ the
induced quotient metric by the morphism (7*E, 7*hf) — L.

It (h aﬁ) is the matrix representation of 2 with respect to the basis {e Y5> then
h™ can be written as

1 1
Wt = — = S (4.6)
h% (er+,ers) > h*PW,Wg
The curvature of (L, hL) is

R" = —/“199loght = V/—199 log (Z h“EWaWﬁ) 4.7)
where 9 and 9 are operators on the total space P(E*). We fix a point Q € P(E*), then
there exist local holomorphic coordinates (z',..., 7" centered at point p = 7 (Q)

and local holomorphic basis {eq, ..., e,} of E around p € X such that
hag = b5 — Riup? @ + 0 (12F). 4.8)
Without loss of generality, we assume Q is the point (0, ..., 0, [a], ..., a,]) with
a, = 1. On the chart U = {W,, = 1} of the fiber P"~1, we set w4 = W, for
A =1,...,n — 1. By formula (4.7) and (4.8), we obtain the well-known formula

(e.g. [28, Proposition 2.5])

n — n—1 —
RO =v=T[ > Rogtar ndzi+ > (1—“BT2A)deAde

ijaBT 12
a,p=1 lal A, B=1 la

(4.9)

where |a? = > _ |aq|?.

Since (X, w) is a Kéhler manifold with semi-positive holomorphic bisectional cur-
vature, the Ricci curvature Ric(w) of w is also semi-positive. On the other hand, since
K;l is ample, we have

/ (Ric(w))" > 0.
X

Therefore, Ric(w) must be strictly positive at some point p € X. Then by a result of
Mok [31, Proposition 1.1], there exists a Kéhler metric @ such that @ has semi-positive
holomorphic bisectional curvature, strictly positive holomorphic sectional curvature
and strictly positive Ricci curvature. Indeed, let

(4.10)

dw .
B = —Ric(w),
wy) = w
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be the Kihler-Ricci flow with initial metric @, then we can take w; as @ for some
small positive ¢ satisfying [w] — tc1(X) > 0. Let R be the corresponding curvature
operator of &. We choose normal coordinates {z', ..., z"} centered at point p such
that {¢; = a%}?:l is the normal frame of (E,®) = (TX, ®). Let K € T;’OX be
a unit vector which minimizes the holomorphic sectional curvature of @ at point
p € X. In particular, we have ﬁ(K K, K, E) > (. Hence there exists a unit vector

a = (aiy,...,ay) € C"such that
K =aje1 +---+auey. 4.11)

Without loss of generality, we assume a, # 0. By Lemma 4.1, for any unit vector
W = bie; € T;’OX, we have

A J—

R(K,K,W,W)> -R(K,K,K,K) > 0. (4.12)

N =

That is

> Rigadchibj >0 (4.13)
i,j,k,0

for every unit vector b = (by, ..., b,) in C". Then at point Q € Y = P(T*X) with
coordinates

(o,...,o,[al,...,a,,])z(o,...,o, [?,...,a’j‘l,l}),

a, a,
we obtain
; n n—1
R"(Q) = V=1 D Ryjqmadd rdz/ + D (1 —aaap)dw” Adw®
k,t=1 A,B=1

(4.14)

is a strictly positive (1, 1) form at point Q € Y according to (4.13). Here, we also use
Eq. (4.9) and the fact that > }_| |a; |2 = 1. By continuity, (L, k") is positive at a small
neighborhood of Q. Since we already know c¢1(L) > 0, and so

/ &Ly > o.
Y

Hence L is abigline bundle by Siu-Demailly’s solution to the Grauert-Riemenschneider
conjecture ([9,36]). In particular, the tangent bundle 7 X is big.

(3) <= (4). Since K s semi-positive and in particular it is nef;, it is well-known
that they are equivalent.

(4) = (1). This part is well-known (e.g. [12, Theorem 4.2]), we include a sketch
for reader’s convenience. Since 7 X is nef, and so is K;l = det(TX). If ¢ (X) > 0,
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we know K ;1 is nef and big. Hence X is Kihler and Moishezon, and so it is projective.
By Kawamata-Reid-Shokurov base point free theorem (e.g. [22, Theorem 3.3]), Ky !
is semi-ample, i.e. K™ is generated by global sections for some large m. Let ¢ :
X --» Y be the birational map defined by |K,"|. If K ! is not ample, then there
exists a rational curve C contracted by ¢. Since T X is nef, C deforms to cover X
which is a contradiction.

(2) = (4). Since T X is nef, K;l is also nef. In particular, we have ¢ (X) =
cH(TX) = 0.1f ¢ (X) = 0, then all Chern numbers of X are zero [12, Corollary 2.7].
On the other hand, since the signed Segre number (—1)"s, (T X) is a combination of
Chern numbers [e.g. formula (4.17)], we deduce that

(—D"s,(TX) = 0.

Hence T X is not big by Lemma 4.7. O

T v+ v+ 4.5 Let (X, w) be a compact Kihler manifold with semi-positive holo-
morphic bisectional curvature. Suppose T X is a big vector bundle. Then there exist
non-negative numbers k, Ny, ..., Ny and irreducible compact Hermitian symmetric
spaces My, ..., My of rank > 2 such that (X, w) is isometrically biholomorphic to

(IP’Nl,wl) X oo X (IPN‘,a)g) X (M1, 1) % -+ x (Mg, 1) (4.15)

where w;j, 1 < i < ¢, is a Kéihler metric on PNi with semi-positive holomorphic
bisectional curvature and ny, . .., Nk are the canonical metrics on My, . .., M.

Proof By Theorem 4.4, X is Fano. By Yau’s theorem [46], there exists a Kidhler metric
with strictly positive Ricci curvature. Hence w1 (X) is finite by Myers’ theorem. By
Kodaira vanishing theorem, forany g > 1, HY%(X) = H"™9(X, K;l) = (O since K;l
is ample. Therefore the Euler-Poincaré characteristic x (Ox) = > (— D2h%4(X) = 1.
Let X be the universal cover of X. Suppose it is a p-sheet cover over X, where p =
|7r1(X)|. So X is still a Fano manifold and hence x (O3) = p-x(Ox) = 1. We obtain
p = 1,i.e. X is simply connected and X = X. By Mok’s uniformization theorem [31]
for compact Kéhler manifolds with semi-positive holomorphic bisectional curvature,
X =Xis isometrically biholomorphic to

(PNl,wl) XX (P’W,w) X (My, 1) % -+ x (Mg, n) (4.16)

where w;, 1 < i < ¢, is a Kihler metric on PVi with semi-positive holomorphic
bisectional curvature and 71, . . ., ng are the canonical metrics on the irreducible com-
pact Hermitian symmetric spaces M1y, ..., M. Note also that, all irreducible compact
Hermitian symmetric spaces (with rank >2) are Fano. O
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As an application of Theorem 4.5, we have
C ayd6 Let X =P" x P" and Y = P(T*X). Then

1. The tangent bundle T X of X is nef and big;

2. The anti-canonical line bundle K ! of Y is nef, big, semi-ample, quasi-positive
but not ample;

3. The holomorphic tangent bundle TY is not nef.

Proof (1) is from Theorem 4.5. (2) By adjunction formula (3.2),
Ky =0y (m + n)

where Oy (1) is the tautological line bundle of the projective bundle P(7*X). Hence,
Ky !'is nefand big, and so is semi-ample by Kawamata-Reid-Shokurov base point free
theorem. Let w be the Kéhler metric on X = P x P" induced by the Fubini-Study
metrics. It is easy to see that w has semi-positive holomorphic bisectional curvature
and strictly positive holomorphic sectional curvature. By Lemma 4.1 and formula
(4.14), the induced Hermitian metric on L = Oy (1) is quasi-positive, i.e. Oy (1) is
semi-positive and strictly positive at some point. In particular, K Vis quasi-positive.
However, K, !is not ample, otherwise Oy (1) is ample and so it T X. (3) If T'Y is nef,
then the nef and big line bundle K Vis ample. O

As motivated by Theorem 4.4, we investigate properties for abstract nef and big
vector bundles. Let ¢(E) be the total Chern class of a vector bundle E, i.e. ¢(E) =
1+ci1(E)+---+cn(E). The total Segre class s(E) is defined to be the inverse of the
total Chern class, i.e.

c(E) -s(E) =1

where s(E) = 1 4+ s1(E) + - - - + sp(E) and s (E) € H*(X), 1 < k < n. We have
the recursion formula

Sk(E) 4+ sk—1(E) - c1(E) + -+ +s1(E) - ck—1(E) + cx(E) =0 4.17)
for every k > 1. In particular, one has

SIE) = —c1(E), $2(E) = ¢{(E) — c2(E),
s3(E) = 2¢1(E)ea(E) — ¢} (E) — ¢3(E). (4.18)

In particular, the top Segre class s, (E) is a polynomial of Chern classes of degree 2n.
(Note that there is alternated sign’s difference from the notations in [17, p. 245]). The
following result is essentially well-known.

v+ ad7 Let (X,w) be a compact Kihler manifold with complex dimension n.
Suppose E is nef vector bundle with rank r, then E is big if and only if the signed
Segre number (—1)"s,(E) > 0.
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Proof Let L = Op(g+)(1) and 7 : P(E*) — X be the canonical projection. Since L
is nef, L is a big line bundle if and only if the top self intersection number

ALy > 0.
On the other hand, by [17, Proposition 5.22] we have
m(TTHL)) = (= 1)"su(E),

where m, : H>"T~D(P(E*)) — H?'(X) is the pushforward homomorphism
induced by 7. Hence L is big if and only if the signed Segre number (—1)"s,(E)
is positive.

O

<4 ati 4.8 Let E be a nef vector bundle over a compact Kihler manifold X. If
E is a big vector bundle, then det(E) is a big line bundle.

Proof Since E is nef, the top self intersection number ¢ (E) > 0. If ¢{(E) = 0,
then all degree 2n Chern numbers of E are zero. In particular, s,(E) = 0. Itis a
contradiction by Lemma 4.7. Hence the top self intersection number cf(E) > 0.
Since det(E) is nef and cf (det(E)) > 0, det(E) is a big line bundle. O

C a y4.9 If X is a compact Kihler manifold with nef and big tangent bundle,
then K ;1 is ample, i.e. X is Fano.

Proof By Proposition 4.8, K;l is nef and big. Since T X is nef, we know K}}l is
ample, i.e. X is Fano. O

By comparing Theorem 4.4 with Proposition 4.8, one may ask the following ques-
tion: for an abstract vector bundle E, if E is nef (or semi-positive) and det(E) is big
(or ample), is E big? We have a negative answer to this question.

Example 4.10 On P2, let E = TP? ® Opa(—1) be the hyperplane bundle. Then E is
semi-positive in the sense of Griffiths, and det(E) is ample, but E is not a big vector
bundle.

Proof By using the Hermitian metric on E induced by the Fubini-Study metric, it is
easy to see that E is a semi-positive vector bundle and so it is nef. Indeed, TP? has
curvature tensor

Rijie = 878kt T 878k

and so E has curvature tensor RiEij = 818 where k and ¢ are indices along the

vector bundle E. On the other hand, det(E) = Op2(1) is ample and so c%(E ) = 1.
However, E is not a big vector bundle. Since

e2(TP?) = e2(E @ Opa(1)) = c2(E) + ¢§(Op2 (1) + €1 (E) - ¢1(Op2(1)) = 3,

we have ¢o(E) = 1, and so
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2(E) = ¢{(E) — c2(E) = 0.

Therefore, by Lemma 4.7, E is not a big vector bundle. O

Yisatt 4.11 Suppose X is a Fano manifold with nef tangent bundle. Is the (abstract)
vector bundle 7' X semi-positive in the sense of Griffiths? Is 7 X a big vector bundle?

For example, P(T*P") (n > 2) is a Fano manifold with nef tangent bundle since it
is homogeneous. When n = 2, P(T*P?) has big and semi-ample tangent bundle by
Theorem 1.1. It is also known that P(7T*P") does not admit a smooth Kéhler metric
with semi-positive holomorphic bisectional curvature according to the classification in
Theorem 4.5. However, it is not clear whether the tangent bundle of P(7*P") is semi-
positive in the sense of Griffiths, or equivalently, whether it has a smooth Hermitian
metric with semi-positive holomorphic bisectional curvature. When n > 2, is the
tangent bundle of P(7*P") big?

As motivated by these questions, in the next section, we investigate compact com-
plex manifolds with semi-positive tangent bundles.

5C voaaf dawit 11 wtiveta gr tN d

In this section, we study complex manifolds with semi-positive tangent bundles.
Suppose the abstract tangent bundle 7' X has a smooth Hermitian metric 4 with semi-
positive curvature in the sense of Griffiths, or equivalently, (X, ) is a Hermitian
manifold with semi-positive holomorphic bisectional curvature.

T v v+ 5.1 Let (X, w) be a compact Hermitian manifold with semi-positive holo-
morphic bisectional curvature, then k (X) < 0, and either
1. k(X)) = —o0; or
2. X is a complex parallelizable manifold. Moreover, (X, w) has flat curvature and
d*o = 0.

Remark 5.2 A complex manifold X of complex dimension 7 is called complex paral-
lelizable if there exist n holomorphic vector fields linearly independent everywhere.
Note that every complex parallelizible manifold has a balanced Hermitian metric with
flat curvature tensor and the canonical line bundle is holomorphically trivial, and so
the Kodaira dimension is zero. It is proved by Wang in [41, Corollary 2] that a complex
parallelizable manifold is Kihler if and only if it is a torus.

Proof Since (X, w) has semi-positive holomorphic bisectional curvature, K lis semi-
positive and so nef. Suppose x (X) > 0, i.e. there exists some positive integer m such
that HO(X, K?m ) has a non zero element o. Then o does not vanish everywhere
[12, Proposition 1.16]. In particular, K ?m is a holomorphically trivial line bundle, i.e.
K f?m = Oy. In this case, we obtain x (X) = 0. Let & be the trivial Hermitian metric
on K?m, ie. v/—1891logh = 0. On the other hand, K?m has a smooth Hermitian
metric m. Hence, there exists a positive smooth function ¢ € C°°(X) such that

1

TR ey
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and the line bundle K f?m has curvature form
—mRic(w) = —/—1091logh — ~/—1901log¢p = —/—189log ¢ < 0.

By maximum principle, we know ¢ is constant. Therefore Ric(w) = 0. Since (X, w)
has semi-positive holomorphic bisectional curvature, we know Ri}kl = 0. Indeed,
without loss of generality, we assume 87 = d;j atafixed point p € X, and so the Ricci

curvature has components Ri7 = ZZII Rijki = 0. If we choose b = (1,0, ...,0),
then for any ¢ € C", we have Rﬁkzaiﬁ-/ brpt = Rﬁﬁa"ﬁj > 0. Similarly, we have
R5za'a’ > Oforallk = 1, ..., n. By the Ricciflat condition, we have R 7,za'a’ = 0
foralla € Cand k = 1, ..., n. We deduce Rk = 0 for any i, j, k. Now for any
a € C", we define H,7 = Rijkzaiﬁ-/ . Then H = (H,7) is a semi-positive Hermitian
matrix. Sincp zfrH = 0, H is the zero matrix. That is, for any a € C" and k, £, we
have Rﬁkzalﬁf = 0. Finally, we obtain Ri7k2 = 0. Since (X, w) is Chern-flat, X is a
complex parallelizable manifold (e.g. [1,14, Proposition 2.4]). On the other hand, it
is well-known that if (X, w) is Chern-flat, d*w = 0 (e.g., [26, Corollary 2]). m]

The following application of Theorem 5.1 will be used frequently.

C a y 5.3 Let (X, w) be acompact Hermitian surface. If (X, w) has semi-positive
holomorphic bisectional curvature and Kx is a holomorphic torsion, i.e. K f?m =0y
for some integer m € N7, then (X, w) is a torus.

Proof Since k (X) = 0, as shown in the proof of Theorem 5.1, (X, ) is a parallelizable
complex surface with d*w = 0. Since dim¢ X = 2, d*w = 0 implies dw = 0, i.e.
(X, w) is Kéhler. Hence (X, w) is a flat torus. O

Now we are ready to classify compact complex surfaces with semi-positive tangent
bundles. Note that, we only assume X has a Hermitian metric with semi-positive
holomorphic bisectional curvature.

T v v 54 Let X be acompact Kahler surface. If T X is (Hermitian) semi-positive,
then X is one of the following:

X is a torus;

X is P?;

X is P! x P;

X is a ruled surface over an elliptic curve C, and X is covered C x P,

S

Proof Suppose T X is semi-positive. If X is not a torus, then by Theorem 5.1, « (X) =
—00. Let Xpin be a minimal model of X. Since x (Xnin) = —00, by Kodaira-Enriques
classification, X, has algebraic dimension 2 and so Xp;, is projective. Therefore,
X is also projective. By [7, Proposition 2.1], X is minimal, i.e. X = X, since X has
nef tangent bundle. By Campana-Peterell’s classification of projective surfaces with
nef tangent bundles [7, Theorem 3.1], X is one of the following

1. X is an abelian surface;
2. X is a hyperelliptic surface;
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3. X =P
4. X =P! x P!
5. X = P(E*) where E is a rank 2-vector bundle on an elliptic curve C with either
(a) E=0Oc¢ & L, with deg(L) = 0; or
(b) E is given by a non-split extension 0 - O¢c - E — L — O with L = O¢
ordegL = 1.

It is obvious that abelian surfaces, P2, P! x P! all have canonical Hermitian metrics
with semi-positive holomorphic bisectional curvature. By Corollary 5.3, ahyperelliptic
surface can not admit a Hermitian metric with semi-positive holomorphic bisectional
curvature since its canonical line bundle is a torsion. Next, we show that, in case (5), if
X = P(E™) has semi-positive tangent bundle, then X is a ruled surface over an elliptic
curve C which is covered by C x P!. Indeed, by the exact sequence 0 — Ty /c —
TX — 7a*(TC) — 0 where 7 : X — C, we obtain the dual sequence

00— n*0Oc - T"X — TX*/C — 0, (5.2)

since TC = Oc¢. Suppose T X is semi-positive in the sense of Griffiths, 7* X is semi-
negative in the sense of Griffiths. It is well-known that, the holomorphic bisectional
curvature is decreasing in subbundles, and so the induced Hermitian metric on the
subbundle 7 *O¢ also has semi-negative curvature in the sense of Griffiths [18, p. 79].
Since the line bundle 7*O¢ is trivial, that induced metric on 7*O¢ must be flat by
maximum principle. In particular, the second fundamental form of 7*O¢ in T*X
is zero. Therefore, the Hermitian metric on 7 X splits into a direct product and the
tangent bundle 7 X splits into the holomorphic direct sum

TX =7*0c ® Tx/c.

We deduce X is a ruled surface over an elliptic curve C covered by X = C x P!. Or
equivalently, X = P(E*) with E = O¢ & L where deg(L) = 0 on C. Moreover, it
is also well-known that for the non-split extension, the ant-canonical line bundle K ;l
of X = P(E*) can not be semi-positive [12, Example 3.5]. O

In the following, we classify non-Kihler surfaces with semi-positive tangent bun-
dles.

T v v 55 Let(X, w)beanon-Kihler compact complex surface with semi-positive
holomorphic bisectional curvature. Then X is a Hopf surface.

Proof Suppose X is a non-Kihler complex surface. By Theorem 5.1, we have «k (X) =
—oo0 since when « (X) = 0, (X, w) is balanced and so it is Kéhler. By the Enriques-
Kodaira classification, the minimal model X i, of X is a VIIj surface, i.e. X is obtained
from X i by successive blowing-ups.

We give a straightforward proof that if (X, @) has semi-positive holomorphic bisec-
tional curvature, then X is minimal, i.e. X = X,ijn. Here we can not use methods in
algebraic geometry since the ambient manifold is non-Kéhler and the curvature con-
dition may not be preserved under birational maps, finite étale covers, blowing-ups,
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or blowing-downs (cf. [12, Proposition 6.3]). By definition, X, is a compact com-
plex surface with b;(Xmin) = 1 and k(Xmin) = —oo. It is well-known that the
first Betti number b is invariant under blowing-ups, i.e. b1 (X) = 1. By [2, Theo-
rem 2.7 on p. 139], we know by (X) = A"0(X) + h%1(X) and h'-0(X) < hO1(X),
hence 1% 1(X) = 1. Since k (X) = —oo, we have h%2(X) = h20(X) = hO(X, Kx) =
0. Therefore, by the Euler-Poincaré characteristic formula, we get

x(Ox) =1—h"" X)) +1%%X) =0.

On the other hand, by the Noether-Riemann-Roch formula,

1
1(0x) = 35 (00 + 00) = 0.

we have ¢y (X) = —c%(X). c2(X) is also the Euler characteristic e(X) of X, i.e.
2(X) = e(X) =2 —2b1(X) + b2(X) = ba(X)

and so c%(X ) = —b2(X) < 0. Since (X, w) has semi-positive holomorphic bisectional
curvature, we obtain C%(X ) > 0. Hence ¢2(X) = bp(X) = 0. On the other hand,
blowing-ups increase the second Betti number at least by 1. We conclude that X =
Xmin-

Hence, X is a VIl surface with b(X) = 0. By Kodaira-Enriques’s classification
(see also [25]), X is either

1. A Hopf surface (whose universal cover is C\{0}); or
2. An Inoue surface, i.e. b1(X) = 1, bp(X) = 0 and «(X) = —oo, without any
curve.

As shown in [12, Proposition 6.4], the holomorphic tangent bundles of Inoue surfaces
are not nef. In particular, Inoue surfaces can not admit smooth Hermitian metrics with
semi-positive holomorphic bisectional curvature. Finally, we deduce that X is a Hopf
surface. O

A compact complex surface X is called a Hopf surface if its universal covering
is analytically isomorphic to C?\{0}. It has been prove by Kodaira that its funda-
mental group m1(X) is a finite extension of an infinite cyclic group generated by a
biholomorphic contraction which takes the form

(z, w) = (az, bw + rz™) (5.3)

where a, b, x € C, |a] > |b| > 1, m € N* and A(a — b™) = 0. Hence, there are two
different cases:

1. The Hopf surface H, j of class 1 if A = O;
2. The Hopf surface H, p 5, of class 0 if & # 0 and a = b™.
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In the following, we consider the Hopf surface of class 1. Let H, , = C2\{0}/ ~
where (z, w) ~ (az, bw) and |a| > |b| > 1. We set k; = log|a| and k» = log |b|.
Define a real smooth function

ki +k
Dz, w) =e 2 ° (54)
where 0(z, w) is a real smooth function defined by
k16 kn6
Iz 7 + |wPe 7 = 1. (5.5)

This is well-defined since for fixed (z, w) the function t — |z|?|a|’ + |w|?|b|’ is
strictly increasing with image Ry [15]. Let ¢ = klz-]i(-lkz and so 1 < o < 2. Then the
key Eq. (5.5) is equivalent to

1220~ 4+ |w*0* 2 = 1. (5.6)
It is easy to see that
O(az, bw) =0(z, w) + 2w, and D(az, bw) = |al||b|P(z, w).
When o = 1, i.e. |a| = |b|, we have
® = [z|* + |w|*. (5.7)

v a5.6 z°0 % and |w2d* 2 are well-defined on H, j.

Proof Indeed,
laz|*® % (az, bw) = |al*|al~*|b]™* - |z]*® % (z, w)
and

|a|2|a|70(|b|7(1 — ekl(Zfot)esza — 1

Similarly, we can show |w|?®>~ is well-defined on Hg p. O

By Lemma 5.6, we know
w =1 (Aldf"‘dz AdZ + 2 2dw A dw) (5.8)

is a well-defined Hermitian metric on H, , for any Ay, A2 € R*. It is easy to see that
the (first Chern) Ricci curvature of w is

Ric(w) = —v/—180 log det(w) = 2+/—133 log ®. (5.9)

The next lemma shows Ric(w) > 0 and Ric(w) A Ric(w) = 0.
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v a5.7 /=100 log ® has a semi-positive matrix representation

@72 2 2 G
(a—2) |11}| ot(ot2 Z;wz 7 (5.10)
A lala=2)zw  atlz]
and /—13® A 9P has a matrix representation
1 |Z|2 wzq)Zafz
m I:chDZDtZ |w|2d>4a74 ) (511)
where A is a globally defined function on H, }, given by
_ 2 F—a 2 x0—2
A=uolz]"® "+ 2 —a)|w|["P" . (5.12)
In particular, (/— 199 log 43)2 =0.
Proof 1t is proved in the Appendix. O

«4 att 5.8 On every Hopf surface H, p, there exists a Gauduchon metric with
semi-positive holomorphic bisectional curvature.

Proof We show that

— oa—2

(D o
w=~—1("—dz Ad7+ ————dw A dw (5.13)
o? 2 —w)?

is a Gauduchon metric with semi-positive holomorphic bisectional curvature.
_At first, we show w is Gaudughon, i.e. 90w = 0. Indeed, by the elementary identity
d0f = fodlog f + f~'af A f, we obtain
AIDPH = pud"39 log ® + > P 29D A JD.

In particular we have

A ® % = —ad 9,05 log ® + &’ D 4729, D - dyd

@2 |w|2pre—4
—a 2112 2 5—a—2
—o®~ - o (o) et

where we use (5.10) and (5.11) in the second identity. Hence

P« _a|Z|2(b72701 |w|2q)ot74
0w O o2 = A3 + V. (5.14)
Similarly, we have
. q)a—Z _ _(2 _ a)|w|2q)oc—4 N |Z|2q>—a—2 (5 15)
TN\ =-22) A3 A2 '
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Now it is obvious that

P« q>a—2
a“’a“( o2 ) +azaf((oz—zﬂ) =0

where we use Egs. (5.6) and (5.12). This implies 39w = 0.

Next, we prove w has semi-positive holomorphic bisectional curvature. To write
down the holomorphic bisectional curvature, we introduce new notations, 2l =z
and z2 = w. Moreover, let w = /—1 Zijzl gﬁdz’ A dz’ with g;; = fi8;;, where

fi = q;__za and f» = % or equivalently

P Qi-Dat+2(1-i)
(2i =3)a+2(1 — i))z’

fi= =1,2. (5.16)

Therefore, the Christoffel symbols of w are

dgrg  Odlog fx dlog ®
If = Z e 9zt oz Op = 0z (@ = D201 =)k,

Hence R, = —9;T); = P8P (3 2fyar + 2(k — 1))8kp, and

Jjo ik 9797/
82 log @
Ri]ki = —— - (3 =2k)a + 2(k — 1)) frSke- (5.17)
9707/

82 log @

Note that, by Lemma 5.7, ( sl

) is semi-positive and

20
(3 =2k)a +2(k — 1)) fidke) = [ 0 o2 } .

2—a

We deduce R is semi-positive in the sense of Griffiths, i.e. @ has semi-positive
holomorphic bisectional curvature. O

Let X be a complex manifold. X is said to be a complex Calabi-Yau manifold if
c1(X) =0.

C a y5.9 Let X beacompact complex Calabi-Yau manifold in the Fujiki class €
(class of manifolds bimeromorphic to Kdhler manifolds). Suppose X has a Hermitian
metric w with semi-positive holomorphic bisectional curvature, then X is a torus.

Proof Let X be a compact Calabi-Yau manifold in the class %, then by a result of [40,
Theorem 1.5], Kx is a holomorphic torsion, i.e. there exists a positive integer m such
that K f?m = Oyx. Suppose X has a smooth Hermitian metric w with semi-positive
holomorphic bisectional curvature, then by Theorem 5.1, X is a complex parallelizable
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manifold. On the other hand, by [10, Corollary 1.6] or [12, Proposition 3.6], X is
Kihler since X is in the Fujiki class 4 and T X is nef. It is well-known that a complex
parallelizable manifold is Kihler if and only if it is a torus. O

Remark 5.10 As shown in Proposition 5.8, the Hopf surface H, ; (and every diagonal
Hopf manifold [30]) has a Hermitian metric with semi-positive holomorphic bisec-
tional curvature. Since by (H, ) = by (§' x §%) = 0, we see ¢y (Hyp) =0andso Hy p
is a non-Kihler Calabi-Yau manifold. Hence, the Fujiki class condition in Corollary
5.9 is necessary.

To end this section, we give new examples on Kéhler and non-Kéhler manifolds
whose tangent bundles or anti-canonical line bundles are nef but not semi-positive.

C a y5.11 Let X be a Kodaira surface or a hyperelliptic surface.

1. The tangent bundle T X is nef but not semi-positive (in the sense of Griffiths);
2. The anti-canonical line bundle of the projective bundle P(T*X) is nef, but it is
neither semi-positive nor big.

Proof Suppose X is a Kodaira surface. (1). By the fibration structure 0 — Tx,c —
TX — n*TC — 0 of a Kodaira surface, we know T X is nef. Since the canonical
line bundle of every Kodaira surface is a torsion, i.e. K %’m =0Oxwithm=1,23,4
or 6, by Corollary 5.3, 7 X can not be semi-positive.

For part (2), let Y := P(T*X) and Oy (1) be the tautological line bundle of ¥ and
7w . Y — X the canonical projection. Suppose TY is big, then K = 0y () is
also a big line bundle. Therefore Y is a Moishezon manifold with nef tangent bundle,
and so Y is projective. On the projective manifold Y, K !'is nef and big, and so by
Kawamata-Reid-Shokurov’s base point free theorem, Ky Uis semi-ample. Moreover,
since K;l is big, fY c?(Y) > 0. It implies K;l is ample. Therefore, Oy (1) is ample
and so is 7 X which is a contradiction.

Let E=TX. ThendetE = K;l is a holomorphic torsion. By Corollary 3.3, E
is semi-positive in the sense of Griffiths if and only if Oy (1) is semi-positive. Since
K;l = Oy(2), and E = T X can not be semi-positive, we deduce K)Tl can not be
semi-positive.

When X is a hyperelliptic surface, the proof is similar. O

Remark 5.12 Ttis not clear where P(T*P?) has a Hermitian metric with semi-positive
holomorphic bisectional. Note that the tangent bundle of P(7*P?) is semi-ample. It
is related to a weak version of Griffiths’ conjecture: if E is semi-ample, then E has a
Hermitian metric with semi-positive curvature in the sense of Griffiths. On the other
hand, it is known that £ ® det E has a metric with semi-positive curvature, and for
large k, S¥ E has a Hermitian metric with Griffiths semi-positive curvature.

64 JruveN d e P(T*X)wit  oftage tN" d e
In this section, we study complex manifolds of the form P(7*X) which also have

nef tangent bundles. At first, we introduce the (maximum) irregularity of a compact
complex manifold M,
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G (M) = sup{q(M) |3 a finite & tale cover f : M — M}, 6.1)

where ¢(N) = h' (N, Oy) for any complex manifold N.
It is well-known that P(7*P") is homogeneous, and its tangent bundle is nef. We
have a similar converse statement and yield another characterization of P".

<4 att 6.1 Let X be a Fano manifold of complex dimension n. Suppose P(T* X)
has nef tangent bundle, then X = P".

Proof Let Y = P(T*X) and 7 : Y — X be the projection. It is obvious that
has fiber F = P"~!. Since F and X are Fano manifolds, §(X) = ¢(X) = 0 and
q(F) = q(F) = 0. Therefore, from the relation [12, Proposition 3.12]

q(¥) =q(X)+q(F), (6.2)

we obtain g(Y) = 0. We claim Y is Fano. Indeed, since 7Y is nef, cf"_l(Y) > 0.
Suppose c%"_l (Y) = 0, then by [12, Proposition 3.10], there exists a finite étale cover
Y of Y such that q(? ) > 0 which is a contradiction since g(Y) = 0. Hence, we have
c%”_l(Y) > 0, i.e. K;l is nef and big. Now we deduce Y is projective and K;l is
ample. By the adjunction formula, K 1 - oy (2). We obtain Oy (1) and so T X are
ample. Hence X = P" by Mori’s result. O

In the rest of this section, we classify complex 3-folds of the form P(7*X) whose
tangent bundles are nef.

«4 att 6.2 Let X be a compact Kdhler surface. If the projective bundle P(T* X)
has nef tangent bundle, then X is exactly one of the following:

1. X = T2, aflat torus;
2. X =P%
3. X is a hyperelliptic surface;

Proof LetY = P(E*) and 7w : Y — X the canonical projection. Consider the exact
sequence

0—Ty)x > TY - n"TX — 0.

Since, T'Y is nef, the quotient bundle 7*7 X is nef [12, Proposition 1.15]. On the other
hand, since 7 : ¥ — X is a surjective holomorphic map with equidimensional fibers,
we deduce T X is nef. Then X is one of the following

1. X is a torus;

2. X is a hyperelliptic surface;

3. X = P2

4. X =P' x P!

5. X = P(E*) where E is a rank 2-vector bundle on an elliptic curve C with either
(a) E=0¢ & L, with deg(L) = 0; or
(b) E is given by a non-split extension 0 - O¢c — E — L — Q0 with L = O¢

ordegL = 1.
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It is obvious that torus and P? satisfy the requirement. By Corollary 4.6, we can rule
out X = P! xP! since T'Y can not be nef. Now we verify that when X is a hyperelliptic
surface, both 7X and P(7T*X) have nef tangent bundles. It is well-known that every
hyperelliptic surface X is a projective manifold, which admits a locally trivial fibration
7w : X — C over anelliptic curve C, with an elliptic curve as a typical fiber. Moreover,
K is a torsion line bundle [2, p. 245], i.e. K?m = 0 form = 2, 3,4, or 6. By the
exact sequence 0 — Tx;c — TX — 7*TC — 0, we know T X is nef since
both 7*TC and Tx,c = K;l ® K¢ are nef line bundles. Let Y = P(T*X) and
7w : Y — X.Then Y is a P'-bundle over X. Similarly, from the exact sequence
0— Tyyx - TY — nfTX — 0 we can also deduce TY is nef. Here, we only
need to show Ty,x is nef. Indeed, K 1 Oy (2) where Oy (1) is the tautological
line bundle of ¥ = P(T*X). Since T X is nef, we know Oy (1) and so K)Tl are nef.
Since K is a torsion line bundle and Ty, x = K;l ® nl*(KX), we conclude Ty, x is
a nef line bundle. If X = P(E*) in (5), then we know ¥ = P(T*X) — X — C'is
a P! x P! bundle over C since TY is nef [7, Lemma 9.3]. It is easy to see that the
fiber of Y — C is isomorphic to the second Hirzebruch surface P(Op1 @ Op1(—2)).
Indeed, for any s € C, the fiber X; of X — C is P!, From the exact sequence
0— TP' — TX|pi — Npi/x = Opi — 0, wesee T X|p1 = Op1 & TP'. Hence,
the fiber Yy of Y — C is isomorphic to P(T*Y |p1) = P(Op1 @ Op1 (—2)). Suppose Y
has nef tangent bundle, so is the fiber P(Op1 @ Opi (—2))[7, Proposition 2.1]. However,
the second Hirzebruch surface contains a (—2)-curve, the tangent bundle can not be
nef. O

« att 6.3 Let X be a non-Kdihler compact complex surface. If the projective
bundle P(T*X) has nef tangent bundle, then either

(1) X is a Kodaira surface; or
(2) X is a Hopf surface.

Proof By similar arguments as in the proof of Proposition 6.2, we deduce X has nef
tangent bundle. It is well-known that, either

1. X is a Kodaira surface; or
2. X is a Hopf surface.

Now we verify P(7T*X) has nef tangent bundle in both cases. Let Y = P(T*X) and
w Y — X.Let Oy(l) be the tautological line bundle of ¥ and w : ¥ — X the
canonical projection, then by adjunction formula (3.2), we have K = Oy (2). Since
T X is nef, by definition, Oy (1) and K v ! are nef. Moreover, we have the exact sequence
0— Ty)x — TY — 7*TX — 0, where Ty,x = KY—}X = Oy(2) ® *Kx. To
obtain the nefness of 7Y, we only need to show Oy (2) ® 7*K is nef.

Suppose X is a Kodaira surface. It is well-known that Ky is a torsion, hence
Oy(2) ® t*Kx is nef.

Let X be a Hopf surface. Although ¢1(Kx) = 0, Kx is not a torsion. We will
construct explicit Hermitian metrics on Ty, x = Oy (2) ® m*(Kx) to show it is a nef
line bundle. As a model case, we show Ty, x is nef for the diagonal Hopf surface. Let

w="Y _l(défz‘fl;‘f;” AdW) e the standard Hermitian metric on X. Let [W, W5] be the
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homogeneous coordinates on the fiber of 7*X, then by using the curvature formula
(4.7), the tautological line bundle Oy (1) has curvature

_ 1 _
V=193 log ((Iz|2 + |w|2) |W|2) = S Ric() +vV=Todlog WP, (63)

since Ric(w) = 2+/—198log(|z|> + |w|?). The induced metric on Ty;x =0y(2) ®
7*K x has curvature

2 («/—laglog 1z|? + /=109 log |W|2) — Ric(w) =2/—1331log |W|*> (6.4)

which is the Ricci curvature of the fiber P!. Hence, Ty /x 18 semi-positive and so nef
over Y.

Next, on a general Hopf surface X = H, »(a # b), we choose a Hermitian metric
on X as in (5.8)

w =1 (z\lcb_“dz AdZ + 1 2dw A dw) .
Then Ty, x = Oy (2) ® w*Kx has an induced metric
27/~193 log (/\1_1®“|W1 2+ x;1q>2—“|wz|2) —2J/~199log @
— 2v=1939 log (A;‘@“—1|W1|2 + Ag‘d>““|W2|2) .

Fix a Hermitian metric wy on Y. Note that «/—13510g(k1_1®“_1|W1|2) is semi-
positive by Lemma 5.7. Hence, for any ¢ > 0, we can fix A; and choose A, large
enough such that

2V/=193 log (Al’ltb""l (W2 + x;1d>1*“|W2|2) > —swy.
For a Hopf surface of type 0, since the z-direction is still invariant, we can use similar

arguments as above to show Ty, x = Oy(2) @ m*Kx is nef (see also the arguments
in [12, Proposition 6.3]). O

Ak w -dg + t& The author would like to thank Professor K.-F. Liu, L.-H. Shen, V. Tosatti, B.
Weinkove, S.-T. Yau, and Y. Yuan for many valuable discussions. The author would also like to thank
Professor T. Peternell for answering his question, which leads to the current version of Proposition 6.2.

A +d1

In this appendix, we prove Lemma 5.7, i.e.
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v a6.4 /—1001og ® has a matrix representation

72 [ (a — 2)Y|w|? ala — 2)wz
A3 |:oz(a -zw  a?|z]? i| ’ ©.5)
and /=13® A 9P has a matrix representation
2 — . Ha—2
ST | e e ete | (66)
where A is a globally defined function on H,  given by
A=alzPO" + (2 —a)|w/>d* 2. 6.7)

In particular, (\/—_laglog @)2 =0.
Proof By taking d on Eq. (5.6), i.e. 1Z|2P~ + |w|*?®*~2 = 1, we obtain

Az? - ¥ —a|zP0 9D + w|? - DY + (o — 2)|w)PD* 9D =0
and so

Nz d~ + dlwl? - |®*2  Bz)> + dlw|? - | D42

= = 6.8
alzPP= T+ 2 — o) |w2Pe3 Pe—1A 65)
Similarly, we have
_ 212 D% L Jlwl? - [P|e-2 31212 4 lw? - [d|2e—2
5o 0L + 3w (@*2 Bz + w2 ©9)
a|z|2d>_0‘_1+(2—oc)|w|2<130‘_3 da—1A
Their wedge product is
AD A ID
dlz|? - d|z>+0|w|? - 3|z|% - D> 243|z|% - d|w]? - D243 w|? - §lw|? - pre—H
= D022
and in the matrix form it is
_ 1 |Z|2 wzq)2a—2
AP AID ~ Py [de>2"“2 | |2 o4 (6.10)

Since 9 (|Z|2<I>_°‘ + |w|2<l>°‘_2) =0,ie.
0= (lzlz(—a)dfl + |w[* (e — 2)q>2“*3) 70 + (§|Z|2 +Tw|? quH)
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by taking d again, we have
0= (Izlz(—a)dfl + w2 (e — 2)c1>2°'*3) 930
+ (91 (- @71 4 dlwl - (@ — 292 ) AT
+ (ozlz|2<I>_2 + (@ —2)Qa — 3)|w|2d>2°‘_4) 9D ATD
+00|z)? + 09|w|* - X2 4 2 — 2)D** 39D A J|w|>.
Hence, we find

39|z|* + 09 |w|? - 22

99D =
doe—1A
9 2 (_ o 9 2. -2 @20{—3 _
n |- (—a) +d|w|” - (o —2) A5
da—TA
252 2 H20—4
o —2)Q2a—3 o _
+otlzl + (¢ = 2)2a — 3)|w| 9% AT
Pa—TA
Qo —2)P2* 33D A J|w|?
+ doe—1A
=A+B+C+D,

where A, B, C and D are four summands in the previous line respectively. We can
simplify A and write it as

(P 4+ 2 — o) [wP D2 3) 93]z + (P02 + (2 — o) [w [P 5) 99 |w|?

P2a—2A2
and the corresponding matrix form is
1
A~ oAz
2P + 2 = o)wPp 0
X |:0 alz]2®273 1 (2 — a)|w|> D43 (6.11)

Similarly, B has the matrix form

1 —alzPe7! (a — 2wz 3
B~ graaa |:—a2wd>2“_3 (o — 2)|w]2p4S | 6.12)
The matrix form of C is
a|z2d2 + (@ — 2) Qe — 3) w2 p24 1
C~ )
Pa—1A Pa—2 A2
2| Wz d22
x [quﬂa—2 lw|2dde—4 |- (6.13)
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We also have

Qa —2) (0w]? - dw|?) %73 + 2 — 2)d]z|? - Jw|? - P23
D= D272

and its matrix form

1 0 0
b~ eane [(2(1 — 27w d 3 Qo — 2)|w|2CI>4°‘_5] SCR )

It is easy to see that

1 2 —a)|w>pe3 (@ — 2wz P23
A+B+D= P20—2A2 [ (@ —2)Zw P23 P33 2a — 2)|w|? P
(6.15)
We have 99 log ® = ®~199® — ®29d A 9P and so
99log® = "(A+B+ D)+ (C— D 'od ADD).
Here the computation of C — ®~1dd A 9 is a little bit easier and
242 2 p2e—4 a—2
_ (o} —2)Q2a —3 [} — P*°A _
C— o9 nge = HLE T @ =2 = Ilw) 9D A TP
Pa-1A
— N QRu — 2 2@20{—4 _
_ (@ —=2)Ca = 2)[w| 9% A 5D
LS N
(0 —2)2a — 2)|w|? P24 1
- Doe—1A T pla—2A2
|Z|2 EZQZ(X—Z
X Zwd22 [y Rple—t |-
Now by using (6.15), we obtain (6.5). O
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