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HERMITIAN MANIFOLDS WITH SEMI-POSITIVE
HOLOMORPHIC SECTIONAL CURVATURE

Xiaokui Yang

Abstract. We prove that a compact Hermitian manifold with semi-positive but not

identically zero holomorphic sectional curvature has Kodaira dimension −∞. As appli-

cations, we show that Kodaira surfaces and hyperelliptic surfaces can not admit Her-
mitian metrics with semi-positive holomorphic sectional curvature although they have

nef tangent bundles.

1. Introduction

In this note, we study compact Hermitian manifolds with semi-positive holomor-
phic sectional curvature. It is well-known that, the holomorphic sectional curvature
plays an important role in differential geometry and algebraic geometry, e.g. in es-
tablishing the existence and nonexistence of rational curves on projective manifolds.
However, the relationships between holomorphic sectional curvature and Ricci cur-
vature, and the algebraic positivity of the (anti-)canonical line bundles, and some
birational invariants of the ambient manifolds are still mysterious. In early 1990s,
Yau proposed the following question in his “100 open problems in geometry” (e.g.
[33, Problem 67] or [24, p.392]):

Question 1.1. If (X, ω) is a compact Kähler manifold with positive holomorphic
sectional curvature, is M unirational? Does X have negative Kodaira dimension?

At first, we answer Yau’s question partially, but in a more general setting.

Theorem 1.2. Let (X, ω) be a compact Hermitian manifold with semi-positive holo-
morphic sectional curvature. If the holomorphic sectional curvature is not identically
zero, then X has Kodaira dimension −∞. In particular, if (X, ω) has positive Her-
mitian holomorphic sectional curvature, then κ(X) = −∞.

A complex manifold X of complex dimension n is called complex parallelizable if
there exist n holomorphic vector fields linearly independent everywhere. It is well-
known that every complex parallelizable manifold has flat curvature tensor and so
identically zero holomorphic sectional curvature. There are many non-Kähler complex
parallelizable manifolds of the form G/H, where G is a complex Lie group and H is a
discrete co-compact subgroup. On the other hand, a compact complex parallelizable
manifold is Kähler if and only if it is a torus ([27, Corollary 2]). Hence, a compact
Kähler manifold (X, ω) with identically zero holomorphic sectional curvature must be
a torus.

As an application of Theorem 1.2, we obtain new examples of Kähler and non-
Kähler manifolds which can not support Hermitian metrics with semi-positive holo-
morphic sectional curvature.
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Corollary 1.3. Let X be a Kodaira surface or a hyperelliptic surface. Then X
has nef tangent bundle, but X does not admit a Hermitian metric with semi-positive
holomorphic sectional curvature.

It is known that Kodaira surfaces and hyperelliptic surfaces are complex manifolds
with torsion anti-canonical line bundles. Hence they are all complex Calabi-Yau
manifolds. Note also that Kodaira surfaces are all non-Kähler. Here, X is said to be
a complex Calabi-Yau manifold if it has vanishing first Chern class, i.e. c1(X) = 0.
Moreover,

Corollary 1.4. Let X be a compact Calabi-Yau manifold. If X admits a Kähler
metric with semi-positive holomorphic sectional curvature, then X is a torus.

Note also that all diagonal Hopf manifolds are non-Kähler Calabi-Yau manifolds with
semi-positive holomorphic sectional curvature([23, 31]).

For reader’s convenience, we present some recent progress about the relationship
between the positivity of holomorphic sectional curvature and the algebraic positivity
of the anti-canonical line bundle, which is inspired by the following conjecture of Yau:

Conjecture 1.5. If a compact Kähler manifold (X, ω) has strictly negative holomor-
phic sectional curvature, then the canonical line bundle KX is ample.

Bun Wong proved in [29] that if (X, ω) is a compact Kähler surface with negative
holomorphic sectional curvature, then the canonical line bundle KX is ample. Re-
cently, Heier-Lu-Wong showed in [15] that if (X, ω) is a projective threefold with
negative holomorphic sectional curvature, then KX is ample. Moreover, by assuming
the still open “abundance conjecture” in algebraic geometry, they also confirmed the
conjecture for higher dimensional projective manifolds. On the other hand, Wong-
Wu-Yau proved in [30] that if (X, ω) is a compact projective manifold with Picard
number 1 and quasi-negative holomorphic sectional curvature, then KX is ample. As
a breakthrough, Wu-Yau [28] confirmed Conjecture 1.5 when X is projective. Build-
ing on their ideas, Tosatti and the author proved Conjecture 1.5 in full generality.
More precisely, we obtained

Theorem 1.6 ([26]). Let (X, ω) be a compact Kähler manifold with nonpositive holo-
morphic sectional curvature. Then the canonical line bundle KX is nef. Moreover, if
(X, ω) has strictly negative holomorphic sectional curvature, then the canonical line
bundle KX is ample.

For more related discussions on this topic, we refer to [29, 15, 30, 16, 28, 26, 18] and
the references therein. One may also wonder whether similar statements hold for
compact Kähler manifolds with positive holomorphic sectional curvature. However,

Example 1.7. Let Y be the Hirzebruch surface Y = P (OP1(−k)⊕OP1) for k ≥ 2.
It is is proved ([19] or [24, p.292]) that Y has a smooth Kähler metric with positive
holomorphic sectional curvature. But the anti-canonical line bundle K−1

Y is not ample
although K−1

Y is known to be effective. For more details, see Example 3.6.

As an important structure theorem, Heier and Wong proved in [17] that projective
manifolds with positive total scalar curvature are uniruled. In partiuclar, projective
manifolds with positive holomorphic sectional curvature are uniruled.
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2. Preliminaries

Let (E, h) be a Hermitian holomorphic vector bundle over a compact complex
manifold X with Chern connection ∇. Let {zi}n

i=1 be the local holomorphic co-
ordinates on X and {eα}r

α=1 be a local frame of E. The curvature tensor R∇ ∈
Γ(X, Λ2T ∗X ⊗ E∗ ⊗ E) has components

(2.1) Rijαβ = −
∂2hαβ

∂zi∂zj
+ hγδ ∂hαδ

∂zi

∂hγβ

∂zj

(Here and henceforth we sometimes adopt the Einstein convention for summation.)
In particular, if (X, ωg) is a Hermitian manifold, (T 1,0M,ωg) has Chern curvature
components

(2.2) Rijk` = −
∂2gk`

∂zi∂zj
+ gpq ∂gkq

∂zi

∂gp`

∂zj
.

The (first) Chern-Ricci form Ric(ωg) of (X, ωg) has components

Rij = gk`Rijk` = −∂2 log det(g)
∂zi∂zj

and it is well-known that the Chern-Ricci form represents the first Chern class of the
complex manifold X (up to a factor 2π). The Chern scalar curvature s of (X, ωg) is
defined as

(2.3) s = gijRij .

For a Hermitian manifold (X, ωg), we define the torsion tensor

(2.4) T k
ij = gk`

(
∂gj`

∂zi
−

∂gi`

∂zj

)
.

By using elementary Bochner formulas (e.g. [23, Lemma 3.3], or [21, Lemma A.6]),
we have

(2.5) ∂
∗
ω = −

√
−1T k

kidzi.

Indeed, we have [∂
∗
, L] =

√
−1 (∂ + τ) with τ = [Λ, ∂ω]. When it acts on constant 1,

we obtain

∂
∗
ω =

√
−1τ(1) =

√
−1Λ (∂ω)

= −
√
−1gk`

(
∂gi`

∂zk
−

∂gk`

∂zi

)
dzi

= −
√
−1T k

kidzi.

Let (X, ω) be a compact Hermitian manifold. (X, ω) has positive (resp. semi-
positive) holomorphic sectional curvature, if for any nonzero vector ξ = (ξ1, · · · , ξn),

Rijk`ξ
iξ

j
ξkξ

`
> 0 (resp. ≥ 0).
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3. Hermitian manifolds with semi-positive holomorphic sectional curvature

In this section, we discuss the relationship between the holomorphic sectional cur-
vature and the Kodaira dimension of the ambient manifold. It is also well-known
that, on Hermitian manifolds, there are many curvature notations and the curvature
relations are more complicated than the relations in the Kähler case because of the
non-vanishing of the torsion tensor (e.g.[21, 23]).

Theorem 3.1. Let (X, ω) be a compact Hermitian manifold with semi-positive holo-
morphic sectional curvature. If the holomorphic sectional curvature is not identically
zero, then X has Kodaira dimension κ(X) = −∞.

Proof. At a given point p ∈ X, the maximum holomorphic sectional curvature is
defined to be

Hp := max
W∈T 1,0

p X,|W |=1
H(W ),

where H(W ) := R(W,W, W, W ). Since X is of finite dimension, the maximum can
be attained. Suppose the holomorphic sectional curvature is not identically zero, i.e.
Hp > 0 for some p ∈ X. For any q ∈ X. We assume gij(q) = δij . If dimC X = n

and [ξ1, · · · , ξn] are the homogeneous coordinates on Pn−1, and ωFS is the Fubini-
Study metric of Pn−1. At point q, we have the following well-known identity(e.g. [22,
Lemma 4.1]):

(3.1)
∫

Pn−1
Rijk`

ξiξ
j
ξkξ

`

|ξ|4
ωn−1

FS = Rijk` ·
δijδk` + δi`δkj

n(n + 1)
=

s + ŝ

n(n + 1)
.

where s is the Chern scalar curvature of ω and ŝ is defined as

(3.2) ŝ = gi`gkjRijk`.

Hence if (X, ω) has semi-positive holomorphic sectional curvature, then s + ŝ is a
non-negative function on X. On the other hand, at point p ∈ X, s + ŝ is strictly
positive. Indeed, since Hp > 0, there exists a nonzero vector ξ ∈ T 1,0

p X such that

H(ξ) = Rijk`
ξiξ

j
ξkξ

`

|ξ|4 > 0. By (3.1), the integrand is quasi-positive over Pn−1, and so
s + ŝ is strictly positive at p ∈ X. Note that in general if (X, ω) is not Kähler, s and
ŝ are not the same. By [23, Section 4], we have the relation

(3.3) s = ŝ + 〈∂∂
∗
ω, ω〉.

Indeed, we compute

s− ŝ = gijgk`
(
Rijk` −Rkji`

)
= gijgk`

(
∇j

(
∂gi`

∂zk
−

∂gk`

∂zi

))
= gij∇jT

k
ki = gij ∂T k

ki

∂zj
= 〈∂∂

∗
ω, ω〉

where we use formula (2.5) in the last identity. Therefore, we have

(3.4)
∫

X

ŝωn =
∫

X

sωn −
∫

X

|∂∗ω|2ωn.

Next we use Gauduchon’s conformal method ([12, 13], see also [3, 4]) to find a
Hermitian metric ω̃ in the conformal class of ω such that ω̃ has positive Chern scalar
curvature s̃.
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Let ωG = f
1

n−1
0 ω be a Gauduchon metric ( i.e. ∂∂ωn−1

G = 0 ) in the conformal class
of ω for some strictly positive weight function f0 ∈ C∞(X) ([12, 13]). Let sG, ŝG be
the corresponding scalar curvatures with respect to the Gauduchon metric ωG. Then
we have∫

X

sGωn
G = −n

∫
X

√
−1∂∂ log det(ωG) ∧ ωn−1

G

= −n

∫
X

(√
−1∂∂ log det(ω) +

n

n− 1
√
−1∂∂ log f0

)
∧ ωn−1

G

= −n

∫
X

√
−1∂∂ log det(ω) ∧ ωn−1

G

= −n

∫
X

f0

√
−1∂∂ log det(ω) ∧ ωn−1

=
∫

X

f0sω
n,(3.5)

where we use the Stokes’ theorem and the fact that ωG is Gauduchon in the third
identity. Similarly, by using the proof of formula (2.5), we have the relation

∂
∗
GωG =

√
−1ΛG(∂ωG)

=
√
−1Λ(∂ω)−

√
−1f

− 1
n−1

0

∂f
1

n−1
0

∂zk
− n

∂f
1

n−1
0

∂zk

 dzk

= ∂
∗
ω +

√
−1∂ log f0.

Since ωG is Gauduchon, we obtain∫
X

〈∂∂
∗
GωG, ωG〉ωn

G = n

∫
X

∂∂
∗
GωG ∧ ωn−1

G = n

∫
X

∂∂
∗
ω ∧ ωn−1

G

=
∫

X

f0〈∂∂
∗
ω, ω〉ωn.(3.6)

By using a similar equation as (3.4) for sG, ŝG and ωG, we obtain∫
X

ŝGωn
G =

∫
X

sGωn
G −

∫
X

〈∂∂
∗
GωG, ωG〉ωn

G

=
∫

X

f0sω
n −

∫
X

f0〈∂∂
∗
ω, ω〉ωn =

∫
X

f0ŝω
n.(3.7)

where we use equations (3.5), (3.6) in the second identity, and (3.3) in the third
identity. Therefore, if s + ŝ is quasi-positive, we obtain∫

X

sGωn
G =

∫
X

(sG + ŝG)ωn
G

2
+

∫
X

(sG − ŝG)ωn
G

2

=

∫
X

(sG + ŝG)ωn
G

2
+
‖∂∗GωG‖2

2
=

∫
X

f0(s + ŝ)ωn

2
+
‖∂∗GωG‖2

2
> 0(3.8)

where the third equation follows from (3.5) and (3.7).
Next, there exists a Hermitian metric h on K−1

X which is conformal to det(ωG) on
K−1

X such that the scalar curvature sh of (K−1
X , h) with respect to ωG is a constant,
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and more precisely we have

sh = −trωG

√
−1∂∂ log h =

∫
X

sGωn
G∫

X
ωn

G

.

Indeed, let f ∈ C∞(X) be a strictly positive function satisfying

(3.9) sG − trωG

√
−1∂∂f =

∫
X

sGωn
G∫

X
ωn

G

then h = f det(ωG) is the metric we need. Note that the existence of solutions to
(3.9) is well-known by Hopf’s lemma.

Finally, we deduce that the conformal metric

ω̃ := f
1
n f

1
n−1
0 ω = f

1
n ωG

is a Hermitian metric with positive Chern scalar curvature. Indeed, the Chern scalar
curvature s̃ is,

s̃ = −treω√−1∂∂ log det(ω̃n)

= −treω√−1∂∂ log h

= −f−
1
n trωG

√
−1∂∂ log h

= f−
1
n

∫
X

sGωn
G∫

X
ωn

G

> 0.

Hence, if σ ∈ H0(X, mKX) for some positive integer m, by the standard Bochner
formula with respect to the metric ω̃, one has

(3.10) treω√−1∂∂|σ|2eω = |∇′σ|2eω + ms̃ · |σ|2eω
where |•|eω is the pointwise norm on mKX induced by ω̃ and∇′ is the (1, 0) component
of the Chern connection on mKX . Since s̃ is strictly positive, by maximum principle
we have |σ|2eω = 0, i.e. σ = 0. Now we deduce the Kodaira dimension of X is −∞. �

It is easy to see that, on a Kähler manifold (X, ω), if the total scalar curvature∫
X

sωn is positive, then κ(X) = −∞ (e.g. [32, Theorem 1] or [17, Theorem 1.1]).
However, in general, it is not true for non-Kähler metrics which can be seen from the
following example.

Example 3.2. Let (T2, ω) be a torus with the flat metric. For any non-constant real
smooth function f ∈ C∞(T2), the Hermitian metric ωf = efω has strictly positive
total Chern scalar curvature and κ(T2) = 0. Indeed, det(ωf ) = e2f det(ω) and

Ric(ωf ) = −
√
−1∂∂ log det(ωf ) = Ric(ω)− 2

√
−1∂∂f = −2

√
−1∂∂f.

The total scalar curvature of ωf is given by∫
sf · ω2

f =
∫

trωf
Ric(ωf ) · ω2

f

= 2
∫

Ric(ωf ) ∧ ωf = −4
∫ √

−1∂∂f ∧ efω

= 4
∫ (√

−1∂f ∧ ∂f
)
efω

= 4‖∂f‖2ωf
> 0
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since f is not a constant function, where we use the Stokes’ theorem in the fourth
identity.

Note that, a special case of Theorem 3.1 is proved in [4] that when X is a surface
or a threefold and (X, ω) has strictly positive holomorphic sectional curvature, then
X has Kodaira dimension −∞.

As an application of Theorem 3.1, we have

Corollary 3.3. Let X be a Kodaira surface or a hyperelliptic surface. Then X
has nef tangent bundle, but X does not admit a Hermitian metric with semi-positive
holomorphic sectional curvature.

Proof. It is well-known that the holomorphic tangent bundles of Kodaira surfaces or
hyperelliptic surfaces are nef (e.g. [10] or [31]). On the other hand, if X is either a
Kodaira surface or a hyperelliptic surface, then X has torsion canonical line bundle,
i.e. K⊗m

X = OX for some positive integer m ([6, p.244]). In particular, we have
κ(X) = 0. Suppose X has a Hermitian metric ω with semi-positive holomorphic
sectional curvature, by Theorem 3.1, (X, ω) has constant zero holomorphic sectional
curvature. Then (X, ω) is a Kähler surface [5, Theorem 1]. Since all Kodaira surfaces
are non-Kähler, we deduce that Kodaira surfaces can not admit Hermitian metrics
with semi-positive holomorphic sectional curvature. Suppose (X, ω) is a hyperelliptic
surface with constant zero holomorphic sectional curvature. So ω is a Kähler metric
with constant zero holomorphic sectional curvature, and we deduce (X, ω) is flat since
the curvature tensor is determined by the holomorphic sectional curvature. Indeed,
for any Y, Z ∈ T 1,0

p X, expand

R(Y + λZ, Y + λZ, Y + λZ, Y + λZ) ≡ 0

into powers of λ and λ. Using the Kähler symmetry, the |λ|2 term gives R(Y, Y , Z, Z) =
0. Now if we expand

R(Y + λZ, Y + λZ, A + µB, A + µB) ≡ 0

into powers of λ, λ, µ, µ, the λµ term gives R(Y, Z, A,B) = 0 for any (1, 0)-vectors
Y, Z, A,B ∈ T 1,0

p X. Since (X, ω) is flat, X is a complex parallelizable manifold (e.g.
[11, Proposition 2.4] and [2]). However, it is proved in [27, Corollary 2] that a complex
parallelizable manifold is Kähler if and only if it is a torus. This is a contradiction. �

Let X be a complex manifold. X is said to be a complex Calabi-Yau manifold if
c1(X) = 0.

Corollary 3.4. Let X be a compact Calabi-Yau manifold. If X admits a Kähler
metric with semi-positive holomorphic sectional curvature, then X is a torus.

Proof. Let X be a compact Kähler Calabi-Yau manifold, then it is well-known that
(e.g. [25, Theorem 1.5]), KX is a holomorphic torsion, i.e. there exists a positive
integer m such that K⊗m

X = OX . In particular, κ(X) = 0. Suppose X has a smooth
Kähler metric ω with semi-positive holomorphic sectional curvature, then by Theorem
3.1, X has constant zero holomorphic sectional curvature. As shown in Corollary 3.3,
(X, ω) is flat and so it is a complex parallelizable manifold, i.e. X is a torus. �
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Remark 3.5. As shown in [31], the Hopf surface Ha,b (and every diagonal Hopf
manifold [23]) has a Hermitian metric with semi-positive holomorphic bisectional
curvature. Since b2(Ha,b) = b2(S1 × S3) = 0, we see c1(Ha,b) = 0 and so Ha,b is a
non-Kähler Calabi-Yau manifold with semi-positive holomorphic sectional curvature.

Finally, we want to use the following well-known example to demonstrate that
the positivity of the holomorphic sectional curvature can not imply the ampleness of
the anti-canonical line bundle although the negativity of the holomorphic sectional
curvature does imply the ampleness of the canonical line bundle (e.g. [26] or Theorem
1.6).

Example 3.6. Let Y be the Hirzebruch surface Y := P (OP1(−k)⊕OP1) for k ≥ 2
which is a P1-bundle over P1. It is known ([19] or [24, p.292], or [1]) that Y has a
smooth Kähler metric with positive holomorphic sectional curvature. Next, we show
K−1

Y is not ample although K−1
Y is known to be effective. Let E := OP1(k) ⊕ OP1 ,

Y = P(E∗) and OY (1) be the tautological line bundle of Y . The following adjunction
formula is well known (e.g.[20, p.89])

(3.11) KY = OY (−2)⊗ π∗(KP1 ⊗ det E)

where π is the projection Y = P(E∗) → P1. In particular, we have

(3.12) OY (2) = K−1
Y ⊗ π∗(OP1(k − 2)).

Suppose K−1
Y is ample, then OY (1) is aslo ample since k ≥ 2. Therefore, by definition

([14]), E = OP1(k)⊕OP1 is an ample vector bundle. This is a contradiction.
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