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Abstract. In this paper, we first establish an L2-type Dolbeault isomorphism for

logarithmic differential forms by Hörmander’s L2-estimates. By using this isomor-

phism and the construction of smooth Hermitian metrics, we obtain a number of

new vanishing theorems for sheaves of logarithmic differential forms on compact

Kähler manifolds with simple normal crossing divisors, which generalize several

classical vanishing theorems, including Norimatsu’s vanishing theorem, Gibrau’s

vanishing theorem, Le Potier’s vanishing theorem and a version of the Kawamata-

Viehweg vanishing theorem.

1. Introduction

The basic properties of the sheaf of logarithmic differential forms and of the sheaves
with logarithmic integrable connections on smooth projective manifolds were devel-
oped by Deligne in [7]. Esnault and Viehweg investigated in [10] the relations between
logarithmic de Rham complexes and vanishing theorems on complex algebraic man-
ifolds, and showed that many vanishing theorems follow from the degeneration of
certain Hodge to de Rham type spectral sequences. For a comprehensive description
of the topic, we refer the reader to Esnault and Viehweg’s work [11] and also the
references therein.

In this paper, we develop an effective analytic method to prove vanishing theo-
rems for the sheaves of logarithmic differential forms on compact Kähler manifolds.
One of our motivations to develop this method is to prove Fujino’s conjecture (e.g.
[14, Conjecture 2.4], [15, Problem 1.8],[16, Section 3] and [30, Conjecture 1.2]) on a
logarithmic version of the Kollar injectivity theorem. Let X be a compact Kähler
manifold of dimension n and Y = X − D where D =

∑s
i=1Di is a simple normal

crossing divisor in X. Suppose that E is an Hermitian vector bundle over X. We first
describe the key steps and main difficulties in our analytic approach. Let hE

Y and ωY

be two smooth metrics on E|Y and Y respectively, then we need to show

1. K. Liu is supported in part by NSF Grant.

2. X. Wan is partially supported by China Scholarship Council / University of California, Los

Angeles Joint PhD. Student.

3. X.Yang is partially supported by China’s Recruitment Program of Global Experts and National

Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences.

1



Huang-Liu-Wan-Yang Logarithmic vanishing theorems on compact Kähler manifolds I

(a) there is an L2 fine resolution (Ωp,•
(2)(X,E, ωY , h

E
Y ), ∂) of the sheaf of logarithmic

holomorphic differential forms Ωp(logD)⊗O(E) whenever the metrics hE
Y and

ωY are chosen to be suitable;
(b) the desired curvature conditions for hE

Y and ωY can imply vanishing theorems
for (Ωp,•

(2)(X,E, ωY , h
E
Y ), ∂) by using L2-estimate.

The main difficulties arise from the construction of the Hermitian metric hE
Y and the

Poincaré type metric ωY which are suitable for both (a) and (b).
It is well-known that various vanishing theorems are very important in complex

analytic geometry and algebraic geometry. For instance, the Akizuki-Kodaira-Nakano
vanishing theorem asserts that if L is a positive line bundle over a compact Kähler
manifold X, then

Hq(X,Ωp
X ⊗ L) = 0 for any p+ q ≥ dimX + 1.

The main purpose of this paper is to investigate logarithmic type Akizuki-Kodaira-
Nakano vanishing theorems for the pair (X,D). The first main result of our paper
is

Theorem 1.1. Let X be a compact Kähler manifold of dimension n and D =
∑s

i=1Di

be a simple normal crossing divisor in X. Let N be a line bundle and ∆ =
∑s

i=1 aiDi

be an R-divisor with ai ∈ [0, 1] such that N ⊗OX([∆]) is a k-positive R-line bundle.
Then for any nef line bundle L, we have

Hq(X,Ωp
X(logD)⊗ L⊗N) = 0 for any p+ q ≥ n+ k + 1.

As we pointed out before, the key ingredient is the construction of suitable Hermitian
metrics. In the analytical setting, the positivity of R-line bundle, which will be defined
in Section 2.4, is defined by using positivity of curvature which is very flexible to use,
since we can multiply arbitrary real coefficients on the curvature of a line bundle to
obtain certain desired curvature property. In particular, the theory of R-divisors (or
R-line bundles) in algebraic geometry is not used in this paper, which is also a notable
advantage in our analytic approach. On the other hand, the setting in Theorem 1.1
is quite general and it has many straightforward applications in complex analytic
geometry and complex algebraic geometry. The first application is the following log
type Gibrau’s vanishing theorem.

Corollary 1.2. Let X be a compact Kähler manifold of dimension n and D be a
simple normal crossing divisor in X. If L is a nef line bundle and N is a k-positive
line bundle over X, then

Hq(X,Ωp
X(logD)⊗ L⊗N) = 0 for any p+ q ≥ n+ k + 1.

In particular, we have
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Corollary 1.3. Let X be a compact Kähler manifold of dimension n and D be a
simple normal crossing divisor. Suppose that L→ X is an ample line bundle, then

Hq(X,Ωp
X(logD)⊗ L) = 0 for any p+ q ≥ n+ 1.

This well-known result is proved by Norimatsu ([31]) using analytic methods (see
also Deligne-Illusie’s proof in [8] by the characteristic p methods). As an analogue to
Corollary 1.3, we obtain the following log type Le Potier vanishing theorem for ample
vector bundles.

Corollary 1.4. Let X be a compact Kähler manifold of dimension n and D be a
simple normal crossing divisor. Suppose that E → X is an ample vector bundle of
rank r. Then

Hq(X,Ωp
X(logD)⊗ E) = 0 for any p+ q ≥ n+ r.

As we know that the Kawamata-Viehweg type vanishing theorems have played
fundamental roles in algebraic geometry and complex analytic geometry (e.g. [10,
9, 3, 19, 17]). As another application of Theorem 1.1, we get a log type vanishing
theorem for k-positive line bundles over compact Kähler manifolds, which generalizes
a version of the Kawamata-Viehweg vanishing theorem over projective manifolds.

Theorem 1.5. Let X be a compact Kähler manifold of dimension n and D =
∑s

i=1Di

be a simple normal crossing divisor. Suppose F is a line bundle over X and m is a
positive real number such that mF = L + D′, where D′ =

∑s
i=1 νiDi is an effective

normal crossing R-divisor and L is a k-positive R-line bundle. Then

Hq

(
X,Ωp(logD)⊗ F ⊗O

(
−

s∑
i=1

(
1 +

[νi

m

])
Di

))
= 0(1.1)

for p+ q ≥ n+ k + 1.

Remark. In particular, if mF = L+D′ where L is an ample line bundle and D′ is an
effective divisor, bypassing Hironaka’s desingularization procedure, one obtains the
classical Kawamata-Viehweg vanishing from 1.1 by taking p = n and k = 0. It is also
worth mentioning that, in [21, Theorem 6.1], Luo obtained a version of logarithmic
vanishing theorem under the k-ample condition over a smooth projective variety and
his proof relies on the hyperplane induction methods on projective manifold (e.g. the
existence of very ample divisors). It is apparently different from our unified analytic
approaches over Kähler manifolds. On the other hand, it is also pointed out in [32,
p. 127] that, the k-ampleness is irrelevant to the k-positivity when 1 ≤ k ≤ dimX.

Theorem 1.5 has several variants and the first one is

Corollary 1.6. Let X be a compact Kähler manifold D =
∑s

j=1Dj be a simple
normal crossing divisor of X. Let [D′] be a k-positive R-line bundle over X, where
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D′ =
∑s

i=1 ciDi with ci > 0 and ci ∈ R. Then

Hq(X,Ωp(logD)⊗OX(−dD′e)) = 0 for any p+ q < n− k.

In particular, when [D′] is ample,

(1.2) Hq(X,Ωp(logD)⊗OX(−dD′e)) = 0, for p+ q < n.

Remark. By using Serre duality, one obtains a special case of (1.2)

Hq(X,KX ⊗OX(dD′e)) = 0, for q > 0.

This is proved by Kawamata in [22, Theorem 1] (see also [23, Corollary 1-2-2], [13,
Theorem 3.1.7] and [29, Theorem 5.1]).

The second variant is

Corollary 1.7. Let X be a compact Kähler manifold and D =
∑s

j=1Dj be a simple
normal crossing divisor of X. Let [D′] be a k-positive R-line bundle over X, where
D′ =

∑s
i=1 aiDi with ai > 0 and ai ∈ R. If there exists a line bundle L over X and

a real number b with 0 < aj < b for all j and bL = [D′] as R-line bundles. Then

Hq(X,Ωp(logD)⊗ L−1) = 0

for p+ q > n+ k and p+ q < n− k.

Note that, Esnault and Viehweg obtained a similar result in [10, Theorem 6.2(a)]
for Q-divisors by using the the degeneration of the logarithmic Hodge to de Rham
spectral sequence together with the cyclic covering trick over projective manifolds.
The third variant is

Corollary 1.8. Let X be a compact Kähler manifold of dimension n and D =∑s
i=1Di be a simple normal crossing divisor in X. Suppose there exist some real

constants ai ≥ 0 such that
∑s

i=1 aiDi is a k-positive R-divisor, then for any nef line
bundle L, we have

Hq(X,Ωp
X(logD)⊗ L) = 0 for any p+ q ≥ n+ k + 1.

Note that Corollary 1.8 generalizes [13, Corollary 3.1.2].
Remark. In a sequel to this paper, we will systematically investigate a number of
vanishing theorems in algebraic geometry by using analytic methods introduced in
this paper. For instance, we have obtained a version of Theorem 1.1 for k-ample line
bundles on algebraic manifolds.

Acknowledgements. The authors would also like to thank Junyan Cao, Yifei
Chen, Jean-Pierre Demailly, Osamu Fujino, Shin-ichi Matsumura, Xiaotao Sun, Valentino
Tosatti, Jian Xiao and Xiangyu Zhou for their interests and/or discussions.
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2. Preliminaries

2.1. Positivity of vector bundles. Let E be a holomorphic vector bundle of rank
r over a complex manifold M and h be a smooth Hermitian metric on E. There exists
a unique connection ∇, called the Chern connection of (E, h), which is compatible
with the metric h and complex structure on E. Let {zi}n

i=1 be the local holomorphic
coordinates on M and {eα}r

α=1 be the local holomorphic frames of E. Locally, the
curvature tensor of (E, h) takes the form

√
−1Θ(E, h) =

√
−1Rγ

ijα
dzi ∧ dzj ⊗ eα ⊗ eγ

where Rγ

ijα
= hγβRijαβ and

(2.1) Rijαβ = −
∂2hαβ

∂zi∂zj
+ hγδ ∂hαδ

∂zi

∂hγβ

∂zj
.

Here and henceforth we adopt the Einstein convention for summation.

Definition 2.1. An Hermitian vector bundle (E, h) is said to be Griffiths-positive,
if for any nonzero vectors u = ui ∂

∂zi and v = vαeα,∑
i,j,α,β

Rijαβu
iujvαvβ > 0.

(E, h) is said to be Nakano-positive, if for any nonzero vector u = uiα ∂
∂zi ⊗ eα,∑

i,j,α,β

Rijαβu
iαujβ > 0.

(E, h) is said to be dual-Nakano-positive, if for any nonzero vector u = uiα ∂
∂zi ⊗ eα,∑

i,j,α,β

Rijαβu
iβujα > 0.

Definition 2.2 (cf. [32]). Let M be a compact complex manifold and L→ M be a
holomorphic line bundle over M .

(1) L is called k-positive (0 ≤ k ≤ n − 1) if there exists a smooth Hermitian
metric hL on L such that the curvature form

√
−1Θ(L, hL) = −

√
−1∂∂ log hL

is semipositive everywhere and has at least n−k positive eigenvalues at every
point of M .

(2) L is called k-ample (0 ≤ k ≤ n−1), if L is semi-ample and suppose that Lm is
globally generated for some m > 0, and the maximum dimension of the fiber
of the evaluation map X → P

(
H0(M,Lm)∗

)
is ≤ k.

Hence, the concepts of 0-positivity, 0-ampleness and ampleness are the same. How-
ever, it is pointed out in [32, p. 127] that, k-ampleness is irrelevant to the metric
k-positivity when k ≥ 1.
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2.2. Simple normal crossing divisors and Poincaré Type Metric. On a com-
pact Kähler manifold X, a divisor D =

∑s
i=1Di is called a simple normal crossing

divisor if every irreducible component Di is smooth and all intersections are trans-
verse. That is, for every p ∈ X, we can choose local coordinates z1, · · · , zn such that
D = (

∏k
i=1 zi = 0) in a neighborhood of p. The sheaf of germs of differential p-forms

on X with at most logarithmic poles along D, denoted Ωp
X(logD) ( introduced by

Deligne in [6]) is the sheaf whose sections on an open subset V of X are

(2.2) Γ(V,Ωp
X(logD)) := {α ∈ Γ(V,Ωp

X ⊗OX(D)) and dα ∈ Γ(V,Ωp+1
X ⊗OX(D))}.

We will consider the complement Y = X −D of a simple normal crossing divisor
D in a compact Kähler manifold X. It is well-known that we can choose a local
coordinate chart (W ; z1, ..., zn) of X such that the locus of D is given by z1 · · · zk = 0
and Y ∩W = W ∗

r = (∆∗
r)

k × (∆r)n−k where ∆r (resp. ∆∗
r) is the (resp. punctured)

open disk of radius r in the complex plane and r ∈ (0, 1
2 ]. Instead of focusing on the

compact complex manifold X, we shall give a Kähler metric ωY only on the open
manifold Y , which enjoys some special asymptotic behaviors along D.

Definition 2.3. We say that the metric ωY on Y is of Poincaré type along D, if for
each local coordinate chart (W ; z1, ..., zn) along D the restriction ωY |W ∗

1
2

is equivalent

to the usual Poincaré type metric ωP defined by

(2.3) ωP =
√
−1

k∑
j=1

dzj ∧ dzj

|zj |2 · log2 |zj |2
+
√
−1

n∑
j=k+1

dzj ∧ dzj .

Two nonnegative functions or Hermitian metrics f and g defined on W ∗
1
2

are said
to be equivalent along D if for any relatively compact subdomain V of W , there is a
positive constant C such that (1/C)g ≤ f ≤ Cg on V −D. In this case we shall use
the notation f ∼ g.

As a fundamental result along this line, it is well-known that, see [34, Section 3],
there always exists a Kähler metric ωY on Y = X − D which is of Poincaré type
along D. Furthermore, this metric is complete and of finite volume. Moreover, it has
bounded geometry which implies that its curvature tensor and covariant derivatives
are bounded. We will use these properties frequently in this paper. The following
model example is used in analyzing the integrability of holomorphic sections with
respect to the Poincaré type metrics.

Example 2.4. For any positive integer n, the integral∫ 1
2

0
rα(log r)ndr

is finite if and only if α > −1.
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2.3. L2-Estimates and L2 Cohomology. We need the following L2-estimates, which
will be used frequently in this paper.

Lemma 2.5 ([2, 20, 9]). Let (M,ω) be a complete Kähler manifold. Let (E, hE) be an
Hermitian vector bundle over M . Assume that A = [iΘ(E, hE),Λω] is positive definite
everywhere on Λp,qT ∗M ⊗ E, q ≥ 1. Then for any form g ∈ L2(X,Λp,qT ∗M ⊗ E)
satisfying ∂g = 0 and

∫
M (A−1g, g)dVω < +∞, there exists f ∈ L2(X,Λp,q−1T ∗M⊗E)

such that ∂f = g and ∫
M
|f |2dVω ≤

∫
M

(A−1g, g)dVω.

Suppose that ωY is a smooth Kähler metric on Y and hE
Y is a smooth Hermitian metric

on E|Y . The sheaf Ωp,q
(2)(X,E, ωY , h

E
Y ) (for short Ωp,q

(2)(X,E)) over X is defined as
follows. On any open subset U of X, the section space Γ(U,Ωp,q

(2)(X,E)) of Ωp,q
(2)(X,E)

over U consists of E-valued (p, q)-forms u with measurable coefficients such that the
L2 norms of both u and ∂u are integrable on any compact subset V of U . Here the
integrability means that both |u|2

ωY ⊗hE
Y

and |∂E
u|ωY ⊗hE

Y
are integrable on V −D. It

is well-known that the spaces of global sections of Ωp,q
(2)(X,E) with ∂ operator form

an L2 Dolbeault complex

(2.4) Γ(X,Ωp,0
(2)(X,E)) → Γ(X,Ωp,1

(2)(X,E)) → · · · → Γ(X,Ωp,n
(2) (X,E)) → 0

and the associated cohomology groups Hp,∗
(2) (Y,E) are called the L2 Dolbeault coho-

mology groups with values in E.
Recall that a sheaf S over X is called a fine sheaf if for any finite open covering

U = {Uj}, there is a family of homomorphisms {hj}, hj : S → S , such that the
support of hj satisfying that Supp(hj) ⊂ Uj and

∑
j hj = identity (cf. [24, Definition

3.13]). For any fine sheaf S , one has Hq(X,S ) = 0 for q ≥ 1 (cf. [24, Theorem 3.9]).
We have already known that if the Kähler metric ωY on Y is of Poincaré type

along D, then the Kähler metric ωY will be complete and with finite volume (cf.
[34]). In this case if u is an E-valued (p, q)-form such that u and ∂u are L2 local
integrable on U and if f is a smooth function on X, then it is obvious that both fu

and ∂(fu) will still be L2 local integrable on U . Thus the sheaf Ωp,q
(2)(X,E) admits a

partition of unity and we conclude that Ωp,q
(2)(X,E) is a fine sheaf over X, so we have

H i(X,Ωp,q
(2)(X,E)) = 0, for p, q ≥ 0 and i ≥ 1.

2.4. R-divisors and R-linear equivalence.
For readers’ convenience, we explain the notions in Theorem 1.1. Let X be a compact
Kähler manifold.

(1). T is called an R-divisor, if it is an element of DivR(X) := Div(X)⊗Z R, where
Div(X) is the set of divisors in X. Two divisors T1, T2 in DivR(X) are said to be
linearly equivalent, denoted by T1 ∼R T2, if their difference T1− T2 can be written as
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a finite sum of principal divisors with real coefficients, i.e.

T1 − T2 =
k∑

i=1

ri(fi)(2.5)

where ri ∈ R and (fi) is the principal divisor associated to a meromorphic function
fi (cf. [13, 5.2.3]).

(2). An R-line bundle L =
∑

i aiLi is a finite sum with some real numbers a1, · · · , ak

and certain line bundles L1, · · · , Lk. Note that we also use “⊗” for operations on line
bundles. An R-line bundle L =

∑
i aiLi is said to be k-positive if there exist smooth

metrics h1, · · · , hk on L1, · · · , Lk such that the curvature of the induced metric on L,
which is explicitly given by

√
−1Θ(L, h) =

k∑
i=1

ai

√
−1Θ(Li, hi)

is k-positive. It is easy to see that if there is another expression L =
∑`

i=1 biL̃i for
the k-positive line bundle L, then by ∂∂-lemma on compact Kähler manifolds, we can
find smooth metrics on L̃i such that the induced metric on L is also k-positive. The
definitions for Q-line bundles and Q-divisors are similar.

Remark 2.6. As we shall see in the proofs of Theorem 1.1 and its applications, the
Hermitian metrics on R-line bundles and R-divisors play the key role in the analytic
approaches.

3. An L2-type Dolbeault isomorphism

In this section we will establish an L2-type Dolbeault isomorphism by using Hörmander’s
L2-estimates.

Theorem 3.1. Let (X,ω) be a compact Kähler manifold of dimension n and D be a
simple normal crossing divisor in X. Let ωP be a smooth Kähler metric on Y = X−D
which is of Poincaré type along D. Then there exists a smooth Hermitian metric hL

Y

on L|Y such that the sheaf Ωp(logD)⊗O(L) over X enjoys a fine resolution given by
the L2 Dolbeault complex (Ωp,∗

(2)(X,L, ωP , h
L
Y ), ∂), that is, we have an exact sequence

of sheaves over X

(3.1) 0 → Ωp(logD)⊗O(L) → Ωp,∗
(2)(X,L, ωP , h

L
Y )

such that Ωp,q
(2)(X,L, ωP , h

L
Y ) is a fine sheaf for any 0 ≤ p, q ≤ n. In particular,

(3.2) Hq(X,Ωp(logD)⊗O(L)) ∼= Hp,q
(2)(Y, L, ωP , h

L
Y ) ∼= Hp,q

(2)(Y, L, ωP , h
L
Y ).
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Proof. Let hL be an arbitrary smooth Hermitian metric on L over X. Let σi be the
defining section ofDi. Fix smooth Hermitian metrics ‖•‖Di on [Di] such that ‖σi‖Di <
1
2 . For arbitrarily fixed constants τi ∈ (0, 1], we construct a smooth Hermitian metric
hL

α,τ := hL
Y on L|Y as

(3.3) hL
α,τ =

s∏
i=1

‖σi‖2τi
Di

(log2(‖σi‖2
Di

))
α
2 hL.

where α is a large positive constant (even integer) to be determined later. It is well
known that Ωp,q

(2)(X,L, ωP , h
L
Y ) are fine sheaves over X since ωP on Y = X −D is of

Poincaré type along D, so we only need to check the exactness of (3.1).
First let us consider the exactness of (3.1) at q = 0. Let (W ; z1, ..., zn) be a local

coordinate chart of X along D. Let e be a trivialization section of L on W such that
1
2 ≤ |e(z)|hL ≤ 1 over W . Denote

ζj = 1
zj
dzj , for 1 ≤ j ≤ t; and ζj = dzj , for t+ 1 ≤ j ≤ n.

Let σ be a holomorphic section of Ωp,0
(2)(X,L) on W . Then we can write

σ(z) =
∑
|I|=p

σI(z)ζi1 ∧ · · · ∧ ζip ⊗ e

where I = (i1, ..., ip) is a multi-index with i1 < · · · < ip and σI(z) is a holomorphic
function on W ∗

1/2. By definition, we see that σ is L2 integrable on W ∗
r , ∆∗t

r ×∆n−t
r ⊂

W ∗
1/2 for any 0 < r < 1/2. Note that the Hermitian metric hL

α,τ |W ∗
1/2

is equivalent to
the following Hermitian metric

(3.4) hL
α = hL

α(W ∗
1/2) =

t∏
i=1

|zi|2τi(log2 |zi|2)
α
2 hL.

If we denote {i1, ..., ip} ∩ {1, ..., t} = {ip1, ..., ipb}, then

(3.5) ‖σ‖2
L2(W ∗

r ) =
∑
|I|=p

∫
W ∗

r

|e|2hL

(
|σI(z)|2

b∏
ν=1

log2 |zipν |2
t∏

i=1

|zi|2τi(log2 |zi|2)
α
2

)
ωn

P .

Suppose that the Laurent series representation of σI(z) on W ∗
1/2 is given by

σI(z) =
∞∑

β=−∞
σIβ(zt+1, ..., zn)zβ1

1 · · · zβt
t , β = (β1, ..., βt)

where σIβ(zt+1, ..., zn) is a holomorphic function on ∆n−t
1/2 . Then by using polar co-

ordinates and Fubini’s theorem (e.g. Example 2.4), we see that σ is L2 integrable on
W ∗

r if and only if βj > −τj along Dj . Since τj ∈ (0, 1], we see βj ≥ 0 and σI(z) has
removable singularity. Hence σ and ∇σ have only logarithmic pole, and σ is a section
of Ωp(logD)⊗O(L) on W . Conversely, if we choose σ to be a holomorphic section of
Ωp(logD) ⊗O(L) on W , it is easy to check by formula (3.5) that σ is L2 integrable
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on W ∗
r for any 0 < r < 1

2 . Therefore we have proved that (3.1) is exact at Ωp,0
(2)(X,L)

for any α > 0.

Now we consider the exactness of (3.1) at q ≥ 1. For any fixed r ∈ (0, 1/2), we
deform the Kähler metric ωP to be a new Kähler metric ω̃P on W ∗

r , given by

(3.6) ω̃P = ω̃P (W ∗
r ) = ωP +

√
−1

n∑
i=1

∂∂ψi =
√
−1

n∑
i=1

g̃iidzi ∧ dzi

where ψi(z) = 1
r2−|zi|2 , z ∈W

∗
r . Then it is easy to check that ω̃P is a complete Kähler

metric on W ∗
r . We define a new Hermitian metric h̃L

α for L on W ∗
r as

(3.7) h̃L
α = h̃L

α(W ∗
r ) =

t∏
i=1

|zi|2τi(log2 |zi|2)
α
2

n∏
i=1

exp(−2α|zi|2 − αψi)hL.

Lemma 3.2. On W ∗
r the Chern curvature of h̃L

α satisfies

(3.8)
√
−1Θ(L, h̃L

α) ≥ αω̃P

for some large α > 0.

Proof. It is easy to show that

(3.9)
√
−1∂∂ log |zi|2 = 0 and −

√
−1∂∂ log(log(|zj |2))2 =

2
√
−1dzj ∧ dzj

|zj |2(log(|zj |2))2
.

The curvature of (L, h̃L
α,τ ) is given by

√
−1Θ(L, h̃L

α) = −
√
−1

t∑
i=1

τi∂∂ log |zi|2 −
√
−1

α

2

t∑
i=1

∂∂ log(log2 |zi|2)

+ 2
√
−1α

n∑
i=1

∂∂|zi|2 +
√
−1α

n∑
i=1

∂∂ψi +
√
−1Θ(hL)

≥ −
√
−1

α

2

t∑
i=1

∂∂ log(log2 |zi|2) +
√
−1α

n∑
i=1

∂∂|zi|2 +
√
−1α

n∑
i=1

∂∂ψi

≥ αω̃P ,

if we choose α large enough so that
√
−1α

∑n
i=1 ∂∂|zi|2 +

√
−1Θ(hL) ≥ 0 on W ∗

r . �

Lemma 3.3. On the chart W ∗
r , the vector bundle V := Ωp

Y ⊗ K−1
Y ⊗ L|Y with the

induced metric hV by ω̃P and h̃L
α is Nakano positive when α is large enough. Moreover,

for any u ∈ Γ(W ∗
r
2
,Λn,qT ∗Y ⊗ V ) we have

(3.10) 〈
[√
−1Θ(V, hV ),ΛeωP

]
u, u〉 ≥ C|u|2

where C is a positive constant independent of u.

10
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Proof. Note that the metric ω̃P on the holomorphic tangent bundle TY is of the
splitting form, i.e.

(3.11) ω̃P =
n∑

i=1

ωi(zi),

and that the metric ωi(zi) depends only on the variable zi. Hence, by using curvature
formula (2.1), in local computations, we can treat (TY, ω̃P ) as a direct sum of line
bundles ⊕n

i=1(Fi, ωi). It is easy to check that the curvature of (Fi, ωi)

(3.12) |
√
−1∂∂ logωi| ≤ Cω̃P

for some positive constant C independent of α. Hence, in local computations, the
curvature of V = Ωp

Y ⊗ K−1
Y ⊗ L|Y is the curvature of a direct sum of line bundles

L|Y ⊗ F−1
i1

⊗ · · · ⊗ F−1
in−p

. Therefore, by using the curvature estimate (3.8), when
α > (n − p + 1)C, the curvature of each summand L ⊗ F−1

i1
⊗ · · · ⊗ F−1

in−p
is strictly

positive. That means V is Nakano positive. The inequality (3.10) follows from a
straightforward calculation. �

Lemma 3.4. The sequence of (3.1) is exact at q ≥ 1. That is, on a small local
chart W ∗

r
2

= (∆∗
r
2
)k × (∆ r

2
)n−k, for any ∂-closed L-valued (p, q) form η on W ∗

r
2
, if it

is L2-integrable with respect to (ωP , h
L
α), then there exists an L-valued (p, q− 1) form

f on W ∗
r
2

such that f is L2-integrable with respect to (ωP , h
L
α) and ∂f = η.

Proof. For simplicity, we write W = W ∗
r
2
. Suppose η ∈ Γ(W,Λp,qT ∗Y ⊗L) is ∂L closed

and L2-integrable with respect to (ωP , h
L
α). Note that V = Ωp

Y ⊗K
−1
Y ⊗L|Y , we have

(3.13) Γ(W,Λn,qT ∗Y ⊗ V ) ∼= Γ(W,Λp,qT ∗Y ⊗ L|Y ).

Since h̃L
α,τ ∼ hL

α,τ , ωP ∼ ω̃P on W , by Lemma 3.3 and Lemma 2.5, there exists

f ∈ Γ(W,Λn,q−1T ∗Y ⊗ V ) ∼= Γ(W,Λp,q−1T ∗Y ⊗ L)

such that ∂f = η on W ∗
r
2
, and f is L2- integrable with respect to (ω̃P , h̃

L
α). By

restricting to W = W ∗
r
2
, we have that f is also L2-integrable over W with respect to

(ωP , h
L
α). �

Given the exact sequence in (3.1), the isomorphisms in (3.2) are clear. The proof of
Theorem 3.1 is completed. �

Remark 3.5. (1) The isomorphism (3.2) holds up to equivalence of metrics.
More precisely, if ω̃P ∼ ωP and h̃L

Y ∼ hL
Y , then

Hp,q
(2)(Y, L, ωP , h

L
Y ) ∼= Hp,q

(2)(Y, L, ω̃P , h̃
L
Y ).

(2) From the proof of Theorem 3.1, it is easy to see that the isomorphism in
Theorem 3.1 also works for vector bundles.

11
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4. Logarithmic vanishing theorems

In this section, we prove Theorem 1.1 and several applications described in the first
section.

Theorem 4.1 (=Theorem 1.1). Let X be a compact Kähler manifold of dimension n
and D =

∑s
i=1Di be a simple normal crossing divisor in X. Let N be a line bundle

and ∆ =
∑s

i=1 aiDi be an R-divisor with ai ∈ [0, 1] such that N ⊗ OX([∆]) is a
k-positive R-line bundle. Then for any nef line bundle L, we have

Hq(X,Ωp
X(logD)⊗ L⊗N) = 0 for any p+ q ≥ n+ k + 1.

Proof. Let ω0 be a fixed Kähler metric on X. Let F = N ⊗ OX([D]). Since F is
a k-positive R-line bundle, there exist smooth metrics hN and h[Di] on F and [Di]
respectively, such that the curvature form of the induced metric hF on F

√
−1Θ(F, hF ) =

√
−1Θ(N,hN ) +

√
−1

s∑
i=1

aiΘ([Di], h[Di])(4.1)

is semipositive and has at least n− k positive eigenvalues at each point of X.

Let {λj
ω0(hF )}n

j=1 be the eigenvalues of
√
−1Θ(F, hF ) with respect to ω0 such that

λj
ω0(hF ) ≤ λj+1

ω0 (hF ) for all j. Thus for any j ≥ k + 1 we have

λj
ω0

(hF ) ≥ λk+1
ω0

(hF ) ≥ min
x∈X

(
λk+1

ω0
(hF )(x)

)
=: c0 > 0.

We set δ = c0
32n2 . Without loss of generality, we assume δ ∈ (0, 1). Since L is nef,

there exists a smooth metric hL
δ on L such that

√
−1Θ(L, hL

δ ) = −
√
−1∂∂ log hL

δ > −δω0.(4.2)

Let σi be the defining section of Di. Fix smooth metrics hDi := ‖ · ‖2
Di

on line
bundles [Di], such that ‖σi‖Di <

1
2 . Write the curvature form of [Di] as c1(Di) =√

−1Θ([Di], hDi). We define h∆ :=
∏s

i=1 h
ai
Di

, then the curvature form of (∆, h∆) is

−
√
−1∂∂ log h∆ = −

√
−1∂∂ log

s∏
i=1

hai
Di
.(4.3)

For simplicity, we set

(4.4) F := L⊗N = L⊗ F ⊗OX(−[∆]).

The induced metric on F is defined by

hF
α,ε,τ = hL

δ · hF · (h∆)−1 ·
s∏

i=1

‖σ‖2τi
Di

(
log2(ε‖σi‖2

Di
)
)α

2 .

Here the constant α > 0 is chosen to be large enough and the constants τi, ε ∈ (0, 1] are
to be determined later. Note that the smooth metric hF ·(h∆)−1 onN = F⊗OX(−[∆])

12
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is the same as hN up to a globally defined function over X. A straightforward com-
putation shows that

√
−1Θ

(
F , hF

α,ε,τ

)
=
√
−1Θ(F, hF ) +

√
−1Θ(L, hL

δ ) +
s∑

i=1

(τi − ai)c1(Di)

+
s∑

i=1

αc1(Di)
log(ε‖σi‖2

Di
)

+
√
−1

s∑
i=1

α∂ log ‖σi‖2
Di
∧ ∂ log ‖σi‖2

Di

(log(ε‖σi‖2
Di

))2
.

(4.5)

Since ai ∈ [0, 1], for a fixed large α, we can choose τ1, · · · , τs ∈ (0, 1] and ε such that
τi − ai, ε are small enough and

−δ
2
ω0 ≤

√
−1

s∑
i=1

(τi − ai)c1(Di) ≤
δ

2
ω0, −δ

2
ω0 ≤

s∑
i=1

αc1(Di)
log(ε‖σi‖2

Di
)
≤ δ

2
ω0.(4.6)

Note that the constants τi and ε are thus fixed, and the choice of ε depends on α. We
set

(4.7) ωY =
√
−1Θ

(
F , hF

α,ε,τ

)
+ 2(4n+ 1)δω0.

It is easy to check that ωY is a Poincaré type Kähler metric on Y . By (4.1), (4.2),
(4.5) and (4.6), one has on Y

√
−1Θ

(
F , hF

α,ε,τ

)
≥
√
−1Θ(F, hF )− 2δω0.(4.8)

Since
√
−1Θ(F, hF ) is a semipositive (1,1) form, we see that on Y

ωY =
√
−1Θ

(
F , hF

α,ε,τ

)
+ 2(4n+ 1)δω0 ≥ 8nδω0.(4.9)

This implies that

√
−1Θ

(
F , hF

α,ε,τ

)
= ωY − 2(4n+ 1)δω0 ≥ − 1

4n
ωY .

By exactly the same argument as in the proof of Theorem 3.1 (see also Remark 3.5),
when α is large enough, we obtain

(4.10) Hq
(
X,Ωp

X(logD)⊗F
) ∼= Hp,q

(2)

(
Y,F , ωY , h

F
α,ε,τ

)
.

Next, we prove the vanishing of the L2 cohomology groups by using Lemma 2.5.
On a local chart of Y , we may assume that ω0 =

√
−1
∑n

i=1 ηi ∧ ηi and

√
−1Θ

(
F , hF

α,ε,τ

)
=
√
−1

n∑
i=1

λi
ω0

(
hF

α,ε,τ

)
ηi ∧ ηi.

13
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Then
√
−1Θ

(
F , hF

α,ε,τ

)
=
√
−1

n∑
i=1

λi
ω0

(
hF

α,ε,τ

)
ηi ∧ ηi

=
√
−1

n∑
i=1

λi
ω0

(
hF

α,ε,τ

)
λi

ω0

(
hF

α,ε,τ

)
+ 2(4n+ 1)δ

η′i ∧ η′i

=
√
−1

n∑
i=1

16n2λi
ω0

(
hF

α,ε,τ

)
16n2λi

ω0

(
hF

α,ε,τ

)
+ (4n+ 1)c0

η′i ∧ η′i

where
η′i = ηi ·

√
λi

ω0
(hF

α,ε,τ ) + 2(4n+ 1)δ.

Note that ωY =
√
−1
∑n

i=1 η
′
i ∧ η′i, and so the eigenvalues of

√
−1Θ

(
F , hF

α,ε,τ

)
with

respect to ωY are

γi :=
16n2λi

ω0

(
hF

α,ε,τ

)
16n2λi

ω0

(
hF

α,ε,τ

)
+ (4n+ 1)c0

< 1.

Thus γj ∈ [− 1
4n , 1). On the other hand, by (4.8) one has

λj
ω0

(
hF

α,ε,τ

)
≥ λj

ω0
(hF )− 2δ.

Hence for any j ≥ k + 1, we have

λj
ω0

(
hF

α,ε,τ

)
≥ min

x∈X

(
λk+1

ω0
(hF )(x)

)
− 2δ = c0 − 2δ =

(
1− 1

16n2

)
c0 > 0.

It also implies that for j ≥ k + 1,

γj =
16n2λi

ω0

(
hF

α,ε,τ

)
16n2λi

ω0

(
hF

α,ε,τ

)
+ (4n+ 1)c0

≥
16n2(1− 1

16n2 )c0
16n2(1− 1

16n2 )c0 + (4n+ 1)c0
= 1− 1

4n
.

For any section u ∈ Γ(Y,Λp,qTY ⊗F ), we obtain〈[√
−1Θ

(
F , hF

α,ε,τ

)
,ΛωY

]
u, u

〉
≥

 q∑
i=1

γi −
n∑

j=p+1

γj

 |u|2

≥
(

(q − k)
(

1− 1
4n

)
− k

4n
− (n− p)

)
|u|2

=
(

(q + p− n− k)− q − k

4n
− k

4n

)
|u|2

≥ 1
2
|u|2.

Thus, Theorem 4.1 follows from (4.10) and Lemma 2.5. �
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As applications of Theorem 4.1, we obtain

Corollary 4.2. Let X be a compact Kähler manifold of dimension n and D be a
simple normal crossing divisor. Suppose that N is a k-positive line bundle and L is
a nef line bundle, then

Hq(X,Ωp
X(logD)⊗N ⊗ L) = 0 for any p+ q ≥ n+ k + 1.

In particular, one can deduce the following well-known result.

Corollary 4.3. Let X be a compact Kähler manifold of dimension n and D be a
simple normal crossing divisor. Suppose that L→ X is an ample line bundle, then

Hq(X,Ωp
X(logD)⊗ L) = 0 for any p+ q ≥ n+ 1.

As an analogue to Corollary 4.3, we obtain the following log type Le Potier vanishing
theorem for ample vector bundles.

Corollary 4.4. Let X be a compact Kähler manifold of dimension n and D be a
simple normal crossing divisor. Suppose that E → X is an ample vector bundle of
rank r. Then

Hq(X,Ωp
X(logD)⊗ E) = 0 for any p+ q ≥ n+ r.

Proof. Let π : P(E∗) → X be the projective bundle of E andOE(1) be the tautological
line bundle. By using the Le Potier isomorphism (e.g. [32, Theorem 5.16]), we have

(4.11) Hq(X,Ωp
X(logD)⊗ E) ∼= Hq(P(E∗),Ωp

P(E∗)(log π∗D)⊗OE(1)).

On the other hand, it is easy to see that π−1D is also a simple normal crossing divisor.
Hence, Corollary 4.4 follows from Corollary 4.2. �

By using the same strategy as in the proof of Theorem 4.1, we also obtain several log
type Nakano vanishing theorems for vector bundles on X. For instance,

Proposition 4.5. Let E be a vector bundle of rank r and L be a line bundle on X.
(1) If E is Nakano positive (resp. Nakano semi-positive) and L is nef (resp.

ample), then for any q ≥ 1

Hq(X,Ωn
X(logD)⊗ E ⊗ L) = 0.

(2) If E is dual-Nakano positive (resp. dual-Nakano semi-positive) and L is nef
(resp. ample), then for any p ≥ 1

Hn(X,Ωp
X(logD)⊗ E ⊗ L) = 0.

(3) If E is globally generated and L is ample, then for any p ≥ 1

Hn(X,Ωp
X(logD)⊗ E ⊗ L) = 0.

Indeed, the vector bundle E ⊗ L in Proposition 4.5 is either Nakano positive or dual
Nakano positive (e.g. [28]). Hence, the proof is very similar to (but simpler than)
that in Theorem 4.1.
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5. Applications

In this section, we present several straightforward applications of Theorem 1.1 over
compact Kähler manifolds, which are also closely related to a number of classical
vanishing theorems in algebraic geometry.

Theorem 5.1. Let X be a compact Kähler manifold of dimension n and D =
∑s

i=1Di

be a simple normal crossing divisor. Suppose F is a line bundle over X and m is a
positive real number such that mF = L + D′, where D′ =

∑s
i=1 νiDi is an effective

normal crossing R-divisor and L is a k-positive R-line bundle. Then

Hq

(
X,Ωp(logD)⊗ F ⊗OX

(
−

s∑
i=1

(
1 +

[νi

m

])
Di

))
= 0(5.1)

for p+ q ≥ n+ k + 1.

Proof. Let

N = F ⊗OX

(
−

s∑
i=1

(
1 +

[νi

m

])
Di

)
and

∆ =
∑

i

(
1 +

[νi

m

]
− νi

m

)
Di.

We have that

(5.2) N ⊗OX([∆]) =
1
m
L,

which is a k-positive R-line bundle. Hence we can apply Theorem 4.1 to complete the
proof. �

Corollary 5.2. Let X be a compact Kähler manifold D =
∑s

j=1Dj be a simple
normal crossing divisor of X. Let [D′] be a k-positive R-line bundle over X, where
D′ =

∑s
i=1 ciDi with ci > 0 and ci ∈ R. Then

Hq(X,Ωp(logD)⊗OX(−dD′e)) = 0 for any p+ q < n− k.

In particular, when [D′] is ample,

(5.3) Hq(X,Ωp(logD)⊗OX(−dD′e)) = 0, for p+ q < n.

Proof. Let

N = OX(−D)⊗ dD′e, and ∆ =
∑

i

(1 + ci − dcie)Di.

It is easy to see that

(5.4) N ⊗OX([∆]) = [D′]

which is a k-positive R-line bundle. By using Theorem 4.1, one has

(5.5) Hq(X,Ωp(logD)⊗OX(−D)⊗ dD′e) = 0
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for any p+ q ≥ n+ k + 1. By Serre duality and the isomorphism

(5.6) (Ωp
X(logD))∗ ∼= Ωn−p

X (logD)⊗OX(−KX −D),

we see that (5.5) is equivalent to

Hq(X,Ωp(logD)⊗OX(−dD′e)) = 0

for any p+ q < n− k. The proof is complete. �

Corollary 5.3. Let X be a compact Kähler manifold and D =
∑s

j=1Dj be a simple
normal crossing divisor of X. Let [D′] be a k-positive R-line bundle over X, where
D′ =

∑s
i=1 aiDi with ai > 0 and ai ∈ R. If there exists a line bundle L over X and

a real number b with 0 < aj < b for all j, and bL = [D′] as R-line bundles, then

Hq(X,Ωp(logD)⊗ L−1) = 0

for p+ q > n+ k and p+ q < n− k.

Proof. Let b′ be a real number such that maxj aj < b′ < b and set

N = L−1, ∆ =
D′

b′
=

s∑
j=1

aj

b′
Dj .

Let

F = L−1 ⊗OX([D]) = L−1 +
D′

b′
=
b− b′

bb′
D′.

It is easy to see that F is a k-positive R-line bundle and the coefficients of ∆ are in
[0, 1]. By Theorem 4.1, we obtain

Hq(X,Ωp(logD)⊗ L−1) = 0 for p+ q > n+ k.

On the other hand, we can set

N = L⊗OX(−D), ∆ =
s∑

j=1

(
1− aj

2b

)
Dj , and F = N ⊗OX([D]) =

D′

2b
.

It is easy to see that F is a k-positive R-line bundle and the coefficients of ∆ are in
[0, 1]. By Theorem 4.1 again, we get

Hq(X,Ωp(logD)⊗ L⊗OX(−D)) = 0, for p+ q > n+ k.

By Serre duality and the isomorphism (5.6), we have

Hq(X,Ωp(logD)⊗ L−1) = 0

for any p+ q < n− k. �
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Corollary 5.4. Let X be a compact Kähler manifold of dimension n and D =∑s
i=1Di be a simple normal crossing divisor in X. Suppose there exist some real

constants ai ≥ 0 such that
∑s

i=1 aiDi is a k-positive R-divisor, then for any nef line
bundle L, we have

Hq(X,Ωp
X(logD)⊗ L) = 0 for any p+ q ≥ n+ k + 1.

Proof. We can set N = OX and ∆ = 1
1+

Ps
i=1 ai

∑s
i=1 aiDi. Then N⊗O([∆]) = O([∆])

is a k-positive R-line bundle. �
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[20] Hörmander, L. L2 estimates and existence theorems for the ∂ operator. Acta Mathematica,

1965, 113(1): 89-152.

[21] Luo, H.-Z. Stability of algebraic manifolds. Massachusetts Institute of Technology, 1998.

[22] Kawamata, Y. On the cohomology of Q-divisors. Proc. Japan Acad. Ser. A Math. Sci. 56 (1980),

34–35.

[23] Kawamata, Y.; Matsuda, K.; Matsuki, K. Introduction to the minimal model program, Advanced

Studies in Pure Math 10, 283-360, North-Holland, Amsterdam (1987).

[24] Kodaira, K. Complex Manifolds and Deformation of Complex structures, Springer (1986).

[25] Kollár, J. Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 124 (1986) 171–202.

[26] Pardon, W.; Stern, M. L2-cohomology of complex projective varieties, J. Amer. Math. Soc. 4

(1991), no.3 603–621.

[27] Liu, K.-F.; Sun, X.-F.; Yang, X.-K. Positivity and vanishing theorems for ample vector bundles.

J. Algebraic Geom. 22 (2013), 303–331.

[28] Liu, K.-F.; Yang, X.-K. Effective vanishing theorems for ample and globally generated vector

bundles. Comm. Anal. Geom. 23 (2015), no.4, 797–818.

[29] Matsuki, K.; Olsson, M. Kawamata-Viehweg vanishing as Kodaira vanishing for stacks. Math.

Res. Lett. 12 (2005), 207–217.

[30] Matsumura, S. A transcendental approach to injectivity theorem for log canonical pairs.

arXiv:1607.07213.

[31] Norimatsu, Y. Kodaira vanishing theorem and Chern classes for ∂-manifolds. Proceedings of the

Japan Academy, Series A, Mathematical Sciences, 54(1978), 107–108.

[32] Shiffman, B.; Sommese, A.J. Vanishing theorems on complex manifolds. Progress in Mathemat-

ics, vol. 56. Birkhauser Boston Inc, Boston (1985)

[33] Wells, R O. Comparison of de Rham and Dolbeault cohomology for proper surjective mappings,

Pacific. J. Math.,53(1974), no. 1, 281–300.

[34] Zucker, S. Hodge theory with degenerating coefficients: L2 cohomology in the Poincaré metric.
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