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Abstract. Motivated by the recent work of Wu and Yau on the ampleness of
canonical line bundle for compact Kähler manifolds with negative holomorphic
sectional curvature, we introduce a new curvature notion called real bisectional
curvature for Hermitian manifolds. When the metric is Kähler, this is just the
holomorphic sectional curvature H, and when the metric is non-Kähler, it is
slightly stronger than H. We classify compact Hermitian manifolds with constant
non-zero real bisectional curvature, and also slightly extend Wu-Yau’s theorem to
the Hermitian case. The underlying reason for the extension is that the Schwarz
lemma of Wu-Yau works the same when the target metric is only Hermitian but
has nonpositive real bisectional curvature.
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1. Introduction and the statement of results

The study of holomorphic sectional curvature in Kähler geometry has been a clas-
sic topic, and it also attracted some attention in recent years, for example, the work
of Heier and collaborators on compact Kähler manifolds with positive or negative
holomorphic sectional curvature ([9, 10, 11, 1]), and the recent breakthrough of Wu
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and Yau [19] in which they proved that any projective Kähler manifold with nega-
tive holomorphic sectional curvature must have ample canonical line bundle. This
result was obtained by Heier et. al. earlier under the additional assumption of the
Abundance Conjecture.

In [17], Tosatti and the first named author proved that any compact Kähler
manifold with nonpositive holomorphic sectional curvature must have nef canonical
line bundle, with that in hand, they were able to drop the projectivity assumption
in the aforementioned Wu-Yau Theorem. More recently, Diverio and Trapani [7]
further generalized the result by assuming that the holomorphic sectional curvature
is only quasi-negative, namely, nonpositive everywhere and negative somewhere in
the manifold. In [20], Wu and Yau give a direct proof of the statement that any
compact Kähler manifold with quasi-negative holomorphic sectional curvature must
have ample canonical line bundle.

In this direction, the following conjectures are still open:

Conjecture 1.1. Let Mn be a compact complex manifold.

(a) If M is Kobayashi hyperbolic, then its canonical line bundle KM is ample.
(b) If M admits a Hermitian metric with quasi-negative holomorphic sectional

curvature, then KM is ample.
(c) If M admits a Hermitian metric with negative holomorphic sectional cur-

vature, then KM is ample.

By Yau’s Schwarz Lemma [25], any Hermitian manifold with holomorphic sec-
tional curvature bounded from above by a negative constant must be Kobayashi
hyperbolic. So (a) implies (c). Clearly, (b) also implies (c).

As an attempt to push the results of [19] to conjecture (b) or (c) above, and
also to study holomorphic sectional curvature on Hermitian manifolds in general,
we introduce the following curvature term for Hermitian manifolds.

Definition 1.2. Let (Mn, g) be a Hermitian manifold, and denote by R the cur-
vature tensor of the Chern connection. For p ∈ M , let e = {e1, . . . , en} be a
unitary tangent frame at p, and let a = {a1, . . . , an} be non-negative constants with
|a|2 = a2

1 + · · ·+ a2
n > 0. Define the real bisectional curvature of g by

Bg(e, a) =
1
|a|2

n∑
i,j=1

Riijjaiaj .

We will say that a Hermitian manifold (Mn, g) has positive real bisectional cur-
vature, denoted by Bg > 0, if for any p ∈ M and any unitary frame e at p, any
nonnegative constants {a1, . . . , an} (not all of them zero), it holds that Bg(e, a) > 0.
The term Bg ≥ 0, Bg < 0, or Bg ≤ 0 are defined similarly. We will say that Bg is
quasi-positive, if it is non-negative everywhere, and is positive at a point p ∈M for
all choices of e and a.
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Let c be a constant. It is easy to see that, at any p ∈M and for any fixed unitary
frame e, then Bg(e′, a) > c for any choice of unitary frame e′ and nonnegative (but
not all zero) constants a if and only if

(1)
∑

i,j,k,`

Rijk`ξijξk` > c tr(ξ2)

for all non-trivial, nonnegative, Hermitian n × n matrix ξ. The condition Bg ≥ c,
< c, or ≤ c can be defined similarly.

Recall that the holomorphic sectional curvature in the direction v is defined by
H(v) = Rvvvv/|v|4. If we take e so that e1 is parallel to v, and take a1 = 1,
a2 = · · · = an = 0, then B becomes H(v). So B > 0 (≥ 0, < 0, or ≤ 0) implies
H > 0 (≥ 0, < 0, or ≤ 0). Also, if B is quasi-positive or quasi-negative, then so is
H. Using Berger’s averaging trick, we will show in the next section that

Proposition 1.3. If (Mn, g) is Kähler, or more generally, Kähler-like, then Bg > 0
(≥ 0, < 0, or ≤ 0) if and only if H > 0 (≥ 0, < 0, or ≤ 0). In the non-Kähler
case, there are Hermitian metrics g such that H > 0 but Bg � 0, and there are also
Hermitian metrics g such that H < 0 but Bg � 0.

Note that the term Kähler-like means that the Chern curvature tensor obeys all
the symmetries of the curvature of Kähler metrics (see [22]). The second part of
the above proposition says that, in the non-Kähler case, real bisectional curvature
is indeed a stronger curvature condition than holomorphic sectional curvature, and
the concept is a natural generalization of holomorphic sectional curvature for Kähler
manifolds. On the other hand, the difference between Bg and H is subtle and not
very big, as we will see in the next section. For instance, the sign of Bg does not
control the sign of any of the three Ricci curvature tensors (see §2).

It is a natural question to ask when will a Hermitian manifold have constant real
bisectional curvature. To this end, we have the following:

Theorem 1.4. Let (Mn, g) be a compact Hermitian manifold whose real bisectional
curvature is constantly equal to c. Then c ≤ 0. Moreover, when c = 0, then (M, g)
is a balanced manifold with vanishing first, second, and third Ricci tensor, and its
Chern curvature satisfies the property Rxyuv = −Ruvxy for any type (1, 0) complex
tangent vectors x, y, u, v.

We would like to propose the following conjecture:

Conjecture 1.5. Let Mn (n ≥ 3) be a compact Hermitian manifold with vanishing
real bisectional curvature c. Then c = 0, and its Chern curvature tensor R = 0.

By Boothby’s theorem, compact Hermitian manifolds with vanishing Chern cur-
vature are precisely the compact quotients of complex Lie groups equipped with left
invariant metrics.

Besides the constant real bisectional curvature cases, more generally, it would
certainly be very interesting to try to understand the class of all compact Hermitian
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manifolds with positive (or negative) real bisectional curvature. For instance, we
could raise the following

Conjecture 1.6. Let (Mn, g) be a compact Hermitian manifold, Bg its real bisec-
tional curvature, and KM its canonical line bundle.

(a) If Bg > 0, then M is simply-connected.
(b) If Bg > 0, then M is rationally connected.
(c) If Bg ≤ 0, then KM is nef.
(d) If Bg is quasi-negative, then KM is ample.

Of course the part (d) here is just a slightly weaker version of Conjecture 1.1,
part (b). In this paper, we will focus on the negative/nonpositive real bisectional
curvature cases, and the main observation of this article is that the Schwarz lemma
of Wu and Yau ([19, Proposition 9]) can be generalized to Hermitian manifolds when
the target metric has negative real bisectional curvature. As a consequence, the re-
sults of Wu-Yau [19, 20], Tosatti-Yang [17], and Diverio-Trapani [7] can be partially
generalized to the Hermitian case. To be more precise, we have the following:

Theorem 1.7. Let (M,h) be a compact Hermitian manifold with nonpositive real
bisectional curvature. If M is Kählerian, then its canonical line bundle is nef.

Theorem 1.8. Let (M,h) be a compact Hermitian manifold with quasi-negative real
bisectional curvature. If M is Kählerian, then its canonical line bundle is ample.

Recall that Kählerian means that the manifold admits a Kähler metric, which of
course does not have to be h here. It would certainly be highly desirable to drop
this assumption, but at this point we have no idea how to achieve that goal. We do
observe the following special case, which provides some partial evidence to part (d)
of Conjecture 1.6.

Theorem 1.9. Let M be a compact Hermitian manifold with quasi-negative real
bisectional curvature. Let Nn be a compact complex manifold which admits a holo-
morphic fibration f : N → Z, where a generic fiber is a compact Kähler manifold
with c1 = 0. Then Mn cannot be bimeromorphic to Nn.

Also, as immediate consequences of the Hermitian version of Wu-Yau’s Schwarz
Lemma (see §4), we get the following rigidity results:

Theorem 1.10. Let (M, g) be a Hermitian manifold with nonnegative second Ricci
curvature and with bounded Gauduchon 1-form η. Assume that as a Riemannian
manifold, it is complete and has Ricci curvature bounded from below. Let (N,h) be a
Hermitian manifold with real bisectional curvature bounded from above by a negative
constant. Then any holomorphic map from M to N must be constant.

Theorem 1.11. Let (M, g) be a compact Hermitian manifold with nonnegative sec-
ond Ricci curvature, and (N,h) be a Hermitian manifold with nonpositive real bisec-
tional curvature. Then any non-constant holomorphic map from M to N is totally
geodesic.
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2. The real bisectional curvature of Hermitian manifolds

Let (Mn, g) be a Hermitian manifold. Under a local holomorphic coordinate
system (z1, . . . , zn), the curvature tensor of the Chern connection has components

(2) Rijk` = −
∂2gk`

∂zi∂zj
+ gpq ∂gkq

∂zi

∂gp`

∂zj
.

Let e be a unitary frame of type (1, 0) tangent vectors and a1, . . . , an be non-negative
constants with |a|2 = a2

1 + · · · + a2
n > 0. Recall that the real bisectional curvature

Bg in the direction of e and a is defined by

Bg(e, a) =
1
|a|2

n∑
i,j=1

Reieiejejaiaj .

Remark 2.1. Note that the definition of real bisectional curvature is somewhat
analogous to the notion of quadratic orthogonal bisectional curvature defined in [21],
see also [3, 4, 8, 12, 27]. However, the two curvature notions are actually quite dif-
ferent, in the sense that the former is a slight generalization of holomorphic sectional
curvature H (and is actually equivalent to H when the metric is Kähler) while the
latter is closer to orthogonal bisectional curvature.

For any type (1, 0) tangent vector v 6= 0, if we choose e so that e1 is parallel to v,
and choose a1 = 1, a2 = · · · = an = 0, then we get

Bg(e, a) = Rvvvv/|v|4 = H(v).

So the holomorphic sectional curvature is part of the real bisectional curvature, and
the sign of B guarantees the sign of H.

Conversely, let ωFS be the Fubini-Study metric on Pn−1 with unit volume, and
let [w1 : · · · : wn] be the standard unitary homogeneous coordinate. Then it is
well-known that ∫

Pn−1

wiwjwkw`

|w|4
ωn−1

FS =
δijδk` + δi`δkj

n(n+ 1)
,

so if we fix a point p ∈M and fix any nonnegative constants b1, . . . , bn, not all zero,
then by considering the integration

n∑
i,j,k,`=1

∫
Pn−1

Rijk`

biwibjwjbkwkb`w`

|w|4
ωn−1

FS =
2

n(n+ 1)

n∑
i,k=1

(Riikk +Rikki)b
2
i b

2
k,

we know that, if H > 0, then the real bisectional curvature Bg > 0 if the metric g is
Kähler-like ([22]), as in this case the two curvature terms in the right hand side of
the above equality are equal. For a general Hermitian metric g, if H > 0, then we
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know that, for any unitary frame e and any nonnegative constants a1, . . . , an with
at least one of them being positive, it holds that

(3)
∑
i,k

(Riikk +Rikki) aiak > 0.

This is an equivalent way to describe H > 0. It is analogous to the definition of
Bg > 0, but not exactly the same (when the metric is not Kähler-like in the sense
of [22]). So we have proved the first part of Proposition 1.3.

To see the second part of Proposition 1.3, let us consider the following example:

Example 2.2. On a ball centered at the origin and with small radius D ⊆ Cn

(n ≥ 2), consider the U(n)-invariant Hermitian metric g defined by

gij = (1 + |z|2) δij + (ε− 2) zizj

where ε ∈ (0, 1) is a constant and |z|2 = |z1|2 + · · ·+ |zn|2, with (z1, . . . , zn) the stan-
dard Euclidean coordinate in Cn. We claim that the metric has positive holomorphic
sectional curvature, but the real bisectional curvature is not even nonnegative.

At the origin z = 0, since all the first order derivatives of g are zero, we get

Rijk` = −
∂2gk`

∂zi∂zj
= −δijδk` + (2− ε)δi`δkj .

From this, we see that the holomorphic sectional curvature at the origin is constantly
H(v) = 1− ε, which is positive. On the other hand, if eα =

∑
iAαi

∂
∂zi

is a unitary
frame at z = 0, and a1, . . . , an are nonnegative constants, with not all of them zero,
then we have

Bg(e, a) =
n∑

α,β=1

Reαeαeβeβ
aαaβ = −

(
n∑

α=1

aα

)2

+ (2− ε)
n∑

α=1

a2
α.

If we take a1 = · · · = an = 1√
n
, then we get Bg(e, a) = −n + 2 − ε < 0, since

n ≥ 2. So at the origin, hence in a neighborhood of the origin, the metric g has
positive holomorphic sectional curvature, but its real bisectional curvature is not
even nonnegative.

Note that locally, if we take a metric h that is given by the matrix t(gij)
−1, then

the curvature of h is that of g with opposite sign. In particular, if we take the inverse
transpose of the metric in Example 2.2, namely, if we let

hij =
1

1 + |z|2
δij +

2− ε

(1 + |z|2)(1− (1− ε)|z|2)
zizj ,

then it would have H < 0 near the origin, but B � 0. This completes the proof of
Proposition 1.3. �

Next, we would like to point out that for a Hermitian manifold, although the sign
of the holomorphic sectional curvature H does not control that of the real bisectional
curvature B, the two are not too far apart from each other. For instance, the sign of
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B does not control the sign of any of the three Ricci curvature tensors of the Chern
connection. We have the following

Example 2.3. Consider a small ball D in C2 centered at the origin, equipped with
the Hermitian metric g defined by

g11 = 1− |z1|2 + (1 + b)|z2|2

g22 = 1− (1 + 4b)|z1|2 − |z2|2

g12 = (1 + b)z2z1

where (z1, z2) is the Euclidean coordinate of C2 and b > 0 is a constant. We claim
that the metric has positive real bisectional curvature, but its first, second, and
third Ricci curvature are not nonnegative.

At the origin z = 0, gij = δij , and dg = 0, so the Chern curvature tensor

Rijk` = −
∂2gk`

∂zi∂zj

at z = 0 has components

R1111 = R2222 = 1, R1122 = R1221 = R2112 = −1− b, R2211 = 1 + 4b,

and all other components are zero at z = 0. Recall that the first, second, and third
Ricci tensor of R are defined by

Ric(1)

ij
=

n∑
k,`=1

gk`Rijk`, Ric(2)

ij
=

n∑
k,`=1

gk`Rk`ij , Ric(3)

ij
=

n∑
k,`=1

gk`Ri`kj .

At the origin, we have

Ric(1)

11
= R1111 +R1122 = −b

Ric(2)

22
= R1122 +R2222 = −b

Ric(3)

11
= R1111 +R1221 = −b.

So none of the three Ricci curvatures is positive at the origin. On the other hand, we
claim that the real bisectional curvature of g is positive at (hence near) the origin.
That is, we want to show that

B =
∑

i,j,k,`

Rijk` ξijξk` > 0

for any non-trivial, non-negative Hermitian matrix ξ = (ξij). Write ξ11 = x, ξ22 = y,
and ξ12 = t, then we have x ≥ 0, y ≥ 0, |t|2 ≤ xy, and either x or y is positive. At
the origin, we have

B = x2 + y2 + 3bxy − 2(1 + b)|t|2

≥ x2 + y2 + 3bxy − 2(1 + b)xy
= (x− y)2 + bxy.
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Clearly, B > 0 since either x or y will be positive. So the real bisectional curvature
of g is positive in a small neighborhood of the origin, yet each of the three Ricci
tensors is not even non-negative. This shows that the sign of the real bisectional
curvature does not control the sign of any of the three Ricci tensors.

3. Manifolds with constant real bisectional curvature

In this section, we will prove Theorem 1.4 stated in the introduction. Let (Mn, g)
be a compact Hermitian manifold with constant real bisectional curvature c, and let
e be any unitary frame, then by the definition of real bisectional curvature Bg, we
have ∑

i,j,k,`

Rijk`ξijξk` = c
∑

i

ξ2ii

for any non-trivial, nonnegative Hermitian n× n matrix ξ. This implies that

(4) Rijk` +Rk`ij =
{

2c, if i = ` and k = j;
0, otherwise.

Next, let us follow the notations of [22] and denote by {ϕ1, . . . , ϕn} the coframe
of (1, 0)-forms dual to e, with ω the Kähler form of g, and τ the column vector of
torsion (2, 0)-forms of the Chern connection. Denote by η the Gauduchon 1-form,
then we have

τk =
∑
i,j

T k
ijϕi ∧ ϕj , η =

∑
j

ηjϕj =
∑
i,j

T i
ijϕj .

From Lemma 7 of [22], we have

(5) 2T k
ij,`

= Rj`ik −Ri`jk

for any indices 1 ≤ i, j, k, ` ≤ n, where the index after the comma stands for covariant
differentiation with respect to the Chern connection. By letting k = i and sum over,
we get

(6) 2 ηj,` =
∑

k

(Rj`kk −Rk`jk).

By formula (15) of [22], we have ∂(ωn−1) = −2η ∧ ωn−1, hence

(7) ∂∂(ωn−1) = 2∂η ∧ ωn−1 + 4η ∧ η ∧ ωn−1.

Integrating it over the compact manifold Mn, we get

(8)
∫

M

(∑
i

ηi,i

)
ωn = 2

∫
M
|η|2ωn.

From (6), we get

2
∑

i

ηi,i =
∑
i,k

(Riikk −Rkiik) =
∑
i6=k

(Riikk −Rkiik)
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=
∑
i6=k

(−Rkkii +Rikki − 2c) = −2
∑

i

ηi,i − 2cn(n− 1)

where we used (4) in the first equality of the second line. So∑
i

ηi,i = −1
2
cn(n− 1)

everywhere on M . By (8), we know that c ≤ 0. Moreover, when c = 0, we have
η = 0, and the Hermitian manifold (Mn, g) is balanced, i.e dωn−1 = 0.

Next let us focus on the c = 0 case. Recall that the first, second, and third Ricci
curvature tensor of the Chern curvature tensor R are defined by

(9) Ric(1)

ij
=
∑

k

Rijkk , Ric(2)

ij
=
∑

k

Rkkij , Ric(3)

ij
=
∑

k

Rikkj .

By the fact that η = 0 and (6), we know that

(10)
∑

k

Rijkk =
∑

k

Rkjik

for any 1 ≤ i, j ≤ n and∑
k

Rijkk =
∑

k

Rkjik = −
∑

k

Rikkj = −
∑

k

Rkijk = −
∑

k

Rjikk

where the first and last equalities are by formula (10), and the second equality is by
(4). This means that Ric(1)

ij
= 0 for all 1 ≤ i, j ≤ n. Also, by (4), we know that the

Chern curvature tensor satisfies the skew-symmetry

(11) Rxyuv = −Ruvxy

for any type (1, 0) tangent vectors x, y, u, and v. By (10), we know that Ric(3) = 0.
By (11), we get that

Ric(2) = −Ric(1) = 0.

This completes the proof of Theorem 1.4 stated in §1. �

Remark 3.1. (a) For the computations in this section, see also [13, Corol-
lary 4.2, Corollary 4.5] and [23, Theorem 3.1].

(b) We conjecture that a compact Hermitian manifold with vanishing real bi-
sectional curvature must have vanishing Chern curvature, thus are compact
quotients of complex Lie groups equipped with left invariant metrics.

4. The Hermitian form of Wu-Yau’s Schwarz lemma

The following formula is known as the Schwarz calculation (e.g. [14], [25]), and
we include a slightly simpler proof here for the readers’ convenience.
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Lemma 4.1. Let f : (M, g) → (N,h) be a holomorphic map between Hermitian
manifolds. Then in the local holomorphic coordinates {zi} and {wα} on M and N ,
respectively, we have the identity

(12) 2gu = |∇df |2 +
(
gij̄Rg

ij̄k ¯̀

)
gkq̄gp¯̀

hαβ̄f
α
p f

β
q −Rh

αβ̄γδ̄

(
gij̄fα

i f
β
j

)(
gpq̄fγ

p f
δ
q

)
.

where u = trωg(f∗ωh), fα
i = ∂fα

∂zi
, where the map f is represented by wα = fα(z)

locally, ∇ is the induced connection on the bundle E = T ∗M ⊗ f∗(TN )), and 2gu

= trωg(
√
−1∂∂u) is the complex Laplacian of u.

Proof. Let s = ∂f = fα
i dzi ⊗ eα ∈ Γ(M,E), where eα = f∗ ∂

∂wα
. Since f is a

holomorphic map, s is a holomorphic section of E, i.e. ∂s = 0. Thus by Bochner’s
formula, we have

∂∂|s|2 = 〈∇′s,∇′s〉 − 〈ΘEs, s〉
where ΘE is the curvature of the vector bundle E with respect to the induced metric.
More precisely, we have

ΘE = ΘT ∗
M ⊗ Idf∗(TN ) + IdT ∗

M
⊗ f∗(ΘTN ).

By taking trace, we obtain

trωg(
√
−1∂∂|s|2) = |∇′s|2 − 〈trωg

√
−1ΘEs, s〉

which is exactly the formula (12) since |s|2 = trωgf
∗ωh. �

Recall that on a Hermitian manifold (M, g), the curvature term gij̄Rg

ij̄k ¯̀ in (12)

is called the second (Chern) Ricci curvature and is denoted by Ric(2). It is different
from the classic (first Chern) Ricci curvature tensor

Ric(1)

k`
=
∑
i,j

gij̄Rg

k ¯̀ij̄
= −∂

2 log det g
∂zk∂z̄`

,

although they coincide when g is Kähler. As an application of Lemma 4.1, we get

Lemma 4.2. Let f : (M, g) → (N,h) be a holomorphic map between two Hermitian
manifolds. Then outside the set of critical points of f , one has

(13) 2g log u ≥ 1
u

[
R

(2)

k ¯̀ g
kq̄gp¯̀

hαβ̄f
α
p f

β
q −Rh

αβ̄γδ̄

(
gij̄fα

i f
β
j

)(
gpq̄fγ

p f
δ
q

)]
where u = trωg(f∗ωh), 2g is the complex Laplacian, and R(2)

k ¯̀ = Ric(2)

k ¯̀ is the second
Ricci curvature of the Hermitian manifold (M, g).

Proof. By using |df |2 = |∂f |2 = trωgf
∗ωh and the formula (12), we know that if

df 6= 0,

2g log |df |2 =
2g|df |2

|df |2
− |∂|df |2|2

|df |4

=
2g|df |2

|df |2
− 4|∂|df ||2

|df |2
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=
2g|df |2

|df |2
− |∇|df ||2

|df |2
.

By formula (12), we have

2g log |df |2 =
R

(2)

k ¯̀ g
kq̄gp¯̀

hαβ̄f
α
p f

β
q −Rh

αβ̄γδ̄

(
gij̄fα

i f
β
j

)(
gpq̄fγ

p f δ
q

)
|df |2

+
|∇df |2 − |∇|df ||2

|df |2
.

The well-known Kato’s inequality (e.g. [2]) says that for any section ξ of an abstract
Riemannian vector bundle (E,∇), one has

|∇|ξ|| ≤ |∇ξ|,

outside the zero set of ξ. Hence, we get (13). �

By using formula (13), we obtain the following refined version of Yau’s Schwarz
calculation on Hermitian manifolds, which is also analogous to Royden’s formulation
([15]) (see also [18],[19]).

Theorem 4.3. Let f : (M, g) → (N,h) be non-constant holomorphic map between
two Hermitian manifolds. Suppose that the second Ricci curvature of g satisfies

(14) Ric(2)(g) ≥ −λωg + µf∗ωh

for continuous functions λ, µ where µ ≥ 0, and the real bisectional curvature of h
is bounded from above by a continuous function −κ ≤ 0 on N . Then we have

(15) 2gu ≥ −λu+
(
f∗κ

r
+
µ

n

)
u2

and outside the zero locus of df :

(16) 2g log u ≥ −λ+
(
f∗κ

r
+
µ

n

)
u

where u = |df |2 = trωg(f∗ωh) and r is the maximal rank of df .

Proof. By formula (14), we have

R
(2)

k ¯̀ g
kq̄gp¯̀

hαβ̄f
α
p f

β
q ≥ (−λgk ¯̀+ µhγδ̄f

γ
k f

δ
` ) gkq̄gp¯̀

hαβ̄f
α
p f

β
q

≥ −λ
(
trωgf

∗ωh

)
+
µ

n

(
trωgf

∗ωh

)2
,(17)

where in the last step we used the fact µ ≥ 0 and the Cauchy-Schwarz inequality:

(18) (hγδ̄f
γ
k f

δ
` ) gkq̄gp¯̀(hαβ̄f

α
p f

β
q ) ≥ 1

n

(
trωgf

∗ωh

)2
.

11
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Indeed, if we set gij̄ = δij and denote by Φpq̄ =
∑

α,β hαβ̄f
α
p f

β
q , then (18) is

equivalent to

(19)
∑
p,q

|Φpq̄|2 ≥
1
n

(∑
p

Φpp̄

)2

,

which is obviously true. Next, we use ideas in [15] to estimate the second term on
the right hand side of (13).

At a fixed point p ∈ M , by taking unitary changes of coordinates at p and f(p),
we may assume that the matrix [fα

i ] has the canonical form

(20) fα
i = λiδ

α
i

with λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = · · · = 0, where r is the rank of the matrix [fα
i ].

Then
trωgf

∗ωh =
∑

i

λ2
i =

∑
α

λ2
α.

Hence, we have

Rh
αβ̄γδ̄

(
gij̄fα

i f
β
j

)(
gpq̄fγ

p f
δ
q

)
=

∑
α,β,γ,δ,i,k

Rh
αβ̄γδ̄λ

2
iλ

2
k · δα

i δ
β
i δ

γ
kδ

δ
k

=
∑

α,γ,i,k

Rh
αᾱγγ̄λ

2
iλ

2
k · δα

i δ
γ
k =

∑
α,γ

Rh
αᾱγγ̄λ

2
αλ

2
γ .(21)

Since the real bisectional curvature of (N,h) is bounded from above by −κ ≤ 0, we
get

(22)
∑
α,γ

Rh
αᾱγγ̄λ

2
αλ

2
γ ≤ −κ

(∑
α

λ4
α

)
≤ −κ

r

(∑
α

λ2
α

)2

= −κ
r
(trωgf

∗ωh)2.

The last inequality follows from the fact that κ ≥ 0 and r is the maximal number of
nonzero elements of λα. Therefore, by using formulas (12), (17) and (22), we obtain
(15). By using (13), (17) and (22), we obtain (16). �

If we apply the above theorem to the identity map of M , we get the following:

Corollary 4.4. Let M be a compact complex manifold with two Hermitian met-
rics g, h, such that h has real bisectional curvature bounded above by a continuous
function −κ ≤ 0 on M , and g satisfies

(23) Ric(2)(g) ≥ −λωg + µωh,

for some continuous functions λ, µ with µ ≥ 0. Then we have

(24) 2g log u ≥
(κ
n

+
µ

n

)
u− λ,

where u = trωgωh. In particular, if κ, λ, µ are all constants and κ+ µ > 0, then

(25) sup
M

u ≤ nλ

κ+ µ
.

12
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As an immediate consequence of the above Schwarz calculation and Yau’s gener-
alized maximum principle [24], we get a proof of Theorem 1.10. Since the statement
involves general Hermitian manifolds, let us give a detailed proof for the convenience
of the readers. First, recall that Yau’s maximum principle says that, on a complete
Riemannian manifold M with Ricci curvature bounded from below, if v is a smooth
function bounded from below, then for any ε > 0, there exists a point pε in M , such
that at pε,

(26) |∇v| < ε, ∆v > −ε, v(pε) < inf v + ε.

Here ∆ is the Laplacian and ∇ the Levi-Civita connection on M .

Next, let us recall the relation between the Ricci curvatures of the Riemannian and
Chern connections of a Hermitian manifold. Let (Mn, g) be a Hermitian manifold.
It is well-known that

(27) ∆v = 2 2gv + 2
n∑

i=1

(viηi + viηi)

where η =
∑

i ηiϕi is the Gauduchon 1-form, vi = ei(v), vi = ei(v), and e is any
unitary frame with ϕ the dual coframe.

Now let us assume that |η| ≤ C on M for some constant C > 0, and let u ≥ 0 be
a smooth function on M satisfying the inequality

2gu ≥ −bu+ au2

for some constants a, b, with a > 0. Then we claim that Yau’s maximum principle
will imply that u ≤ b

a .

To see this, note that by (27) we have

(28) ∆u ≥ −2bu+ 2au2 − 4C|∇u|.

Let us consider the smooth, positive function v = (u + 1)−
1
2 on M . We have

v′ = −v3/2, v′′ = 3v5/4, and ∇v = v′∇u, so

∆v = −v
3

2
∆u+

3v5

4
|∇u|2 = −v

3

2
∆u+

3
v
|∇v|2,

and

− 2
v3

∆v +
6
v4
|∇v|2 = ∆u > −bu+ au2 − 4C|∇u|

by (28). That is, we always have

(29) − bu+ au2 < − 2
v3

∆v +
6
v4
|∇v|2 +

8C
v3
|∇v|.

Now if (Mn, g) as a Riemannian manifold is complete and with Ricci curvature
bounded from below, then by Yau’s maximum principle, for any ε > 0, there will
be pε ∈M at which (26) holds, so by (29), at pε we have

(30) − bu+ au2 < (2 + 8C)ε(u+ 1)
3
2 + 6ε2(u+ 1)2.

13
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Since a > 0 is a constant, by choosing ε sufficiently small, we know that supu must
be finite. When ε → 0, u(pε) → supu, so the above inequality gives supu ≤ b

a .
Applying Theorem 4.3 in the case where µ = 0, both λ = b and κ = k > 0 are
constants, we get proved the following

Theorem 4.5. Let (Mn, g) be a Hermitian manifold with bounded Gauduchon 1-
form η, and its second (Chern) Ricci curvature is bounded from below by a constant
−b, and as a Riemannian manifold it is complete and has Ricci curvature bounded
from below. Let (Nm, h) be a Hermitian manifold whose real bisectional curvature
is bounded from above by a negative constant −k < 0. If f : M → N is any
non-constant holomorphic map, then we must have b > 0, and

(31) sup
M

trωgf
∗ωh ≤

rb

k

where r is the maximum rank of df .

In particular, if we start with b = 0 at the beginning, then we know that f must
be constant. This gives a proof to Theorem 1.10.

Remark 4.6. There are also some Schwarz type inequalities in [16] under different
curvature assumptions.

5. Nonpositive and quasi-negative real bisectional curvature

In this section we will give proofs to Theorems 1.7 through 1.9 and 1.11 stated in
the introduction. The proofs are basically the same as those given in [19], [17], and
[7], with the simple fact that, all metrics are equivalent on a compact manifold.

Proof of Theorem 1.7: Let (Mn, h) be a compact Hermitian manifold with non-
positive real bisectional curvature Bh. Let g be a Kähler metric on M . Assuming
that the canonical line bundle KM is not nef, and we want to derive a contradiction
as in the proof of Theorem 1.1 in [17].

Following [17], first of all, since KM is not nef, there will be ε0 > 0 such that
ε0[ωg] − c1(M) is nef but not a Kähler class. Then for any ε > 0, the class
(ε0 + ε)[ωg] − c1(M) is a Kähler class. Write ω for ωg, and denote by Ric(g) =
−
√
−1∂∂ logωn the (1, 1) form of the first Chern Ricci of the g, which represents

c1(M), thus there exists smooth function ϕε and ψε on M such that the Kähler
metric

ωε := (ε0 + ε)ω − Ric(g) +
√
−1∂∂uε,

where uε = ϕε + ψε, satisfies ωn
ε = euεωn, or equivalently,

Ric(ωε) = Ric(g)−
√
−1∂∂uε = −ωε + (ε0 + ε)ω.

Since M is compact, there exists a constant D > 0 such that 1
Dω ≤ ωh ≤ Dω. So

one has
Ric(ωε) ≥ −ωε +

ε0 + ε

D
ωh.

14
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Now if we apply the Schwarz Lemma( Corollary 4.4) to the identity map from
(Mn, ωε) onto (Mn, h), with λ = 1, µ = ε0+ε

D , and κ = 0, then we get

trωεωh ≤
nD

ε0 + ε

as in [17]. So trωεω ≤ nD2

ε0+ε . The rest of the argument is identical to that of [17], so
Theorem 1.7 holds. �

Next, let us prove Theorem 1.8. Again the same proof of [7] can be slightly
modified to cover this case.

Proof of Theorem 1.8: Suppose that (Mn, h) be a compact Hermitian manifold
with quasi-negative real bisectional curvature Bh. Let g be a Kähler metric on M
and write ω for ωg. The canonical line bundle KM is nef by Theorem 1.7. As
observed in [7], it suffices to show

(32) cn1 (KM ) > 0,

as then KM will be big by a result of Demailly and Paun [6]. Thus M will be
Moishezon, hence projective as it is assumed to be Kähler. Now the Kawamata
Theorem implies that KM must be ample since it does not contain any rational
curves.

SinceKM is nef, by [19, Proposition 8], for any ε > 0, there exists smooth function
uε on M such that the Kähler metric

ωε := εω − Ric(g) +
√
−1∂∂uε

satisfies ωn
ε = euεωn, or equivalently,

(33) Ric(ωε) = Ric(g)−
√
−1∂∂uε = −ωε + εω,

and uε ≤ C for such constant C independent of ε. The same proof of the inequality
cn1 (KM ) > 0 in [7] will go through provided that, for each ε > 0, there will be
smooth function Sε > 0 on M such that

(34) ∆ωε logSε ≥
n+ 1
2n

κSε − 1

holds, where κ is a continuous function on M which is quasi-positive, namely, non-
negative everywhere and positive somewhere.

Now if we consider the Hermitian metric h on M with quasi-negative real bi-
sectional curvature. We may let κ be a smooth quasi-positive function on M such
that Bh ≤ −κ. Then by applying Corollary 4.4, which is the Hermitian version of
[19, Proposition 9], to the identity map from (M,ωε) onto (M,h), we get the above
inequality for the function Sε = trωεωh, since we have

Ric(ωε) = −ωε + εω ≥ −ωε +
ε

D
ωh,

where D > 0 is a constant such that 1
Dω ≤ ωh ≤ Dω as before. This completes the

proof of Theorem 1.8. �
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Next, let us prove Theorem 1.9, which is a rather special case, but without the
assumption that M is Kählerian a priori.

Proof of Theorem 1.9: Let M and N be as in Theorem 1.9. Assume the contrary
that there is a bimeromorphic map f from N into M . Since M is compact and
with nonpositive holomorphic sectional curvature, by the result of Shiffman and
Griffiths, M obeys the Hartog’s phenomenon. So any meromorphic map into M
must be holomorphic. Let U ⊆M be the open set where real bisectional curvature
is negative. Let Y be a generic fiber of N such that the restriction map f |Y : Y →M
is non-constant and its image intersects U . By assumption, Y is a compact Kähler
manifold with c1 = 0, thus admits a Ricci-flat Kähler metric by Yau’s solution to
the Calabi conjecture. By applying the Schwarz Lemma Theorem 4.5 to f |Y , we get
a contradiction. So M cannot be bimeromorphic to N . �

Finally, we prove Theorem 1.11, which is a direct consequence of Lemma 4.1.

Proof of Theorem 1.11: Let f : (M, g) → (N,h) be a non-constant holomor-
phic map between Hermitian manifolds, with M being compact. By the curvature
assumptions on M and N , and Lemma 4.1, we get

2gu ≥ |∇df |2

where u = |df |2 = trωgf
∗ωh. By Gauduchon’s theorem, there exists a smooth

function v on M such that ∂∂(evωn−1
g ) = 0. So we get∫

M
|∇df |2evωn

g ≤
∫

M
2gu e

vωn
g =

∫
M
n
√
−1∂∂u ∧ evωn−1

g = 0,

thus ∇df = 0 everywhere on M . That is, f is totally geodesic. This completes the
proof of Theorem 1.11. �
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