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Abstract. In this note, we show that on Hopf manifold S2n−1 × S1, the non-

negativity of the holomorphic bisectional curvature is not preserved along the

Chern-Ricci flow.

1. Introduction

The Chern-Ricci flow is an evolution equation for Hermitian metrics on complex
manifolds, generalizing the Kähler-Ricci flow. Given an initial Hermitian metric ω0 =√
−1(g0)ijdzi ∧ dzj , the Chern-Ricci flow is defined as

(1.1)
∂ω

∂t
= −Ric(ω), ω|t=0 = ω0,

where Ric(ω) := −
√
−1∂∂ log det g is the Chern-Ricci form of ω. In the case when ω0

is Kähler, namely dω0 = 0, (1.1) coincides with the Kähler-Ricci flow. The Chern-
Ricci flow was first introduced by Gill [3] in the setting of manifolds with vanishing
first Bott-Chern classes, and many fundamental properties are established by Tosatti
and Weinkove [14] on more general manifolds. A variety of further results on Chern-
Ricci flow are studied in [14, 15, 16, 4, 5, 17, 18] and some of them are analogues to
classical results for the Kähler-Ricci flow (e.g.[7, 2, 9, 10, 13, 11, 12]).

It is proved by Mok [8] (see [1] for Kähler threefolds and also [6]) that the non-
negativity of the holomorphic bisectional curvature is preserved along the Kähler-
Ricci flow. However, we show that on Hermitian manifolds, the non-negativity of the
holomorphic bisectional curvature is not necessarily preserved under the Chern-Ricci
flow.

Theorem 1.1. Let X = S2n−1 × S1 be a diagonal Hopf manifold. Fix T0 ≥ 0 and let

ω0 =
1
|z|4

∑ (
(1 + T0)δij |z|2 − T0z

izj
)√

−1dzi ∧ dzj .

Then the Chern-Ricci flow (1.1) has maximal existence time Tmax = T0+1
n .

(1) When t ∈
[
0,

T0

n

]
, ω(t) has non-negative holomorphic bisectional curvature;

(2) However, when t ∈
(

2T0 + 1
2n

,
T0 + 1

n

)
, the holomorphic bisectional curvature

of ω(t) is no longer non-negative.
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Remark 1.2. It is worth to point out that the same proof as in the Kähler case
(following Mok) fails for the Chern-Ricci flow since the evolution of the Riemann
curvature tensor under the Chern-Ricci flow involves also some terms with the torsion
(and its covariant derivatives), which are not there in the Kähler-Ricci flow, where
the evolution of the curvature involves only the curvature tensor itself.

Remark 1.3. It is also interesting to investigate sufficient conditions on Hermitian
manifolds such that the non-negativity of the holomorphic bisectional curvature is
preserved under the Chern-Ricci flow.

2. The proof of Theorem 1.1

For α = (α1, . . . , αn) ∈ Cn \ {0} with |α1| = · · · = |αn| 6= 1, let M be the Hopf
manifold M = (Cn \ {0})/ ∼, where

(z1, . . . , zn) ∼
(
α1z

1, . . . , αnzn
)
.

It is easy to see that M is diffeomorphic to S2n−1 × S1. Fix T0 > 0 and consider the
Hermitian metric

ω0 =
1
|z|4

(
(1 + T0)δij |z|2 − T0z

izj
)√

−1dzi ∧ dzj .

where |z|2 =
∑n

j=1 |zj |2. It is proved in [14] that

(2.1) ω(t) = ω0 − tRic(ω0)

gives an explicit solution of the Chern-Ricci flow on M with initial metric ω0. Indeed,
by elementary linear algebra, we see det(ω0) = (1 + T0)n−1|z|−2n and so

Ric(ω0) = n
√
−1∂∂ log |z|2 =

n

|z|2

(
δij −

zizj

|z|2

)√
−1dzi ∧ dzj ≥ 0.

For t < T0+1
n , we have the Hermitian metrics

(2.2) ω(t) = ω0− tRic(ω0) =
1
|z|2

(
(1 + T0 − nt)δij − (T0 − nt)

zizj

|z|2

)√
−1dzi ∧ dzj .

Hence

det(ω(t)) =
(1 + T0 − nt)n−1

|z|2n
,

from which it follows that Ric(ω(t)) = Ric(ω0) = n
√
−1∂∂ log |z|2. It also implies

that ω(t) solves the Chern-Ricci flow on the maximal existence interval
[
0,

T0 + 1
n

)
.

Next, we compute the curvature tensor of the involving metric (2.2). For simplicity,
we define a rescaled metric ωλ =

√
−1hijdzi ∧ dzj on M with

(2.3) hij =
1
|z|4

(
δij |z|2 − λzizj

)
, λ < 1.
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Note that when

λ =
T0 − nt

1 + T0 − nt
,

we have

(2.4) ωλ =
ω(t)

1 + T0 − nt
.

Lemma 2.1. Let Rkjiq be the curvature components of ωλ, then

Rkjiq =
δiq(δjk|z|2 − zkzj)

|z|6
+

λ
(
δij |z|2 − zizj

) (
δkq|z|2 − zkzq

)
|z|8

+
(λ2 − 2λ)zizq(δkj |z|2 − zkzj)

|z|8
.

Proof. By using elementary linear algebra, one has det(hij) = (1− λ)|z|−2n and so

(2.5) Ric(ωλ) = n
√
−1∂∂ log |z|2 ≥ 0.

On the other hand, one can verify that the matrix (hij) has (transpose) inverse matrix

(2.6) hij = |z|2
(

δij +
λzizj

(1− λ)|z|2

)
.

By straightforward computation,

(2.7)
∂hij

∂zk
= −δijz

k

|z|4
−

λδjkz
i

|z|4
+

2λzizkzj

|z|6
=

2λzizkzj

|z|6
−

λδjkz
i + δijz

k

|z|4

and so

Γp
ki = hpj

∂hij

∂zk
= |z|2

(
δpj +

λzpzj

(1− λ)|z|2

) (
2λzizkzj

|z|6
−

λδjkz
i + δijz

k

|z|4

)
=

2λzizkzp

|z|4
−

λδpkz
i + δipz

k

|z|2
+

2λ2zizkzp

(1− λ)|z|4
− λ2zizkzp + λzizkzp

(1− λ)|z|4

=
λzizkzp

|z|4
−

λδpkz
i + δipz

k

|z|2
.

The Chern curvature tensor of ωλ is

Rp

kji
= −

∂Γp
ki

∂zj

= −
λδijz

kzp + λδkjz
izp

|z|4
+

2λzizkzpzj

|z|6
+

λδpkδij + δipδkj

|z|2
−

λδpkz
izj + δipz

kzj

|z|4

=
λδpkδij + δipδkj

|z|2
+

2λzizkzpzj

|z|6
−

λ
(
δijz

kzp + δkjz
izp + δpkz

izj
)

+ δipz
kzj

|z|4
.
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Hence

Rkjiq = hpqR
p

kji

=
δpq|z|2

|z|4

[
λδpkδij + δipδkj

|z|2
+

2λzizkzpzj

|z|6
−

λ
(
δijz

kzp + δkjz
izp + δpkzizj

)
+ δipz

kzj

|z|4

]

−λzpzq

|z|4

[
λδpkδij + δipδkj

|z|2
+

2λzizkzpzj

|z|6
−

λ
(
δijz

kzp + δkjz
izp + δpkzizj

)
+ δipz

kzj

|z|4

]

=
λδqkδij + δiqδjk

|z|4
+

2λzizkzjzq

|z|8
−

λ
(
δijz

kzq + δkjz
izq + δkqz

izj
)

+ δiqz
kzj

|z|6

−λ2δijz
kzq + λδkjz

izq

|z|6
− 2λ2zizkzjzq

|z|8

+
λ2

(
δijz

kzq|z|2 + δkjz
izq|z|2 + zizkzjzq

)
+ λzizkzjzq

|z|8

=
λδqkδij + δiqδjk

|z|4
+

(3λ− λ2)zizkzjzq

|z|8
− λδqkzizj

|z|6
− λδijz

kzq

|z|6

+
(λ2 − 2λ)δkjz

izq

|z|6
+

δiqz
kzj

|z|6

=
δiq(δjk|z|2 − zkzj)

|z|6
+

λδij

(
δkq|z|2 − zkzq

)
|z|6

+
(λ2 − 2λ)zizq(δkj |z|2 − zkzj)

|z|8

+
λzizj

(
zkzq − δkq|z|2

)
|z|8

=
δiq(δjk|z|2 − zkzj)

|z|6
+

λ
(
δij |z|2 − zizj

) (
δkq|z|2 − zkzq

)
|z|8

+
(λ2 − 2λ)zizq(δkj |z|2 − zkzj)

|z|8
.

�

Lemma 2.2. For any λ ∈ [0, 1), ωλ has non-negative holomorphic bisectional curva-
ture.

Proof. For any ξ = (ξ1, · · · , ξn) and η = (η1, · · · , ηn), by Lemma 2.1 we have

Rkjiqξ
kξ

j
ηiηq =

|η|2(|z|2|ξ|2 − |z · ξ|2)
|z|6

+
λ

∣∣∣(δij |z|2 − zizj
)
ηiξ

j
∣∣∣2

|z|8

+
(λ2 − 2λ)|z · η|2(|z|2|ξ|2 − |z · ξ|2)

|z|8
.

Since |z|2|η|2 ≥ |z · η|2, we obtain

Rkjiqξ
kξ

j
ηiηq ≥

λ
∣∣∣(δij |z|2 − zizj

)
ηiξ

j
∣∣∣2

|z|8
+

(λ2 − 2λ + 1)|z · η|2(|z|2|ξ|2 − |z · ξ|2)
|z|8

.

The right hand side is non-negative when λ ≥ 0. �
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Corollary 2.3. The initial metric ω0 has non-negative holomorphic bisectional cur-
vature.

Proof. When t = 0, or equivalently λ = T0
1+T0

, we know ωλ = ω0
1+T0

. Since λ = T0
1+T0

∈
[0, 1), by Lemma 2.2, ω0 has non-negative holomorphic bisectional curvature. �

Lemma 2.4. When λ < −1, the holomorphic sectional curvature of the metric ωλ

is no longer non-negative. In particular, the holomorphic bisectional curvature of the
metric ωλ is no longer non-negative.

Proof. For any ξ = (ξ1, · · · , ξn), we have

Rkjiqξ
kξ

j
ξiξ

q =
|ξ|2(|z|2|ξ|2 − |z · ξ|2)

|z|6
+

λ(|z|2|ξ|2 − |z · ξ|2)2

|z|8

+
(λ2 − 2λ)|z · ξ|2(|z|2|ξ|2 − |z · ξ|2)

|z|8

=
(3λ− λ2)|z · ξ|4 + (λ + 1)(|z|2|ξ|2)2 + (λ2 − 4λ− 1)|z · ξ|2|z|2 · |ξ|2

|z|8
.

Let a = |z · ξ|2 and b = |z|2|ξ|2, then

Rkjiqξ
kξ

j
ξiξ

q =
(3λ− λ2)a2 + (λ2 − 4λ− 1)ab + (λ + 1)b2

|z|8

=
(b− a)a(λ− 1)2 + (b− a)2(λ + 1)

|z|8
.

It is easy to see that, b ≥ a ≥ 0 and so for any −1 ≤ λ < 1

Rkjiqξ
kξ

j
ξiξ

q ≥ 0.

However, when λ < −1, Rkjiqξ
kξ

j
ξiξ

q is no longer nonnegative. Indeed, for any given
z = (z1, · · · , zn), we choose a nonzero vector ξ = (ξ1, · · · , ξn) such that z · ξ = 0, i.e.∑

zi · ξi = 0. In this case, we have a = |z · ξ| = 0, but b = |z|2|ξ|2 > 0. Moreover,

Rkjiqξ
kξ

j
ξiξ

q =
b2(λ + 1)
|z|8

< 0

since λ < −1. �

The proof of Theorem 1.1. By (2.4), we see when λ = T0−nt
1+T0−nt , ωλ = ω(t)

1+T0−nt . Hence,

(1) by Lemma 2.2, when λ ∈ [0, 1) or equivalently, 0 ≤ t ≤ T0
n , ω(t) has non-

negative holomorphic bisectional curvature;
(2) by Lemma 2.4, when λ < −1, or equivalently, 2T0+1

2n < t < T0+1
n , the holomor-

phic bisectional curvature of ω(t) is no longer non-negative. �
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