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On Hermitian manifolds, the second Ricci curvature tensors of various metric connections
are closely related to the geometry of Hermitian manifolds. By refining the Bochner
formulas for any Hermitian complex vector bundle (and Riemannian real vector bundle)
with an arbitrary metric connection over a compact Hermitian manifold, we can derive
various vanishing theorems for Hermitian manifolds and complex vector bundles by
the second Ricci curvature tensors. We will also introduce a natural geometric flow on
Hermitian manifolds by using the second Ricci curvature tensor.

Keywords: Chern connection; Levi-Civita connection; Bismut connection; second Ricci
curvature; vanishing theorem; geometric flow.

Mathematics Subject Classification 2010: 53C55, 53C44

1. Introduction

It is well-known (see [5]) that on a compact Kéhler manifold, if the Ricci curvature
is positive, then the first Betti number is zero; if the Ricci curvature is negative, then
there is no holomorphic vector field. The key ingredient for the proofs of such results
is the Kéhler symmetry. On the other hand, on a Hermitian manifold, we do not have
such symmetry and there are several different Ricci curvatures. While on a Kéhler
manifold, all these Ricci curvatures coincide, since the Chern curvature on a Kéhler
manifold coincides with the curvature of the (complexified) Levi-Civita connection.
We can see this more clearly on an abstract Hermitian holomorphic bundle (£, h).
The Chern connection VE¥ on F is the unique connection which is compatible with
the holomorphic structure and the Hermitian metric h on E. Hence, the Chern
curvature OF € T'(M,AY'T*M ® E* ® E). There are two ways to take trace of
OF . If we take trace of ©F with respect to the Hermitian metric h on E, we get
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a (1,1)-form Tr,©F € I'(M, AY'T*M) on M which is called the first Ricci-Chern
curvature of (E, h). It is well-known that the first Ricci-Chern curvature represents
the first Chern class of the bundle. On the other hand, if we take trace on the
(1,1)-part by using the metric of the manifold, we obtain an endomorphism of E,
Tr,0F € T(M, E*®E). It is called the second Ricci-Chern curvature of (E, h). The
first and second Ricci-Chern curvatures have different geometric meanings, which
were not clearly studied in some earlier literatures. We should point out that the
nonexistence of holomorphic sections of a Hermitian holomorphic vector bundle E is
characterized by the second Ricci—Chern curvature of E. Let E be the holomorphic
tangent bundle T1OM. If M is Kihler, the first and second Ricci-Chern curvatures
are the same by the Kéhler symmetry. Unfortunately, on a Hermitian manifold, the
Chern curvature is not symmetric, i.e. the first and second Ricci—Chern curvatures
are different. Moreover, in general they cannot be compared. An interesting example
is the Hopf manifold S?"*! x S!. As is well-known the Hopf manifold is non-Kéhler
and has vanishing first Chern class. However, the canonical metric on it has strictly
positive second Ricci—Chern curvature! Moreover, the first Ricci—-Chern curvature
is nonnegative and not identically zero, whereas it represents the zero first Chern
class! For more details, see Proposition 6.1.

In this paper, we study the non-existence of holomorphic and harmonic sec-
tions of an abstract vector bundle over a compact Hermitian manifold. Let F be
a holomorphic vector bundle over a compact Hermitian manifold (M, w). Since the
holomorphic section space H(M, E) is independent on the connections on E, we
can choose any connection on FE to detect H°(M, E). As mentioned above, the key
part, is the second Ricci curvature of that given connection. For example, on the
holomorphic tangent bundle T1°M of a Hermitian manifold M, there are three
typical connections

(1) the complexified Levi-Civita connection V on T0M;
(2) the Chern connection V¢ on T1OM;
(3) the Bismut connection V2 on T1OM.

It is well-known that if M is Kéhler, all three connections are the same. However,
in general, the relations among them are somewhat mysterious. In this paper, we
derive certain relations about their curvatures on certain Hermitian manifolds.

Let E be a Hermitian complex (possibly non-holomorphic) vector bundle or a
Riemannian real vector bundle over a compact Hermitian manifold (M, w). Let V¥
be an arbitrary connection on E and g, O the (1,0), (0, 1) part of V¥, respectively.
The (1, 1)-curvature of V¥ is denoted by R € T'(M,AM'T*M ® E*® E). It can be
viewed as a representation of the operator dg0g + 0pdr. We can define harmonic
section spaces associated to (E, V¥) by

HE (M, E) = {p € @M, E) |9pp = pp = 0} (1.1)

In general, on a complex vector bundle F, there is no terminology such as “holo-
morphic section of E”. However, if the vector bundle E is holomorphic and V¥
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is the Chern connection on E, i.e. g = 0, then H%’j(M, E) is isomorphic to the
Dolbeault cohomology group Hg’q(M ,E) and H%(M , E) is the holomorphic section
space HO(M, E) of E.

If (E,h,V¥) is a Hermitian complex vector bundle with a fixed connection V¥
over a compact Hermitian manifold (M, w), we will call Tr, R¥ € T'(M, AY1T* M)
the first Hermitian-Ricci curvature of (E,h, V¥) and Tr,RF € I'(M, E* ® E) the
second Hermitian Ricci curvature. If V¥ is the Chern connection of a Hermitian
holomorphic vector bundle (E, h), they are called the first and second Ricci~Chern
curvatures of (E, h) respectively.

Theorem 1.1. Let E be a Hermitian complex vector bundle or a Riemannian real
vector bundle over a compact Hermitian manifold (M,w) and V¥ be any metric
connection on E.

(1) If the second Hermitian-Ricci curvature Tr, RY is nonpositive everywhere, then
every Op-closed section of E is parallel, i.e. Vs = 0;

(2) If the second Hermitian—Ricci curvature Tr, RY is nonpositive everywhere and
negative at some point, then H%E (M, E) =0;

(3) If the second Hermitian—Ricci curvature Tr,, R¥ is p-nonpositive everywhere and
p-negative at some point, then H%E (M,ANE) =0 for any p < q < rank(FE).

The proof of this theorem is based on generalized Bochner—-Kodaira identities on
vector bundles over Hermitian manifolds (Theorem 4.1). We prove that (Theorem
4.2) the torsion integral of the Hermitian manifold can be killed if the background
Hermitian metric w on M is Gauduchon, i.e. 99w™ ! = 0. On the other hand, in
the conformal class of any Hermitian metric, the Gauduchon metric always exists
(see [24]). So we can change the background metric in the conformal way. It is
obvious that the positivity of the second Hermitian—Ricci curvature is preserved
under conformal transformations. This method is very useful on Hermitian mani-
folds. Kobayashi-Wu (see [34]) and Gauduchon (see [22]) obtained similar result in
the special case when V¥ is the Chern connection of the Hermitian holomorphic
vector bundle E. Now we go back to the Hermitian manifold (M, w).

Corollary 1.1. Let (M,w) be a compact Hermitian manifold and © is the Chern
curvature of (T°M,w).

(1) If the second Ricci—Chern curvature Tr,© is nonnegative everywhere and pos-
itive at some point, then Hg’O(M) =0 for any 1 < p < n. In particular, the
arithmetic genus x(M,O) = 1;

(2) If the second Ricci—Chern curvature Tr,,© is nonpositive everywhere and nega-
tive at some point, then the holomorphic vector bundle APTY°M has no holo-
morphic vector field for any 1 < p <mn.

As is well-known, if a Hermitian manifold has positive first Ricci—-Chern cur-
vature, it must be K&hler. However, we cannot draw the same conclusion if the
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second Ricci—Chern curvature is positive, since the first and second Ricci-Chern
curvatures of a Hermitian manifold cannot be compared. In fact, the first Ricci-
Chern curvature is d-closed, but in general the second Ricci-Chern curvature is
not d-closed and they are in the different (d, 9, d)-cohomology classes. For example,
the Hopf manifold S?"*! x S' with standard Hermitian metric has strictly positive
second Ricci-Chern curvature and nonnegative first Ricci-Chern curvature, but it
is non-Kahler. For more details, see Proposition 6.1.

Now we consider several special Hermitian manifolds. An interesting class of
Hermitian manifolds is the balanced Hermitian manifolds, i.e. Hermitian manifolds
with coclosed Kéhler forms. It is well-known that every Kéhler manifold is bal-
anced. In some literatures, they are also called semi-Kéhler manifolds. In complex
dimensions 1 and 2, every balanced Hermitian manifold is Kéhler. However, in
higher dimensions, there exist non-Kéahler manifolds which admit balanced Hermi-
tian metrics. Such examples were constructed by Calabi (see [6]), see also [26, 39].
There are also some other important classes of non-Kéahler balanced manifolds, such
as: complex solvmanifolds, 1-dimensional families of Kéhler manifolds (see [39]) and
compact complex parallelizable manifolds (except complex torus) (see [48]). On the
other hand, Alessandrini-Bassanelli (see [1]) proved that every Moishezon manifold
is balanced and so balanced manifolds can be constructed from Kéhler manifolds
by modification. For more examples, see [2, 16-20, 39].

Every balanced metric w is Gauduchon. In fact, d*w = 0 is equivalent to dw™ ™! =
0 and so d0w" ! = 0. By [24], every Hermitian manifold has a Gauduchon metric.
However, there are many manifolds which cannot support balanced metrics. For
example, the Hopf surface S? x S' is non-Kahler, so it has no balanced metric. For
more discussions, we refer the reader to [1, 2, 6, 39, 47] and references therein.

On a compact balanced Hermitian manifold M, we can also detect the holo-
morphic section spaces HY(M,T*°M) and Hg’O(M) by the Levi-Civita connec-
tion on (M, wp). Let V be the complexified Levi-Civita connection on M and R
the complexified Riemannian curvature. It is easy to see that R(X,Y,Z W) =
R(Z,W,X,Y) for any X,Y,Z, W € T'(M,TcM). In the local holomorphic coordi-
nates (z%,...,2") of M, we set

g o0 0 0 7
Rz = R(ﬁ» 57 355 ﬁ)» Ry = R yj0(= WM Ryg5)
and call (R;7) the Hermitian-Ricci curvature of (M, h). Since V is a connection on
the complex vector bundle Te M, there is an induced connection on the Hermitian
holomorphic vector bundle (I''*M, h) and we denote it still by V. The curva-
ture of (TVOM, h, V) is denoted by R. In general the first and second Hermitian—
Ricci curvatures of R are different. Moreover, R and R are different but they can
be compared (see Proposition 2.1). This property can be viewed as a connection
between Riemannian geometry and Hermitian geometry (or Symplectic geometry).
For example, we can use it to study the non-existence of certain complex structures
on complete Riemannian manifolds.

1250055-4



Int. J. Math. 2012.23. Downloaded from www.worldscientific.com
by CHINESE ACADEMY OF SCIENCES @ BEIJING on 03/15/16. For persona use only.

Geometry of Hermitian Manifolds

Theorem 1.2. Let (M,w) be a compact balanced Hermitian manifold. Suppose the

Hermatian—Ricci curvature (Rﬁ) of M is nonnegative everywhere.

(1) If ¢ is a holomorphic p-form, then App = 0 and so dimc Hg’O(M) <
dim¢ Hg’p(M) forany1 <p<m;

(2) If the Hermitian-Ricci curvature (Rz) is positive at some point, then
Hg’O(M) = 0 for any 1 < p < n. In particular, the arithmetic genus
X(M,0) =

Let R(2 be the components of the second Hermitian—Ricci curvature of R. The
dual Vel“bIOIl of Theorem 1.2 is
Theorem 1.3. Let (M,w) be a compact balanced Hermitian manifold. If 2]%1%2,)—]%5
s nonpositive everywhere and negative at some point, there is no holomorphic vector
field on M.

Remark 1.1. It is easy to see that the Hermitian—Ricci curvature tensor (Rg) and
second Ricci-Chern curvature tensor @2 := Tr,,© cannot be compared. Therefore,
Theorem 1.2 and Corollary 1.1 are independent of each other. For the same reason,
Theorem 1.3 and Corollary 1.1 are independent. Balanced Hermitian manifolds
with nonnegative Hermitian—Ricci curvatures are discussed in Proposition 3.2.

As we discuss in the above, on Hermitian manifolds, the second Hermitian—
Ricci curvature tensors of various metric connections are closely related to the
geometry of Hermitian manifolds. A natural idea is to define a flow by using second
Hermitian—Ricci curvature tensors of various metric connections. For example,

Oh _ g 4 ph, peR (1.2)
ot

on a general Hermitian manifold (M, h) by using the second Ricci-Chern curvature.
This flow preserves the Kéahler and the Hermitian structures and has short time
solution on any compact Hermitian manifold. It is very similar to and closely related
to the Hermitian Yang—Mills flow, the Kéhler—Ricci flow and the harmonic map heat
flow. It may be a bridge to connect them. In this paper, we only briefly discuss its
basic properties. In a subsequent paper (see [35]), we will study its geometric and
analytic property in detail.

2. Various Connections and Curvatures on Hermitian Manifolds
2.1. Complexified Riemannian curvature

Let (M, g) be a Riemannian manifold with Levi-Civita connection V, the curvature
R of (M, g,V) is defined as

R(X,Y,Z,W)=g((VxVy = VyVx = Vixy])Z,W). (2.1)
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On a Hermitian manifold (M, h), let V be the complexified Levi-Civita connection
and ¢ the background Riemannian metric. Two metrics g and h are related by

ds} = dsg —vV—1lwy, (2.2)

where wy, is the fundamental (1, 1)-form (or Kéhler form) associated to h. For any
two holomorphic vector fields X,Y € I'(M, T*OM),

h(X,Y)=29(X,Y). (2.3)

This formula will be used in several definitions. In the local holomorphic coordinates
{z,...,2"} on M, the complexified Christoffel symbols are given by

U cp (0948 | Oge  0gas
Fis = 229 <8z3 oA 0zF

E
Ohagp 8hBE Ohap
_ Y Lyer — 2.4
Z < 928 | A 0zF )’ (24)
where A,B,C,E € {1,...,n,1,...,7} and 24 = 2" if A =i, 24 =7 if A =1. For
example
Oh.s  Oh- 1 .- /0hs Ohs;
rk = —M@ it i) opk o= ph (L ) 2.
g < 07" + 0z )7 U2 o7 ozt (2:5)

The complexified curvature components are

oz 9zB 9zB ozA 8ZC ’ 8ZD
0 0
(T Va e)aegs) 29
Hence
orf. org
REpe = ;RABCE}LED =- < 8;’19 924 BC +T4c TP —T CFAF) (2.7)

By the Hermitian property, we have, for example

l arzk 8Fl s i s 1l s 1l
b == |52 - I8 DRI — D3I - 15, ). (2.8)

Remark 2.1. We have Rapcp = Repap. In particular,
Rijkz = szzj' (2.9)
Unlike the Kéhler case, we can define several Ricci curvatures.
Definition 2.1. (1) The complexified Ricci curvature on (M, h) is defined by
R,z == h"(Rz7 + Ryz)- (2.10)
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The complezified scalar curvature of h is defined as
sp = hFR 5. (2.11)
(2) The Hermitian—Ricci curvature is
Ryz:=h7R 7. (2.12)
The Hermitian-scalar curvature of h is given by
S := hFR,,. (2.13)
Lemma 2.1. On a Hermitian manifold,
Rapop = Rapep: Rz =Rg R =Rg (2.14)
and
Rz = hﬁ(szm - RkZﬁ)' (2.15)
Proof. The Hermitian property of curvature tensors is obvious. By first Bianchi
identity, we have
Rkiﬂ + Rkﬂi + szzj =0
That is R, 7 = Ry5,; — Ryg;5- The curvature formula (2.10) turns out to be

Ry = h (2R 5 — Rygis)- m

Definition 2.2. The Ricci curvatures are called positive (respectively, nonnega-
tive, negative, nonpositive) if the corresponding Hermitian matrices are positive
(respectively, nonnegative, negative, nonpositive).

The following three formulas are used frequently in the sequel.

Lemma 2.2. Assume hi = 0i; at a fived point p € M, we have the following
formula

1 9*h,  0%hy;
Rsz =75 ZE + . k_j[
J 2\ 0zk0z7  0210z*

4 l Ohig ahqz Ohig 8hq3 T l Ohig ahqz 6hk§ ahq;
4\ 0zt 979 8zk ozt 4 \ 0zF 977 0zt 9zt

L L (Ohg g OhgOhyg | 1 (OhyOlug Ol Ohig
4\ 0zt oz1 82’“ 0z 4\ 027 9F 0z1 9zt

1 (Ohg Ohyg ahqi Ohig\ 1 (0OhyzOhyg Oy Ohy (2.16)
4\ 0zt 979 82’“ ozt 4\ 029 071 0z4 0z )’ '
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By a linear transformation on the local holomorphic coordinates, one can get
the following Lemma. For more details, we refer the reader to [44].

Lemma 2.3. Let (M, h,w) be a Hermitian manifold. For any p € M, there exist
local holomorphic coordinates {z'} centered at a point p such that

hﬁ(p) =0;; and Ffj (p)=0 (2.17)
By Lemma 2.3, we have a simplified version of curvatures:

Lemma 2.4. Assume hﬁ(p) = 0;5 and FZ» (p) =0 at a fized point p € M,

th a2h " 6h 7 — ah, - -
R = -] ( Phy | Ohy ) —Z< i Ohig , Oy 8hlq>. 1)
q

2\ 0zk077 ' 92197 0zt 9z | 02k oFt
For Hermitian—Ricci curvatures

Rz =h Rz

1 82]7’32 a2hk§ 8hq7 8hk§ ahkﬁ ahqi
B _5282 (82’“8}3 + 8258#) B XS: ( 925 O7° + 025 0%° ) (2.19)

)

and

hﬁRkﬁZ = hiniZk;

1 *hy;  Phg Ohg Ohg  Ohgs Ohig

_ - — ) 2.2

2 XS: <8z3825 + 8z’€82€) qz; < 0zF 9z° + 0z 9zt ) (2.20)

For complexified Ricci curvature,
1 0%h O?hys 0%h,; 0%hs
R-=Z= st s _ ke sS
=g Z (82’“825 * azsazf> Z (azsazs + 8zk82£)

Oh; Ohyg  Ohyg Ohyg Oh 7 0hgz  Ohgs Ohug
ql kq kq ql _ ql sq qs kq
+Z<azs oz | 0w 07 ) 225: ( 92k 07 | 02 o ) (2.21)

g5

2.2. Curvature of complexified Levi-Civita connection on T'°M

Since T1°M is a subbundle of Tz M, there is an induced connection V on T4 M

given by
V=m0V :TYM Y T(M,TeM @ TeM) 5 T(M, TeM @ TVOM).  (2.22)
The curvature R € T(M, A2TeM @ T*'OM @ T'OM) of V is given by

R(X, Y)S = @X@ys - @y@xs - @[)@y]s (2.23)
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for any X,Y € TcM and s € TYOM. It has components
_ Oy 0T,

Rlypy, = DA 928 — 5T, + T T (2.24)
where
~ (0 0 0 A 0
B (a—A a—B) ook = 2 Famgr (2.25)
1
For example,
) BN 8F£k
T ik spbo_ps 1l
Ry = (8? 5ai + 505, =I5 ) (2.26)

With respect to the Hermitian metric » on TV°M, we can define
Rapii = Z Ripirhg- (2.27)
s=1
Definition 2.3. The first Hermitian—Ricci curvature of the Hermitian vector bun-
dle (T19M, V) is defined by
RY = 1R 5,5 (2.28)
The second Hermitian—Ricci curvature of it is
A (9 Jrn
R =hiR 5. (2.29)
The scalar curvature of V on THOM is denoted by
LC ij pkl P
S¥" =h"h" Rizz. (2.30)
By Lemma 2.3, we have the following formulas.
Lemma 2.5. On a Hermitian manifold (M, h), on a point p with hﬁ(p) = 0;; and

Rijki ==

1 ( 0%hig 32hk5> N i Ohig (2.31)

2\ 92k077 92197t . 0zt 977~

For the first and second Hermitian—Ricci curvatures,

) 2 Phy= Oh, = Oy
R = _lz ( Ohy | 9Ty ) _ 3 Tk Oltig (2.32)

2 - 0zk077 92197 : 0zt 977
.
and
2
a2 1 Phg | Fhyg Ohig Ohgg
R = —— , . — . 2.33
ij 2 Xk: <8z’€8§] + 829z kz: 9zk 0zk ( )

)
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Moreover,
50 _ p® _ g pm _pa kN~ ((Ohig Ohgg  Ohig Ohgg
Ri} _sz = hpzh FEiFM—FkEFiE _Z <8§k 92k  9zF 9zF ) (2.34)

k,q

2.3. Curvature of Chern connection on T1°M

On the Hermitian holomorphic vector bundle (7%°M, h), the Chern connection

VEH is the unique connection which is compatible with the complex structure and

the Hermitian metric. Its curvature components are

82h 7 _0Oh i 8hk*
Oy = — ke 4 1L =L 2.35
kLT 92107 0z 07 (2.35)
It is well-known that the first Ricci—Chern curvature
) . ,
oW .= Y —gWgi A gz (2.36)
27 W
represents the first Chern class of M where
2
W) _ kg 97 logdet(hyz)
@ﬁ =h"05;= oo (2.37)
The second Ricci—Chern curvature components are
(2) _ ke
@ﬁ = h" 0,75 (2.38)
The scalar curvature of the Chern connection is defined by
S = BP0 515 (2.39)

2.4. Curvature of Bismut connection on T1°M

In [4], Bismut defined a class of connections on Hermitian manifolds. In this sub-
section, we choose one of them (see [38, p. 21]). The Bismut connection V¥ on the
holomorphic tangent bundle (T1°M, h) is characterized by

VB =v 458, (2.40)

where V is the Levi-Civita connection and SZ is a l-form with values in
End(7T1°M) defined by

h(SB(X)Y, Z) = 2g(SB(X)Y,Z) = V—1(0 — 0)wn(X,Y, Z) (2.41)

forany Y,Z € T"OM and X € TcM. Let f‘f}a and f?a be the Christoffel symbols of
the Bismut connection where 4, j, a, 8 € {1,...,n}. We use different types of letters
since the Bismut connection is not torsion free.

Lemma 2.6. We have the following relations between T' and T,

Oh.5

i3 T o B
.05 =2T.5. (2.42)

(e Y _ o
Fiaﬁ('_ hﬁvrm) = Fmﬁ + Faﬁi = Hro

1250055-10
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Proof. Let X = aa,i,Y =9 7= i. Since wy, = @hmﬁdzm A dz", we obtain

z 0z3)
_ 1 0h (0 0 0
— B _ P m T -
V—=1(0 - )wn(X,Y, Z) T2 9ap dztd2"dz <8zi’32j’3zk)
_L(ong Ohg
T2\ 927 0z
= Fj_%hz? Uiger
On the other hand
8 0 =
h (VB ) = Fij%' (243)

By the definition (2.40) of Bismut connection, we get

~ g 0 o 0 0 g 0
B _ -z B —_
Flaﬁ (v 7 82;0" 825) B h (vagz)l 8z°" 82’5) + h (S <821) 820‘, 82’5>

8hi5.
0z
The proof of the other one is similar. |

= FiaB + FaBi =

The Bismut curvature B € I'(M, AY'T*M ® End(T"YM)) is given by

~ [3
ore oI
B = = o ~I9,07 +T2 17, (2.44)

Lemma 2.7. Assume hﬁ(p) = ;5 and Fij (p) =0 at a fized point p € M,

Phg  Phy;  Phyg
B- - =— . +—2 27
el 071020 92i107° 92107
Ohay 05 Ohos Oh g
+ - 0zt 97 4; (92'3 8z1 ' (2.45)

Proof. It follows by (2.42) and (2.44). m|
We can define the first Ricci-Bismut curvature Bg),

curvature Bg)

the second Ricci-Bismut

SBM

and scalar curvature similarly.

2.5. Relations among four curvatures on Hermitian manifolds
Proposition 2.1. On a Hermitian manifold (M, h), we have

Rijk-i = Rijki’ Ri_jkz = Ri_jk-z (2.46)
and for any u,v € C",

(Rzz — Rz @ o* o’ < 0. (2.47)

In particular, Rﬁ < Rf;l) and Rﬁ < Rg) in the sense of Hermitian matrices.

1250055-11
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Proof. By formulas (2.8) and (2.26), we can set
TiEki = Rﬁk? - Rﬁke = Fskl“fsh . (2.48)

Without loss generality, we assume hﬁ = d;; at a fixed point, then

mké Z ijs ist — Z Fi?Z%’ (249)

where

Ohy  Ohis
( 2 Eg) =Tz (2.50)

and so

O

4] _ —( ik
Tijuu Wkt E E Flseu v E Fjgkujv < 0.
k,j

Remark 2.2. (1) Because of the second order terms in R, ]:27 © and B, we cannot
compare R, R with ©, B.

(2) Since the third order terms of 9 are not zero in general, it is possible that
O and ©®@ are not in the same (d,d,d)-cohomology class. For the same
reason B(Y) and B®) are not in the same (d, 9, d)-cohomology class.

(3) If the manifold (M, h) is Kéhler, all curvatures are the same.

3. Curvature Relations on Special Hermitian Manifolds
3.1. Curvatures relations on balanced Hermitian manifolds
The following lemma is well-known (for example [22]), and we include a proof here

in our setting.

Lemma 3.1. Let (M,w) be a compact Hermitian manifold. The following condi-
tions are equivalent:

(1) d*w = 0;
(2) dw™ ! =0;
(3) For any smooth function f € C*(M),
- a2f
—A A Aof = —h¥ 3.1
af = B5f = Bof = —hT ==, (3.)

(4) F§€:0forany1§i§n.
Proof. On a compact Hermitian manifold, d*w = — * d * w = —¢,, * dw" ™! where

¢ is a constant depending only on the complex dimension n of M. On the other
hand, the Hodge * is an isomorphism, and so (1) and (2) are equivalent. If f is a
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smooth function on M,

= 0°f — 2 Of
A* = _h” e 2h” Fgf—,
of 9207 4 ozt (3.2)
~ 92 ~ Of '
Apf = —hii ——— 4 2Rk
of ooz T g
On the other hand,
WITE = —D0B* and - AITE = —TL A, (3.3)

Therefore (3) and (4) are equivalent. For the equivalence of (1) and (4), see
Lemma A.6. O

Definition 3.1. A Hermitian manifold (M,w) is called balanced if it satisfies one
of the conditions in Lemma 3.1.

On a balanced Hermitian manifold, there are more symmetries on the second
derivatives of the metric.

Lemma 3.2. Let (M,h) be a balanced Hermitian manifold. On a point p with
hi(p) = 6i; and Ffj (p) = 0, we have

Oh Ohss
= 22 oz (34)
and
9*hz 0%hyz ?h = Oh 5 Ohyg
L — I i ) iy 3.5
2 oois = 2 oot = 2 oo 22 o (35)

i i i iq

Proof. At a fixed point p, if h;z =0 and I‘fj =0, then

Oh; Oh.-
L =k (3.6)
0z oz’
The balanced condition ) I =0 is reduced to
Ohgs ohg
XS: ozt ZS: 0z 0
by formula (3.6). By the balanced condition, we get
0= % — ﬂ lhiﬁ Ohig _ Ohg
9zF  9zF \ 2 ozt 0zt
— lz ( 0%hy; _ 0%h ) _ Z Ohgz Ohug
2 — \0zk0z"  92k07' ” ozt 02"
Hence, we obtain formula (3.5). m|
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Proposition 3.1. Let (M,h) be a balanced Hermitian manifold. At a point p
with h;z(p) = 6i; and Ffj (p) = 0, we have following formulas about various Ricci
curvatures:

1) _ a0 _ ) _ &h; Oh g Ohig
OF =i =B =2 g T 2w o (3.7)
7 q,t
2h - Oh 5 Oh.=
2 _ 9 hyz qt ONkg
07 =~ L omar T o (38)

2

My Ohig _ Ohig ah“), (3.9)

5(2) 62/1 = _
g = Zazkaz oz' 020 97’ 07

+ E <
Oh; Oh Ohyg Oh g
(2 _ 7 ONgkg K 7
Bk-Z = § 8zk8 <5 q, 4 _y—=4__ 4 ), (3.10)

ozt 0z 0z' 0z

qé Ohkg  Olug ahqz
: - 11
0zt 9z 07 092" )’ (8.11)

qé Ohig  Olug ahqf)

. . - 3.12
oz' 0z° 0z 0z' (312)
Proof. In (2.32), (2.33), (2.37), (2.38), (2.19), (2.21), we get expressions for all

Ricci curvatures on Hermitian manifolds. By balanced relations (3.4) and (3.5), we
get simplified versions of all Ricci curvatures. |

Proposition 3.2. (1) A balanced Hermitian manifold with positive Hermitian—
Ricci curvature (R;3) is Kdhler.

(2) Let (M, h) be a compact balanced Hermitian manifold. If the Hermitian—Ricci
curvature (R J) is nonnegative everywhere and positive at some point, then M is
Moishezon.

Proof. (1) On a balanced Hermitian manifold, we have
(05) = (RF) = (Rj) (3.13)

by Propositions 2.1 and 3.1. If (Rﬁ) is Hermitian positive, then @1(_51,) is Hermitian
positive, and so
=1 _

is a Kahler metric.
(2) If the Hermitian—Ricci curvature is nonnegative everywhere and positive at
some point, so is (@S)) The Hermitian line bundle L = det(T1YM) satisfies

/ e (L) > 0. (3.15)
M

By Siu-Demailly’s solution of Grauert—Riemenschneider conjecture (see [9, 41]),
M is Moishezon. O
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3.2. Curvature relations on Hermitian manifolds with A(80w) = 0

Now we consider a compact Hermitian manifold (M,w) with A(0dw) = 0. The
condition A(80w) = 0 is equivalent to

Ohy: Oh, Oh-  0%h-
Y kk_ ) — ik " 3.16

for any 4, j. Similar to Proposition 3.1, we can use (3.16) to simplify Ricci curvatures
and get relations among them.

Proposition 3.3. Let (M, h) be a compact Hermitian manifold with A(90w) = 0.
At a point p with hig(p) = 0i; and Ffj (p) = 0, the following identities about Ricci
curvatures hold:

o - s+ 5 5 iy

zz @19
:

BY =3 (ifgj azkai ) gaa};z a;f’ (3.19)

(i?azl]gf 82’“82 ) %: aah;%’ (3.20)

22(> o2

»q
@ _ N\~ 0% Ohg Ohig Ohug Oy
B = Z oo Zq ( R EEr = (3.22)

v ) Z(ahﬂahkaﬁ’%ahﬁ) (323)

02107 &zkaz 0zt 0z* ozt 0zt

8h— - Oh 5 0h,=  Ohi= Oh 7
R,; = ( Kl >+Z< _q_e L _k_q q{) (3.24)

02107 82"82 0zt 07 ozt 0z*

q/ ahlq ahql ahkq
8zk 0z" 8,2% ozt )’

Proposition 3.4. If (M,w) is a compact Hermitian manifold with A(00w) = 0,
then

B®» <e®W and BW <@, (3.25)
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in the sense of Hermitian matrices and identities hold if and only if (M,w) is
Kdhler. Moreover,

0® 1 B® =g 4 RO, (3.26)

Finally, we would like to discuss the relations of special metrics on Hermitian
manifolds. By [1], every Moishezon manifold is balanced, i.e. there exists a smooth
Hermitian metric w such that d*w = 0. On the other hand, by Demailly-Paun
[10] (see also [31]), on each Moishezon manifold, there exists a singular Hermitian
metric w such that 90w = 0 in the sense of current. However, these two conditions
cannot be satisfied simultaneously in the smooth sense on a Hermitian non-Kahler
manifold.

Proposition 3.5. Let (M,w) be a compact Hermitian manifold. If d*w = 0 and
A(QOw) = 0, then dw = 0, i.e. (M,w) is Kdhler. In particular, if a compact
Hermitian manifold admits a smooth metric w such that d*w = 0 and 00w = 0,
then it ws Kahler.

Proof. Let (M,w) be a balanced Hermitian manifold with A(90w) = 0. The con-
dition A(90w) = 0 is equivalent to

Oh = 82hk2 8hz a2hk7
o — = L — 3.27
Z 02k97" * Z 02107 Z 0zko7" * Z 92197" ( )

4 4 4 i

By formula (3.5), at a point p with Az = §;; and I'};(p) = 0, we have
Oh: %h,; oh.; 9h,
iy TR iy ki
Z Dzkozt Z 02'07" Z 0zkoz" Z 207"

4 4 4 i

8hﬁ 8hq7 ahkg
=23, okoF D> o7 07

7 q,t
That is
Oh = 82hk7 oh 0 8hk—
v = kb 4y LT 3.28
; 0zk07" ; 0z'97" ; ozt 0z (3.28)
By taking trace of it, we obtain
Oh 7 Ohyz Ohig
4 kM _ g My 3.29
Z ozt 0z 0z (3.29)
q,i,k
at point p. Since p is arbitrary, we have dw = 0, therefore, (M, w) is Kéhler. O

Remark 3.1. This result is known in [3] and also [14] in the conditions of d*w = 0
and 00w = 0. By carefully computations, we find that their method works also for
d*w =0 and A(00w) = 0. Our method is quite different from theirs.
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4. Bochner Formulas on Hermitian Complex and Riemannian
Real Vector Bundles Over Compact Hermitian Manifolds

Let (M, h,w) be a compact Hermitian manifold. The complexified Levi-Civita con-
nection V on TcM induces a linear connection on QP¢(M):

Vo QPU(M) — QM) @ (QPU(M) & QP (M) @ QTR L (M), (4.1)

We consider the following two canonical components of V,

(4.2)

V' QPa(M) — QNO(M) @ QP (M),
VL QPa(M) — QOL(M) @ QPa(M).

Note that V # V' + V" if (M, h,w) is not Kédhler. The following calculation rule
follows immediately

VieAy)=(V'o) A+ oAV (4.3)
for any ¢, € Q°*(M).

Lemma 4.1. On a Hermitian manifold (M, h), we have

g ! "
WV, ) + b, V') | gai @ ¥) = h(Vig,¥) + hie, Viy)

{fW% )

— Aad
Ohip, ) = (V"9 ) + h(e, V') | e :
’ 7 7 (9 8) = h(V5i,0) + b, Vi)

for any @, € QP9(M).

Remark 4.1. (1) Here we use the compact notations

Vi =V,, V/=V",.
Erg J

e

Note that V% =V/=0and V; # V;, V5 # V%.

(2) If we regard AP9T*M as an abstract vector bundle E, the above lemma says
that V' and V" are compatible with the Hermitian metric on E.

Now we go to an abstract setting. Let (E,h) be a Hermitian complez (possi-
bly non-holomorphic) vector bundle or a Riemannian real vector bundle over a
compact Hermitian manifold (M,w). Let VE be an arbitrary metric connection
on (E, h), ie.

dh(s,t) = h(VFs,t) + h(s, VEt) (4.4)
for any s,t € I'(M, E). There is a natural decomposition
vE = vE | V”E, (4.5)
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where

{V’E :T(M,E) - QY9(M, E), (46)

V"E . T(M,E) — Q" (M, E).

V'E and V"E induce two differential operators. The first one is 9 : QP4(M, E) —
QrtLa(M, E) defined by

Or(p®s)=(0p)@s+ (—1)PTIp AV'Es (4.7)

for any ¢ € QP4(M) and s € T(M,E). The other one is dp : QP4(M,E) —
QPati(M, E) defined by

Op(p @ s) = (0p) @ s+ (=1)PTip AV"Fs (4.8)

for any ¢ € QP9(M) and s € T'(M, E). The following formula is well-known
(OrOE + 050E)(p ® ) = ¢ A (OrOE + 0g0g)s (4.9)
for any ¢ € QP9(M) and s € I'(M, E). The operator Op0g + Opdg is represented

by its (1, 1) curvature tensor R¥ € T'(M,A*'T*M®E). For any ¢, € Q**(M, E),
there is a sesquilinear pairing

{0, 9} = 0™ NP (ea, ep) (4.10)

if p = p%e, and ¥ = 1) in the local frame {e,} of E. By the metric compatible
property of V¥,

. ¥} = {0pp, v} + (=1)"*{p, 0py} (4.11)

if o € QP9(M, E).
Let w be the Kéhler form of the Hermitian metric h, i.e.
/—1 ; »
w= Thﬁdz NdZ. (4.12)

On the Hermitian manifold (M, h,w), the norm on QP:4(M) is defined by

wn 2n wn —
The norm on QP 4(M, E) is defined by
) = R} = @A x8){eq, 4.14
() = [ (o} = [ (0" niT)earer) (4.14)
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for ¢, € QP9(M, E). The dual operators of 9,9,0r and 5*E are denoted by
8*,5*7 Op and E*E, respectively.

The following lemma was firstly shown by Demailly using Taylor expansion
method (e.g. [8]). For the convenience of the reader, we will take another approach
which seems to be useful in local computations.

Lemma 4.2. Let (M, h,w) be a compact Hermitian manifold. If T is the operator
of type (1,0) defined by T = [A, 20w] on Q°*(M, E),

A8 = V1@ +7),

[ _] ( ) (4.15)
[A,0] = —/—=1(0* +77).

For the dual equation, it is
9", L] =v/—1(0 +71),
0 ,L] ( + ) (4.16)
[0%, L] = —/—=1(0 +7),

where L is the operator Ly = 2w A ¢ and A is the adjoint operator of L.

Proof. See Lemma A.5 of the appendix. O

In the rest of this section, F is assumed to be a Hermitian complex vector bundle
or a Riemannian real vector bundle over a compact Hermitian manifold M.

Lemma 4.3. Let VP be a metric connection on E over a compact Hermitian
manifold (M,w). If T is the operator of type (1,0) defined by 7 = [A,20w] on
QO°(M, E), then

(1) [0p, L] = vV=1(0 +7);

(2) 9. L] = —V"1(@5 + 7);

(3) [8,08] = V1@ +7);

4) [A, 098] = —V-1(05 + %)

Proof. See Lemma A.8 of the appendix. |

Theorem 4.1. Let V¥ be a metric connection E over a compact Hermitian man-
ifold (M, w).

AéE = Ay, +v—1 [8E5E + 0p0E, A] +(0pT" +7*0p) — (OpT* +7 0R), (4.17)

where
A =0p0y + 0,08,
op — UETE T UECE (4.18)
AaE = 6E8E + 62(9E
Proof. It follows from Lemma 4.3. O
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‘We make a useful observation on the torsion 7:

Lemma 4.4. For any s € I'(M, E), we have
7(s) = —2vV=1(0 w) -5, T(s) =2V/—1(0"w) - . (4.19)
Proof. By definition
([A,20w])s = 2A((Ow) - s)
= 2(A(Ow)) - 5
—2/=1(0"w) - 5.

Here we use the identity
9w =v—TA(0w) (4.20)

where the proof of it is contained in Lemma A.6 of the appendix. |

Corollary 4.1. If (M,w) is a compact balanced Hermitian manifold, and V¥ a
metric connection on E over M, then

“5)5‘8”2 = H8Es||2 + (v _1[8E5E + 0pog, Als, s) (4.21)
for any s e I'(M, E).

Proof. Since for any s € I'(M, E), 7s =Ts = 0 and 7"s = 7*s = 0 on a balanced
Hermitian manifold, the result follows from formula (4.17). m|

Theorem 4.2. Let (M,w) be a compact Hermitian manifold with 00w™ * = 0. If
VE is a metric connection on E over M, then

0= HEESH2 = H8Es||2 + (\/ —1[85;5]5 + 5}58}57 A]S, S) (422)
for any s € T'(M, E) with Ogs = 0.

Proof. By formula (4.17), we only have to prove that
(OpT* +7°0r)s — (OpT" +70g)s,s) = 0. (4.23)

It is equivalent to (s, 7s) = 0 since 7*s = 7*s = s = 0. By formula (4.19) and
Stokes’ theorem,

(t"0ps, s) = (Ops,Ts) = /M{ﬁEs, x(78)}
= 2\/—_1/M{8Es, #(@w-s)}

= 2\/—_1/M{8Es, (+0 w) - s}
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—2vV=1 [ {5,0p((x0 w)-s)}
M

—2\/—_1/M{3, (%8 w)-s— (x0 w) Adps}.

It is easy to see that

0%0 w=—0*%0%w =, 00w" ' =0 (4.24)

since *w = c,w™ ! where ¢, is a constant depending only on the complex dimension
of M. Hence

(Ogs,Ts) = 2\/—1/ {s,(x0 w) ANDgs} =0 (4.25)
M
since dgs = 0. O

Remark 4.2. By these formulas, we can obtain classical vanishing theorems on
Kéhler manifolds and rigidity of harmonic maps between compact Hermitian and
compact Riemannian manifolds.

5. Vanishing Theorems on Hermitian Manifolds
5.1. Vanishing theorems on compact Hermitian manifolds

Let E be a Hermitian complez (possibly non-holomorphic) vector bundle or a Rie-
mannian real vector bundle over a compact Hermitian manifold (M, w). Let V¥ be
an arbitrary connection on E and dg, dg the (1,0), (0,1) part of VZ, respectively.
The (1, 1)-curvature of V¥ is denoted by R € T'(M,A*'T*M ® E*® E). It can be
viewed as a representation of the operator 9g0r + 0rpdr. We can define harmonic
section spaces associated to (E, VF) by

HEU(M, E) = {p € Q"(M, E) |9 = Dpp = 0} (5.1)

In general, on a complex vector bundle E, there is no terminology such as “holo-
morphic section of E”. However, if the vector bundle E is holomorphic and V¥
is the Chern connection on E, i.e. g = 0, then H%’;I(M , E) is isomorphic to the
Dolbeault cohomology group Hg’q(M ,E) and Hg(M , E) is the holomorphic section
space HO(M, E) of E.

Definition 5.1. Let A be an r x » Hermitian matrix and \; < --- < )\, be
eigenvalues of A. A is said to be p-nonnegative (respectively, positive, negative,
nonpositive) for 1 < p < r if

Aiy -+ Ai, > 0 (respectively, > 0, < 0,<0) for any

1<i <ig <+ <idp <. (5.2)
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Theorem 5.1. Let E be a Hermitian complex vector bundle or a Riemannian real
vector bundle over a compact Hermitian manifold (M,w) and V¥ be any metric
connection on E.

(1) If the second Hermitian—Ricci curvature Tr, RF is nonpositive everywhere, then
every Op-closed section of E is parallel, i.e. VFs = 0;

(2) If the second Hermitian—Ricci curvature Tr,RF is nonpositive everywhere and
negative at some point, then H%E (M, FE) = 0;

(3) If the second Hermitian—Ricci curvature Tr, R is p-nonpositive everywhere and
p-negative at some point, then H%E (M,ANE) =0 for any p < ¢ <rank(E).

Proof. By [24], there exists a smooth function u : M — R such that wg = e*w is
a Gauduchon metric, i.e. 85@0271 = 0. Now we replace the metric w on M by the
Gauduchon metric wg. By the relation wg = e%w, we get

Tr,,RY = e “Tr,RE. (5.3)

Therefore, the positivity conditions in the theorem are preserved. Let s € T'(M, E)
with Ogs = 0, by formula (4.22), we obtain

0= ||8E8H2 + (v —1[8]55]5 + gEaE,Ag]S, s) = ||8E3H2 — (’]:\I'QJGRES7 s), (5.4)
where
= 0p0p + Opdp = Rfj_,adzi ANdF @ e® ® ep. (5.5)

Since the second Hermitian—Ricci curvature TrwGRE has components

R5= h”Rmaﬁ (5.6)
formula (5.4) can be written as
0= ||0gs|* - / R 5" 50 (5.7)

Now (1) and (2) follow by identity (5.7) with the curvature conditions immediately.
For (3), we set F = AYE with p < ¢ < r = rank(F). Let \y < --- < A, be the
eigenvalues of —Tr,,, RF, then we know

M4+ >0 (5.8)

and it is strictly positive at some point. If p < ¢ < r, the smallest eigenvalue of
—Tryo R is A1 + -+ + Ay > 0 and it is strictly positive at some point. By (2), we
know H%E(M,F) =0. O

If V¥ is the Chern connection of the Hermitian holomorphic vector bundle E,
we know

H3 (M, E) = H°(M,E)
since O = V" = 9 for the Chern connection.
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Corollary 5.1 (Kobayashi—Wu [34], Gauduchon [22]). Let VE be the Chern
connection of a Hermitian holomorphic vector bundle E over a compact Hermitian
manifold (M, h,w).

(1) If the second Ricci-Chern curvature Tr,R¥ is nonpositive everywhere, then
every holomorphic section of E is parallel, i.e. VFs = 0;

(2) If the second Ricci-Chern curvature Tr, R is nonpositive everywhere and neg-
ative at some point, then E has no holomorphic section, i.e. H°(M, E) = 0;

(3) If the second Ricci-Chern curvature Tr,RY is p-nonpositive everywhere and
p-negative at some point, then AYE has no holomorphic section for any p <
p < rank(FE).

Now we can apply it to the tangent and cotangent bundles of compact Hermitian
manifolds.

Corollary 5.2. Let (M,w) be a compact Hermitian manifold and © is the Chern
curvature of the Chern connection VE on the holomorphic tangent bundle T'°M.

(1) If the second Ricci—Chern curvature 0@ s nonpositive everywhere and
negative at some point, then M has mo holomorphic vector field, i.e.
HO(M, T*°M) = 0;

(2) If the second Ricci—Chern curvature 0® is nonnegative everywhere and positive
at some point, then M has no holomorphic p-form for any 1 < p < n, i.e.
Hg’O(M) = 0; In particular, the arithmetic genus

X(M,0) => " (=1)PhPO(M) = 1. (5.9)

(3) If the second Ricci-Chern curvature ©2) is p-nonnegative everywhere and
p-positive at some point, then M has no holomorphic q-form for any p < q¢ < n,
i.e. Hg’O(M) = 0. In particular, if the scalar curvature S°H is nonnegative
everywhere and positive at some point, then HO(M,mKyr) = 0 for all m > 1
where Ky is the canonical line bundle of M.

Proof. Let E = T"°M and h be a Hermitian metric on E such that the second
Ricci-Chern curvature Tr,,, © of (E, h) satisfies the assumption. It is obvious that
all section spaces in consideration are independent of the choice of the metrics and
connections.

The metric on the vector bundle E is fixed. Now we choose a Gauduchon met-
ric wg = e€“wp on M. Then the second Ricci—Chern curvature 6@ = Tr,,0 =
e~ "Tr,, © shares the semi-definite property with ©() = Tr,, ©. For the safety, we
repeat the arguments in Theorem 5.1 briefly. If s is a holomorphic section of F, i.e.
Ops = 0s = 0, by formula (4.22), we obtain

0= H8ES||2 + (\/ —1[8E5E —|—5E8E,AG]S, S) = H8E3||2 — (Trwc@s, 8) (5.10)
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If Tr,© is nonpositive everywhere, then dgs = 0 and so vEs = 0. If Tr,©
is nonpositive everywhere and negative at some point, we get s = 0, therefore
HO(M, T*9M) = 0. The proofs of (2) and (3) are similar. 0

Remark 5.1. It is well-known that the first Ricci-Chern curvature ©(1) represents
the first Chern class of M. But on a Hermitian manifold, it is possible that the
second Ricci-Chern curvature ©() is not in the same (d, , d)-cohomology class as
O, For example, S* x S! with canonical metric has strictly positive second Ricei—
Chern curvature but it is well-known that it has vanishing first Chern number c3.
For more details see Proposition 6.1. Therefore, ©®) in Corollary 5.2 cannot be
replaced by ©(). It seems to be an interesting question: if (M,w) is a compact
Hermitian manifold and its first Ricci—-Chern curvature is nonnegative everywhere
and positive at some point, is the first Betti number of M zero? In particular, is it
Kéhler in dimension 27

As special cases of our results, the following results for Kéhler manifolds are
well-known, and we list them here for the convenience of the reader. Let (M, h,w)
be a compact Kahler manifold.

(1) If the Ricci curvature is nonnegative everywhere, then any holomorphic (p,0)
form is parallel;

(2) If the Ricci curvature is nonnegative everywhere and positive at some point,
then h?% =0 for p = 1,...,n. In particular, the arithmetic genus y(M,0) =1
and by (M) = 0;

(3) If the scalar curvature is nonnegative everywhere and positive at some point,
then h™0 = 0;

(A) If the Ricci curvature is nonpositive everywhere, then any holomorphic vector
field is parallel;

(B) If the Ricci curvature is nonpositive everywhere and negative at some point,
there is no holomorphic vector field.

5.2. Vanishing theorems on special Hermitian manifolds

Let (M,h,w) be a compact Hermitian manifold and V be the Levi-Civita
connection.

Lemma 5.1. Let (M,w) be a compact balanced Hermitian manifold. For any
(p7 O)_form ¥ on Ma

(1) If ¢ is holomorphic, then 0*p = 0;
(2) If Vo =0, then dp = 0.

Proof. For simplicity, we assume p = 1. For the general case, the proof is the same.
By Lemma A.3, we know, for any (1,0)-form ¢ = ¢;dz",
=

- 5.11
0z’ ( )
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where we use the balanced condition hﬁl“f3 = 0. If ¢ is holomorphic, then gf; =0,
hence 9*¢ = 0. On the other hand,

0p; , ,
V= (82 - Fﬂgpm> dz? @ d2'. (5.12)
If Vo =0, we obtain
dpi j i
Op = 927 d Ndet = =ITipmdz? Ndz" = 0. (5.13)

O

Theorem 5.2. Let (M,w) be a compact balanced Hermitian manifold with
Levi- Civita connection V.

(1) If the Hermitian-Ricci curvature (R;z) is p-nonnegative everywhere, then
any holomorphic (q,0)-form (p < q < n) is d-harmonic; in particular,
dim¢ Hg’O(M) < dim¢ Hg’q(M) for anyp < q <mn;

(2) If the Hermitian-Ricci curvature (R;) is p-nonnegative everywhere and p-

positive at some point, Hg’O(M) =0 for any p < q <n;
In particular,

(3) if the Hermitian—Ricci curvature (R;3) is nonnegative everywhere and positive
at some point, then Hg’O(M) =0, forp=1,...,n and so the arithmetic genus
X(M,0) =1 and by (M) < RO (M);

(4) of the Hermitian-scalar curvature S is nonnegalive everywhere and positive at
some point, then

HO(M,mKp) =0 for any m > 1,

where Ky = det T*VOM .

Proof. At first, we assume p = 1 for (1) and (2). Now we consider E = T*10M
with the induced metric connection V¥ = V for h (see (2.22)). By formula (4.1),
we have

10es|® = [|0es]]> + V=1([R”, A]s, s), (5.14)
where R is the (1, 1)-part curvature of E with respect to the connection VE. More
precisely,

= = 0
E:8E8E+8E8E_ Re dz /\de(X)W@dZ (5.15)

since E is the dual vector bundle of T1°M and the (1, 1)-part of the curvature of
THOM is

Rf LAz N dF @ d2F @% (5.16)
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If s = fid%® is a holomorphic 1-form, i.e.

Os = gfl dz? Ndz' =0 (5.17)

then

Ops = (af? — fkl“’—?) d7 @ dz' = — fiTE d7' @ dz*. (5.18)
oz’ Ji Ji

Without loss of generality, we assume h;z = d;; at a given point. By Proposition

2.1, the quantity
‘8E3|2 Z flfn ]tz ]tn - Z(}?fg - Rn;)fz?n (519)

i,7,t,n i,n

On the other hand
VIR ZR@)L (5.20)

That is
|0es|? — V—1(|RE, A]s, s) ZRmfzf <0 (5.21)

if the Hermitian-Ricci curvature (R, ;) of (M, h, w) is nonnegative everywhere. Then
we get

0 < ||0gs|? = ||0rs||®> — V—1([R¥, A]s, s) < 0. (5.22)
That is Ogs = 0. Since

ofi
0z

Ops =V'Es=V's=V's= — fiT% ) d2¥ @ dZt,
ij

we obtain V's = 0. By Lemma 5.1, we know Ags = 0. In summary, we get

H'(M) C Hy® (M) = Ho'' (M), (5.23)

If the Hermitian-Ricci curvature (R, ;) is nonnegative everywhere and positive at

some point, then f; = 0 for each ¢, that is s = 0. Now we obtain H%’O(M) = 0.
The general cases follow by the same arguments as Theorem 5.1 and Corollary 5.2.
In part (3), b1(M) < dimc Hg’l(M) follows form the Frolicher relation by (M) <
hYO(M) + RO (M). m|

The dual of Theorem 5.2 is the following.

Theorem 5.3. Let (M, h,w) be a compact balanced Hermitian manifold.

(1) If 2}?%2,) — R;5 is nonpositive everywhere, then any holomorphic vector field is
V' -closed,

(2) If 2]:21%2,) — Rﬁ s nonpositive everywhere and negative at some point, there is no
holomorphic vector field.
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Proof. Let E = T%°M and V the induced connection on it. If s = = fi2 5.7 1S a
holomorphic section, then

_ , 9

Ops = fll“gidzj © 53 € L(M,A"'T*M @ E). (5.24)

Without loss generality, we assume h;; = 0i; at a given point. By Proposition 2.1,
[Omsl? = V=I(R", Als, s) = (R = R) 77 + R F'P
_ (9p® i
= (2Rﬁ — Rij)f .

By formula (4.17),

0 < ||0ps||* = ||0es|* — \/—1([]:21’1,A]s,5). (5.25)
So if 2R(2) R;; is nonpositive everywhere, Ops = Vs = 0. If 2R(2) R is
nonposmve everywhere and negative at some point, there is no holomorphlc vector
field. |

Remark 5.2. (1) It is obvious that the second Ricci-Chern curvature @(7 and
Hermitian-Ricci curvature R,; cannot be compared. Therefore, Corollary 5.2
and Theorem 5.2 are independent of each other. For the same reason, Corol-
lary 5.2 and Theorem 5.3 are independent.

(2) For a special case in Theorem 5.2, if the Hermitian-Ricci curvature Ry,
is nonnegative everywhere and positive at some point, by Proposition 3.2,
the manifold (M,w) is Moishezon. It is well-known that every 2-dimensional
Moishezon /balanced manifold is Kéhler, but there are many Moishezon non-
Kéhler manifolds in higher dimension (see [39]).

The following result was firstly obtained in [29].

Corollary 5.3. Let (M,w) be a compact Hermitian manifold with A(90w) = 0.
Let VB be the Bismut connection on THOM .

(1) If the first Ricci—Bismut curvature BW s nonnegative everywhere, then every
holomorphic (p,0)-form is parallel with respect to the Chern connection V¢,

(2) If the first Ricci-Bismut curvature B(Y is nonnegative everywhere and positive
at some point, then M has no holomorphic (p,0)-form for any 1 < p <mn, i.e.
Hg’O(M) = 0; in particular, the arithmetic genus x(M, Q) = 1;

(3) If the first Ricci-Bismut curvature BW s p-nonnegative everywhere and
p-positive at some point then M has no holomorphic (q,0)-form for any
p < q < n, e H%’O(M) = 0. In particular, if the scalar curvature SPM of
the Bismut connection is nonnegative everywhere and positive at some point,
then HO(M,mKy) =0 for any m > 1.
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Proof. By Proposition 3.4, if A(90w) = 0, then
BY <e®, (5.26)

Now we can apply Corollary 5.2 to get (1)—(3). |

Remark 5.3. For more vanishing theorems on special Hermitian manifolds, one
can consult [3, 19, 20, 29] and references therein.

6. Examples of Non-Kéahler Manifolds with Nonnegative
Curvatures

Let M = S$?>"~! x S! be the standard n-dimensional (n > 2) Hopf manifold. It is
diffeomorphic to C™* — {0} /G where G is cyclic group generated by the transforma-
tion z — %z It has an induced complex structure of C* — {0}. For more details
about such manifolds, we refer the reader to [33]. On M, there is a natural metric

~ 4 i i
hzzwdz ® dz". (6.1)
i=1

The following identities follow immediately

8th o _45M§i 6hkz - _45kgzj (6 2)
N '

and

02%h 7
02107

65\2\2 — 27t
|21

= — 46y, (6.3)

Example 6.1 (Curvatures of Chern connection). Straightforward computa-
tions show that, the Chen curvature components are

Phyg g g O 400y = 272")

G iz 0z 9z [0 ’ (64
and the first and second Ricci-Chern curvatures are
o _ T (8] 22 — 2'2%) @ _ (n—1)0ke (6.5)
I
It is easy to see that the eigenvalues of ©(1) are
A =0, &:--:A,F#. (6.6)

Hence, ©(1) is nonnegative and 2-positive everywhere.
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Example 6.2 (Curvatures of Levi-Civita connection). Similarly, we have

82" + 0pZ’ izt — ez’
¢ _ Qi k£ ¢ _ 95k k£
Fik - 2‘2"2 ) gk 2‘2"2 (67)
and
(9ka _ _5%5@' + 0300k 51'@ijk + 627 (6.8)
oz e . '
4 IN—j
oy, _ Ojk0ie — Okedij (§jp2" — Spez?)z (6.9)
0z 2|z|? 2|z]4 ' ’
The complexified Riemannian curvature components are
‘
ort, oI,
0 ik L s 1l _ 175 14
Rﬁk - ( 979 82:1 +F F I3 szs I szs>
_ (M(Sjk _ 5i¢2-73k + 5jkzefi (6.10)
2f2]? Afz|* ‘
and
R — 25i£5jk- 5igzj§k + 5jkz‘? R.- 5,1#‘2"2 — 2tz 6.11
ijkl — ‘2‘4 - ‘2‘6 ) ke — 2‘2‘4 ( . )

Example 6.3 (Curvatures of Bismut connection). By Definition (2.44) and
Lemma 2.6, we obtain
) §jk5i¢ — (SM(SM (5132 2t + 0peZ" i — 51¢Z 27— 5 jkZ Ze

ik 22 -t R (6.12)

Two Ricci curvatures are

W _ g _ 2=n)(0yl2* —7'2)
By =55 nEE : (6.13)

On the other hand, by formula (6.3), it is easy to see 99w = 0 and B = 0 for
n=2.

Proposition 6.1. Let M = S?"~! x St be the standard n-dimensional (n > 2)
Hopf manifold with canonical metric h,

(1) (M, h) has positive second Ricci~Chern curvature ©(2)
(2) (M,h) has vanishing first Chern class but has nonnegative first Ricci-Chern
curvature ©Y . Moreover,

/ @M = o; (6.14)
M
(3) (M, h) is semi-positive in the sense of Griffiths, i.e.
O 57t W'’ > 0 (6.15)
for any u,v € C";
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(4) The Hermitian—Ricci curvature (R,;) is nonnegative and 2-positive everywhere;

(5) (M,h) has mnonpositive and 2-negative first Ricci-Bismut curvature. In
particular, (S® x S',w) satisfies 90w = 0 and has vanishing first Ricci-Bismut
curvature B

Although we know all Betti numbers of Hopf manifold S~ x S, h?Y is not
so obvious.

Corollary 6.1. Let (M, h) be n-dimensional Hopf manifold with n > 2,

(1) h»O°(M) =0 forp>1 and x(M,0) = 1.
(2) dimc H*(M,mK) = 0 for any m > 1 where K = det(T*M).

Remark 6.1. By Leray—Borel spectral sequence, one can compute all Hodge num-
bers of all Hopf manifolds. For more details, one can see [28].

7. A Natural Geometric Flow on Hermitian Manifolds

As we discussed in the above sections, on Hermitian manifolds, the second Ricci
curvature tensors of various metric connections are closely related to the geometry
of Hermitian manifolds. A natural idea is to define a flow by using second Ricci
curvature tensors of various metric connections. We describe it in the following.

Let (M,h) be a compact Hermitian manifold. Let V be an arbitrary metric
connection on the holomorphic tangent bundle (E,h) = (T*9M, h).

V:E— QYE). (7.1)
It has two components V' and V",
V=V +4+V" (7.2)
V’ and V” induce two differential operators
Op : PUE) — QPTLY(E), (7.3)
Op : OPI(E) — QP1tY(E). (7.4)

Let R® be the (1,1) curvature of the metric connection V. More precisely R is a
representation of dgdg + dgdp. It is easy to see that

RE € T(M,AM'T*M @ End(F)) (7.5)
and locally, we can write it as

RF = RY \dz' NdZ) @ e @ ep. (7.6)
Here we set eq = z2r,e = dzP where 4,B = 1,...,n, since the geometric

meanings of j and A are different. It is well-known that a metric connection V is
determined by its Christoffel symbols

Voes=TIlep, Voea=Iep (7.7)
dz? oz J
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In particular, we don’t have notations such as I'f.. It is obvious that
B B

A _ O
B oz azl

We set the second Hermitian-Ricci curvature tensor of (V, h) as

-r¢ FB +FC rs, (7.8)

R® = iRz, pe* @€ e I(M,E* 9 E"). (7.9)
In general, we can study a new class of flows on Hermitian manifolds
oh
— = F(h) + ph,
g =Tt (7.10)
h(0) = hy,

where F can be a linear combination of the first and the second Hermitian-Ricci
curvature tensors of different metric connections on (7™M, h). For examples,
F(h) = =0, the second Ricci-Chern curvature tensor of the Chern connection,
and F(h) = —R® the second Hermitian-Ricci curvature tensor of the complexi-
fied Levi-Civita connection, or the second Ricci curvature of any other Hermitian
connection. Quite interesting is to take F(h) = s + (1 — 5)0?) as the mixed
Ricci-Chern curvature, or F(h) = B(?) — 2R where B® is the second Ricci cur-
vature of the Bismut connection. More generally, we can set F(h) to be certain
suitable functions on the metric h.

The following result holds for quite general F(h), but here for simplicity we will
only take F(h) = —O() as an example.

Oh
- _@(2) + uh,
ot : (7.11)

h(0) = ho,

where p is a real parameter. By formula (2.38), the second Ricci-Chern curvature
tensor has components

5 Pl 70 Ot

<2> ;
2) _ pid —h _ £
O Oigne = 921077 9zt g7

(7.12)

Theorem 7.1. Let (M, hg) be a compact Hermitian manifold.

(1) There exists small e such that, the solution of flow (7.11) ewxists for |t| < e, and
it preserves the Hermitian structure;

(2) The flow (7.11) preserves the Kdhler structure, i.e. if the initial metric hg is
Kahler, then h(t) are also Kdhler.

Proof. (1) Let A, be the canonical Laplacian operator on the Hermitian manifold
(M, h) defined by

82
0zr0z

A, = hPl (7.13)
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Therefore, the second Ricci—-Chern curvature —9%2,) has leading term Achg which
is strictly elliptic. The local existence of the flow (7.11) follows by general theory
of parabolic PDE, and the solution is a Hermitian metric on M.

(2) The coefficients of the tensor Jw are given by

Ohy Dy

Under the flow (7.11), we have
2 2
3f¢jk- - 8@]5 _ 891‘7 toufe
o 0z 9ok M (7.15)

fi71(0) = 0.
At first, we observe that f7(t) = 0 is a solution of (7.15). In fact, if f,7.(t) = 0,
then h,5(t) are Kéhler metrics, and so
6 _ g  _logdetlhnm)
i i 02107
Therefore,
(2 (2)
89@ B 895 _ _83 log det (R ) n 93 log det (hpr) ~0 (7.16)
0zt 0zk 02025075 0202507 ' '
On the other hand,
902 90
8; - a—;/i = Ac(fi5;,) + lower order terms. (7.17)

Hence the solution of (7.15) is unique. m|

Remark 7.1. Theorem 7.1 holds also for quite general F(h) which we will study
in detail in a subsequent paper [35].

The flow (7.11) has close connections to several important geometric flows:

(1) Tt is very similar to the Hermitian Yang-Mills flow on holomorphic vector bun-
dles. More precisely, if the flow (7.11) has long time solution and it converges
to a Hermitian metric ho, such that

@ _
0% = jih;. (7.18)

The Hermitian metric hoo is Hermitian—Einstein. So, by [36], the holomor-
phic tangent bundle T1°M is stable. As shown in Example 6.1, the Hopf
manifold S?"+! x S! is stable for any n > 1. In fact, in the definition of
9?‘)’ if we take trace by using the initial metric hg, then we get the original
Hermitian—Yang—Mills flow equation.

(2) If the initial metric is K&hler, then this flow is reduced to the usual Kéhler-Ricci
flow (see [7]).
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(3) The flow (7.11) is similar to the harmonic map flow equation as shown in
Theorem 7.1. It is strictly parabolic, and so the long time existence depends on
certain curvature condition of the target manifold as discussed in the pioneering
work of Eells-Sampson in [11]. The long time existence of this flow and other
geometric properties of our new flow will be studied in our subsequent work.

Certain geometric flows and related results have been considered on Hermitian
manifolds recently, we refer the reader to [25, 43-45].

Appendix A. The Proof of the Refined Bochner Formulas

Lemma A.1. On a compact Hermitian manifold (M, h,w), we have

[A,20w] = A+ B+ C, (A1)
where
A= —hhmT™dz" A d2' I,
. (A.2)
A hstrl ~dZ" LI,
B= —2F€ dz' NdZ I,
(A.3)
B 2hp31“5 dz‘1, 15,
C = A(20w) = 21“/‘.7032],
IS " Jipe (A-4)
C" =2h sy = —2h FﬁIZ
Moreover,
(1) [A,A] = —V=IB;
(2) [A,B] = —/—124 + B +C");
(3) [A,C] = —V/=1C".
Proof. All formulas follow by straightforward computations. |
Definition A.1. With respect to V' and V", we define
D' :=dz' ANV,
D" :=dz NV, (4.5)
J

The dual operators of 9,0, D', D" with respect to the norm in (4.13) are denoted
by 0,0 ,8,6" and define
8 == —hi I,V
7 (A.6)
(5/0/ = —h-”I;V;,

where I the contraction operator and I; =1 o and I; =1 o_.
ozt ozt

Remark A.1l. It is obvious that these first order differential operators D', D" 4,
and Jj are well-defined and they do not depend on the choices of holomorphic

*

frames. If (M, h) is Kéhler, D' =0, D" =0, ) =8 = 0* and §] =" =0 .
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Lemma A.2. In the local holomorphic coordinates,

B

= B
d=D"—-—= and 9=D"—- —. (A.7)
2 2
Proof. We only have to check them on functions and 1-forms. |
Lemma A.3. On a compact Hermitian manifold (M, h), we have
0" =6 — U—
2 (A.8)
0 = ¢ <
0" 2
For 0 and 0, we have
B* *
9" = o) — 7; o
5. (A.9)
7= -

Proof. For any ¢ € QP¢~1(M) and ¢ € QP9(M), by Stokes’ theorem

(o N *v)

M

=i (dZ7 A A 1))

a n
= /M 55 <<dzj N @, ¢>—,>
0 i7 w"
= /M ﬁ <<<P:h] IZ'WF)

= /A ; <<V}'% WEE) + (@, Vi I) + (o, W' Fp) —

Olog det(hmn)) wn”
07’

n!
, = OhJt w"
. = " 7 7. -
= /M ((dzj A Vj—«p,ib) + (@, W'V ) + <<p, a7 I >> )
= 0logdet(hpmzm) w"
3i [y LS T Imn) &

That is

(D", 9) = (dz’ A VEp, 1)

—(p, WV T ) — ( (‘ZZ hﬂalog%et](h )>Iiw>. (A.10)
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Now we will compute the second and third terms on the right-hand side.

073 0z°

_ 4 pt :
029 + 0zI

On the other hand

gi . - - - Ohg o o
on Ologdetlnm) _ pipst (ahst -”) =207, = 2T, (A1)

~ WV L = WLV, — T (v;. ai)
z

=0 — WL (A.12)

In summary, by formulas (A.10)—(A.12), the adjoint operator 6" of D" is

*

o o o
0" = (0§ — W'T3Ip) + 2h7' T Iy = & — =~
Since § = D" — g’ we get
. E* E* 6*
R .

Lemma A.4. On a compact Hermitian manifold (M, h), we have

—k

/ " C " _ /g
[A,D}=m<5+—> B [67L}—¢—1(D+2)

20* Z (A.13)
[A,D"] = —/—1 (6’ + 7) [0, L] = —/—1 (D” + 5>.
Proof. By definition
(AD")p = (V=T L,I5)(dz" A Vi)
= —V=IhII(d2* A V)
= —V=IhI Vg + V=107 d2* LIV
= V/=16) + dz" A Vi (V=ThT L Ip)
= V—16) + D'Ayp,
where we use the metric compatible condition
V'w =0= V.(Ap) = A(V}p). O
Lemma A.5. On a compact Hermitian manifold (M, h), we have
A0 = /=10 +7%),
[4,9] ( ) (A14)
[A,0] = —/=1(0* + 7).
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For the dual case, it is

(A.15)

Proof. By Lemmas A.1, A.2 and A.4,

(A, 8] = [A, D] - [A, g]

=1 (56’ + 24 +B +T +U*)
2

C" A +B +C
— _1 1 - e
N (5 & D )
= V=1(@ +7).

The other relations follow by complex conjugate and adjoint operations. |

Lemma A.6. On a Hermitian manifold (M, h,w),
9w = vV=IA(Ow) = \/_—H“Zjdze. (A.16)

Proof. We have
¢
2
On the other hand, by Lemma A.3 and éjw =0
7= (53 § 70) @ O
2
v—1

= (hghP h Tk d2' T, I) (Thmndzm A dz") —~ %w

=A(Ow) = F%dzj.

V-1 ik 7.0 c
= —Th@h JFﬁdZ — 7w

vV-lj5., C
—Tngz—7w

- M—lF%d%
= V—1A(0w). m|

*

Now we assume E is a Hermitian complex vector bundle or a Riemannian vector
bundle over a compact Hermitian manifold (M, h,w) and V¥ is a metric connec-
tion on F.

1250055-36



Int. J. Math. 2012.23. Downloaded from www.worldscientific.com
by CHINESE ACADEMY OF SCIENCES @ BEIJING on 03/15/16. For persona use only.

Geometry of Hermitian Manifolds

Lemma A.7. We have the following formula:
0p(p®s) =0 ¢)®s— hﬁ(lj—-gp) AVEs (A.17)
for any ¢ € QPU(M) and s € T'(M, E).

Proof. The proof of is the same as Lemma A.3. |

Lemma A.8. If 7 is the operator of type (1,0) defined by T = [A,20w] on
O°(M, E), then

(1) [0, L) = V=1(0p + 7);
(2) [0, L] = —V=1(@5 +7);
(3) [A,08) = V=1(F, +7°);
(4) [A,0p] = —vV=1(05 + %)

Proof. We only have to prove (3). For any ¢ € Q*(M) and s € I'(M, E),
(A0p)(p @ 5) = MOp @ 5 + (—1)?lp A Os)
= (AD) @ s + (—1)1PIV=IRM I I ( A Ops)
= (Ap) @ s + (= 1) IV/=TIh* I ((Iz0) A Ds)
= (ADg) ® s + (1)1 IW=Th¥ (I (I;0)) A O
— V=R () A 10
= (A09) ® s + (~1)/(Ap) A s — V=Ih" I (p) AV Es.
On the other hand
(OeM)(p @ s) = Ip((Ap) @ s)
= (0Ap) @ s+ (=1)?l(Ap) A Dps.
Therefore
A, 98] (p @ 5) = ([A,0]p) @ s — V=T I;(p) A Vi
= V=@ +7)¢) @ s — V=T I(p) A VEs
= V=105 +7)(p @ s)

where the last step follows by formula (A.17). m|
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