Global generation and very ampleness for adjoint linear series

Xiaoyu Su and Xiaokui Yang

Abstract. Let X be a smooth projective variety over an algebraically closed field
K with arbitrary characteristic. Suppose L is an ample and globally generated line
bundle. By using characteristic p methods, we show that Kx ® L® 4™ X @ A is glob-
ally generated and K x @ L®™ X+ @ A is very ample, provided the line bundle A is
nef but not numerically trivial, which generalizes results of Y.T. Siu, K.E. Smith and
D.S. Keeler. On complex projective varieties, by investigating Kawamata-Viehweg-
Nadel type vanishing theorems for vector bundles, we also obtain the globally gen-
eration for adjoint vector bundles. In particular, for a holomorphic submersion
f: X — Y with L ample and globally generated, and A nef but not numerically
trivial, we prove the global generation of f.(Kx,y)®* ® Ky ® L® ™Y ® A, which
generalizes a result of Kollar.

1. Introduction

In [Fuj88], Fujita proposed the following conjecture
Conjecture. Let X be a smooth projective variety and L be an ample line bundle.
Then

(1) Ky @ L®WmX+1) j5 olobally generated;
(2) Kx @ LOWmX+2) ig very ample.

Fujita’s conjecture is a deceptively simple open question in classical algebraic geom-
etry. Up to dimension 4, the global generation conjecture has been proved ([Rei88,
EL93, Kaw97]). Recently, Fei Ye and Zhixian Zhu proved it in dimension 5 ([YZ2]).
Also, there are many other “Fujita Conjecture type” theorems have been proved,
and we refer the reader to [Dem93, Kol93, AS95, Siu96, Sm97, Hel97, Hel99, Sm00,
Hei02, Ara04, Kee08, PP08, BBMT14, PS14, Sch14, YZ1, Fuj, FS]) and the references
therein.

In this paper, we prove Fujita Conjecture type theorems by using characteristic
p methods in algebraic geometry as well as analytic methods in complex geometry
when the twisted line (resp. vector) bundle is nef (resp. Nakano semi-positive).

1.1. Fujita Conjecture type theorems on projective varieties over arbitrary
fields. Let K be an algebraically closed field with arbitrary characteristic. By us-
ing characteristic p methods, Keeler proved in [Kee08, Theorem 1.1] the following
interesting result.
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Theorem 1.1 (Keeler). Let X be a smooth projective variety over K with dimension

n. Suppose L is an ample and globally generated line bundle, and A is an ample line
bundle. Then

(1) Kx @ L®" ® A is globally generated;
(2) Kx @ L®D @ A is very ample.

In the case K = C, Angehrn and Siu proved the very ampleness part of Theorem
1.1 by analytic methods ([AS95, Lemma 11.1]). In [Sch14, Corollary 4.8], Schwede
generalized the global generation part of Theorem 1.1 to the case when A is nef and
big, and ch(K) = p > 0. The first result of our paper deals with a more general case
when A is nef but not numerically trivial.

Theorem 1.2. Let X be a smooth projective variety over K with dimension n. Sup-
pose L is an ample and globally generated line bundle. If A is a nef but not numerically
trivial line bundle, then

(1) Kx @ L®" ® A is globally generated;

(2) Kx ® L2D) @ A is very ample.

As far as the authors know, this is the greatest generality in which Fujita Conjecture
type theorem has been proved in any characteristic. Theorem 1.2 is also optimal in the
sense that one can not drop the non-triviality condition on A, which can be seen from
the example (X, L) = (P”,0(1)). One may want to know the limit case when A is
indeed a trivial line bundle. For the globally generation part, Smith proved in [Sm00,
Theorem 2] that, this example is the only exceptional case, i.e., if (X, L) # (P™, O(1)),
then Kx ® L™ is globally generated. Her proof relies on the “tight closure” methods
in the frame of commutative algebra.

1.2. Fujita Conjecture type theorems on complex projective varieties. In
this subsection, we focus on the cases in complex geometry, i.e. X is defined over the
complex number field C. At first, we obtain a general version of the global generation
part in Theorem 1.2:

Theorem 1.3. Let X be a compact Kdhler manifold of dimension n and L be an
ample and globally generated line bundle. Suppose (A,e™2?) is a pseudo-effective line
bundle and Z(p) is the multiplier ideal sheaf. If the numerical dimension of (A, p) is
not zero, i.e. nd(A, p) # 0, then

(1.1) Kx @ L*" @ A® I(p)
s globally generated.

A key ingredient in the proof of Theorem 1.3 relies on vanishing theorems for pseudo-
effective line bundles ([Guan-Zhou, Corollary 1.7], [Demailly, Theorem 0.15], [GZ15,
Corollary 3.2] or a weaker version [Caol4, Theorem 1.3]).

By using analytic methods, we also investigate the globally generated property for
adjoint vector bundles.
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Theorem 1.4. Let X be a compact Kdhler manifold of dimension n and L be an am-
ple and globally generated line bundle. Let (E,h) be a Hermitian holomorphic vector
bundle with Nakano semi-positive curvature. Suppose A is a nef but not numerically
trivial line bundle, then the adjoint vector bundle

(1.2) Kx®L®" @ (E®A)
1s globally generated.

Theorem 1.4 is derived from the following vanishing theorem for vector bundles, build-
ing on ideas in [Guan-Zhou], [Dem10] and [Caol4].

Theorem 1.5. Let X be a complex projective variety with dim X = n. If (A,e=2%) is
a pseudo-effective line bundle and (E,h) a Nakano semi-positive vector bundle, then

(1.3) HI(X,Kx@FE®A®I(p) =0 for q¢>n—nd(A,qp).

Remark. According to [GZ], it is not hard to see that Theorem 1.5 is also true
on compact Kéhler manifolds. Hence, there is a version of Theorem 1.4 for pseudo-
effective line bundle (4,e2#) (e.g. Theorem 4.3). For simplicity, we only formulate
applications for nef line bundles (see Theorem 4.4 for general cases).

As an application of Theorem 1.4, we obtain the following result in pure algebraic
language.

Theorem 1.6. Let f : X — Y be a holomorphic submersion between two complex
projective varieties and dim'Y = n. Suppose L — Y is an ample and globally generated
line bundle, and A — 'Y is a nef but not numerically trivial line bundle. Then

(1.4) fe(Kx)y)®* @ Ky @ L @ A
1s globally gemerated for any s > 1.

As a special case of Theorem 1.6, we obtain the following well-known result of
Kollar ([Kol86, Theorem 3.5, Theorem 3.6]):

Corollary 1.7 (Kollar). Let f : X — Y be a holomorphic submersion between two
smooth projective varieties and dimc Y = n. Suppose L — Y is an ample and globally
generated line bundle, then

f*(KX/Y)®S ® Ky ® L®(n+1)
1s globally gemerated for s > 1.

As another application of Theorem 1.4, we also get global generation of pluricanon-
ical adjoint bundles of canonically polarized families.

Theorem 1.8. Let f : X — S be a holomorphic family of canonically polarized
compact Kdahler manifolds effectively parameterized by a smooth projective variety S

3
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with dimenston n. Suppose L — S is an ample and globally generated line bundle,
and A — S is a nef line bundle. Then

(1.5) [HKY) @ L ® A
1s globally gemerated for s > 1.
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2. Fujita Conjecture type theorems on projective varieties over arbitrary fields

In this section, we investigate Fujita Conjecture type theorems on projective vari-
eties over algebraically closed fields and prove Theorem 1.2. Let K be an algebraically
closed field with arbitrary characteristic, and X be a smooth projective variety over
K. We first introduce the theory of Castelnuovo-Mumford regularity and the modulo
p reduction methods.

2.1. Castelnuovo—Mumford regularity. Suppose L is an ample and globally gen-
erated line bundle over X.

Definition 2.1. A coherent sheaf F on X is m-regular with respect to L if
(2.1) HYX,FQL®MD)y=0 for ¢>0.

The following results is well-known (e.g. [Laz04, Section 1.8], or [FGIKNVO05, Sec-
tion 5.2]), and for the sake of completeness we include a proof here.

Lemma 2.2 (Mumford). Let F be a 0-regular coherent sheaf on X with respect to L,
then F is generated by its global sections.

Proof. Suppose dim X = n. We shall use standard hyperplane induction method to
prove it. For simplicity, we write L = Ox(1). Since the coherent sheaf F has finitely
many associated points, we can choose s € H°(X, L) such that the corresponding
divisor B does not contain any associated point of F. Hence, for any i > 0, we have
the exact sequence

(2.2) 0— F(—i—1) 8 F(—i) - Fp(—i) — 0.
4
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By using the associated long exact sequence

(2.3) o= HY(X, F(—i)) = H (X, Fp(—i)) - HHX, F(—i—1)) — -

and O-regularity of F, we see H'(X,Fp(—i)) =0 for i > 0, i.e. Fp is O-regular with
respect to L. Similarly, for any ¢ > 0, we have

(24) = HYX, F(=q) = HI(X, F(1)(=q) — HI(X, Fp(1)(=q)) — -

We show F(1) is O-regular if F is O-regular. Indeed, we have Fp is O-regular and
by hyperplane induction hypothesis, Fp(1) is 0-regular. By (2.4), F(1) is O-regular.
Hence, we know F(k) is O-regular for all £ > 0. In the commutative diagram

HO(X, F(k)) @ HO(X, O(1)) —2 HO(X, Fu(k)) @ HO(X, Ox (1))

- -

2 HOX, F(k + 1)) R HO(X, Fp(k+1)),

HO(X, F (k)

rr ® 1 and rg4q are surjective according to long exact sequence associated to (2.2).
By diagram chasing, it is obvious that ¢x is surjective if and only if g is surjective.
Note that in the above commutative diagram we can replace B by intersections of
suitable divisors in |L|. Hence, we can show ¢x is surjective by induction on dim B.
When dim B = 0, it is easy to see ¢p is surjective. Hence, by induction, we know ¢x
is surjective. For any x € X and large IV, in the commutative diagram

HX,F)® HY(X,0(1))®N —~ HY(X, F(N))

l 1®evy eva \L

H(X, F) @ (O(1)]o)* (F(N)le,

¢ is surjective since tx is surjective. On the other hand, 1 ® ev; and evy are all
surjective and so f is surjective, and we deduce HY(X,F) — F|, is surjective. O

2.2. The characteristic p methods. Let K be a field of characteristic 0 and X a
smooth projective variety over K of dimension n, and .# be a coherent sheaf on X.
Then there exists a subring R of K, finitely generated over Z, and a scheme 2~ with
flat morphism f : 2" — spec(R) of relative dimension n such that X = 2" @z K. By
shrinking spec(R) via localization, we can assume

(1) f is a smooth projective morphism;

(2) there exists a coherent sheaf Z such that Z = .F @z K;

(3) the sheaves R'f,.% are locally free and of finite ranks.

Since R is finitely generated over Z, the residue fields at the closed points of spec(R)
are finite fields hence of characteristic p > 0. The following technical lemma can be
found in [Kee08, Lemma 2.4, Lemma 2.5].

5
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Lemma 2.3. With the notation above, let L be a line bundle on X, L be the corre-

sponding thickened line bundle on the arithmetic thickening Z .

(1) If L is ample, then Ly is ample on X, for every s € spec(R).

(2) If H(X,Z) = 0, Rif.Z = 0. So for each closed point s € spec(R),
H'(X,, Z|x,) = 0.

(3) Ko jspec(r) ©r K = Kx and Ky jspec(r) Or k(s) = Kx., -

(4) If F is globally generated on some closed fiber X, then F is globally gener-
ated.

(5) If ZS is very ample on some closed fiber X, then L is very ample.

For more introduction on the characteristic p methods, we refer the reader to [DI87]
and [Kee08].

2.3. The proof of Theorem 1.2. Before giving the proof of Theorem 1.2, we need
the following general result.

Theorem 2.4. Let X be a smooth projective variety over K with dimension n. Sup-
pose L is an ample and globally generated line bundle. If A is a line bundle such that
L ® A is ample and the Kodaira dimension k(A*) = —oo, then

(1) Kx @ L®" ® A is globally generated;
(2) Kx @ LD @ A is very ample.

Proof. Step 1. Assume ch(K) = p > 0. We shall show that FF(Kx) ® L®" ® A is
O-regular for all k£ > kg where F' : X — X is the absolute Frobenius morphism. When
0<qg<mn,ie n—gq>1, L9 g A is ample since both L and L ® A are ample.
Hence, by Serre vanishing theorem, for each g with 0 < ¢ < n, there exists a positive
constant k; = k(g) > 0 such that

(2.5) HY(X, Kx ® L&' (=0 @ A%P") — 0,
for k > k,. By projection formula, one has
(2.6) FF(Ex ® LEP' (=0 @ A®P") = FF(Ky) @ L90=D @ A,
Since the Frobenius morphism F' is a finite morphism, we get
HYX,FF(Ky) @ L®9 @ A) ~ HIX,FF(Ky® L% (9 g A%7"))
~ HIX,Kx® 1,8p*(n—q) ® A®pk)
= 0.
When ¢ = n, we want to show
(2.7) H"(X,FF(Kx)® A) =0.
6
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By projection formula again, we have FF(Ky)® A = FF <K x® A®pk) and

H™(X,FF(Kx)® A) = H" (X, FMEy ® A®P’“))

> HY(X, Kx ® A%

>~ FO(X, (A% ),
Since the Kodaira dimension x(A*) = —oo, we have H(X, (4*)®%) = 0 for any £ > 0.
Hence we get (2.7). By Definition 2.1, FF(Kx) ® A ® L®" is O-regular for all k > ko

where kg = max{ki,---,k,_1}. According to Lemma 2.2, FF(Kx) ® L®" ® A is
globally generated. Thanks to [Kee08, Lemma 3.3], Kx ® L®" ® A is a quotient of

FFKx)® A LE"

for all k > kg and so Kx ® L®" ® A is globally generated.

It is well-known that Kx @ L®™tD @ A is very ample if and only if for every
re X, m® Ky ® L") @ A is globally generated. Since FF(Kx)® L®" @ A
is O-regular with respect to L, it is proved in [Kee08] that for every z € X, m, ®
FF(Kx)® L2+t @ A is also O-regular and so it is globally generated. By [Kee08,
Lemma 3.3], m, ® Kx ® L™+t © A is a quotient of m, ® FF(Kx) ® L") @ A.
Hence m, ® Kx ® L2 @ A is globally generated.

Step 2. When ch(K) = 0, we use the standard modulo p reduction method. Let
(f : & — spec(R), L, A) be the arithmetic thickening with respect to (X, L, A) such
that f is a smooth morphism of relative dimension n. By Lemma 2.3, for each closed
point s € spec(R), we know Ly® Ay is ample and H° (XS, (E;@Z)*) =0forall £ > 1.

Hence, after a base change to k(s), by using [Kee08, Lemma 2.3] and Step 1, we get
(1) Kx, ® L9 @ A, is globally generated;
(2) Kx, ® L @ 4, is very ample.
By Lemma 2.3 again, we obtain Ky ® L®" ® A is globally generated and Kx ®
L2+ & A is very ample. O

As a special case of Theorem 2.4, we obtain Theorem 1.2:

Theorem 2.5. Let X be a smooth projective variety over K with dimension n. Sup-
pose L is an ample and globally generated line bundle. If A is a nef but not numerically
trivial line bundle, then

(1) Kx ® L®" ® A is globally generated;

(2) Kx @ LD @ A is very ample.

Proof. Since L is ample and A is nef, L ® A is ample. We show k(A4*) = —o0, i.e.
HO(X, (A*)®%) = 0 for all £ > 0. We also use /A to denote the divisor class of A%
for £ € Z. The divisor £A is nef but not numerically trivial, for each £ > 0. Suppose

7
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HY(X,0(—(A)) # 0 for some £ > 0, then —(A is effective. Let —¢A = > v;D; where
D; are irreducible divisors and v; > 0. Since —fA is not numerically trivial, there
is at least one v; > 0. By Nakai-Moishezon criterion for ampleness, for any ample
divisor D in X, we have D"~ !.(—fA) > 0,i.e. D""!. A < 0 which contradicts to the
fact A is nef. Hence, Theorem 2.5 follows from Theorem 2.4. O

Remark 2.6. Theorem 2.4 is more general than Theorem 2.5. In Theorem 2.4, A can
be certain numerically trivial line bundle. It is easy to see that, if A is a non-torsion
point in Pic®(X), Theorem 2.4 also works. For instance, let E = C/Z @ +/—17Z be an
elliptic curve. Suppose A = O(p — q) where p is a rational point and ¢ is an irrational
point on E. Then A is numerically trivial and x(A*) = —oo. Indeed, (A*)®* has no
nonzero section for any ¢ > 0. Otherwise, the divisor ¢(q — p) is linearly equivalent to
the zero divisor, which is absurd.

3. Vanishing theorems for vector bundles on compact Kéahler manifolds

In this section, we investigate various vanishing theorems for vector bundle, which are
the key ingredients in the proof of Fujita Conjecture type theorems. In particular, we
give the proof of Theorem 1.5.

Let E be a holomorphic vector bundle over a compact complex manifold X and h
be a smooth Hermitian metric on E. There exists a unique connection V which is
compatible with the Hermitian metric h and the complex structure on E. It is called
the Chern connection of (E,h). Let {z'}; be local holomorphic coordinates on X
and {e4}"_; be alocal frame of E. The curvature tensor OF € I'(X, A>°T* X @ E*® F)
has components
PO 0 P L% e

o 2oz 9" 07
Here and henceforth we sometimes adopt the Einstein convention for summation.

(3.1)

Definition 3.1. A Hermitian holomorphic vector bundle (E,h) is is called Nakano
positive (resp. Nakano semi-positive) if

Rﬁagumﬂjﬁ >0 (resp. >0)
for nonzero vector u = (u'®) € C™.

Let’s describe some elementary properties on positive vector bundles.

Lemma 3.2 (Nakano vanishing theorem). Let X be a compact Kdihler manifold.
Suppose (E,h) — X is a Hermitian holomorphic vector bundle with Nakano positive
curvature, then

(3.2) HYX,Kx ®E) =0, q>1.

8
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Lemma 3.3. Let (X,wy) be a compact Kihler manifold.

(1) Let (E,h) be a Nakano positive vector bundle and A a nef line bundle. Then
E ® A admits a Hermitian metric with Nakano positive curvature.

(2) Let (E,h) be a Nakano semi-positive vector bundle and A be an ample line
bundle. Then E® A admits a Hermitian metric with Nakano positive curva-
ture.

(3) Let (E, hE) and (E, hE) be two Nakano semi-positive vector bundles, then
(E® E,h®h) is also Nakano semi-positive.

Proof. (1). For the fixed Kéhler metric w, on X, there exists a constant € > 0 such
that

V=10"(u(x), u(x)) > 2elu()[jon
for any v € T'(X,T'"°X ® F). On the other hand, by analytic definition of nefness
(e.g. [Dem10]), there exists a smooth metric hy on the nef line bundle A such that

(3.3) V=104 > —cw,.

The curvature of h @ hg on E ® A is OE®4 = 0F . jd, + idy - ©4. Hence, for any
ue (X, TWX ® F) and v € I'(X, A)

(34) V=10 u@v,u®v) > (V=108 (u,u) — clul2y,) V)7, > elulZgnlvlh,-
Therefore, E'® A is Nakano positive. The proof of (2) is similar to that of (1).
(3). By using curvature formula of h @ h on E® E,
0F®4 = 0F .id; + id - oF
for any (local) vectors u € I'(X,T"°X @ E ® E) with the form u = u/*4dz! ® ¢* @ ¢
in the local holomorphic frames {2, e%, e} of {X, E, E}, we obtain

EQE _ oF A BB 1 E E A BB 1 B
(3.5) O" % (u, u) = O Zu u'AyifB . pl —i—@[AEu’O‘ uwiPB . o

It is nonnegative and one can see that by choosing normal coordinates for h¥ and hE
at a fixed point. O

We need the following fundamental result in [DPS94, Proposition 1.16].

Lemma 3.4. Let E — X be a nef vector bundle over a compact complexr manifold
X. Suppose 0 € H*(X, E*) is a nonzero section, then o does not vanish anywhere.

By refining the Bochner technique, we obtain the following vanishing theorem for
vector bundles with “degenerate” curvature tensors.

Theorem 3.5. Let (X,w) be a compact Kdihler manifold of dimension n. Let (E,h)
be a holomorphic vector bundle and A be a line bundle. Suppose either

(1) E is nef and the second Ricci curvature tr,0F is semi-positive, and A is
semi-ample but non-trivial; or
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(2) the second Ricci curvature tr,OF is strictly positive and A is nef.
Then

(3.6) H(X,E*® A*) = 0.

Proof. (1). Since A is semi-ample, A" is generated by its global sections for large k.
Hence, there is an induced smooth Hermitian metric A4 on A such that the curvature
©4 is semi-positive, i.e.

V=104 = —\/=19d1og h* > 0.

On the other hand, since A is not trivial, for the fixed Kéhler metric w on X, the
scalar curvature function
tr,0%

is non-negative, but not identically zero. Indeed, if it is identically zero, we deduce
that ©4 is identically zero, and so A is trivial. The curvature tensor of £ ® A can be
written as

0 — 0F @idy + idp © ©4.
In order to prove (3.5), we argue by contradiction. Suppose H°(X, E* @ A*) # 0,
i.e. there exists a nonzero section o € H(X, E* ® A*). By Lemma 3.4, o is nowhere
vanishing. By using standard Bochner identity over E* @ A*,

(3.7) Az =Ny + [V-10F 4 A ]

we obtain

(3.8) 0=||Vol|? - (tr,0F 4 g, o).

Note that ©F" = —(0F)T as (1, 1)-form valued 7 x r matrices. Hence,
(3.9) 0= Vo2 + (([tr0"]" @ida +idg @ tr,0") 0,0) .

By using local holomorphic frames {z'}, {e1, -+ ,e.}, {€} of X, E and A respectively,
we write

w=+vV—1g-dz'NdZz?, OF = RE dzindF ®e®®e , ©4 = RALZNIF, 0 =0, ®e.
() 1jo 6 1]
We obtain
(3.10) / hA (giERﬁﬁaaaEﬁ + gﬁR%h aﬁaaﬁﬂ ) w" = 0.
X

By assumption, the (transposed) second Ricci curvature

[t'rw@E]T = ZgﬁRﬁﬁa
Z?J

is Hermitian semi-positive as a (r X r) matrix and so
7 — 7 pA 3 _
(3.11) 9" Rij550°" + gV Rih, 50" = 0.

10
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It implies
gin;%(haBJO‘Eﬁ) =0.
Since o is nowhere vanishing, we obtain h QBUQEB > 0 at each point. Therefore
A ij PA
tr,0" = g”Rﬁ =0.

This is a contradiction.
(2). For nef A, we use similar ideas as described in the first part of Lemma 3.3.
Since tr,OF is strictly positive, there exists e > 0 such that

(tr,©") (u(x), u(x)) > (n+ Delu(z)[;

for any u € I'(X, E) since X is compact. On the other hand, since A is nef, there
exists a smooth metric hg on the nef line bundle A such that /—104 > —cwy. Hence,
for any w € I'(X, FE) and v € I'(X, A)

([trw@E}T ®ida+1dp ® trw(%A) (u®@v,u®) ((tru®")" (u,w) — nelul}) |v[3,

>
> elulg|vff,-
Therefore in (3.11), 0 =0, i.e. H(X, E* ® A*) = 0. O

Remark 3.6. The semi-positivity of the second Ricci curvature tr,0F can be re-
placed by the semi-stability of E with respect to w following Donaldson-Uhlenbeck-
Yau’s theorem. Moreover, the Griffiths (or Nakano, or dual Nakano) semi-positivity
of E can also imply the semi-positivity of the second Ricci curvature tr,0F.

The following Kawamata-Viehweg-Nadel type vanishing theorem for a semi-positive
vector bundle twisted by a big line bundle is essentially known to experts (e.g., [Ca98,
Theorem 4.2.4], [Dem10, Theorem 5.11], [Fuj12, Theorem 1.2], [Fuj13, Theorem 1.1],
[Rau, Theorem 1.1], [FM], [Ma]), although the statement is not written down precisely.
For the sake of completeness, we include a short sketch here, following the approach
in [Dem10, Theorem 5.11] for line bundles.

Lemma 3.7. Let (X,w) be a Kdhler weakly pseudo-convex manifold, and let A be a
holomorphic line bundle over X equipped with a (possibly) singular Hermitian metric
h = e 2%. Assume

V=104 > cw

for some continuous positive function € on X. If (E,hF) is a Nakano semi-positive
vector bundle, then

(3.12) H (X, Kx®@E®ARI(p) =0
for all g > 1.

11
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Proof. Let £ be the sheaf of germs of (n, ¢)-forms u with values in £ ® A and with

. =ERA
measurable coefficients such that both |ul? ;- e*? and |9 ® ulyope - €~ are locally

integrable. The 5E®A operator defines a complex of sheaves (. ',5E®A) which is a

fine resolution of the sheaf O(Kx ® E ® A) ® Z(y), i.e. we have the following exact
sequence

(3.13) 0 O0KxRERA)RI(p) —» L — L — ... — L7 0.

Indeed, it follows from a vector bundle version of Hérmander L?-estimate ([Dem10,
Corollary 5.3]) since the vector bundle £ ® A has a singular metric which is Nakano
positive in the sense of current. By using the L? estimate again (e.g. [Deml0,
Theorem 5.11]), one can show H4(I'(X,.Z*)) = 0 for ¢ > 1 and we obtain the desired
vanishing cohomologies. ([l

Next, we introduce two different concepts on numerical dimension for nef and pseudo-
effective line bundles.

Definition 3.8. Let N be a nef line bundle over a compact Kéhler manifold X
with dim¢ X = n. The numerical dimension v(N) of N is defined as ([Deml0,
Definition 6.20])

(3.14) v(N)=max{k=0,---,n | &(N)#0e H*(X,R).}

Definition 3.9. Let (A4, e~2%) be a pseudo-effective line bundle over a compact Kéhler
manifold X of dimension n. The numerical dimension nd(A,¢) of A is defined in
[Caol4, Definition 3.1] as the largest number such that the cohomological product

(V=T08g)*) # 0.

Note that, in general these two definitions do not coincide even for nef line bundles
([Caol4, Remark 7], or [Demailly, Remark 4.3.5]). For a discussion of the relationship
between various definitions of numerical dimensions, we refer to the paper [Demailly,
Section 4.3].

Based on their solution to Demailly’s strong openness conjecture ([GZ15]), Guan-
Zhou achieved in [Guan-Zhou, Corollary 1.7] (see also [GZ15, Corollary 3.2]) a cele-
brated Kawamata-Viehweg-Nadel type vanishing theorem which generalizes a theorem
in [Caol4, Theorem 1.3] (see also Demailly’s survey paper [Demailly| for a variety of
vanishing theorems).

Lemma 3.10. Let (A,e~2%) be a pseudo-effective line bundle over a compact Kdhler
manifold X of dimension n. Then for any ¢ > n —nd(A, ¢),

(3.15) HYX, Kx ® A2 I(p)) = 0.

We shall use the ideas in the proof of Lemma 3.10 (e.g. [Caol4] and [GZ15]) and
Lemma 3.7 to prove Theorem 1.5.

12
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The proof of Theorem 1.5. Suppose nd(A, ¢) = n. By using Guan-Zhou’s solution
to Demailly’s strong openness conjecture ([GZ15]) and the construction in [Caol4,
Lemma 5.5], there exists a singular metric e=2#! on the pseudo-effective line bundle
A such that

Z(p1) = Z(p)
and it is curvature current
V—100p1 > cw

for some smooth positive (1,1) form w and constant ¢ > 0. By applying Lemma 3.7
to (Xa Evsz-((pl))? we get

(3.16) HI(X,Kx@E®A®ZI(p)) =0, for ¢g>0.

Now we assume nd(A, ) < n. We use similar ideas as in [Dem10, Theorem 6.25],
[Caol4, Proposition 5.6]. Let B be a very ample divisor such that B ® A is ample
and Z(¢|p) = Z(¢)|s ([FM, Theorem 1.10]). We consider the exact sequence

0— Ox(—B) — Ox — (ip)+Op — 0.
By tensoring with Kx ® E® A ® B ® Z(p) and using adjunction formula, one gets

S HIX,Kx®E®ARI(p) » HI(X,Kx ® E® A® BRI(p))
— HI(B,Kp® (E® A)|p©Z(¢|p)) = HH X, Kx @ E® AQI(p)) — - .

Since F is Nakano semi-positive, and A ® B is ample, by Lemma 3.7, we have
(3.17) HI(X,Kx@ EQ A®B®Z(p)) =0 for ¢>0.

Therefore

(3.18) HY(B,Kp® (E® A)|p®I(p|p) X H (X, Kx @ E® AR I(p))

for every 0 < g < n. Moreover, E|p is also Nakano semi-positive over B. Hence the
induction hypothesis implies that the cohomology group on B on the right hand side
of (3.18) is zero when ¢ > n — nd(4, ¢). O

Similarly, we have the following variant of Theorem 1.5 (see also [Dem10, Theo-
rem 6.17] for the line bundle case.)

Proposition 3.11. Let X be a smooth projective variety. Let A be a line bundle over
X such that some positive multiple mA can be written as mA = N + D where N is a
nef line bundle and D an effective divisor. If (E, h) is a Nakano semi-positive vector
bundle, then

(3.19) HY (X, Kx @ EQ AQZ(m™ D)) =0 for q>n—uv(N),
where v(N) is the numerical dimension of the nef line bundle N.
As a special case, one has

13
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Corollary 3.12. If (E,h") is a Nanako semi-positive vector bundle and A is a nef
line bundle, then

(3.20) HYX,E*® A*)=0 if q<v(A).
In particular, if in addition, A is not numerically trivial, then
(3.21) HY(X,E*® A*) = 0.

Proof. We can take m =1, D =0 and A = N in Proposition 3.11. By Serre duality,
we obtain (3.20). Hence, when v(A) > 1, or equivalently, v(A) # 0, HY(X, E*®@ A*) =
0. It is well-known that for a nef line bundle A, ¥(A) = 0 if and only if A is numerically
trivial. O

As an application of Theorem 1.5, we obtain general vanishing theorems on the
relative setting which generalize Kollar’s vanishing theorems.

Theorem 3.13. Let f : X — Y be a holomorphic submersion between two smooth
complex projective varieties and dimc Y = n. Let (A,e™2?) be a pseudo-effective line
bundle over X. If both E1 and Ey are Nakano semi-positive vector bundles, then for
any s > 1 and ¢ > n —nd(A, ¢), we have

HY(Y, f.(Kx)y @ B1)** @ Ky ® By ® A® () =0,
as long as f.(Kx/y ® E1) is locally free.
Proof. By using Theorem 1.5, we only need to show that

fe(Bx)y @ E1)%° @ By

is Nakano semi-positive for any s > 1. Indeed by a result of [MTO08] (see also [LY15]),
if f«(Kx/y ® E1) is locally free, then f.(Kx/y ® E1) has a Nakano semi-positive
metric. By part (3) of Lemma 3.3, we deduce

f+(Kx)y @ E1)® @ E;
is Nakano semi-positive for any s > 1. O

Remark 3.14. Theorem 3.13 also holds when X and Y are compact Kéhler mani-
folds.

4. Fujita Conjecture type theorems on complex projective varieties

In this section, we derive Fujita Conjecture type theorems on complex projective
varieties and prove Theorem 1.3, Theorem 1.4, Theorem 1.6 and Theorem 1.8.

14
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The proof of Theorem 1.3. We show the coherent sheaf Kx ® L®" @ A® Z(yp) is 0-
regular, and so by Lemma 2.2, it is globally generated. When 0 < ¢ < n, L9 g A
is indeed a big line bundle, and we can apply Nadel vanishing theorem ([Nad90] or
[Demailly, Theorem 0.3] or Lemma 3.10),

(4.1) HIX,Kx @ L9 @ A®Z(p)) = 0.
When ¢ = n, we need to show
(4.2) H"(X,Kx @ A®Z(p)) =0,

which follows from Lemma 3.10 and the assumption nd(A4, ¢) > 1. t

The proof of Theorem 1.4. By Castelnuovo-Mumford regularity (e.g. Lemma 2.2),
we only need to prove Kx ® L®" @ (E ® A) is O-regular with respect to L. Hence, it
suffices to show

(4.3) HY(X,Kx @ L®" 9 g (E® A)) =0 forall ¢>0.

For 0 < q < n, we claim that the vector bundle L®("~%9 @ (E @ A) has a smooth
metric with strictly positive curvature in the sense of Nakano, and by Nakano vanish-
ing theorem( Lemma 3.2), we have the desired vanishing cohomologies. Indeed, since
n—q>1, L?=9 @ A is ample. By Lemma 3.3, F ® L2 9 © A is strictly positive
in the sense of Nakano.

When ¢ = n, we need to show H"(X, Kx ® E® A) = 0 or equivalently H°(X, E*®
A*) = 0 when E is Nakano semi-positive and A is nef but not numerically trivial.
This is assured by Corollary 3.12.

The case when g > n is obvious and we complete the proof of Theorem 1.4. [l

We have the following variant of Theorem 1.4.

Theorem 4.1. Let X be a compact Kdhler manifold and L be an ample and globally
generated line bundle. Let (E,h) be a Hermitian holomorphic vector bundle with
Nakano positive curvature. Suppose A is a nef line bundle, then the vector bundle

(4.4) Kx®L*"®E®A
1s globally generated.

Proof. We use similar ideas as described in the proof of Theorem 1.4. Suppose E' is
Nakano positive and A is nef, then by Lemma 3.3, the vector bundle £ ® A admits a
smooth Hermitian metric whose curvature is strictly positive in the sense of Nakano.
In particular, the second Ricci curvature tr,©F®4 is strictly positive. We obtain the
vanishing cohomology in Theorem 3.5. Finally, one can follow the steps in the proof
of Theorem 1.4. O

15
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It is proved in [Ber09, Theorem 1.2] that if £ is a semi-ample (resp. ample) vector
bundle, then E ® det E' is Nakano semi-positive (resp. Nakano positive). Hence, by
Theorem 1.4 and Theorem 4.1, we get

Corollary 4.2. Let X be a smooth complex projective variety and L be an ample
and globally generated line bundle. Let E be a vector bundle and A be a line bundle.
Suppose either

(1) E is semi-ample, A is nef but not numerically trivial; or
(2) E is ample and A is nef.

Then the vector bundle
(4.5) Kx®L®"® (E®det E)® A
1s globally generated.
Thanks to Theorem 1.5, one can also get the following variant of Theorem 1.4.

Theorem 4.3. Let (X,w) be a compact Kdhler manifold and L — X be an ample
and globally generated line bundle. Suppose (A,e~2%) is a pseudo-effective line bundle
and Z(p) is the multiplier ideal sheaf. Let E be a Nakano semi-positive vector bundle.
If the numerical dimension nd(A,¢) # 0, then

Kx QL@ FE® AQI(p)

1s globally generated.

The proof of Theorem 1.6. By the assumption, the direct image sheave of the
relative canonical line bundle f.(K x/y) is indeed a holomorphic vector bundle. In the
literatures, it is known that the vector bundle f.(K x/y) is weakly positive in suitable
sense (e.g. [Vie83, Theorem III|, [GT84, Corollary 5|, [Kol86, Corollary 3.7]). Here,
we use a recent fact [Ber09, Theorem 1.2] of Berndtsson that f.(Kx/y) is actually
semi-positive in the sense of Nakano. Let E = f, (Kx/y)®s and so

(4.6) FoKxy)* @Ky @ L¥" @ A= Ky @ L¥" @ (E® A).

According to Lemma 3.3, F is also semi-positive in the sense of Nakano. By Theorem
1.4, Ky @ L®" @ (E ® A) is globally generated as long as A is nef but not numerically
trivial. The proof of Theorem 1.6 is completed. (]

As an application of Theorem 3.13, we have the following slightly general version
of Theorem 1.6 .

Theorem 4.4. Let f : X — Y be a holomorphic submersion between two smooth
complex projective varieties and dimcY = n. Suppose L — Y is an ample and
globally generated line bundle, and (A,e=2?) — Y is a pseudo-effective line bundle
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with nd(A, p) # 0. Suppose both Ey and Ey are Nakano semi-positive, then for any
s>1

(4.7) fe(Exyy @ E1)®° @ Ky ® L™ @ E; ® A® I(p)
is globally generated as long as f.(Kx/y ® E1) is locally free.

The proof of Theorem 1.8. When the family X — S is effectively parameterized,
Schumacher proved in [Schul2, Theorem 1] that the naturally induced Hermitian
metric on the relative canonical line bundle Ky g is strictly positive. By [Schul2,
Corollary 2] or [Ber09, Theorem 1.2}, we know

(4.8) f*(Kg?jS>
is strictly Nakano positive for all s > 1. One can write
(4.9) FAKP) @ L @ A= f.(Kg) © Ks © L @ (K5 @ 4)

We first observe that the canonical bundle Kg is nef. Indeed, by a recent result in
[TY15, Theorem 1], the compact complex base S is actually (Kobayashi) hyperbolic.
Hence, it contains no rational curve. By using Mori’s cone theorem [Mori82], we
deduce Ky is nef since it is a projective manifold without rational curve. The global
generation of the vector bundle f, (Kg?fs) @ Ks® L®"® (K?(S_l) ® A) follows from

Theorem 4.1 since f*(Kg?jS) is Nakano positive and K?(S_l) ® A is nef. O

Remark 4.5. On smooth complex projective varieties, we can also derive globally
generation for symmetric powers and wedge powers of vector bundles by using the
corresponding vanishing theorems( e.g. [LY15]).
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