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Abstract. In this paper we study stochastic quasi-Newton methods for nonconvex stochastic
optimization, where we assume that noisy information about the gradients of the objective function
is available via a stochastic first-order oracle (SFO). We propose a general framework for such
methods, for which we prove almost sure convergence to stationary points and analyze its worst-
case iteration complexity. When a randomly chosen iterate is returned as the output of such an
algorithm, we prove that in the worst case, the SFO-calls complexity is O(ε−2) to ensure that the
expectation of the squared norm of the gradient is smaller than the given accuracy tolerance ε. We
also propose a specific algorithm, namely, a stochastic damped limited-memory BFGS (SdLBFGS)
method, that falls under the proposed framework. Moreover, we incorporate the stochastic variance
reduced gradient variance reduction technique into the proposed SdLBFGS method and analyze
its SFO-calls complexity. Numerical results on a nonconvex binary classification problem using a
support vector machine and a multiclass classification problem using neural networks are reported.
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1. Introduction. In this paper, we consider the following stochastic optimiza-
tion problem:

(1.1) min
x∈Rn

f(x) = E[F (x, ξ)],

where F : Rn×Rd → R is continuously differentiable and possibly nonconvex, ξ ∈ Rd
denotes a random variable with distribution function P , and E[·] denotes the expecta-
tion taken with respect to ξ. In many cases the function F (·, ξ) is not given explicitly
and/or the distribution function P is unknown, or the function values and gradients
of f cannot be easily obtained and only noisy information about the gradient of f is
available. In this paper we assume that noisy gradients of f can be obtained via calls
to a stochastic first-order oracle (SFO). Problem (1.1) arises in many applications in
statistics and machine learning [36, 52], mixed logit modeling problems in economics
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and transportation [7, 4, 26], as well as many other areas. A special case of (1.1) that
arises frequently in machine learning is the empirical risk minimization problem

(1.2) min
x∈Rn

f(x) =
1

T

T∑
i=1

fi(x),

where fi : Rn → R is the loss function that corresponds to the ith data sample, and
T denotes the number of data samples which is assumed to be extremely large.

The idea of employing stochastic approximation (SA) to solve stochastic program-
ming problems can be traced back to the seminal work of Robbins and Monro [47].
The classical SA method, also referred to as stochastic gradient descent (SGD), mimics
the steepest gradient descent method, i.e., it updates iterate xk via xk+1 = xk−αkgk,
where the stochastic gradient gk is an unbiased estimate of the gradient ∇f(xk) of
f at xk, and αk is the step size. The SA method has been studied extensively in
[12, 17, 19, 44, 45, 49, 50], where the main focus has been the convergence of SA in
different settings. Recently, there has been a lot of interest in analyzing the worst-
case complexity of SA methods, stimulated by the complexity theory developed by
Nesterov for first-order methods for solving convex optimization problems [42, 43].
Nemirovski et al. [41] proposed a mirror descent SA method for solving the convex
stochastic programming problem x∗ := argmin{f(x) | x ∈ X}, where f is nonsmooth
and convex and X is a convex set, and proved that for any given ε > 0, the method
needs O(ε−2) iterations to obtain an x̄ such that E[f(x̄)−f(x∗)] ≤ ε. Other SA meth-
ods with provable complexities for solving convex stochastic optimization problems
have also been studied (e.g., see [20, 28, 29, 30, 31, 32, 3, 14, 2, 53, 56]).

Recently there has been a lot of interest in SA methods for stochastic optimization
problem (1.1) in which f is a nonconvex function. In [6], an SA method to minimize a
general cost function was proposed by Bottou and proved to be convergent to station-
ary points. Ghadimi and Lan [21] proposed a randomized stochastic gradient (RSG)
method that returns an iterate from a randomly chosen iteration as an approximate
solution. It is shown in [21] that to return a solution x̄ such that E[‖∇f(x̄)‖2] ≤ ε,
where ‖·‖ denotes the Euclidean norm, the total number of SFO-calls needed by RSG
is O(ε−2). Ghadimi and Lan [22] also studied an accelerated SA method for solving
(1.1) based on Nesterov’s accelerated gradient method [42, 43], which improved the
SFO-call complexity for convex cases from O(ε−2) to O(ε−4/3). In [23], Ghadimi,
Lan, and Zhang proposed a mini-batch SA method for solving problems in which
the objective function is a composition of a nonconvex smooth function f and a con-
vex nonsmooth function and analyzed its worst-case SFO-call complexity. In [13],
a method that incorporates a block-coordinate decomposition scheme into stochastic
mirror descent methodology was proposed by Dang and Lan for a nonconvex stochas-
tic optimization problem x∗ = argmin{f(x) : x ∈ X} in which the convex set X
has a block structure. More recently, Wang, Ma, and Yuan [55] proposed a penalty
method for nonconvex stochastic optimization problems with nonconvex constraints
and analyzed its SFO-call complexity.

In this paper, we study stochastic quasi-Newton (SQN) methods for solving the
nonconvex stochastic optimization problem (1.1). In the deterministic optimization
setting, quasi-Newton methods are more robust and achieve higher accuracy than
gradient methods, because they use approximate second-order derivative information.
Quasi-Newton methods usually employ the following updates for solving (1.1):

(1.3) xk+1 = xk − αkB−1
k ∇f(xk) or xk+1 = xk − αkHk∇f(xk),
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where Bk is an approximation to the Hessian matrix ∇2f(xk) at xk, or Hk is an
approximation to [∇2f(xk)]−1. The most widely used quasi-Newton method, the
BFGS method [8, 18, 24, 54], updates Bk via

(1.4) Bk = Bk−1 +
yk−1y

>
k−1

s>k−1yk−1
−
Bk−1sk−1s

>
k−1Bk−1

s>k−1Bk−1sk−1
,

where sk−1 := xk − xk−1 and yk−1 := ∇f(xk) −∇f(xk−1). By using the Sherman–
Morrison–Woodbury formula, it is easy to derive that the equivalent update to Hk =
B−1
k is

(1.5) Hk = (I − ρk−1sk−1y
>
k−1)Hk−1(I − ρk−1yk−1s

>
k−1) + ρk−1sk−1s

>
k−1,

where ρk−1 := 1/(s>k−1yk−1). For stochastic optimization, there has been some work
in designing SQN methods that update the iterates via (1.3) using the stochastic gra-
dient gk in place of ∇f(xk). Specific examples include the following. The adaptive
subgradient (AdaGrad) method proposed by Duchi, Hazan, and Singer [15], which
takes Bk to be a diagonal matrix that estimates the diagonal of the square root of
the uncentered covariance matrix of the gradients, has been proven to be quite effi-
cient in practice. In [5], Bordes, Bottou, and Gallinari studied SGD with a diagonal
rescaling matrix based on the secant condition associated with quasi-Newton meth-
ods. Roux and Fitzgibbon [48] discussed the necessity of including both Hessian and
covariance matrix information in a stochastic Newton type method. Byrd et al. [9]
proposed a quasi-Newton method that uses the sample average approximation ap-
proach to estimate Hessian-vector multiplications. In [10], Byrd et al. proposed a
stochastic limited-memory BFGS (L-BFGS) [34] method based on SA and proved its
convergence for strongly convex problems. Stochastic BFGS and L-BFGS methods
were also studied for online convex optimization by Schraudolph, Yu, and Günter
in [51]. For strongly convex problems, Mokhtari and Ribeiro proposed a regularized
stochastic BFGS method and analyzed its convergence in [38] and studied an online
L-BFGS method in [39]. Recently, Moritz, Nishihara, and Jordan [40] proposed a
linearly convergent method that integrates the L-BFGS method in [10] with the vari-
ance reduction technique (stochostic variance reduced gradient (SVRG)) proposed
by Johnson and Zhang in [27] to alleviate the effect of noisy gradients. A related
method that incorporates SVRG into a quasi-Newton method was studied by Lucchi,
McWilliams, and Hofmann in [35]. In [25], Gower, Goldfarb, and Richtárik proposed a
variance reduced block L-BFGS method that converges linearly for convex functions.
It should be noted that all of the above SQN methods are designed for solving convex
or even strongly convex problems.

Challenges. The key challenge in designing SQN methods for nonconvex prob-
lem lies in the difficulty in preserving the positive-definiteness of Bk (and Hk), due to
the nonconvexity of the problem and the presence of noise in estimating the gradient.
It is known that the BFGS update (1.4) preserves the positive-definiteness of Bk as
long as the curvature condition

(1.6) s>k−1yk−1 > 0

holds, which can be guaranteed for strongly convex problems. For the nonconvex
problems, the curvature condition (1.6) can be satisfied by performing a line search.
However, doing this is no longer feasible for (1.1) in the stochastic setting, because
exact function values and gradient information are not available. As a result, an
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important issue in designing SQN methods for nonconvex problems is how to preserve
the positive-definiteness of Bk (or Hk) without line search.

Our contributions. Our contributions (and where they appear) in this paper
are as follows:

1. We propose a general framework for SQN methods for solving the nonconvex
stochastic optimization problem (1.1) and prove its almost sure convergence
to a stationary point when the step size αk is diminishing. We also prove
that the number of iterations N needed to obtain 1

N

∑N
k=1 E[‖∇f(xk)‖2] ≤ ε

is N = O(ε−
1

1−β ), for αk chosen proportional to k−β , where β ∈ (0.5, 1) is a
constant. (See section 2.)

2. When a randomly chosen iterate xR is returned as the output of SQN,
we prove that the worst-case SFO-calls complexity needed to guarantee
E[‖∇f(xR)‖2] ≤ ε is O(ε−2). (See section 2.2.)

3. We propose a stochastic damped L-BFGS (SdLBFGS) method that fits into
the proposed framework. This method adaptively generates a positive defi-
nite matrix Hk that approximates the inverse Hessian matrix at the current
iterate xk. Convergence and complexity results for this method are provided.
Moreover, our method does not generate Hk explicitly, and only its multipli-
cation with vectors is computed directly. (See section 3.)

4. Motivated by the recent advance of SVRG for nonconvex minimization [46, 1],
we propose a variance reduced variant of SdLBFGS and analyze its SFO-calls
complexity. (See section 4.)

2. A general framework for SQN methods for nonconvex optimization.
In this section, we study SQN methods for the (possibly nonconvex) stochastic opti-
mization problem (1.1). We assume that an SFO outputs a stochastic gradient g(x, ξ)
of f for a given x, where ξ is a random variable whose distribution is supported on
Ξ ⊆ Rd. Here we assume that Ξ does not depend on x.

We now give some assumptions that are required throughout this paper.
AS.1. f : Rn → R is continuously differentiable. f(x) is lower bounded by a real

number f low for any x ∈ Rn. ∇f is globally Lipschitz continuous with Lips-
chitz constant L; namely for any x, y ∈ Rn,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

AS.2. For any iteration k, we have

a) Eξk [g(xk, ξk)] = ∇f(xk),(2.1)

b) Eξk
[
‖g(xk, ξk)−∇f(xk)‖2

]
≤ σ2,(2.2)

where σ > 0 is the noise level of the gradient estimation, and ξk, k = 1, 2, . . .,
are independent samples, and for a given k the random variable ξk is inde-
pendent of {xj}kj=1.

Remark 2.1. Note that the stochastic BFGS methods studied in [38, 10, 39] re-
quire that the noisy gradient is bounded, i.e.,

(2.3) Eξk
[
‖g(xk, ξk)‖2

]
≤Mg,

where Mg > 0 is a constant. Our assumption (2.2) is weaker than (2.3).

Analogous to deterministic quasi-Newton methods, our SQN method takes steps

(2.4) xk+1 = xk − αkHkgk,
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where gk is defined as a mini-batch estimate of the gradient,

(2.5) gk =
1

mk

mk∑
i=1

g(xk, ξk,i),

and ξk,i denotes the random variable generated by the ith sampling in the kth itera-
tion. From AS.2 we can see that gk has the following properties:

(2.6) E[gk|xk] = ∇f(xk), E[‖gk −∇f(xk)‖2|xk] ≤ σ2

mk
.

AS.3. There exist two positive constants κ, κ̄ such that

κI � Hk � κ̄I ∀ k,

where the notation A � B with A,B ∈ Rn×n means that A − B is positive
semidefinite.

We denote by ξk = (ξk,1, . . . , ξk,mk) the random samplings in the kth iteration,
and we denote by ξ[k] := (ξ1, . . . , ξk) the random samplings in the first k iterations.
Since Hk is generated iteratively based on historical gradient information by a random
process, we make the following assumption on Hk(k ≥ 2) to control the randomness
(note that H1 is given in the initialization step).

AS.4. For any k ≥ 2, the random variable Hk depends only on ξ[k−1].
It then follows directly from AS.4 and (2.6) that

(2.7) E[Hkgk|ξ[k−1]] = Hk∇f(xk),

where the expectation is taken with respect to ξk generated in the computation of gk.
We will not specify how to compute Hk until section 3, where a specific updating

scheme for Hk satisfying both assumptions AS.3 and AS.4 will be proposed.
We now present our SQN method for solving (1.1) as Algorithm 2.1.

Algorithm 2.1. SQN method for nonconvex stochastic optimization.

Input: Given x1 ∈ Rn, a positive definite matrix H1 ∈ Rn×n, batch sizes
{mk}k≥1,and step sizes {αk}k≥1

1: for k = 1, 2, . . . do
2: Calculate gk = 1

mk

∑mk
i=1 g(xk, ξk,i).

3: Generate a positive definite Hessian inverse approximation Hk.
4: Calculate xk+1 = xk − αkHkgk.
5: end for

2.1. Convergence and complexity of SQN with diminishing step size.
In this subsection, we analyze the convergence and complexity of SQN under the
condition that the step size αk in (2.4) is diminishing. Specifically, in this subsection
we assume αk satisfies the following condition:

(2.8)

+∞∑
k=1

αk = +∞,
+∞∑
k=1

α2
k < +∞,

which is a standard assumption in SA algorithms (see, e.g., [10, 39, 41]). One very
simple choice of αk that satisfies (2.8) is αk = O(1/k).
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The following lemma shows that a descent property in terms of the expected
objective value holds for SQN. Our analysis is similar to analyses that have been used
in [6, 38].

Lemma 2.2. Suppose that {xk} is generated by SQN and assumptions AS.1–AS.4
hold. Further assume that (2.8) holds, and αk ≤ κ

Lκ̄2 for all k. (Note that this can be
satisfied if αk is nonincreasing and the initial step size α1 ≤ κ

Lκ̄2 .) Then the following
inequality holds:

(2.9) E[f(xk+1)|xk] ≤ f(xk)− 1

2
αkκ‖∇f(xk)‖2 +

Lσ2κ̄2

2mk
α2
k ∀k ≥ 1,

where the conditional expectation is taken with respect to ξk.

Proof. Define δk = gk − ∇f(xk). From (2.4), and assumptions AS.1 and AS.3,
we have

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

= f(xk)− αk〈∇f(xk), Hkgk〉+
L

2
α2
k‖Hkgk‖2

≤ f(xk)− αk〈∇f(xk), Hk∇f(xk)〉 − αk〈∇f(xk), Hkδk〉+
L

2
α2
kκ̄

2‖gk‖2.(2.10)

Taking expectation with respect to ξk on both sides of (2.10) conditioned on xk, we
obtain

(2.11) E[f(xk+1)|xk] ≤ f(xk)− αk〈∇f(xk), Hk∇f(xk)〉+
L

2
α2
kκ̄

2E[‖gk‖2|xk],

where we used (2.7) and the fact that E[δk|xk] = 0. From (2.6) and E[δk|xk] = 0, it
follows that

E[‖gk‖2|xk] = E[‖gk −∇f(xk) +∇f(xk)‖2|xk]

= E[‖∇f(xk)‖2|xk] + E[‖gk −∇f(xk)‖2|xk] + 2E[〈δk,∇f(xk)〉|xk]

= ‖∇f(xk)‖2 + E[‖gk −∇f(xk)‖2|xk] ≤ ‖∇f(xk)‖2 + σ2/mk,(2.12)

which together with (2.11) and AS.3 yields that

(2.13) E[f(xk+1)|xk] ≤ f(xk)−
(
αkκ−

L

2
α2
kκ̄

2

)
‖∇f(xk)‖2 +

Lσ2κ̄2

2mk
α2
k.

Then (2.13) combined with the assumption αk ≤ κ
Lκ̄2 implies (2.9).

Before proceeding further, we introduce the definition of a supermartingale (see
[16] for more details).

Definition 2.3. Let {Fk} be an increasing sequence of σ-algebras. If {Xk} is
a stochastic process satisfying (i) E[|Xk|] < ∞, (ii) Xk ∈ Fk for all k, and (iii)
E[Xk+1|Fk] ≤ Xk for all k, then {Xk} is called a supermartingale.

Proposition 2.4 (see, e.g., Theorem 5.2.9 in [16]). If {Xk} is a nonnegative
supermartingale, then limk→∞Xk → X almost surely and E[X] ≤ E[X0].

We are now ready to give convergence results for SQN (Algorithm 2.1).
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Theorem 2.5. Suppose that assumptions AS.1–AS.4 hold for {xk} generated by
SQN with batch size mk = m for all k. If the step size αk satisfies (2.8) and αk ≤ κ

Lκ̄2

for all k, then

(2.14) lim inf
k→∞

‖∇f(xk)‖ = 0 with probability 1.

Moreover, there exists a positive constant Mf such that

(2.15) E[f(xk)] ≤Mf ∀k.

Proof. Define βk := αkκ
2 ‖∇f(xk)‖2 and γk := f(xk) + Lσ2κ̄2

2m

∑∞
i=k α

2
i . Let Fk be

the σ-algebra measuring βk, γk, and xk. From (2.9) we know that for any k,

E[γk+1|Fk] = E[f(xk+1)|Fk] +
Lσ2κ̄2

2m

∞∑
i=k+1

α2
i

≤ f(xk)− αkκ

2
‖∇f(xk)‖2 +

Lσ2κ̄2

2m

∞∑
i=k

α2
i = γk − βk,(2.16)

which implies that E[γk+1 − f low|Fk] ≤ γk − f low − βk. Since βk ≥ 0, we have
0 ≤ E[γk − f low] ≤ γ1 − f low < +∞, which implies (2.15). According to Definition
2.3, {γk − f low} is a supermartingale. Therefore, Proposition 2.4 shows that there
exists a γ such that limk→∞ γk = γ with probability 1, and E[γ] ≤ E[γ1]. Note that
from (2.16) we have E[βk] ≤ E[γk]− E[γk+1]. Thus,

E

[ ∞∑
k=1

βk

]
≤
∞∑
k=1

(E[γk]− E[γk+1]) < +∞,

which further yields that

(2.17)

∞∑
k=1

βk =
κ

2

∞∑
k=1

αk‖∇f(xk)‖2 < +∞ with probability 1.

Since
∑∞
k=1 αk = +∞, it follows that (2.14) holds.

Under the assumption (2.3) used in [38, 10, 39], we now prove a stronger conver-
gence result showing that any limit point of {xk} generated by SQN is a stationary
point of (1.1) with probability 1.

Theorem 2.6. Assume the same assumptions hold as in Theorem 2.5 and that
(2.3) holds. Then

(2.18) lim
k→∞

‖∇f(xk)‖ = 0 with probability 1.

Proof. For any given ε > 0, according to (2.14), there exist infinitely many iterates
xk such that ‖∇f(xk)‖ < ε. Then if (2.18) does not hold, there must exist two infinite
sequences of indices {mi}, {ni} with ni > mi, such that for i = 1, 2, . . . ,

(2.19) ‖∇f(xmi)‖ ≥ 2ε, ‖∇f(xni)‖ < ε, ‖∇f(xk)‖ ≥ ε, k = mi+ 1, . . . , ni−1.

Then from (2.17) it follows that

+∞>

+∞∑
k=1

αk‖∇f(xk)‖2 ≥
+∞∑
i=1

ni−1∑
k=mi

αk‖∇f(xk)‖2 ≥ε2
+∞∑
i=1

ni−1∑
k=mi

αk with probability 1,
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which implies that

(2.20)

ni−1∑
k=mi

αk → 0 with probability 1, as i→ +∞.

According to (2.12), we have that

E[‖xk+1 − xk‖|xk] = αkE[‖Hkgk‖|xk] ≤ αkκ̄E[‖gk‖|xk](2.21)

≤ αkκ̄(E[‖gk‖2|xk])
1
2 ≤ αkκ̄(Mg/m)

1
2 ,

where the last inequality is due to (2.3) and the convexity of ‖ · ‖2. Then it follows
from (2.21) that

E[‖xni − xmi‖] ≤ κ̄(Mg/m)
1
2

ni−1∑
k=mi

αk,

which together with (2.20) implies that ‖xni − xmi‖ → 0 with probability 1, as
i → +∞. Hence, from the Lipschitz continuity of ∇f , it follows that ‖∇f(xni) −
∇f(xmi)‖ → 0 with probability 1 as i → +∞. However, this contradicts (2.19).
Therefore, the assumption that (2.18) does not hold is not true.

Remark 2.7. Note that our result in Theorem 2.6 is stronger than the ones given
in existing works such as [38] and [39]. Moreover, although Bottou [6] also proves
that the SA method for nonconvex stochastic optimization with diminishing step
size is almost surely convergent to a stationary point, our analysis requires weaker
assumptions. For example, [6] assumes that the objective function is three times
continuously differentiable, while our analysis does not require this. Furthermore, we
are able to analyze the iteration complexity of SQN, for a specifically chosen step size
αk (see Theorem 2.8 below), which is not provided in [6].

We now analyze the iteration complexity of SQN.

Theorem 2.8. Suppose that assumptions AS.1–AS.4 hold for {xk} generated by
SQN with batch size mk = m for all k. We also assume that αk is specifically chosen as

(2.22) αk =
κ

Lκ̄2
k−β

with β ∈ (0.5, 1). Note that this choice satisfies (2.8) and αk ≤ κ
Lκ̄2 for all k. Then

(2.23)
1

N

N∑
k=1

E[‖∇f(xk)‖2] ≤ 2L(Mf − f low)κ̄2

κ2
Nβ−1 +

σ2

(1− β)m
(N−β −N−1),

where N denotes the iteration number. Moreover, for a given ε ∈ (0, 1), to guar-

antee that 1
N

∑N
k=1 E[‖∇f(xk)‖2] < ε, the number of iterations N needed is at most

O(ε−
1

1−β ).

Proof. Taking expectation on both sides of (2.9) and summing over k = 1, . . . , N
yields

1

2
κ

N∑
k=1

E[‖∇f(xk)‖2] ≤
N∑
k=1

1

αk
(E[f(xk)]− E[f(xk+1)]) +

Lσ2κ̄2

2m

N∑
k=1

αk

=
1

α1
f(x1) +

N∑
k=2

(
1

αk
− 1

αk−1

)
E[f(xk)]
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− E[f(xN+1)]

αN
+
Lσ2κ̄2

2m

N∑
k=1

αk

≤ Mf

α1
+Mf

N∑
k=2

(
1

αk
− 1

αk−1

)
− f low

αN
+
Lσ2κ̄2

2m

N∑
k=1

αk

=
Mf − f low

αN
+
Lσ2κ̄2

2m

N∑
k=1

αk

≤ L(Mf − f low)κ̄2

κ
Nβ +

σ2κ

2(1− β)m
(N1−β − 1),

which results in (2.23), where the second inequality is due to (2.15) and the last

inequality is due to (2.22). Then for a given ε > 0, to guarantee that 1
N

∑N
k=1

E[‖∇f(xk)‖2] ≤ ε, it suffices to require that

2L(Mf − f low)κ̄2

κ2
Nβ−1 +

σ2

(1− β)m
(N−β −N−1) < ε.

Since β ∈ (0.5, 1), it follows that the number of iterations N needed is at most

O(ε−
1

1−β ).

Remark 2.9. Note that Theorem 2.8 also provides iteration complexity analysis
for the classic SGD method, which can be regarded as a special case of SQN with
Hk = I. To the best of our knowledge, our complexity result in Theorem 2.8 is new
for both SGD and SQN methods.

2.2. Complexity of SQN with random output and constant step size.
We analyze the SFO-calls complexity of SQN when the output is randomly chosen
from {xi}Ni=1, where N is the maximum iteration number. Our results in this sub-
section are motivated by the RSG method proposed by Ghadimi and Lan [21]. RSG
runs SGD for R iterations, where R is a randomly chosen integer from {1, . . . , N}
with a specifically defined probability mass function PR. In [21] it is proved that
under certain conditions on the step size and PR, O(1/ε2) SFO-calls are needed by
SGD to guarantee E[‖∇f(xR)‖2] ≤ ε. We show below that under similar conditions,
the same complexity holds for our SQN.

Theorem 2.10. Suppose that assumptions AS.1–AS.4 hold and that αk in SQN
(Algorithm 2.1) is chosen such that 0 < αk ≤ 2κ/(Lκ̄2) for all k with αk < 2κ/(Lκ̄2)
for at least one k. Moreover, for a given integer N , let R be a random variable with
the probability mass function

(2.24) PR(k) := Prob{R = k} =
αkκ− α2

kLκ̄
2/2∑N

k=1 (αkκ− α2
kLκ̄

2/2)
, k = 1, . . . , N.

Then we have

(2.25) E[‖∇f(xR)‖2] ≤
Df + (σ2Lκ̄2)/2

∑N
k=1(α2

k/mk)∑N
k=1 (αkκ− α2

kLκ̄
2/2)

,

where Df := f(x1) − f low and the expectation is taken with respect to R and ξ[N ].
Moreover, if we choose αk = κ/(Lκ̄2) and mk = m for all k = 1, . . . , N , then (2.25)
reduces to

(2.26) E[‖∇f(xR)‖2] ≤ 2Lκ̄2Df

Nκ2
+
σ2

m
.
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Proof. From (2.10) it follows that

f(xk+1) ≤ f(xk)− αk〈∇f(xk), Hk∇f(xk)〉 − αk〈∇f(xk), Hk δk〉

+
L

2
α2
kκ̄

2[‖∇f(xk)‖2 + 2〈∇f(xk), δk〉+ ‖δk‖2]

≤ f(xk)−
(
αkκ−

1

2
α2
kLκ̄

2

)
‖∇f(xk)‖2 +

1

2
α2
kLκ̄

2‖δk‖2 + α2
kLκ̄

2〈∇f(xk), δk〉

− αk〈∇f(xk), Hk δk〉,

where δk = gk−∇f(xk). Now summing k = 1, . . . , N and noticing that αk ≤ 2κ/(Lκ̄2)
yields

N∑
k=1

(
αkκ−

Lκ̄2

2
α2
k

)
‖∇f(xk)‖2

≤f(x1)− f low +
Lκ̄2

2

N∑
k=1

α2
k‖δk‖2 +

N∑
k=1

(α2
kLκ̄

2〈∇f(xk), δk〉 − αk〈∇f(xk), Hkδk〉).

(2.27)

By AS.2 and AS.4 we have that

Eξk [〈∇f(xk), δk〉|ξ[k−1]] = 0 and Eξk [〈∇f(xk), Hk δk〉|ξ[k−1]] = 0.

Moreover, from (2.6) it follows that Eξk [‖δk‖2|ξ[k−1]] ≤ σ2/mk. Therefore, taking the
expectation on both sides of (2.27) with respect to ξ[N ] yields

(2.28)

N∑
k=1

(αkκ− α2
kLκ̄

2/2)Eξ[N]
[‖∇f(xk)‖2] ≤ f(x1)− f low +

Lκ̄2σ2

2

N∑
k=1

α2
k

mk
.

It follows from the definition of PR in (2.24) that

E[‖∇f(xR)‖2] = ER,ξ[N]
[‖∇f(xR)‖2] =

∑N
k=1

(
αkκ− α2

kLκ̄
2/2
)
Eξ[N]

[‖∇f(xk)‖2]∑N
k=1 (αkκ− α2

kLκ̄
2/2)

,

(2.29)

which together with (2.28) implies (2.25).

Remark 2.11. Note that in Theorem 2.10, αk’s are not required to be diminishing,
and they can be constant as long as they are upper bounded by 2κ/(Lκ̄2).

We now show that the SFO complexity of SQN with random output and constant
step size is O(ε−2).

Corollary 2.12. Assume the conditions in Theorem 2.10 hold, and αk=κ/(Lκ̄2)
and mk = m for all k = 1, . . . , N . Let N̄ be the total number of SFO-calls needed
to calculate stochastic gradients gk in SQN (Algorithm 2.1). For a given accuracy
tolerance ε > 0, we assume that

N̄ ≥ max

{
C2

1

ε2
+

4C2

ε
,
σ2

L2D̃

}
, where C1 =

4σκ̄2Df

κ2
√
D̃

+ σL
√
D̃, C2 =

4Lκ̄2Df

κ2
,

(2.30)
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where D̃ is a problem-independent positive constant. Moreover, we assume that the
batch size satisfies

(2.31) mk = m :=

min

N̄ ,max

1,
σ

L

√
N̄

D̃



 .

Then E[‖∇f(xR)‖2] ≤ ε, where the expectation is taken with respect to R and ξ[N ].

Proof. Note that the number of iterations of SQN is at most N = dN̄/me. Obvi-
ously, N ≥ N̄/(2m). From (2.26) we have that

E[‖∇f(xR)‖2] ≤ 2Lκ̄2Df

Nκ2
+
σ2

m
≤ 4Lκ̄2Df

N̄κ2
m+

σ2

m

≤ 4Lκ̄2Df

N̄κ2

1 +
σ

L

√
N̄

D̃

+ max

{
σ2

N̄
,
σL
√
D̃√

N̄

}
.(2.32)

Equation (2.30) indicates that

√
N̄ ≥

√
C2

1 + 4εC2

ε
≥
√
C2

1 + 4εC2 + C1

2ε
.

Equation (2.30) also implies that σ2/N̄ ≤ σL
√
D̃/
√
N̄ . Then (2.32) yields that

E[‖∇f(xR)‖2] ≤ 4Lκ̄2Df

N̄κ2

1 +
σ

L

√
N̄

D̃

+
σL
√
D̃√

N̄
=

C1√
N̄

+
C2

N̄
≤ ε,

which completes the proof.

Remark 2.13. In Corollary 2.12 we did not consider the SFO-calls that are in-
volved in updating Hk in line 3 of SQN. In the next section, we consider a specific
updating scheme to generate Hk and analyze the total SFO-calls complexity of SQN
including the generation of the Hk.

3. Stochastic damped L-BFGS method. In this section, we propose a spe-
cific way, namely a damped L-BFGS method (SdLBFGS), to generate Hk in SQN
(Algorithm 2.1) that satisfies assumptions AS.3 and AS.4. We also provide an effi-
cient way to compute Hkgk without generating Hk explicitly.

Before doing this, we first describe a stochastic damped BFGS method as follows.
We generate an auxiliary stochastic gradient at xk using the samplings from the
(k − 1)-st iteration:

ḡk :=
1

mk−1

mk−1∑
i=1

g(xk, ξk−1,i).

Note that we assume that our SFO can separate two arguments xk and ξk in the
stochastic gradient g(xk, ξk−1) and generate an output g(xk; ξk−1,i). The stochastic
gradient difference is defined as

(3.1) yk−1 := ḡk − gk−1 =

∑mk−1

i=1 g(xk, ξk−1,i)− g(xk−1, ξk−1,i)

mk−1
.
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The iterate difference is still defined as sk−1 = xk − xk−1. We then define

(3.2) ȳk−1 = θ̂k−1yk−1 + (1− θ̂k−1)Bk−1sk−1,

where

(3.3) θ̂k−1 =


0.75s>k−1Bk−1sk−1

s>k−1Bk−1sk−1−s>k−1yk−1
if s>k−1yk−1 < 0.25s>k−1Bk−1sk−1,

1 otherwise.

Note that if Bk−1 � 0, then 0 < θ̂k−1 ≤ 1. Our stochastic damped BFGS approach
updates Bk−1 as

(3.4) Bk = Bk−1 +
ȳk−1ȳ

>
k−1

s>k−1ȳk−1
−
Bk−1sk−1s

>
k−1Bk−1

s>k−1Bk−1sk−1
.

According to the Sherman–Morrison–Woodbury formula, this corresponds to updat-
ing Hk = B−1

k as

(3.5) Hk = (I − ρk−1sk−1ȳ
>
k−1)Hk−1(I − ρk−1ȳk−1s

>
k−1) + ρk−1sk−1s

>
k−1,

where ρk−1 = (s>k−1ȳk−1)−1. The following lemma shows that the damped BFGS
updates (3.4) and (3.5) preserve the positive definiteness of Bk and Hk.

Lemma 3.1. For ȳk−1 defined in (3.2), s>k−1ȳk−1 ≥ 0.25s>k−1Bk−1sk−1. More-

over, if Bk−1 = H−1
k−1 � 0, then Bk and Hk generated by the damped BFGS updates

(3.4) and (3.5) are both positive definite.

Proof. From (3.2) and (3.3) we have that

s>k−1ȳk−1 = θ̂k−1(s>k−1yk−1 − s>k−1Bk−1sk−1) + s>k−1Bk−1sk−1

=

{
0.25s>k−1Bk−1sk−1 if s>k−1yk−1 < 0.25s>k−1Bk−1sk−1,

s>k−1yk−1 otherwise,

which implies s>k−1ȳk−1 ≥ 0.25s>k−1Bk−1sk−1. Therefore, if Bk−1 � 0, it follows that
ρk−1 > 0. As a result, for Hk defined in (3.5) and any nonzero vector z ∈ Rn, we
have

z>Hkz = z>(I − ρk−1sk−1ȳ
>
k−1)Hk−1(I − ρk−1ȳk−1s

>
k−1)z + ρk−1(s>k−1z)

2 > 0,

given that Hk−1 � 0. Therefore, both Hk and Bk defined in (3.5) and (3.4) are
positive definite.

Computing Hk by the stochastic damped BFGS update (3.5) and computing
the step direction Hkgk requires O(n2) multiplications. This is costly if n is large.
The L-BFGS method originally proposed by Liu and Nocedal [34] can be adopted
here to reduce this computational cost. The L-BFGS method can be described as
follows for deterministic optimization problems. Given an initial estimate Hk,0 ∈
Rn×n of the inverse Hessian at the current iterate xk and two sequences {sj}, {yj},
j = k − p, . . . , k − 1, where p is the memory size, the L-BFGS method updates Hk,i

recursively as

Hk,i = (I − ρjsjy>j )Hk,i−1(I − ρjyjs>j ) + ρjsjs
>
j , j = k − (p− i+ 1); i = 1, . . . , p,

(3.6)
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where ρj = (s>j yj)
−1. The output Hk,p is then used as the estimate of the inverse

Hessian at xk to compute the search direction at the kth iteration. It can be shown
that if the sequence of pairs {sj , yj} satisfies the curvature condition s>j yj > 0, j =
k − 1, . . . , k − p, then Hk,p is positive definite provided that Hk,0 is positive definite.
Recently, stochastic L-BFGS methods have been proposed for solving strongly convex
problems in [10, 39, 40, 25]. However, the theoretical convergence analyses in these
papers do not apply to nonconvex problems. We now show how to design an SdLBFGS
formula for nonconvex problems.

Suppose that in the past iterations the algorithm generated sj and ȳj that satisfy

s>j ȳj ≥ 0.25s>j H
−1
j+1,0sj , j = k − p, . . . , k − 2.

Then at the current iterate, we compute sk−1 = xk − xk−1 and yk−1 by (3.1). Since
s>k−1yk−1 may not be positive, motivated by the stochastic damped BFGS update
(3.2)–(3.5), we define a new vector {ȳk−1} as

(3.7) ȳk−1 = θk−1yk−1 + (1− θk−1)H−1
k,0sk−1,

where

(3.8) θk−1 =


0.75s>k−1H

−1
k,0sk−1

s>k−1H
−1
k,0sk−1−s>k−1yk−1

if s>k−1yk−1 < 0.25s>k−1H
−1
k,0sk−1,

1 otherwise.

Similar to Lemma 3.1, we can prove that

s>k−1ȳk−1 ≥ 0.25s>k−1H
−1
k,0sk−1.

Using sj and ȳj , j = k − p, . . . , k − 1, we define the SdLBFGS formula as

Hk,i = (I − ρjsj ȳ>j )Hk,i−1(I − ρj ȳjs>j ) + ρjsjs
>
j , j = k − (p− i+ 1); i = 1, . . . , p,

(3.9)

where ρj = (s>j ȳj)
−1. As in the analysis in Lemma 3.1, by induction we can show

that Hk,i � 0, i = 1, . . . , p. Note that when k < p, we use sj and ȳj , j = 1, . . . , k, to
execute the SdLBFGS update.

We next discuss the choice of Hk,0. A popular choice in the standard L-BFGS

method is to set Hk,0 =
s>k−1yk−1

y>k−1yk−1
I. Since s>k−1yk−1 may not be positive for nonconvex

problems, we set

(3.10) Hk,0 = γ−1
k I, where γk = max

{
y>k−1yk−1

s>k−1yk−1
, δ

}
≥ δ,

where δ > 0 is a given constant.
To prove that Hk = Hk,p generated by (3.9)–(3.10) satisfies assumptions AS.3

and AS.4, we need to make the following assumption.
AS.5. The function F (x, ξ) is twice continuously differentiable with respect to x.

The stochastic gradient g(x, ξ) is computed as g(x, ξ) = ∇xF (x, ξ), and there
exists a positive constant κ such that ‖∇2

xxF (x, ξ)‖ ≤ κ for any x, ξ.
Note that AS.5 is equivalent to requiring that −κI � ∇2

xxF (x, ξ) � κI, rather than
the strong convexity assumption 0 ≺ κI � ∇2

xxF (x, ξ) � κI required in [10, 39]. The
following lemma shows that the eigenvalues of Hk are bounded below away from zero
under assumption AS.5.
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Lemma 3.2. Suppose that AS.5 holds. Given Hk,0 defined in (3.10), suppose that
Hk = Hk,p is updated through the SdLBFGS formula (3.9). Then all the eigenvalues
of Hk satisfy

(3.11) λ(Hk) ≥
(

4pκ2

δ
+ (4p+ 1)(κ+ δ)

)−1

.

Proof. According to Lemma 3.1, Hk,i � 0, i = 1, . . . , p. To prove that the
eigenvalues of Hk are bounded below away from zero, it suffices to prove that the
eigenvalues of Bk = H−1

k are bounded from above. From the damped L-BFGS formula
(3.9), Bk = Bk,p can be computed recursively as

Bk,i = Bk,i−1 +
ȳj ȳ
>
j

s>j ȳj
−
Bk,i−1sjs

>
j Bk,i−1

s>j Bk,i−1sj
, j = k − (p− i+ 1); i = 1, . . . , p,

starting from Bk,0 = H−1
k,0 = γkI. Since Bk,0 � 0, Lemma 3.1 indicates that Bk,i � 0

for i = 1, . . . , p. Moreover, the following inequalities hold:

‖Bk,i‖ ≤

∥∥∥∥∥Bk,i−1 −
Bk,i−1sjs

>
j Bk,i−1

s>j Bk,i−1sj

∥∥∥∥∥+

∥∥∥∥∥ ȳj ȳ>js>j ȳj

∥∥∥∥∥(3.12)

≤ ‖Bk,i−1‖+

∥∥∥∥∥ ȳj ȳ>js>j ȳj

∥∥∥∥∥ = ‖Bk,i−1‖+
ȳ>j ȳj

s>j ȳj
.

From the definition of ȳj in (3.7) and the facts that s>j ȳj ≥ 0.25s>j Bj+1,0sj and
Bj+1,0 = γj+1I from (3.10), we have that for any j = k − 1, . . . , k − p

ȳ>j ȳj

s>j ȳj
≤ 4
‖θjyj + (1− θj)Bj+1,0sj‖2

s>j Bj+1,0sj
= 4θ2

j

y>j yj

γj+1s>j sj
+8θj(1−θj)

y>j sj

s>j sj
+ 4(1−θj)2γj+1.

(3.13)

Note that from (3.1) we have

yj =

∑mj
l=1 g(xj+1, ξj,l)− g(xj , ξj,l)

mj
=

1

mj

(
mj∑
l=1

∇2
xxF (xj , ξj,l, sj)

)
sj ,

where∇2
xxF (xj , ξj,l, sj) =

∫ 1

0
∇2
xxF (xj+tsj , ξj,l)dt, because g(xj+1, ξj,l)−g(xj , ξj,l) =∫ 1

0
dg
dt (xj + tsj , ξj,l)dt =

∫ 1

0
∇2
xxF (xj + tsj , ξj,l)sjdt. Therefore, for any j = k −

1, . . . , k − p, from (3.13), and the facts that 0 < θj ≤ 1 and δ ≤ γj+1 ≤ κ+ δ and the
assumption AS.5 it follows that

ȳ>j ȳj

s>j ȳj
≤

4θ2
jκ

2

γj+1
+ 8θj(1− θj)κ+ 4(1− θj)2γj+1(3.14)

≤
4θ2
jκ

2

δ
+ 4[(1− θ2

j )κ+ (1− θj)2δ] ≤ 4κ2

δ
+ 4(κ+ δ).

Combining (3.12) and (8) yields

‖Bk,i‖ ≤ ‖Bk,i−1‖+ 4

(
κ2

δ
+ κ+ δ

)
.



STOCHASTIC QUASI-NEWTON METHODS 941

By induction, we have that

‖Bk‖ = ‖Bk,p‖ ≤ ‖Bk,0‖+ 4p

(
κ2

δ
+ κ+ δ

)
≤ 4pκ2

δ
+ (4p+ 1)(κ+ δ),

which implies (3.11).

We now prove that Hk is uniformly bounded above.

Lemma 3.3. Suppose that the assumption AS.5 holds. Given Hk,0 defined in
(3.10), suppose that Hk = Hk,p is updated through the SdLBFGS formula (3.9). Then
Hk satisfies

(3.15) λmax(Hk) = ‖Hk‖ ≤
(
α2p − 1

α2 − 1

)
4

δ
+
α2p

δ
,

where α = (4κ + 5δ)/δ, and λmax(Hk) and ‖Hk‖ denote, respectively, the maximum
eigenvalue and operator norm ‖ · ‖ of Hk.

Proof. For notational simplicity, let H = Hk,i−1, H+ = Hk,i, s = sj , ȳ = ȳj ,
ρ = (s>j ȳj)

−1 = (s>ȳ)−1. Now (3.5) can be written as

H+ = H − ρ(Hȳs> + sȳ>H) + ρss> + ρ2(ȳ>Hȳ)ss>.

Using the facts that ‖uv>‖ = ‖u‖ · ‖v‖ for any vectors u and v, ρs>s = ρ‖s‖2 =
s>s
s>ȳ
≤ 4

δ , and ‖ȳ‖
2

s>ȳ
≤ 4(κ

2

δ + κ+ δ) < 4
δ (κ+ δ)2, which follows from (8), we have that

‖H+‖ ≤ ‖H‖+
2‖H‖ · ‖ȳ‖ · ‖s‖

s>ȳ
+
s>s

s>ȳ
+
s>s

s>ȳ
· ‖H‖ · ‖ȳ‖

2

s>ȳ
.

Noting that ‖ȳ‖‖s‖
s>ȳ

= [‖ȳ‖
2

s>ȳ
· ‖s‖

2

s>ȳ
]1/2, it follows that

‖H+‖ ≤

(
1 + 2 · 4

δ
(κ+ δ) +

(
4

δ
(κ+ δ)

)2
)
‖H‖+

4

δ
= (1 + (4κ+ 4δ)/δ)2‖H‖+

4

δ
.

Hence, by induction we obtain (3.15).

Lemmas 3.2 and 3.3 indicate that Hk generated by (3.7)–(3.9) satisfies assumption
AS.3. Moreover, since yk−1 defined in (3.1) does not depend on random samplings in
the kth iteration, it follows that Hk depends only on ξ[k−1] and assumption AS.4 is
satisfied.

To analyze the cost of computing the step direction Hkgk, note that from (3.9),
Hk can be represented as

Hk,i = (I − ρjsj ȳ>j )Hk,i−1(I − ρj ȳjs>j ) + ρjsjs
>
j , j = k − (p− i+ 1); i = 1, . . . , p,

(3.16)

which is the same as the classical L-BFGS formula in (3.6), except that yj is re-
placed by ȳj . Hence, we can compute the step direction by the two-loop recursion,
implemented in the following procedure.

We now analyze the computational cost of Procedure 3.1. In step 2, the compu-
tation of γk involves y>k−1yk−1 and s>k−1yk−1, which take 2n multiplications. In step

3, from the definition of ȳk in (3.7), since s>k−1yk−1 has been obtained in a previous
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Procedure 3.1. Step computation using SdLBFGS.

Input: Let xk be a current iterate. Given the stochastic gradient gk−1 at iterate xk−1,
the random variable ξk−1, the batch size mk−1, sj , ȳj and ρj , j = k−p, . . . , k−2,
and u0 = gk.

Output: Hkgk = vp.
1: Set sk−1 = xk − xk−1 and calculate yk−1 through (3.1)
2: Calculate γk through (3.10)
3: Calculate ȳk−1 through (3.7) and ρk−1 = (s>k−1ȳk−1)−1

4: for i = 0, . . . ,min{p, k − 1} − 1 do
5: Calculate µi = ρk−i−1u

>
i sk−i−1

6: Calculate ui+1 = ui − µiȳk−i−1

7: end for
8: Calculate v0 = γ−1

k up
9: for i = 0, . . . ,min{p, k − 1} − 1 do

10: Calculate νi = ρk−p+iv
>
i ȳk−p+i

11: Calculate vi+1 = vi + (µp−i−1 − νi)sk−p+i.
12: end for

step, one only needs to compute s>k−1sk−1 and some scalar-vector products, thus the
computation of ȳk−1 takes 3n multiplications. Due to the fact that

ρ−1
k−1 = s>k−1ȳk−1 =

{
0.25γks

>
k−1sk−1 if s>k−1yk−1 < 0.25γks

>
k−1sk−1,

s>k−1yk−1 otherwise,

all involved computations have been done for ρk−1. Furthermore, the first loop steps
4–7 involve p scalar-vector multiplications and p vector inner products. So do the
second loop steps 9–12. Including the product γ−1

k up, the whole procedure takes
(4p+ 6)n multiplications.

Notice that in step 1 of Procedure 3.1, the computation of yk−1 involves the
evaluation of

∑mk−1

i=1 g(xk, ξk−1,i), which requires mk−1 SFO-calls. As a result, when
Procedure 3.1 is plugged into SQN (Algorithm 2.1), the total number of SFO-calls
needed in the kth iteration becomes mk + mk−1. This leads to the following overall
SFO-calls complexity result for our SdLBFGS method.

Theorem 3.4. Suppose that AS.1, AS.2, and AS.5 hold. Let Nsfo denote the total
number of SFO-calls in SQN (Algorithm 2.1) in which Procedure 3.1 is used to com-
pute Hkgk. Under the same conditions as in Corollary 2.12, to achieve
E[‖∇f(xR)‖2] ≤ ε, Nsfo ≤ 2N̄ , where N̄ satisfies (2.30), i.e., is O(ε−2).

4. SdLBFGS with a variance reduction technique. Motivated by the re-
cent advance of SVRG for nonconvex minimization proposed in [46] and [1], we now
present a variance reduced SdLBFGS method, which we call SdLBFGS-VR, for solving
(1.2). Here, the mini-batch stochastic gradient is defined as g(x) = 1

|K|
∑
i∈K∇fi(x),

where the subsample set K ⊆ [T ] is randomly chosen from {1, . . . , T}. SdLBFGS-VR
allows a constant step size and thus can accelerate the convergence speed of SdLBFGS.
SdLBFGS-VR is summarized in Algorithm 4.1.

We now analyze the SFO-calls complexity of Algorithm 4.1. We first analyze the
convergence rate of SdLBFGS-VR, essentially following [46].
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Algorithm 4.1. SdLBFGS with variance reduction (SdLBFGS-VR).

Input: x̃0 ∈ Rd, {αt}m−1
t=0

Output: Iterate x chosen uniformly random from {xk+1
t : t = 0, . . . , q − 1; k =

0, . . . , N − 1}
1: for k = 0, . . . , N − 1 do
2: xk+1

0 = x̃k
3: compute ∇f(x̃k)
4: for t = 0, . . . , q − 1 do
5: Sample a set K ⊆ [T ] with |K| = m
6: Compute gk+1

t = ∇fK(xk+1
t ) − ∇fK(x̃k) + ∇f(x̃k) where ∇fK(xk+1

t ) =
1
m

∑
i∈K∇fi(x

k+1
t )

7: Compute dk+1
t = −Hk+1

t gk+1
t through Procedure 3.1

8: Set xk+1
t+1 = xk+1

t + αk+1
t dk+1

t

9: end for
10: Set x̃k+1 = xk+1

q

11: end for

Lemma 4.1. Suppose assumptions AS.1, AS.2, and AS.5 hold. Set ck+1
t = ck+1

t+1 (1+

αk+1
t βt + 2L2(αk+1

t )2κ̄2/m) + (αk+1
t )2L3κ̄2/m. Then

(4.1) Γk+1
t E[‖∇f(xk+1

t )‖2] ≤ Rk+1
t −Rk+1

t+1 ,

where Rk+1
t = E[f(xk+1

t ) + ck+1
t ‖xk+1

t − x̃k‖2] and Γk+1
t = αk+1

t κ− ck+1
t+1α

k+1
t κ̄2/βt −

(αk+1
t )2Lκ̄2 − 2ck+1

t+1 (αk+1
t )2κ̄2 for any βt > 0.

Proof. It follows from AS.1 and the fact that κI � Hk+1
t � κ̄I, for any t =

0, . . . , q − 1; k = 0, . . . , N − 1, which follows under assumption AS.5, from Lemmas
3.2 and 3.3, that

E[f(xk+1
t+1 )] ≤E

[
f(xk+1

t ) + 〈∇f(xk+1
t ), xk+1

t+1 − x
k+1
t 〉+

L

2
‖xk+1

t+1 − x
k+1
t ‖2

]
=E

[
f(xk+1

t )− αk+1
t 〈∇f(xk+1

t ), Hk+1
t gk+1

t 〉+
(αk+1
t )2L

2
‖Hk+1

t gk+1
t ‖2

]

≤E

[
f(xk+1

t )− αk+1
t κ‖∇f(xk+1

t )‖2 +
(αk+1
t )2Lκ̄2

2
‖gk+1
t ‖2

]
.(4.2)

Moreover, for any βt > 0, since gk+1
t is an unbiased estimate of ∇f(xk+1

t ),

E[‖xk+1
t+1 − x̃k‖2] =E[‖xk+1

t+1 − x
k+1
t ‖2 + ‖xk+1

t − x̃k‖2 + 2〈xk+1
t+1 − x

k+1
t , xk+1

t − x̃k〉]
(4.3)

=E[(αk+1
t )2‖Hk+1

t gk+1
t ‖2 + ‖xk+1

t − x̃k‖2]

− 2αk+1
t 〈Hk+1

t ∇f(xk+1
t ), xk+1

t − x̃k〉
≤E[(αk+1

t )2κ̄2‖gk+1
t ‖2 + ‖xk+1

t − x̃k‖2]

+ αk+1
t E[β−1

t ‖Hk+1
t ∇f(xk+1

t )‖2 + βt‖xk+1
t − x̃k‖2].

Furthermore, the following inequality holds:



944 X. WANG, S. MA, D. GOLDFARB, AND W. LIU

E[‖gk+1
t ‖2] =E[‖∇fK(xk+1

t )−∇f(xk+1
t ) +∇f(xk+1

t )−∇fK(x̃k) +∇f(x̃k)‖2]

≤ 2E[‖∇f(xk+1
t )‖2] + 2E[‖∇fK(xk+1

t )−∇fK(x̃k)

− (∇f(xk+1
t )−∇f(x̃k))‖2]

= 2E[‖∇f(xk+1
t )‖2] + 2E[‖∇fK(xk+1

t )−∇fK(x̃k)

− E[∇fK(xk+1
t )−∇fK(x̃k)]‖2]

≤ 2E[‖∇f(xk+1
t )‖2] + 2E[‖∇fK(xk+1

t )−∇fK(x̃k)‖2]

= 2E[‖∇f(xk+1
t )‖2] +

2

m
E[‖∇fi(xk+1

t )−∇fi(x̃k)‖2]

≤ 2E[‖∇f(xk+1
t )‖2] +

2L2

m
E[‖xk+1

t − x̃k‖2].(4.4)

Combining (4.2), (4.3), and (4.4) yields that

Rk+1
t+1 ≤E[f(xk+1

t+1 ) + ck+1
t+1 ‖x

k+1
t+1 − x̃k‖2]

≤E
[
f(xk+1

t )− αk+1
t κ‖∇f(xk+1

t )‖2 +
(αk+1
t )2Lκ̄2

2
‖gk+1
t ‖2

+ ck+1
t+1 (αk+1

t )2κ̄2E[‖gk+1
t ‖2] + ck+1

t+1 E[‖xk+1
t − x̃k‖2

]
+ αk+1

t ck+1
t+1 E[β−1

t κ̄2‖∇f(xk+1
t )‖2 + βt‖xk+1

t − x̃k‖2]

=E[f(xk+1
t )]− (αk+1

t κ− ck+1
t+1α

k+1
t κ̄2/βt)E[‖∇f(xk+1

t )‖2]

+ ((αk+1
t )2Lκ̄2/2 + ck+1

t+1 (αk+1
t )2κ̄2)E[‖gk+1

t ‖2]

+ ck+1
t+1 (1 + αk+1

t βt)E[‖xk+1
t − x̃k‖2]

≤E[f(xk+1
t )] + (ck+1

t+1 1 + ck+1
t+1α

k+1
t βt + 2ck+1

t+1L
2(αk+1

t )2κ̄2/m

+ (αk+1
t )2L3κ̄2/m)E[‖xk+1

t − x̃k‖2]

− (αk+1
t κ− ck+1

t+1α
k+1
t κ̄2/βt − (αk+1

t )2Lκ̄2 − 2ck+1
t+1 (αk+1

t )2κ̄2)E[‖∇f(xk+1
t )‖2]

=Rk+1
t − Γk+1

t E[‖∇f(xk+1
t )‖2],

which further implies (4.1).

Theorem 4.2. Suppose assumptions AS.1, AS.2, and AS.5 hold. Set βt = β =
Lκ̄
T 1/3 , ck+1

q = cq = 0. Suppose that there exist two positive constants ν, µ0 ∈ (0, 1)
such that

(4.5)

(
1− νκ̄

µ0κ

)
κ ≥ µ0κ̄(e− 1) + µ0mκ̄+ 2µ2

0κ̄m(e− 1)

holds. Set αk+1
t = α = µ0m

Lκ̄T 2/3 , and q = b T
3µ0m

c.

(4.6) E[‖∇f(x)‖2] ≤ T 2/3L[f(x0)− f(x∗)]

qNmν
.

Proof. Denote θ = αβ+2α2L2κ̄2/m. It then follows that θ=µ0m/T+2µ2
0m/T

4/3 ≤
3µ0m/T , and (1 + θ)q ≤ e, where e is the Euler’s number. Because cq = 0, for any
k ≥ 0, we have
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c0 := ck+1
0 =

α2L3κ̄2

m
· (1 + θ)q − 1

θ
=
µ2

0mL((1 + θ)q − 1)

T 4/3θ
=
µ2

0L((1 + θ)q − 1)

(µ0T 1/3 + 2µ2
0)

≤ µ0L((1 + θ)q − 1)

T 1/3
≤ µ0L(e− 1)

T 1/3
.

Therefore, it follows that

min
t

Γk+1
t ≥ νm

LT 2/3
.

As a result, we have

q−1∑
t=0

E[‖∇f(xk+1
t )‖2] ≤

Rk+1
0 −Rk+1

q

mint Γk+1
t

=
E[f(x̃k)− f(x̃k+1)]

mint Γk+1
t

,

which further yields that

E[‖∇f(x)‖2] =
1

qN

N−1∑
k=0

q−1∑
t=0

E[‖∇f(xk+1
t )‖2] ≤ f(x0)− f(x∗)

qN mint Γk+1
t

≤ T 2/3L[f(x0)− f(x∗)]

qNmν
.

Corollary 4.3. Under the same conditions as Theorem 4.2, to achieve
E[‖∇f(x)‖2] ≤ ε, the total number of component gradient evaluations required in
Algorithm 4.1 is O(T 2/3/ε).

Proof. From Theorem 4.2, it follows that to obtain an ε-solution, the outer it-

eration number N of Algorithm 4.1 should be in the order of O(T
2/3

qmε ) = O(T
−1/3

ε ),

which is due to the fact that qm = O(T ). As a result, the total number of component
gradient evaluations is (T + qm)N , which is O(T 2/3/ε).

5. Numerical experiments. In this section, we empirically study the perfor-
mance of the proposed SdLBFGS and SdLBFGS-VR methods. We compare SdLBFGS
with SGD with gk given by (2.5) using a diminishing step size αk = β/k in both meth-
ods, for solving the following nonconvex support vector machine (SVM) problem with
a sigmoid loss function, which has been considered in [21, 37]:

(5.1) min
x∈Rn

f(x) := Eu,v[1− tanh(v〈x, u〉)] + λ‖x‖22,

where λ > 0 is a regularization parameter, u ∈ Rn denotes the feature vector, and
v ∈ {−1, 1} refers to the corresponding label. In our experiments, λ was chosen as
10−4. We also compare SdLBFGS-VR with SVRG [46], using a constant step size in
both methods, for solving

(5.2) min
x∈Rn

1

T

T∑
i=1

fi(x) + λ‖x‖2,

where fi(x) = 1 − tanh(vi〈x, ui〉), i = 1, . . . , T . In all of our tests, we used the
same mini-batch size m at every iteration. All the algorithms were implemented in
MATLAB R2013a on a PC with a 2.60 GHz Intel microprocessor and 8 GB of memory.

5.1. Numerical results for SdLBFGS on synthetic data. In this subsec-
tion, we report numerical results for SdLBFGS and SGD for solving (5.1) on synthetic
data for problems of dimension n = 500. We set the initial point for both methods to
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Fig. 1. Comparison on a synthetic dataset of SGD and SdLBFGS variants with different
memory size p, with respect to the squared norm of the gradient and the percent of correctly classified
data, respectively. A step size of αk = 10/k and batch size of m = 100 were used for all SdLBFGS
variants. Step sizes of 10/k and 20/k were used for SGD.

x1 = 5 ∗ x̄1, where x̄1 was drawn from the uniform distribution over [0, 1]n. We gen-
erated training and testing points (u, v) in the following manner. We first generated
a sparse vector u with 5% nonzero components following the uniform distribution on
[0, 1]n, and then set v = sign(〈x̄, u〉) for some x̄ ∈ Rn drawn from the uniform dis-
tribution on [−1, 1]n. Every time we computed a stochastic gradient of the sigmoid
loss function in (5.1), we accessed m of these data points (u, v) without replacement.
Drawing data points without replacement is a common practice in testing the per-
formance of stochastic algorithms, although in this case the random samples are not
necessarily independent.

In Figure 1 we compare the performance of SGD and SdLBFGS with various
memory sizes p. The batch size was set to m = 100 and the step size to both
αk = 10/k and αk = 20/k for SGD and 10/k for SdLBFGS. In the left figure we plot
the squared norm of the gradient (SNG) versus the number of iterations, up to a total
of 1000. The SNG was computed using N = 5000 randomly generated testing points
(ui, vi), i = 1, . . . , N , as

(5.3) SNG =

∥∥∥∥∥ 1

N

N∑
i=1

∇xF (x̃;ui, vi) + 2λx̃

∥∥∥∥∥
2

,

where x̃ is the output of the algorithm and F (x;u, v) = 1 − tanh(v〈x, u〉). In the
right figure we plot the percentage of correctly classified testing data. From Figure 1
we can see that increasing the memory size improves the performance of SdLBFGS.
When the memory size p = 0, we have Hk = γ−1

k I and SdLBFGS reduces to SGD
with an adaptive step size. SdLBFGS with memory size p = 1 and 3 oscillates quite
a lot. The variants of SdLBFGS with memory size p = 5, 10, and 20 all oscillate
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Fig. 2. Comparison on a synthetic dataset of SdLBFGS variants with different initial Hessian
approximations, by varying the value of δ, with respect to the squared norm of the gradient and the
percent of correctly classified data, respectively. A step size of αk = 10/k, memory size of p = 20,
and batch size of m = 100 were used for all SdLBFGS variants.

less and perform quite similarly, and they all significantly outperform SdLBFGS with
p = 0 and p = 1.

In Figure 2, we report the performance of SdLBFGS with different δ used in
(3.10). From Figure 2 we see that SdLBFGS performs best with small δ such as
δ = 0.01, 0.1, and 1.

In Figure 3 we report the effect of the batch size m on the performance of SGD
and SdLBFGS with memory size p = 20. For SdLBFGS, the left figure shows that
m = 500 gives the best performance among the three choices 50, 100, and 500 tested,
with respect to the total number of iterations taken. This is because a larger batch
size leads to gradient estimation with lower variance. The right figure shows that if the
total number of SFO-calls is fixed, then because of the trade-off between the number
of iterations and the batch size, i.e., because the number of iterations is proportional
to the reciprocal of the batch size, the SdLBFGS variant corresponding to m = 100
slightly outperforms the m = 500 variant.

In Figure 4, we report the percentage of correctly classified data for 5000 randomly
generated testing points. The results are consistent with the one shown in the left
figure of Figure 3, i.e., the ones with a lower squared norm of the gradient give a
higher percentage of correctly classified data.

Moreover, we also counted the number of steps taken by SdLBFGS in which
s>k−1yk−1 < 0. We set the total number of iterations to 1000 and tested the effect of
the memory size and batch size of SdLBFGS on the number of such steps. For fixed
batch size m = 50, the average numbers of such steps over 10 runs of SdLBFGS were
respectively equal to (178, 50, 36, 42, 15) when the memory sizes were (1, 3, 5, 10, 20).
For fixed memory size p = 20, the average numbers of such steps over 10 runs of
SdLBFGS were respectively equal to (15, 6, 1) when the batch sizes were (50, 100, 500).
Therefore, the number of such steps roughly decreases as the memory size p and
the batch size m increase. This is to be expected because as p increases, there is
less negative effect caused by “limited memory,” and as m increases, the gradient
estimation has lower variance.
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Fig. 3. Comparison of SGD and SdLBFGS variants with different batch size m on a synthetic
dataset. The memory size of SdLBFGS was p = 20 and the step size of SdLBFGS was αk = 10/k,
while the step size of SGD was αk = 20/k.
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Fig. 4. Comparison of correct classification percentage on a synthetic dataset by SGD and
SdLBFGS with different batch sizes. The memory size of SdLBFGS was p = 20 and the step size of
SdLBFGS was αk = 10/k. The step size of SGD was αk = 20/k.

5.2. Numerical results for SdLBFGS on the RCV1 dataset. In this sub-
section, we compare SGD and SdLBFGS for solving (5.1) on a real dataset: RCV1
[33], which is a collection of newswire articles produced by Reuters in 1996–1997. In
our tests, we used a subset1 of RCV1 used in [11] that contains 9625 articles with
29992 distinct words. The articles are classified into four categories, C15, ECAT,
GCAT, and MCAT, each with 2022, 2064, 2901, and 2638 articles, respectively. We
consider the binary classification problem of predicting whether an article is in the
second and fourth categories, i.e., the entry of each label vector is 1 if a given article
appears in category MCAT or ECAT and is −1 otherwise. We used 60% of the articles
(5776) as training data and the remaining 40% (3849) as testing data.

In Figure 5, we compare SdLBFGS with various memory sizes and SGD on the
RCV1 dataset. For SGD and SdLBFGS, we used the step size αk = 10/k and
the batch size m = 100. We also used a second step size of 20/k for SGD. Note
that the SNG computed via (5.3) uses N = 3849 testing data. The left figure shows
that for the RCV1 dataset, increasing the memory size improves the performance of

1Downloaded from http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html.
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Fig. 5. Comparison of SdLBFGS variants with different memory sizes on the RCV1 dataset.
The step size of SdLBFGS was αk = 10/k and the batch size was m = 100.
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Fig. 6. Comparison on a RCV dataset of SdLBFGS variants with different initial Hessian
approximations, by varying the value of δ, with respect to the squared norm of the gradient and the
percent of correctly classified data, respectively. A step size of αk = 10/k, memory size of p = 10,
and batch size of m = 100 were used for all SdLBFGS variants.

SdLBFGS. The performance of SdLBFGS with memory sizes p = 10, 20 was similar,
although for p = 10 it was slightly better. The right figure also shows that larger
memory sizes can achieve higher correct classification percentages.

In Figure 6, we report the performance of SdLBFGS on RCV1 dataset with
different δ used in (3.10). Similar to Figure 2, we see from Figure 6 that SdLBFGS
works best for small δ such as δ = 0.01, 0.1, and 1.

Figure 7 compares SGD and SdLBFGS with different batch sizes. The step size
of SGD and SdLBFGS was set to αk = 20/k and αk = 10/k, respectively. The
memory size of SdLBFGS was chosen as p = 10. We tested SGD with batch size
m = 1, 50, 100, and SdLBFGS with batch size m = 1, 50, 75, 100. From Figure 7 we
can see that SGD performs worse than SdLBFGS. For SdLBFGS, from Figure 7(a) we
observe that larger batch sizes give better results in terms of SNG. If we fix the total
number of SFO-calls to 2∗104, SdLBFGS with m = 1 performs the worst among the
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Fig. 7. Comparison of SGD and SdLBFGS with different batch sizes on the RCV1 dataset.
For SdLBFGS the step size was αk = 10/k and the memory size was p = 10. For SGD the step size
was αk = 20/k.
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SGD: m=50
SGD: m=100
SdLBFGS: m=50
SdLBFGS: m=75
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Fig. 8. Comparison of correct classification percentage by SGD and SdLBFGS with different
batch sizes on the RCV1 dataset. For SdLBFGS the step size was αk = 10/k and the memory size
was p = 10. For SGD the step size was αk = 20/k.

different batch sizes and exhibits dramatic oscillation. The performance gets much
better when the batch size becomes larger. In this set of tests, the performance with
m = 50, 75 was slightly better than m = 100. One possible reason is that for the same
number of SFO-calls, a smaller batch size leads to a larger number of iterations and
thus gives better results.

In Figure 8, we report the percentage of correctly classified data points for both
SGD and SdLBFGS with different batch sizes. These results are consistent with the
ones in Figure 7. Roughly speaking, the algorithm that gives a lower SNG leads to a
higher percentage of correctly classified data points.

We also counted the number of steps taken by SdLBFGS in which s>k−1yk−1 < 0.
We again set the total number of iterations of SdLBFGS to 1000. For fixed batch
size m = 50, the average numbers of such steps over 10 runs of SdLBFGS were
respectively equal to (3, 5, 8, 6, 1) when the memory sizes were (1, 3, 5, 10, 20). For fixed
memory size p = 10, the average numbers of such steps over 10 runs of SdLBFGS
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Fig. 9. Comparison of SdLBFGS-VR with different memory sizes p on RCV1 dataset. The
step size is set as α = 0.1. We set q = 115, and batch size m = 50, so that T ≈ qm.
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Fig. 10. Comparison of SdLBFGS-VR with different batch sizes on RCV1 dataset. We set the
step size as α = 0.1 and the memory size as p = 20.

were respectively equal to (308, 6, 2) when the batch sizes were (1, 50, 75). This is
qualitatively similar to our observations in section 5.1, except that for the fixed batch
size m = 50, fewer such steps were required by the SdLBFGS variants with memory
sizes p = 1 and p = 3 compared with p = 5 and p = 10.

5.3. Numerical results for SdLBFGS-VR on the RCV1 dataset. In this
subsection, we compare SdLBFGS-VR, SVRG [46], and SdLBFGS for solving (5.2) on
the RCV1 dataset with T = 5776. We here follow the same strategy as suggested in
[46] to initialize SdLBFGS-VR and SVRG. In particular, we run SGD with step size
1/t and batch size 20 for T iterations to get the initial point for SdLBFGS-VR and
SVRG, where t denotes the iteration counter. In all the tests, we use a constant step
size α for both methods. The comparison results are shown in Figures 9–12. In these
figures, the “SFO-calls” in the x-axis include both the number of stochastic gradients
and T gradient evaluations of the individual component functions when computing
the full gradient ∇f(x̃k) in each outer loop.
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Fig. 11. Comparison of SdLBFGS-VR and SVRG on RCV1 dataset with different step sizes.
The memory size of SdLBFGS-VR is set as p = 20. For both algorithms, we set the inner iteration
number q = 115 and the batch size m = 50.
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Fig. 12. Comparison of SdLBFGS-VR and SdLBFGS on RCV1 dataset. For both algorithms,
the memory size is p = 20 and batch size is m = 50. For SdLBFGS-VR, the inner iteration number
is q = 115.

Figure 9 compares the performance of SdLBFGS-VR with different memory size
p. It shows that the L-BFGS improves performance, even when p = 1. Moreover,
larger memory size usually provides better performance, but the difference is not very
significant.

Figure 10 compares the performance of SdLBFGS-VR with different batch sizes
m and shows that SdLBFGS-VR is not very sensitive to m. In these tests, we always
set q = bT/mc.

The impact of step size on SdLBFGS-VR and SVRG is shown in Figure 11 for
three step sizes: α = 0.1, 0.01, and 0.001. Clearly, for the same step size, SdLBFGS-
VR gives better results than SVRG. From our numerical tests, we also observed that
neither SdLBFGS-VR nor SVRG is stable when α ≥ 1.

In Figure 12, we report the performance of SdLBFGS-VR with different constant
step sizes α for α = 0.1, 0.01, 0.001 and SdLBFGS with different diminishing step sizes
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Fig. 13. Comparison of SdLBFGS-VR with different memory sizes p on MNIST dataset. The
step size is set as α = 0.1. We set q = 1200 and batch size m = 50, so that T = qm.

Fig. 14. Comparison of SdLBFGS-VR with different batch sizes on MNIST dataset. We set
the step size as α = 0.1 and the memory size as p = 20.

β/k for β = 10, 1, 0.1, since SdLBFGS needs a diminishing step size to guarantee con-
vergence. We see there that SdLBFGS-VR usually performs better than SdLBFGS.
The performance of SdLBFGS with β = 10 is in fact already very good but still
is inferior to SdLBFGS-VR. This indicates that the variance reduction technique is
indeed helpful.

5.4. Numerical results for SdLBFGS-VR on the MNIST dataset. In
this section, we report the numerical results of SdLBFGS-VR for solving a multiclass
classification problem using neural networks on a standard testing dataset MNIST.2

All the experimental settings are the same as in [46]. In particular, T = 60000. The
numerical results are reported in Figures 13–16, and their purposes are the same
as Figures 9–12. From these figures, we have similar observations as those from
Figures 9–12. Note that in Figures 13–16, the “SFO-calls” in the x-axis again include
both the number of stochastic gradients and T gradient evaluations of the individual
component functions when computing the full gradient ∇f(x̃k) in each outer loop.

6. Conclusions. In this paper we proposed a general framework for stochastic
quasi-Newton methods for nonconvex stochastic optimization. Global convergence,
iteration complexity, and SFO-calls complexity were analyzed under different con-
ditions on the step size and the output of the algorithm. Specifically, a stochastic
damped limited-memory BFGS method was proposed, which falls under the pro-

2http://yann.lecun.com/exdb/mnist.
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Fig. 15. Comparison of SdLBFGS-VR and SVRG on MNIST dataset with different step sizes.
The memory size of SdLBFGS-VR is set as p = 20. For both algorithms, we set the inner iteration
number q = 1200 and the batch size m = 50.

Fig. 16. Comparison of SdLBFGS-VR and SdLBFGS on MNIST dataset. For both algorithms,
the memory size is p = 20 and batch size is m = 50. For SdLBFGS-VR, the inner iteration number
is q = 1200.

posed framework and does not generate Hk explicitly. The damping technique was
used to preserve the positive definiteness of Hk, without requiring the original prob-
lem to be convex. A variance reduced stochastic L-BFGS method was also proposed
for solving the empirical risk minimization problem. Encouraging numerical results
were reported for solving nonconvex classification problems using SVM and neural
networks.
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